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Introduction: The sorting of sequences of images is crucial for augmenting

user engagement in various virtual commercial platforms, particularly within

the real estate sector. A coherent sequence of images respecting room type

categorization significantly enhances the intuitiveness and seamless navigation

of potential customers through listings.

Methods: This study methodically formalizes the challenge of image sequence

sorting and expands its applicability by framing it as an ordering problem. The

complexity lies in devising a universally applicable solution due to computational

demands and impracticality of exhaustive searches for optimal sequencing.

To tackle this, our proposed algorithm employs a shortest path methodology

grounded in semantic similarity between images. Tailored specifically for the

real estate sector, it evaluates diverse similarity metrics to e�ciently arrange

images. Additionally, we introduce a genetic algorithm to optimize the selection

of semantic features considered by the algorithm, further enhancing its

e�ectiveness.

Results: Empirical evidence from our dataset demonstrates the e�cacy of

the proposed methodology. It successfully organizes images in an optimal

sequence across 85% of the listings, showcasing its e�ectiveness in enhancing

user experience in virtual commercial platforms, particularly in real estate.

Conclusion: This study presents a novel approach to sorting sequences of

images in virtual commercial platforms, particularly beneficial for the real estate

sector. The proposed algorithm e�ectively enhances user engagement by

providing more intuitive and visually coherent image arrangements.

KEYWORDS

image ordering, semantic representation, image embedding, real estate, evolutionary

computing, feature selection

1 Introduction

In the digital age, the potency of e-commerce hinges significantly on the art of
presentation, especially within the visual-centric realm of online marketing. A paramount
aspect of this presentation is the strategic deployment of images to convey accurate and
appealing product narratives. This strategy, however, faces its quintessential challenge
in ensuring the transmission of precise information (Jin and Gallimore, 2010). The
conventional reliance on detailed written descriptions is undeniably foundational, yet the
transformative power of images in enhancing these descriptions cannot be overstated.
Quality imagery has a critical role in capturing attention and bolstering consumer
confidence, ultimately driving purchase intentions (Chen and Teng, 2013; Di et al., 2014;
Zakrewsky et al., 2016).

This visual imperative is particularly pronounced in the realm of real estate marketing.
Here, the breadth and quality of property images directly influence potential buyers’
interest (Thaler and Koch, 2023), and distinguish listings in a crowded market (Siebert and
Seiler, 2022). The crux of effective visual presentation, therefore, lies in the intuitive and
logical sequencing of these images (David Koch and Mayr, 2021). A coherent arrangement
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that clusters images by room or similarity not only eases navigation
but significantly reduces cognitive strain, thereby enhancing the
overall decision-making process (Cacioppo et al., 1996; Garbarino
and Edell, 1997; Franco-Watkins et al., 2006).

Yet, the rapidly evolving real estate sector, with its increasing
tilt toward automation in listing processes, often overlooks the
nuanced task of image sequencing. The indiscriminate uploading
of property photos without regard to their order poses a glaring
challenge, highlighting a gap in the automated sorting mechanisms
explored in other domains (Chaudhuri et al., 2018; Fan et al.,
2022). The pivotal question, then, revolves around developing an
algorithm capable of organizing these images in a manner that
respects the inherent grouping without prior knowledge of these
groups’ specifics.

This problem can be seen and formalized as an Ordering
Problem (see Section 2.1). While one approach might involve using
a clustering algorithm to generate potential sub-groups, ordering
elements based on these sub-groups can be challenging. If the
number of clusters obtained from the algorithm differs from the
initial number of subsets, achieving an accurate final order becomes
unlikely. Therefore, this paper suggests an alternative method that
increases the likelihood of obtaining an accurate order without
requiring prior knowledge of the number of clusters. Note that the
challenge arises precisely from not knowing the exact number of
distinct rooms present; otherwise, applying a clustering algorithm
would suffice.

Then, addressing the ordering problem requires a foundational
shift toward a methodology grounded in the principle of similarity.
By devising a similarity metric among the images, we aim at
defining an algorithm solution to organize the elements in a
way that those belonging to the same subset (e.g., images of
the same room) are placed adjacently, thereby preserving the
partition’s integrity. This approach, while methodical, navigates the
complexity of limited knowledge about the partition’s structure and
the count of subsets, challenging the straightforward application of
clustering algorithms.

2 Methods

2.1 Ordering problem

An ordering problem consists of finding a permutation that
maximizes (or minimizes) a certain quantity, and it can be
mathematically formalized in a general manner, focusing on
identifying permutations of elements in set A that preserve the
structure of a given partitionP . In simpler terms, the objective is to
find orders of elements in A such that elements belonging to each
subset within partition P appear consecutively (see Definition 2.2).
To illustrate, consider A as a collection of bedroom photos, with
P being a partition where each subset comprises photos of the
same bedroom.

For notation purposes, let n ≥ 1 be a finite set, and Sn denote
the symmetric group of order n. The cardinality of a setA is denoted
by |A|. Any σ ∈ Sn is referred to as a permutation. The vector space
of real square matrices of size n is denoted byMn(R).

The ordering problem can be seen as a variation on the traveling
salesman problem, where the aim is to travel through all the
towns once and only once, minimizing the total distance and

without returning to the starting point. Formally, the definition is
the following:

Definition 2.1. Let M = (mi,j)1≤i,j≤n ∈ Mn(R) and S ⊂ Sn.
The ordering problem associated to M and S is the following
optimization problem:

max
σ∈S

n−1
∑

i=1

mσ (i),σ (i+1).

For simplicity, we define the function fM : Sn → R by fM(σ ) =
∑n−1

i=1 mσ (i),σ (i+1). The ordering problem associated to M and S

consists in maximizing fM over S.

Of course, since the set over which we are minimizing is finite,
there is always a solution. The difficulty lies in finding a solution
computationally in a reasonable time. In fact, it can be proved
that the previous problem is an NP-hard problem in combinatorial
optimization when S = Sn (Opatrny, 1979).

There are many well-known algorithmic methods for solving
this kind of problem. If n is small, it is possible to go through all
the permutations of Sn in order to maximize fM . However, if n is
large (typically, when n > 10), the cardinal of Sn being n! we need
to find an alternative method. There are a number of methods for
finding an approximate solution to the traveling salesman problem.
Here we will quickly present a well-known algorithm that is easy
to implement, fast and more than sufficient for our purposes: the
nearest neighbor algorithm. Depending on the problem, it may of
course be necessary to use a more complex algorithm to maximize
fM since, in general, the nearest neighbor algorithm does not give
an optimal solution.

Let M = (s(xi, xj))1≤i,j≤n ∈ Mn(R). Define fM as in
Definition 2.1. Let xi1 be an aleatory starting point. We then choose
the element xi2 closest to it, i.e., the one that maximizes the quantity
s(xi1 , xi2 ). We repeat the process, looking for the element xi3 closest
to xi2 . When all the elements have been used, we stop. For each
starting point xi, we obtain a permutation σi. The final permutation
is obtained by choosing the σi permutation satisfying fM(σi) =
max1≤j≤n fM(σj). The pseudo-code detailed in Algorithm 1:

Parameters: a matrix M

For i ∈ {1, ..., n}:

Define σi(1) = i

Define J = {1, ..., n} \ {i}

Define the current element x = i

While J 6= ∅:

Choose j ∈ J such that mj,x = maxk∈J mk,x

Define σi(n− |J| + 1) = j

Update J ←− J \ {j}

Update x←− j

Define fM(σ ) =
∑n−1

i=1 |mσ (i),σ (i+1)|

Return argmax(fM |{σ1 ,...,σn})

Algorithm 1. Nearest neighbor algorithm.

In many applications, a starting point can be necessary. For
example, in our case, it might be interesting to choose the photo
with the highest commercial appeal as the initial point. If a starting
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point xi0 is required, the for loop should of course be removed and
only the permutations σ such that xσ (1) = xi0 are considered.

2.2 Ordering algorithm with unknown
partition

Definition 2.2. Let n ≥ 1 and let A = {x1, ..., xn} be a set of
cardinal n. Let P = {A1, ...,Ap} be a partition of A. We say that
a permutation σ ∈ Sn preserves P if

∀i∈{1, ..., p} ∃j ∈ {1, ..., n} such that xσ (j), xσ (j+1), ..., xσ (j+|Ai|−1)∈Ai,

i.e., for all i ∈ {1, ..., p}, the elements of Ai are found successively in
the ordered sequence xσ (1), xσ (2), ..., xσ (n). The set of permutations
preserving P will be denoted byO(P).

The partition P is not known, and we want to find a method
to discover a permutation that preserves P . We will see that such
permutations can be obtained by solving an ordering problem
associated with a well-chosen matrixM.

In our case, O(P) represents the set of permutations in which
the photos belonging to the same room are consecutive. Since the
objective is to determine the permutations that preserve P , it is
useful to determine how many there are.

Proposition 2.3. Let A be a finite set and let P = {A1, ...,Ap} be a
partition ofA. Then |O(P)| = p!

∏p

k=1 |Ak|!.

Proof. There are p! ways of ordering the sets Ai. Then, in each set
Ai, there are |Ai|! ways of permuting its elements. The result is
then obtained.

Although intuitively trivial, we deduce that any permutation
preserves P if and only if p = 1 or p = n. This corresponds to
cases where the partition has only one set, or where all the sets in
the partition are singletons.

Since P is not necessarily known, we have to find a way to
determine the set of permutations preserving P . One way of doing
this is to determine the functions defined on Sn whose maxima are
permutations that preserve P :

Definition 2.4. Let f : Sn → R. We say that f is compatible withP

if argmax(f ) ⊂ O(P) and we write f ∈ C(P). If moreover, f ≥ 0,
we write f ∈ C+(P).

It is clear that there always exists a function f which is
compatible with P . In fact, let Ŵ ⊂ O(P) and define f by

f (σ ) =

{

1 if σ ∈ Ŵ

0 if not

It is clear that f ∈ C(P). The following result shows that there are
many functions compatible with P . We recall that C(Sn) is the set
of continuous real functions defined on Sn (since Sn is discrete, this
refers to simply real functions defined on Sn).

Proposition 2.5. C(Sn) = C+(P)− C+(P).

Proof. Let f ∈ C(Sn) such that f 6= 0. Since C+(P) is stable by
adding a positive constant, we can and do suppose that f > 0. We
define f1, f2 ∈ C(Sn) by

f1(σ ) =

{

f (σ ) if σ ∈ O(P)
0 if not

and f2(σ ) =

{

0 if σ ∈ O(P)
−f (σ ) if not

.

It is clear that f = f1 − f2. Since f > 0, f1 and f2 reached their
maxima on O(P), i.e., f1, f2 ∈ C(P). Now pick α > 0 such that
g1 : = f1 + α > 0 and g2 : = f2 + α > 0. We have f = g1 − g2 ∈

C+(P)− C+(P).

If P is unknown, it can therefore be difficult to determine a
function f which is compatible with P . Depending on the desired
order, the f function must be chosen on the basis of the data so that
it is compatible with P . Then, by maximizing f , we will obtain an
acceptable solution associated to P .

We are going to look for functions that are compatible with P

and have a particular form:

Definition 2.6. LetM = (mi,j)1≤i,j≤n ∈Mn(R). The permutations
maximising the function fM : Sn → R defined by

fM(σ ) =
n−1
∑

i=1

mσ (i),σ (i+1)

are called longest paths ofM. We say thatM is compatible withP

if fM is compatible with P . In other words,M is compatible with P

if any of its longest paths is a permutation preserving P .

One can ask if any function of C(P) is of the form fM for some
M ∈ Mn(R). Unfortunately it is easily seen that {fM}M∈Mn(R)

is a strict subset of C(P). In fact, the map T :Mn(R) → C(Sn)
defined by T(M) = fM is linear. It follows that {fM}M∈Mn(R) ⊂

Im(T) with dim(Im(T)) ≤ n2. We have that dim(span(C(P))) =
n! by Proposition 2.5. In particular, if n > 1, we have that
{fM}M∈Mn(R) ( C(P). Although the fM functions form a small
subset ofC(P), they are the functions that aremost natural to define
in practice. In fact, the matrix M can be seen as a similarity matrix
wheremi,j is the similarity coefficient between xi and xj.

Definition 2.7. Let s :A2 → R and define M = (s(xi, xj))1≤i,j≤n.
We say that s describes P ifM is compatible with P .

The best function describing P is defined as follows:

Example 2.8. Let s :A2 → R defined by s(xi, xj) = 1 if there exists
k ∈ {1, ..., p} such that i, j ∈ Ak and s(xi, xj) = 0 if not. Define
M = (s(xi, xj))1≤i,j≤n. It is easy to see that fM(σ ) ≤ n − p for all
σ ∈ Sn with equality if and only if σ ∈ O(P). In particular, M is
compatible with P , i.e., s describes P .

We are now ready to propose a simple algorithm (Algorithm 2)
to find permutations that are compatible with a given partition:
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Parameters: a set A and a partition P of A

Define a measure of similarity s :A2 → R
+

Compute M = (s(xi, xj))1≤i,j≤n

Solve the ordering problem associated to M and Sn,

i.e., maximize fM on Sn

Return argmax(fM)

Algorithm 2. Ordering algorithm.

The entire challenge lies in finding a similarity measure that
captures the essence of P . In our case, the goal is to discover a
similarity measure where the value is high for photos of the same
room and low for photos of different rooms.

It is possible that the longest path does not pass through
two points with high similarity. This phenomenon is amplified
in practice when a starting point is chosen. Consider the
similarity matrix

M = (s(xi, xj))1≤i,j≤4 =











1 0.5 0.7 0.5
0.5 1 0.5 0.2
0.7 0.5 1 0.5
0.5 0.2 0.5 1











.

Suppose we want our starting point to be x1. In view of the
similarity matrix, points x1 and x3 are the most similar. We
therefore expect them to be part of the same group and the
optimal path to visit them successively. However, the maximum
path starting at x1 is given by x1, x2, x3, x4 and has a length of 1.5,
while the path x1, x3, x2, x4 has a length of 1.4. It can therefore
be useful to force the algorithm to pass successively through pairs
of points with a high similarity. For this reason, we propose the
following modification (Algorithm 3) to the previous algorithm
that can be applied to any matrixM.

Parameters: a matrix M and a threshold α ∈ R

Define M′ = (m′i,j)1≤i,j≤n = M

Define S = Sn and S ′ = S

While m = maxi 6=j m′i,j ≥ α and S 6= ∅:

S ′ = S

Pick i0 6= j0 such that m′i0 ,j0 = m

Remove from S the permutations σ such that

there does not exist k such that σ (k) = i0

and σ (k+ 1) = j0, or σ (k) = j0 and σ (k+ 1) = i0

m′i0 ,j0 = mini 6=j m′i,j and m′j0 ,i0 = mini 6=j m′i,j
Solve the ordering problem associated to M and Sn,

i.e., maximize fM on S ′

Return argmax(fM |S ′ )

Algorithm 3. Improved ordering algorithm.

The previous algorithm forces pairs of elements whose
similarity is sufficiently high to follow each other in the final order.
Of course, if a starting point xi0 is desired, then S should be defined
as the subset of Sn consisting of the permutations σ satisfying
xσ (1) = xi0 . It should be borne in mind that the use of a starting
point, although necessary for certain applications, can only worsen
the performance of the algorithm.

2.3 Dataset

Our dataset comprises 295 property ads, each containing
varying numbers of photos. Each photo is labeled, identifying the
specific room category it belongs to (e.g., bedroom, living room,
exterior,...). For the purpose of this analysis, we focus solely on
bedroom photos within each property listing, since it is likely to
find a varying number of bedrooms across ads. Therefore, our
dataset can be represented as a collection of sets: C = {Ai}1≤i≤295,
where each Ai corresponds to a set of ni bedroom photos (with
potential errors from the initial model, although this doesn’t impact
the ordering algorithm’s structure). For each Ai, the objective is
to arrange the photos in such a manner that pictures of the same
bedroom are contiguous. Consequently, for each Ai, there exists
an unknown partition Pi of Ai, where each subset comprises
photos of the same bedroom. An example of bedroom-categorized
advertisement photos is shown in Figure 1.

In case |Pi| = 1 or |Pi| = ni, any order would be a solution
(see Proposition 2.3). We will therefore eliminate the elements Ai

verifying this condition since, regardless of the model, the result
will be good. After these eliminations, our dataset C contains 211
elements. In order to avoid over-complicating the notations, we will
still write C = {Ai}1≤i≤k with k = 211 and where each Ai is a set
of ni.

2.4 Application to image ordering

Recall that our dataset a set of C = {Ai}1≤i≤k, where k = 211
and eachAi is a set of ni bedroom photos. For eachAi, the objective
is to order the photos in such a way that the photos of the same
room follow one another. That is, if Pi is the unknown partition of
Ai where each set of which consists of photos of the same room, we
want to find a permutation preserving Pi.

2.4.1 Embedding vectors
An embedding vector serves as a condensed representation

that encapsulates the informational essence held within an image
or text (Gutiérrez and Keith, 2019; Schwalbe, 2022). Through
a complex process of feature extraction and transformation, an
image is translated into a numerical vector that captures key visual
characteristics and patterns. This vector, known as the embedding
vector, effectively distills the image’s relevant information into
a more compact and manageable format. This process enables
efficient storage, comparison, and analysis of images, making it an
indispensable tool in various applications such as image retrieval,
similarity assessment, and even machine learning tasks where
image data is a crucial input.

This embedding process is commonly achieved through the
utilization of a neural network known as an image encoder. The
image encoder is specifically designed to take raw image data
as input and transform it layer by layer into a meaningful and
compact embedding vector. This network leverages its learned
weights and architecture to extract hierarchical features from the
image, gradually abstracting away from low-level pixel information
to higher-level semantic representations. As the image progresses
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FIGURE 1

Photos of bedrooms in an ad.

through the layers of the encoder, its distinctive features and
attributes are progressively distilled into the final embedding vector,
creating a powerful and condensed representation that captures
the image’s essence. This integration of deep learning techniques
within the image embedding process enhances the ability to capture
intricate patterns, allowing for more effective downstream tasks
that rely on these embeddings.

Notation 2.9. When using an image encoder e, the dimension of
the embedding vector will be denoted as m. Moreover, if I is an
image, the corresponding embedding vector will be denoted by
e(I) ∈ Rm.

In our case, we will use the image encoders of two algorithms:
CLIP (Radford et al., 2021) and BLIP (Li et al., 2022), two of the
currently most effective algorithms.

2.4.1.1 CLIP

The embedding vector obtained thanks to the image encoders
of the CLIP algorithm is a vector of a vector of m = 512
coordinates. To obtain this image encoding, CLIP uses a deep
neural network called the “image encoding network". This network
is a crucial part of the overall CLIP model, which combines
image encoding with text encoding to perform multimodal tasks.
The image encoding network is pretrained on a large dataset
of images from the internet in an unsupervised manner before
being fine-tuned using the contrastive process, as mentioned in
the previous response. Through this training, the network learns
to extract important and semantically meaningful visual features
from images, creating a 512-dimensional vector that captures key
information about the image.

Notation 2.10. The image encoder of CLIP will be denoted by c.

2.4.1.2 BLIP

The BLIP image encoder returns an embedding matrix of
dimensions 32 × 256 (meaning that m = 8192). They incorporate
a visual transformer as our image encoder, which breaks down
input images into patches and converts them into a sequence
of embeddings. An additional token is included to represent the
overall image feature. This choice offers advantages over the use
of pretrained object detectors for visual feature extraction, as
it is computationally more efficient. This approach has gained
popularity in recent methodologies for its effectiveness in image
processing tasks.

Notation 2.11. The image encoder of BLIP will be denoted by b.

2.4.2 Image ordering algorithm
In order to compare two embedding vectors, we will consider

a similarity measure S :(Rm)2 → R+ and then calculate
the arithmetic mean of this measure evaluated on the images
themselves and on their symmetrical images. We then obtain a
similarity measure s which will be used to order the images. Its
calculation is given in the following algorithm. Before that, we just
introduce the following notation:

Notation 2.12. Let m ≥ 1. If x ∈ Rm and v ∈ Rm is a vector such
that vi ∈ {0, 1} for all i ∈ {1, ...,m}, we denote by xv the vector given
by vx =

∑m
i=1 vixiei where (ei)1≤i≤m is the canonical basis of Rm.

Many image encoders are sensitive to axial symmetries due
to the nature of the neural networks it employs. The deep
neural networks are designed to learn and recognize patterns
and features in images. When the image is transformed by axial
symmetry (horizontal or vertical flipping), the spatial arrangement
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of visual elements changes. Consequently, the network may extract
different features from the transformed image compared to the
original one. Since these algorithms encode images based on
these extracted features, the resulting feature vector representing
the transformed image will differ from the one representing the
original image. As a result, when these algorithms compare an
image with its axially symmetrical counterpart or with textual
descriptions, the differences in feature extraction can influence the
perceived similarity between the images or the alignment with the
provided text. This is why we propose the following computation
(Algorithm 4) of the similarity matrix:

Parameters: a image encoder e, a set of images

A = {I1, ..., In}, a similarity measure S :(Rm)2 → R
+

and a binary vector v

For i ∈ {1, ..., n}:

Compute Isi the image obtained from Ii by

vertical axial symmetry

Compute e(Ii) and e(Isi )

For i, j ∈ {1, ..., n} such that i ≤ j:

If i = j:

s(i, j) = 1

Else:

s(i, j) = 1
3

(

S(e(Ii)v , e(Ij)v)+ S(e(Isi )v , e(Ij)v)+ S(e(Ii)v , e(Isj )v)
)

Return M = (s(xi, xj))1≤i,j≤n

Algorithm 4. Similarity matrix.

The v vector is a binary vector which selects variables. If there
is no knowledge of the importance of the variables, it is sufficient to
consider that v is the vector of Rm whose coordinates are all 1. We
will then propose a method for selecting the important variables
using a genetic algorithm (see Section 2.4.3).

The choice of the similarity measure S depends, of course, on
the problem in question. For example, one can consider the cosine
similarity or metrics based on geometrical distances (Martinez
et al., 2024) given by S(x, y) = 1

1+‖x−y‖ where ‖.‖ is a norm of Rm.
Here we will use the ℓ2-norm ‖.‖2. In our case, the measure that
gave the most significant results is the cosine similarity.

We are now ready to present our image ordering algorithm
(Algorithm 5) as follows:

Parameters: a image encoder e, a set A of n

images, a similarity measure S :(Rm)2 → R
+, a

threshold α, nmax ∈ N and a binary vector v

Compute the similarity matrix M by applying

Algorithm 4 to e, A, S and v

If n ≤ nmax:

Return a permutation given by Algorithm 3

applied to M and α

Else:

Return a permutation given by Algorithm 1

applied to M

Algorithm 5. Ordering algorithm.

2.4.3 Feature selection using genetic algorithm
Feature selection utilizing a genetic algorithm is pivotal for

refining our understanding and application of multivariable
analysis in this study. Specifically, we delve into the intricate
relationships between multiple predictor variables—features
extracted from image embeddings—and the response variable,
which is the accuracy of image sequencing, quantified as the
well-ordering rate. Through this analysis, we aim to uncover
the most impactful features that enhance the precision of image
ordering and explore the dynamics of their interactions.

In our study, multivariable analysis critically examines
the interplay between multiple predictor variables, specifically
features extracted from image embeddings, and the response
variable—image sequencing accuracy, measured by the well-
ordering rate. This analysis is pivotal for identifying features that
significantly enhance ordering accuracy and understanding their
synergistic interactions.

In this endeavor, the genetic algorithm emerges as
a cornerstone, facilitating the discernment of a subset of
features within the high-dimensional embedding vectors that are
paramount for efficacious image sorting. This entails a meticulous
process of evaluating the performance imparted by various feature
subsets on the image ordering task, followed by an iterative
refinement of these subsets to optimize the well-ordering rate.

Feature selection is not merely about enhancing algorithmic
accuracy; it’s also about augmenting data clarity by mitigating
noise and bolstering computational efficiency. Our goal is to
pinpoint the specific coordinates within the embedding vector
that hold significance for image classification. With a preliminary
understanding that the binary vector v constituted all ones, the
introduction of a genetic algorithm to refine the selection of v
represents a strategic pivot. We focus on the embedding vectors
generated by BLIP, specifically targeting the pivotal coordinates for
image ordering. Given that these vectors comprise 32 sub-vectors,
each with 256 coordinates, our selection process simplifies each
sub-vector into a singular variable for feature selection.

Genetic algorithms, a well-entrenched optimization technique
(Slowik and Kwasnicka, 2020; Sohail, 2023), are adeptly employed
for variable selection. The aim is to isolate an optimal subset
of variables that elevate the designated fitness function. Within
the population of the genetic algorithm, each individual signifies
a potential subset of variables, denoted by a binary vector
that marks the inclusion (1) or exclusion (0) of each variable
(each sub-vector). This systematic approach culminates in
the identification of the optimal variable subset, significantly
enhancing the efficiency and efficacy of image ordering in
our dataset. The primary steps of the genetic algorithm are
illustrated in Figure 2, with detailed explanations provided
below:

(1) Initialize population: The GA initiates by creating a population
of individuals, each possessing a binary string of 0s and 1s,
indicating the inclusion (1) or exclusion (0) of variables in
the subset.

(2) Fitness evaluation: Compute the fitness score for each individual
in the population. In this specific application, the fitness
function is defined as the well-ordering rate, where a higher
fitness score signifies a more effective subset of variables.
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FIGURE 2

Scheme of the genetic algorithm used.

(3) Parent selection: Individuals are chosen for reproduction based
on their fitness scores. The probability of selecting each
individual as a parent is proportional to its fitness score such
that pselection =

fi
∑

i fi
.

(4) Crossover: Crossover is performed with a probability
(pcrossover = 0.8). Two parents are randomly selected
from the parent pool, and a crossover point is chosen.
The offspring are generated by swapping the binary
strings of the parents at the crossover point, creating two
new individuals.

(5) Mutation: Mutation occurs with a specified probability
(pmutation = 0.1) for each bit of an individual. If mutation
occurs, the bit is flipped (0 becomes 1, and vice versa),
introducing exploration and aiding the algorithm in escaping
local optima.

(6) Next generation: The new population is formed by repeating the
crossover and mutation process for the entire population.

(7) Termination: The GA runs for a predefined number of
generations. Upon completion of the specified number of
generations, the algorithm returns the best individual found
during the process, representing the optimal subset of variables.

As aforementioned, the fitness function is given by the well-
ordering rate, that is detailed in Algorithm 6:

Parameters: an individual v (which is a binary

vector), a set C = {Ai}1≤i≤k where Ai is a set of

images, {Pi}1≤i≤k a set where Pi is a partition

of Ai, a similarity measure S :Rm × R
m → R

+,

a threshold α and nmax ∈ N

Define t = 0:

For i ∈ {1, ..., k}:

Pick a permutation σi given by Algorithm 5

applied to b, Ai, S, α, nmax ∈ N and v

If σi preserves Pi:

t←− t + 1

Return t/k

Algorithm 6. Fitness function.

3 Results

In this section, we present the results of Algorithm 5 applied
to our problem. To do so, we will evaluate the results based on
the numbers of adds that are well-ordered. This means, with an
accuracy metric for all the ads called the well-ordering rate:

Definition 3.1. Let C = {Ai}1≤i≤k our set of sets of images and for
each i ∈ {1, ..., k}, let Pi be a partition of Ai and σi ∈ Sni (where
ni = |Ai|). We define well-ordering rate by

τ =
1

k

∣

∣{i ∈ {1, ..., k} : σi preserves Pi}
∣

∣ .

Here Ai is a set of images, Pi is the partition of Ai whose sets
contains the photos of the same bedroom and σi is a permutation
obtained thanks to Algorithm 5. Results are shown in Table 1.

It is worth recalling that the value of nmax determines the
threshold at which we employ an approximate solving method to
determine an optimal solution. The more you increase nmax, the
better the results will be. However, for computational reasons, it is
wise to choose a value between 10 and 12.

As mentioned in Section 2.4.2, image encoders are sensitive
to axial symmetries. We can indeed confirm this here. Results
from replacing the similarity measure of Algorithm 4 by s(i, j) =
S(e(Ii)v, e(Ij)v) are shown in Table 2.

One thing that is interesting to note is that, unlike CLIP, BLIP
seems to have little sensitivity to image orientation, since the results
are very similar (with τ varying by only 0.4% for BLIP, compared to
3.3% for CLIP.)

Previous results were obtained without performing any feature
selection. We then upgraded the model by applying a genetic
algorithm to perform feature selection (see Section 2.4.3). Note
that since the results are significantly better with BLIP than with
CLIP, we confine ourselves here to improving on the results
of the algorithm using BLIP. We used cosine similarity for the
fitness similarity measure S. Considering a population of 50 and
10 generations, we obtained a vector vGA that we can use in
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TABLE 1 Results with symmetrization.

Encoder e nmax α S(x, y) τ

c 10 0.9 〈x,y〉
‖x‖2‖y‖2

69.7

c 10 0.9 1
1+‖x−y‖2

66.4

c 0 – 〈x,y〉
‖x‖2‖y‖2

65.4

c 10 0.9 1
1+‖x−y‖2

66.4

b 10 0.9 〈x,y〉
‖x‖2‖y‖2

81

TABLE 2 Results without symmetrization.

Encoder e nmax α S(x, y) τ

c 10 0.9 〈x,y〉
‖x‖2‖y‖2

66.4

b 10 0.9 1
1+‖x−y‖2

80.6

TABLE 3 Results with GA.

Encoder e nmax α S(x, y) τ

b 9 0.9 〈x,y〉
‖x‖2‖y‖2

85.8

Algorithm 5. For computational reasons, we lower nmax to 9 and we
obtained that well-ordering rate has therefore increased by 4.8%, as
shown in Table 3.

4 Discussion

In the discussion of our findings, it’s important to contextualize
the implications of our approach for the broader field of image
processing and its applications in online commerce. Our method,
while specifically tailored to address the challenge of sorting
property listing images, holds potential for a wide range of
applications where image order and selection are critical. By
grounding our solution in a general mathematical framework and
leveraging semantic image embedding, we offer a path forward for
similar challenges across various domains.

The employment of a genetic algorithm for semantic variable
selection underscores the adaptability of our approach. This
adaptability is crucial, as it suggests that with appropriate tuning,
our method can be extended to other types of datasets or sorting
criteria. For instance, in e-commerce, where the visual presentation
of products can significantly influence consumer behavior, our
algorithm could be used to optimize the arrangement of product
images to highlight features most likely to appeal to customers.

Irrespective of the specific field of application, the predominant
methodology for image sorting has traditionally leveraged
clustering techniques, which range from classical machine
learning approaches like k-means or k-nearest neighbors to more
advanced neural network frameworks (Rorissa and Hastings, 2004;
Liang et al., 2023). While such methods offer rapid processing
and effectively categorize images into distinct subsets, they
fundamentally execute a classification-centric sorting strategy.
This approach does not account for the ordering within these
subsets, nor does it address the aspect of sequentiality that is

critical in the context of the current study and others focused on
e-commerce applications.

Previous research has explored the automation of product
image sequencing in the e-commerce domain (Chaudhuri et al.,
2018; Fan et al., 2022). However, the realm of real estate listings
presents a notably more intricate challenge. This complexity stems
from the diversity and uncertainty associated with subproducts,
such as the various rooms and types of rooms, each with
their unique 3D shapes and elements. This scenario is markedly
different from simpler products like smartphones or clothing,
where the variability and spatial considerations are significantly
less pronounced. Consequently, the methodologies and solutions
developed for simpler product categories fall short of addressing
the intricate demands and nuances of the real estate sector.

One of the notable challenges in our study is associated
with the methodology grounded in similarity distance metrics.
This approach inherently positions images with high similarity—
including identical ones—next to each other in the sequence,
inadvertently overlooking the potential issue of redundancy.
Our research operates under the presumption that each image
contributes a meaningful and complementary information when
compared to others. However, this assumption might not always
hold true, particularly in scenarios where photographs are captured
and selected for marketing purposes, with the aim of automating
the process of compiling images for a commercial advertisement.
An example of redundancy within the realm of real estate
marketing might involve multiple shots of the same room captured
from slightly varied angles, which, in essence, fail to furnish
additional valuable information to the prospective buyer.

In practical applications, especially in digital marketing and
online advertising, the presence of redundant images could dilute
the effectiveness of the visual narrative, potentially overwhelming
or disengaging the target audience. Recognizing and eliminating
redundancy not only streamlines the content but also enhances the
user experience by presenting a concise and focused array of images
that collectively convey a more powerful message. Image sequence
generation for products in e-commerce has been already addressed
taking into account redundant images (Chaudhuri et al., 2018; Fan
et al., 2022). However, the methodologies applied are far from the
approach required to sorting with subsets restrictions and could not
be integrated in the present study.

Therefore, addressing the limitation of redundancy is
paramount for advancing the utility and efficiency of automated
image sorting systems. Future research directions should include
the development of algorithms capable of discerning and filtering
out redundant images. This involves integratingmore sophisticated
measures that go beyond mere visual similarity, incorporating
aspects such as semantic content, emotional appeal, and narrative
coherence to ensure that each selected image adds distinct value
to the collection. Following on the previous example of redundant
images, another approach could involve leveraging image stitching
algorithms to pinpoint and identify redundant photographs (Wu
and Cai, 2012). Such advancements could significantly refine the
process of automating commercial advertisements, offering more
dynamic, engaging, and effective visual presentations.

By tackling this challenge, subsequent studies can pave the
way for more intelligent automation solutions that are not only
adept at organizing images but also at curating content that
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resonates more deeply with viewers. This progression is crucial for
leveraging the full potential of automated systems in enhancing
the strategic presentation of images in commercial contexts,
ultimately driving greater engagement and conversion in digital
marketing campaigns.

Furthermore, our study opens up several additional avenues for
future research. One immediate area of interest is the exploration
of different semantic features and their impact on sorting efficacy.
As we have seen, certain features contribute more significantly
to performance than others. A deeper understanding of these
dynamics could lead to more refined algorithms that are both more
efficient and effective.

Another potential direction is the investigation of alternative
algorithms or enhancements to the genetic algorithm used in our
study. While our approach has demonstrated promising results,
there is always room for improvement in computational efficiency
or sorting accuracy. Exploring machine learning techniques that
can learn optimal sorting strategies from data, rather than
relying on predefined semantic features, might offer new insights
and improvements.

Lastly, the practical implications of our research for real-world
applications should not be overlooked. Integrating our sorting
solution into online platforms could significantly enhance user
experience by providing more intuitive and visually coherent image
arrangements. However, achieving this integration poses its own set
of challenges, including scalability, platform compatibility, and user
interface design considerations.

In conclusion, while our study specifically addresses the
challenge of sorting images in property listings, the implications
of our work extend far beyond this context. The principles and
methodologies we have developed offer valuable insights and tools
for a wide range of applications in online commerce and beyond.
Future research, building on our findings, has the potential to
further refine and expand the applications of these techniques,
contributing to the advancement of the field of image processing
and its practical applications.
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