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Introduction: Modern agriculture must begin to use production strategies
that are increasingly sustainable. To help in decision-making, the present
work analyzes the sustainability of greenhouse tomato production with
di�erent agroecological strategies: shading (conventional fixedmesh andmobile
photovoltaic shading), grafting and deficit irrigation, based on economic, social,
and environmental criteria.

Methods: For the ranking of the di�erent strategies, the use of an extension of
the CRiteria Importance Through Inter-criteria Correlation (CRITIC) is proposed,
in which the correlation between the criteria is obtained through the Pearson-
OWA, where the aggregation of the quadratic di�erences between criteria is
carried out considering the attitudinal character of the decision-maker, that is,
using Ordered Weighted Averaging (OWA), in addition to induced variables, with
the Induced Probabilistic OWA CRITIC (IPOWA CRITIC). Three extensions are
considered based on this model depending on the way the multicriteria score is
calculated: i) the ranking is carried out on the relative score (S) of each alternative
(IPOWA-S-CRITIC), ii) on the weighting vector (W) (IPOWA-W-CRITIC), or iii) on
both (IPOWA-S-W-CRITIC).

Results: The results of the classifications conducted indicate that the use of
mobile photovoltaic mesh is a sustainable production strategy, due to its e�ect
on production and quality of the crop, CO2 fixation, and irrigation water savings.

Discussion: The use of mobile photovoltaic shades is compatible with tomato
cultivation in a greenhouse if the management of the installation is performed
considering the needs of the plants in most of the rankings.

KEYWORDS

economic criteria, social criteria, environmental criteria, pearson coe�cient,

agrovoltaic, photovoltaic energy, deficit irrigation

1 Introduction

Presently, climate perturbations include extreme temperature values that increase the
evapotranspiration of plants and irrigation needs, compromising agricultural production,
especially of crops in Mediterranean climate areas, due to the scarce quantity and quality
of the water available (Giordano et al., 2021). Tomatoes (Solanum lycopersicum L.) are
the second most-cultivated crop in the world after potatoes, with approximately 187
million tons and 5 Mha in 2021, according to the statistical results from the Food and
Agriculture Organization of the United Nations (FAOSTAT, 2025). This crop has high
water and nutritional demands and is also sensitive to the reduction in photosynthesis due
to photoinhibition, so it is strongly affected by climate change (Mutale-Joan et al., 2020).
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In tomato cultivation, grafts are one of the most utilized
agroecological techniques. This technique was originally used for
controlling pathogens (Louws, 2012), and it is currently used
to improve production and quality (Turhan et al., 2011), or to
favor the crop’s adaptation to conditions of abiotic stress, such
as drought, salinity, and high temperatures (Kumar et al., 2017).
Shading limits the effect of solar radiation on crops, reducing
transpiration and the associated consumption of irrigation water
and fertilizers, as well as the leaching of nutrients (Ghoulem
et al., 2019). In addition, it improves the homogeneity of the
climate and increases productivity and the quality of crops that
are especially sensitive to photoinhibition, such as tomatoes
(Briassoulis et al., 2007). Photovoltaic technologies directly convert
sunlight into electrical energy, thanks to the photoelectric effect.
Agrovoltaic applications in open-air crops and greenhouses have
been investigated since the start of the 21st century (Magadley
et al., 2020). Specifically for tomato, the recommendation is for
the modules not to exceed 20% of shading, and it is estimated that
shading the entire surface of the crop reduces solar radiation by
80%, which leads to a decrease in production of 70% (Cossu et al.,
2018; Kumar et al., 2022). In recent years, there has been a growing
number of investigations for possible solutions that make short-
term forecasts and identify an unrecognized evaluation standard
(Moreno et al., 2025).

A cost–benefit study will allow farmers and growers to make
advances in the optimization of agricultural production (Cámara-
Zapata et al., 2019). However, assessing the sustainability
of different agricultural production strategies requires a
multicriteria hierarchical analysis, considering agronomic,
economic, environmental, and social criteria (Brotons-Martínez
et al., 2024). In this way, it is possible to rank different production
strategies considering the result of this analysis. Among the
methods utilized, the Monte Carlo analysis, the determination of
accumulated probabilities, and polling experts, stand out. However,
all of these lack the objectivity necessary to make a decision about
the adequacy of the strategies analyzed. Thus, it is necessary to use
new ranking methodologies that contribute toward consolidating
the motivation of the decisions to be made.

The Criteria Importance Through Inter-Criteria Correlation
(CRITIC) method was introduced by Diakoulaki et al. (1995). Its
objective is to rank a set of alternatives based on a series of criteria.
This method uses the information available and objectively assigns
weights to the different criteria through an analytical investigation
of the evaluation matrix, quantifying the intrinsic information
of each assessment criterion through the value of its standard
deviation and the relative discrepancy between the values of each
criterion, measured through Pearson’s correlation. According to
Luo et al. (2024), the estimation of the indicator weight, based on
the intensity of comparison, that is, the standard deviation, and the
conflict between the evaluation indicators, is used as an objective
assignment. To introduce the degree of optimism or pessimism
of decision-makers, the combination of this method with a very
common aggregation method, the ordered weighted averaging
(OWA) operator introduced by Yager (1988), is proposed. The
OWA operator considers an aggregation process, providing the
maximum, the minimum, and the average. A generalization in
the variance and the covariance, allowing for a wide range of

scenarios from the minimum to the maximum, that is, from the
most optimistic to the most pessimistic scenario, can be followed
in Yager (1996a) and Merigó (2011). The OWA linear regression
(LR) was introduced by Yager and Beliakov (2010). Flores-Sosa et al.
(2020) present an application that uses simple linear regression and
the Induced OWA operator in the same formulation.

The CRITIC method and the OWA operator and its extensions
have been used in a wide range of applications (Peng and
Huang, 2020; Diakoulaki et al., 1995; Merigó and Casanovas, 2011;
Yager, 1996b). Although some published studies have combined
both concepts (Luo et al., 2024; Xing et al., 2022), they have
been presented as two independent methods. Some studies have
introduced the OWA in aggregating relative scores (Brotons-
Martínez et al., 2024). The CRITIC method has been proposed
for several applications in agriculture, such as the evaluation of
irrigation systems (Hezam et al., 2024), the selection of suitable
reference evapotranspiration (ETo) models (Islam et al., 2020),
or for selecting the best alternative for using reclaimed water in
India (Narayanamoorthy et al., 2019). The main advantage of the
CRITIC method is that it computes the conflict and variability of
the criteria by calculating their weights objectively, by analyzing
their variability and inter-correlation. The CRITIC method not
only avoids the interference of subjective factors but also considers
the contrast intensity and conflict between indicators to determine
the weight (Anwar, 2021).

Some studies use CRITIC combined with other methodologies,
such as the Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) in multicriteria decision-making (Liu
et al., 2024), the gray relational analysis (Xu et al., 2020; Mishra
and Muhuri, 2021), the Analytic Hierarchy Process (AHP) (Zhao
et al., 2022), the AHP combined with multicriteria optimization
and compromise solution (VIKOR) (Feng et al., 2021), a gray
multicriteria decision-making combined compromise solution
(Yazdani et al., 2024), the qualitative flexible multiple criteria
(QUALIFLEX) method (Liu et al., 2022), the Extended Distance
from the Average Solution (EDAS) under a mixture Z-number
environment (Sun et al., 2022), the entropy weight method
(EWM) (Yuan et al., 2024), the neutrosophic linguistic MCDM
(MultiCriteria Decision-Making) algorithm based Combined
Compromise Solution (CoCoSo) (Peng and Huang, 2020), or with
the Taxonomymethod extended to the intuitionistic fuzzy numbers
(Xiao et al., 2020). All of these studies deal with methodological
combinations that try to improve the CRITIC method, but without
considering the attitudinal characteristic of the decision-maker.

The aim of the study is to obtain a CRITIC method where
the conflict and variability of the criteria could be considered
for estimating the weights according to a degree of optimism
to obtain different forecast scenarios. Moreover, by using the
Induced OWA (IOWA) and Induced Probabilistic OWA (IPOWA)
operators, the decision-maker can under- or over-estimate the
information according to a complex attitude that includes the
degree of optimism and the psychological and competitive factors
(Flores-Sosa et al., 2020). Thus, using induced operators helps us
work with complex variables for which the greatest benefit is not
always the best solution. For example, this may occur depending
on the results that competitors obtain or some personal opinions
about the alternatives.
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The main novelty of the study is the introduction of the
OWA in the analysis of the correlation among different criteria.
Using extensions such as the Pearson-POWA allows combining
the attitudinal character with the probability of commercial
implementation of each treatment. Finally, the Pearson-OWA
makes it possible to assign the importance of each sum of the
correlation coefficients as a function of an induced variable, the sum
of the normalized values of the different criteria for each treatment.

The manuscript is structured in the following manner: first, the
basic concepts of the OWA, variance-OWA, and covariance-OWA
are described. Next, the Pearson-POWA and Pearson-IPOWA are
defined and added to the CRITIC methodology. Furthermore,
the IPOWA CRITIC and the extensions IPOWA-OWA-S-CRITIC,
IPOWA-OWA-W-CRITIC, and IPOWA-OWA-S-W-CRITIC are
proposed to obtain the multicriteria score. The study is concluded
with an empirical application, and the results are discussed to assess
the applicability of this strategy. Finally, the main conclusions
obtained are presented.

2 Materials and methods

2.1 Ordered weighted average

Definition 1. An ordered weighed average (OWA) operator
(Yager, 1988) of dimension n is a mapping of FOWA :Rn → R that
has an associated weighting vectorW = [ω1,ω2, . . . ,ωn], such that
ωi ∈ [0, 1] and

∑n
i=1 ωi = 1 defined as:

FOWA (a1, a2, ..., an) =
∑n

j=1
ωjbj (1)

where bj is the jth largest of the ai.
The OWA operator is a non-linear function of elements,

since it implies an ordering process. It presents the properties of
commutativity, monotonicity, and boundedness:

• Commutativity: The initial ordering of the arguments does
not matter.

• Monotonicity: FOWA (a1, a2, ..., an) ≥ FOWA

(

a∗1 , a
∗
2 , ..., a

∗
n

)

if
ai ≥ a∗i for all i.

• Boundedness: Min (a1, ..., an) ≤ FOWA (a1, ..., an) ≤

Max (a1, ..., an ).

An immediate application of boundness is idempotency: if aj =
a for all j, then F (ai, ..., an) = a.

Definition 2. A Probabilistic OWA operator (POWA) of
dimension n (Merigó, 2008, 2009) is amapping of FPOWA :Rn → R

with two associated weighting vectors W and V of dimension n,
such that ωj and vi ∈ [0, 1] and

∑n
j=1 ωj = 1 and

∑n
i=1 vi = 1 :

FPOWA (a1, ..., an) =
∑n

j=1
υ̂jbj (2)

where bj is the jth largest of the ai, each argument ai has an
associated weight (probability) vi, ν̂j = δωj + (1 − δ)νj with δ ∈

[0, 1], and νj is the weight (probability), with νi ordered according
to bj, that is, according to the jth largest of the ai. If δ = 0 or

ωj = 1/n for all the bj, a probabilistic mean is obtained; on the
contrary, if δ = 1 o vj = 1/n for all the bj, the OWA operator is
obtained.

The induced ordered weighted average operator (IOWA)
introduced by Yager and Filev (1999) uses a second variable,
the induced variable, to perform the ordering as a prior step to
its aggregation.

Definition 3. An IOWA operator of dimension n is a mapping
of FIOWA :Rn × Rn → R; it has an associated weighting vector W
of dimension n , such that ωi ∈ [0, 1] and

∑n
i=1 ωi = 1 :

FIOWA (〈u1, a1〉 , 〈u2, a2〉 , ..., 〈un, an〉) =
n

∑

j=1

ωjbj (3)

Where bj is the ai value of the IOWA pair 〈ui, ai〉 having
the jth largest ui, ui is the order inducing variable, and ai is the
argument variable.

The induced probabilistic ordered weighted average (IPOWA)
is an aggregation operator that uses probability and the OWA
operator. Thus, the reordering of the values is performed according
to the induced variable that represents a complex process of
reordering of the individual distances formed by comparing two
sets (Merigó and Casanovas, 2010). This contribution is interesting,
as it combines the possibility of occurrence of certain results and the
attitudinal character of decision-makers, who assess using inductive
variables in order to represent their attitude completely. For this,
it considers aspects such as the degree of optimism, psychological
aspects, or the pressure of time.

Definition 4. An IPOWA operator (Merigó, 2014) of
dimension n is a mapping of FIPOWA : R

n × Rn → R that has the
associated weighting vectors W and of dimension n, such that ωj

and υi ∈ [0, 1] and
∑n

j=1 ωj = 1 and
∑n

i=1 υi = 1:

FIPOWA (〈a1, u1〉 , ..., 〈an, un〉) =
n

∑

j=1

υ̂jbj (4)

Where bj is the ai value of the IOWA pair 〈ui, ai〉 having the jth

largest ui, ui is the order inducing variable, each argument ai is
the argument variable with an associated weight (probability) vi,
v̂j = δωj+(1−δ)vj with δ ∈ [0, 1], and vj is the weight (probability),
with vi ordered according to bj, that is, according to the jth largest
of the ui.

2.2 Variance, covariance, and correlation
coe�cient

In this section, some previous concepts, such as the OWA-
variance and the OWA-covariance, are analyzed and the Pearson-
OWA operator is proposed. These elements will allow for the
development of a new methodology named OWA-CRITIC, which
allows the ordering of different alternatives, based on amulticriteria
system, and the introduction of the possibility that Pearson’s
correlation coefficient is obtained based on a reordering of the
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elements to which weights are assigned, not the element itself, but
to the position they occupy in the set.

Definition 5. Pearson’s correlation coefficient measures the
linear relationship between two variables A = {a1, . . . , an} and
B =

{

b1, . . . , bn
}

whose means are µa and µb, respectively.
Each argument (ai − µa)

(

bi − µb

)

has an associated weight vi
with

∑n
i=1 vi = 1 and vi ∈ [0, 1], each argument (ai − µa)

2

has an associated weight νai with
∑n

i=1 ν
a
i = 1 and νai ∈

[0, 1], each argument
(

bi − µb

)2
has an associated weight vbi

with
∑n

i=1 v
b
i = 1 and vbi ∈ [0, 1], and can be defined as

FPearson
(〈

a1, b1
〉

, . . . ,
〈

an, bn
〉)

=
∑n

i=1 vi(ai−µa)(bi−µb)
√

∑n
i=1 v

a
i (ai−µa)

2
√

∑n
i=1 v

b
i (bi−µb)

2
.

For the case in which vi = vai = vbi = 1/n for all the i, we obtain

FPearson
(〈

a1, b1
〉

, ...,
〈

an, bn
〉)

=

∑n
i=1 (ai − µa)

(

bi − µb

)

√

∑n
i=1 (ai − µa)

2
√

∑n
i=1

(

bi − µb

)2
(5)

Definition 6. The variance OWA operator (Yager, 1996b) of
dimension n is a mapping of FVar−OWA :Rn → R that has an
associated weighting vector W = [ω1,ω2, ...,ωn], such that ωi ∈

[0, 1] and defined as

FVar−OWA (a1, a2, ..., an) =
∑n

j=1
ωjDj (6)

where Dj is the jth largest of the (ai − µ)
2, ai is the argument

variable, and µ is the average (in this case, the OWA operator).
The Var-OWA accomplishes properties similar to other

OWA operators, including commutativity, monotonicity, and
boundedness. When considering , it becomes the classical variance.

Definition 7. The covariance OWA operator (Merigó, 2011) of
dimension n is a mapping of FCovar−OWA : R

n × Rn → R that has
an associated weighting vector , such that and defined as

FCovar−OWA

(

〈a1, b1〉, ..., 〈an, bn〉
)

=
∑n

j=1
ωjKj (7)

where Kj is the jth largest of the (ai − µa)
(

bi − µb

)

, ai is the
argument variable of the first set of elements A = {a1, . . . , an} , bi
is the argument variable of the second set of elements B =
{

b1, . . . , bn
}

, and µa and µb are the mean of the sets A and B,
respectively.

The Covar-OWA accomplishes properties similar to other
OWA operators, including commutativity, monotonicity, and
boundedness. When considering ωi = 1/n, it becomes the
classical covariance.

The OWA operator can also be implemented into Pearson’s
correlation coefficient. The use of Pearson-OWA is proposed
next, which allows modifying the process of aggregation of
the squares of the differences with respect to the mean, and
the products of the differences with respect to the means of
the two variables to be compared, assigning a higher or lower
importance as a function of the degree of optimism or pessimism of
the decision-maker.

Definition 8. Pearson-OWA of dimension n is a mapping
of FPearson−OWA :Rn × Rn → R that has an associated

weighting vector W = [ω1,ω2, ...,ωn], such that and
∑n

i=1 ωi = 1
defined as:

FPearson−OWA

(

〈a1, b1〉, ..., 〈an, bn〉
)

=

∑n
j=1 ωj

(

aj − µa

) (

bj − µb

)

√

∑n
j=1 ωj

(

aj − µa

)2
√

∑n
j=1 ωj

(

bj − µa

)2
(8)

Where aj and bj are the jth largest arguments in the sets of
elements A = {a1, ..., an} and B =

{

b1, ..., bn
}

, and µa and µb

are the mean of the sets A and B, respectively. When considering
ωi = 1/n, it becomes the classical covariance.

The Pearson-OWA accomplishes the properties of the OWA
operators: symmetry and boundedness, but not monotonicity.

Some special cases are as follows: if ωj = 0, ∀j 6= k y ωk = 1,
we obtain the maximum as an absolute value, that is, the maximum
or the minimum, and if ωj = 1/n, ∀j we have the traditional
Pearson’s coefficient.

The coefficient FPearson−OWA can be calculated in different
ways depending on whether the OWA operator is considered
(Table 1). For the study of the OWA variance and the OWA
covariance, please see Yager (1996b, 2006). The study can be
completed using different types of OWA, such as the maximum

[ω = (1, 0, ..., 0)], the minimum [ω = (0, ..., 0, 1)], or the arithmetic
mean [ω = (1/n, ..., 1/n)] where n is the number of elements of
each variable, as well as weights that only depend on the values of
the variables, or additive neat OWA ω = (ω1, . . . ,ωn), where ω1 =

f (xi) /
∑n

i=1 f (xi).
On some occasions, aside from the attitudinal character of

the decision-maker, which is introduced through the use of the
OWA, objective information is available about the possibility of
the occurrence of certain results, or the probability of application
of the results, so that they will have to be used. Pearson-POWA is
proposed, as it allows combining both types of information.

Definition 9. The Pearson-POWAof dimension n is a mapping
of FPearson−POWA :Rn × Rn → R that has an associated weighting
vectorW of dimension n, such that ωi and

∑n
i=1 ωi = 1:

FPearson−POWA

(

〈a1, b1〉, ..., 〈an, bn〉
)

=

∑n
i=1 υ̂i

(

aj − µa

) (

bj − µb

)

√

∑n
i=1 υ̂i

(

aj − µa

)2
√

∑n
i=1 υ̂i

(

bj − µa

)2
(9)

Where aj and bj are the jth largest arguments in the sets
of elements A = {a1, . . . , an} and B =

{

b1, . . . , bn
}

, and
µa and µb are the mean of the sets A and B, respectively.
The arguments

(

aj − µa

) (

bj − µb

)

,
(

aj − µa

)2
, and

(

bj − µa

)2

have an associated weight (probability) vi ordered according to
(

aj − µa

) (

bj − µb

)

,
(

aj − µa

)2
, and

(

bj − µa

)2
, respectively, ν̂j =

δωj + (1 − δ)vj with δ ∈ [0, 1]. If δ = 0 or ωj = 1/n for

all the
(

aj − µa

) (

bj − µb

)

,
(

aj − µa

)2
and

(

bj − µa

)2
, the Pearson

probability is obtained, in which the weight of each sum is given by
the assigned probabilities, while if δ = 1 or vj = 1/n for all the
(

aj − µa

) (

bj − µb

)

,
(

aj − µa

)2
, and

(

bj − µa

)2
, the FPearson-OWA

operator is obtained.
Pearson-IPOWA combines the concept of the probability of

occurrence or applicability of specific events with the ordering
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TABLE 1 Pearson-OWA analysis.

Case Expression FPearson−OWA Description

1
∑n

j=1 ωj(aj−µa)(bj−µb)
√

∑n
j=1 ωj(aj−µa)

2
√

∑n
j=1 ωj(bj−µb)

2
The covariance is obtained with OWAmeans for the differences in variables a and b and the variances with
OWAmeans for the differences in variables a and b

2
∑n

j=1 ωj(aj−ā)(bj−µb)
√

∑n
j=1 ωj(aj−ā)

2
√

∑n
j=1 ωj(bj−µb)

2
The covariance is obtained with normal means for the differences in variable a, and with OWAmeans for the
differences in variable b. The variances are obtained with normal means for the differences in variable a, and
OWAmeans for the differences in variable b.

3
∑n

j=1 ωj(aj−µa)
(

bj−b̄
)

√

∑n
j=1 ωj(aj−µa)

2
√

∑n
j=1 ωj

(

bj−b̄
)2

The covariance is obtained with OWAmeans for the differences in variable a, and with normal means for the
differences in variable b. The variances are obtained with OWAmeans for the differences in variable a, and
normal means for the differences in variable b.

4
∑n

j=1 ωj(aj−ā)
(

bj−b̄
)

√

∑n
j=1 ωj(aj−µa)

2
√

∑n
j=1 ωj(bj−µb)

2
The covariance is obtained with normal means for the differences in variables a and b, and the variances are
obtained with the OWAmeans for the differences in a and b.

5
∑n

j=1 ωj(aj−µa)(bj−µb)
√

∑n
j=1 ωj(aj−ā)

2
√

∑n
j=1 ωj

(

bj−b̄
)2

The covariance is obtained with OWAmeans for the differences in a and b, and the variances are obtained with
normal means for the differences in a and b.

6
∑n

j=1 ωj(aj−ā)(bj−µb)
√

∑n
j=1 ωj(aj−µa)

2
√

∑n
j=1 ωj(bj−µb)

2
The covariance is obtained with normal means for the differences in a and with OWAmeans for the differences
in b, and the variances are obtained with the OWAmeans for the differences in a and b.

7
∑n

j=1 ωj(aj−µa)
(

bj−b̄
)

√

∑n
j=1 ωj(aj−µa)

2
√

∑n
j=1 ωj(bj−µb)

2
The covariance is obtained with OWAmeans for the differences in a and with normal means for the differences
in b, and the variances are obtained with the OWAmeans for the differences in a and b.

8
∑n

j=1 ωj(aj−ā)(bj−µb)
√

∑n
j=1 ωj(aj−ā)

2
√

∑n
j=1 ωj

(

bj−b̄
)2

The covariance is obtained with normal means for the differences in a and with OWAmeans for the differences
in b, and the variances are obtained with normal means for the differences in a and b.

9
∑n

j=1 ωj(aj−µa)
(

bj−b̄
)

√

∑n
j=1 ωj(aj−ā)

2
√

∑n
j=1 ωj

(

bj−b̄
)2

The covariance is obtained with OWAmeans for the differences in a and with normal means for the differences
in b, and the variances are obtained with normal means for the differences in a and b.

10
∑n

j=1 ωj(aj−ā)
(

bj−b̄
)

√

∑n
j=1 ωj(aj−ā)

2
√

∑n
j=1 ωj(bj−µb)

2
The covariance is obtained with normal means for the differences in a and b, and the variances are obtained
with normal means for the differences in a and OWAmeans for the differences in b.

11
∑n

j=1 ωj(aj−ā)
(

bj−b̄
)

√

∑n
j=1 ωj(aj−µa)

2
√

∑n
j=1 ωj

(

bj−b̄
)2

The covariance is obtained with normal means for the differences in a and b, and the variances are obtained
with the OWAmeans for the differences in a and normal means for the differences in b.

12
∑n

j=1 ωj(aj−ā)(bj−µb)
√

∑n
j=1 ωj(aj−µa)

2
√

∑n
j=1 ωj

(

bj−b̄
)2

The covariance is obtained with normal means for the differences in a and OWAmeans for the differences in b,
and the variances are obtained with OWAmeans for the differences in a and normal means for the differences
in b.

13
∑n

j=1 ωj(aj−µa)
(

bj−b̄
)

√

∑n
j=1 ωj(aj−ā)

2
√

∑n
j=1 ωj(bj−µb)

2
The covariance is obtained with OWAmeans for the differences in a and normal means for the differences in b,
and the variances are obtained with normal means for the differences in a and OWAmeans for the differences
in b.

14
∑n

j=1 ωj(aj−µa)(bj−µb)
√

∑n
j=1 ωj(aj−ā)

2
√

∑n
j=1 ωj(bj−µb)

2
The covariance is obtained with OWAmeans for the differences in a and b, and the variances are obtained with
normal means for the differences in a and OWAmeans for the differences in b.

15
∑n

j=1 ωj(aj−µa)(bj−µb)
√

∑n
j=1 ωj(aj−µa)

2
√

∑n
j=1 ωj

(

bj−b̄
)2

The covariance is obtained with OWAmeans for the differences in a and b, and the variances are obtained with
OWAmeans for the differences in a and normal means for the differences in b.

16
∑n

j=1 ωj(aj−ā)
(

bj−b̄
)

√

∑n
j=1 ωj(aj−ā)

2
√

∑n
j=1 ωj

(

bj−b̄
)2

The covariance is obtained with normal means for the differences in a and b, and the variances are obtained
with normal means for the differences in a and b.

of elements according to the attitudinal character of the decision
maker, but in this case, this ordering is performed based on
inducting variables of order, which can represent a broad range
of aspects, such as the degree of optimism or pessimism, or
psychological or time pressure aspects.

Definition 10. The Pearson-IPOWA of dimension n is a
mapping of FPearson-IPOWA :Rn × Rn × Rn → R that has an
associated weighting vectorW of dimension n , such thatωi ∈ [0, 1]
and

∑n
i=1 ωi = 1, defined as:

FPearson−IPOWA

([

〈a1, b1〉, u1
]

, ...,
[

〈an, bn〉, un
])

=

∑n
j=1 υ̂jDj

√

∑n
j=1 υ̂jKj

√

∑n
j=1 υ̂iHj

(10)

Where Dj,Kj,Hj are the values of
(

aj − µa

) (

bj − µb

)

,
(

aj − µa

)2
, and

(

bj − µa

)2
− respectively,

having the jth largest ui, ui is the order inducing variable. Each
argument, Di,Ki, and Hi, has an associated weight (probability)
vi ordered according to the largest of the ui, v̂j = δωj + (1 − δ)vj
with δ ∈ [0, 1], and vj is the weight (probability); vi is ordered
according to Dj, that is, according to the j th largest of the ui. If
δ = 0 o ωj = 1/n for all the Dj,Kj,Hj, the Pearson probability
FPearson-POWA is obtained, on the other hand, if δ = 1 or vj = 1/n
for all the Dj,Kj,Hj the induced Pearson-OWA, FPearson-IOWA is
obtained.

2.3 IPOWA-CRITIC and its extensions

The following section proposes diverse extensions of the
CRITIC methodology, using the operator proposed in the previous
section, to obtain the correlation between the values of the different
criteria and the use of OWA to obtain the multicriteria score.
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FIGURE 1

IPOWA-CRITIC and its extensions process.

The CRITIC methodology uses the multicriteria system to
order a set of alternatives. This study is an extension of the proposal
by Diakoulaki et al. (1995). The objective is to order a set of
alternatives A = {1, ..., |I|}, with cardinality |I|, and according to
a set of criteria C = {1, ..., |J|} with cardinality |J|. The following
steps are proposed (Figure 1):

Step 1. The generic criteria-alternatives matrix shows the mij

values of alternative i for criteria j (Table 2).

Step 2. Transformation of the generic criteria-alternatives

matrix into the relative score or closeness matrix to the ideal values
[

xij
]

. For each j criterion, the minimum is obtained, min
i

(

mij

)

,

as well as the maximum max
i

(

mij

)

of all the alternatives, in a

similar manner to the crisp case. When the ideal value is the

maximum value (benefits), the closeness to the ideal value is
obtained as:
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TABLE 2 Values of criteria used (C1, …, Cj) to rank the treatments applied

(A1,…, Ai).

Criteria (j)

Alternatives (i) C1 C2 … C|J|

A1

A2

. . . mij

A|I|

xij =
mij −min

i

(

mij

)

max
i

(

mij

)

−min
i

(

mij

) (11)

and the ideal value is the minimum value (cost):

xij =
max

i

(

mij

)

−mij

max
i

(

mij

)

−min
i

(

mij

) (12)

Step 3. Obtaining theOWA standard deviation of criterion j, for
each vector xj =

(

x1j, x2j, ..., x|I|j
)

of the transformed matrix, from
Equation 6

FSD−OWA

(

x1j, x2j, ..., xnj
)

=
(

∑n

h=1
ωhXhj

)1/2
(13)

Where Xhj is the h
th largest value of

(

xij − µj

)2
,ωi ∈ [0, 1], and

∑n
i=1 ωi = 1.
Step 4. Construction of the conflict of dimensions matrix

|J| × |J|, whose generic term FPearson-IPOWA j,k represents the
correlation between elements xj and xk. Therefore, the weaker the
relationship between the criteria j and k, the smallest the value of
FPearson-IPOWA j,k will be.

FPearson−IPOWAj,k

([

〈x1j, y1k〉, u1
]

, ...,
[

〈xnj, ynk〉, un
])

=

∑n
h=1 υ̂hZh,k

√

∑n
h=1 υ̂hVh,j

√

∑n
h=1 υ̂hWh,k

(14)

where Zh,k,Vh,j, and Wh,k are the values of
(

xij − µxj

) (

yik − µyk

)

,
(

xij − µxj

)2
, and (xik − µxk)

2, respectively,
having the hth largest ui, with ui being the order inducing
variable, and with µxj being the mean of the first set of values
for criterion j,Xj =

{

x1j, . . . , xnj
}

, and µy,k the mean of
the second set, Xk = {x1k, . . . , xnk}. Each Zi,k,Vi,j, and Wi,k

has an associated weight (probability) vi with
∑n

i=1 vi and
vi ∈ [0, 1], v̂h = δωh + (1 − δ)vh with δ ∈ [0, 1] and vh is the
weight (probability), with vi ordered according to the hth largest
ui, with ui =

∑|J|
j=1 xij, that is, the sum of all the relative scores

of the alternative Ai. This probability represents the probability
of occurrence, or in this particular case, the probability of
commercially implementing this treatment. This coefficient will be
obtained from the opinions of the experts related with the present
project.

Step 5. Quantity of information C−OWAj is emitted by the jth

criterion, which represents the quantity of information transmitted
by said criterion, so that the more information transmitted, the
greater the value of C − OWAj:

C − OWAj = FSD−OWAj

(

x1j, x2j, ..., xnj
)

·
∑|J|

k=1

(

1− FPearson−IPOWAj,k

)

(15)

Step 6. The weight of criterion j is obtained by normalizing the
values of C − OWAj.

ωj =
C − OWAj

∑|J|
j=1 C − OWAj

(16)

Step 7. Obtaining the multicriteria score for alternative i: For
this step, four alternatives are proposed depending on how the
OWA is used for the relative scores, the weights, for both, or none
of them.

7.1. Multicriteria score with IPOWA-CRITIC to order the
different alternatives. TheMulticriteria score with IPOWA-CRITIC
(Di) is obtained as the product of the weights obtained in
Equation 16 by the relative scores obtained in Equations 11, 12.

Di =
∑|J|

j=1
ωjxij (17)

7.2. Multicriteria score with the IPOWA-OWA-S-CRITIC to
order the different alternatives. The IPOWA-OWA-S-CRITIC
multicriteria score for alternative i is a mapping of
FIPOWA-OWA-S-CRIIC :Rn → R that has the weighted vector
obtained in Equation 16 associated:W =

[

ω1,ω2, . . . ,ω1|J|
]

where
ωi ∈ [0, 1] and

∑n
i=1 ωi = 1 is defined as:

FIPOWA−OWA−S−CRITIC

(

xi1, xi2, ..., xi|J|
)

=
∑|J|

h=1
ωhzih (18)

where zih is the hth largest of the xij (alternative Ai), and ωh is the
weight obtained in Equation 16.

7.3. Multicriteria score with IPOWA-OWA-W-CRITIC
to order the different alternatives. The IPOWA-OWA-S-
CRITIC multicriteria score for alternative i is a mapping of
FIPOWA−OWA−W−CRITIC :R

n → R that has the weighted vector
obtained in Equation 16 associated: W =

[

ω1,ω2, ...,ω|J|

]

, where
and

∑n
i=1 ωi = 1 is defined as:

FIPOWA−OWA−W−CRITIC

(

xi1, xi2, ..., xi|J|
)

=
∑|J|

h=1
ψhxih (19)

where ψh is the hth largest of the ωj, and xih is the relative score
obtained in Equations 11, 12.

7.4. Multicriteria score with IPOWA-OWA-S-W-CRITIC
to order the different alternatives. The IPOWA-OWA-S-
CRITIC multicriteria score for alternative i is a mapping of
FIPOWA−OWA−S−W−CRITIC :R

n → R that has the weighted vector
obtained in Equation 16 associated: W =

[

ω1,ω2, ...,ω|J|

]

, where
ωi ∈ [0, 1] and

∑n
i=1 ωi = 1 is defined as:

FIPOWA−OWA−S−W−CRITIC

(

xi1, xi2, ..., xi|J|
)

=
∑|J|

h=1
ψhzih (20)

where ψh is the h
th largest of the ωj and zih is the h

th largest of the
(alternative Ai) obtained in Equations 11, 12.
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TABLE 3 Treatments (W, without shading; C, conventional shading; SF,

photovoltaic shading; G, grafted plants; N, non-grafted plants; C,

complete irrigation; and D, deficit irrigation).

Key Treatment

A1 WGC

A2 WGD

A3 WNC

A4 WND

A5 FGC

A6 FGD

A7 FNC

A8 FND

A9 PGC

A10 PGD

A11 PNC

A12 PND

2.4 Empirical application

Muchamiel tomatoes were grown in a multi-span mesh
greenhouse (windbreak greenhouse) that was 26mwide, 36m long,
and 4m high until the gutter and 5m to the ridge, located at the
CIAGRO-UMH (Orihuela, Alicante, Spain, Latitude: 38◦ 05’ 05”
North; Longitude: 0◦ 56’ 38” West). A short spring-summer cycle
was used for 2 consecutive years. The first with a transplantation
on 6th March 2023 and harvesting of plants on 28th June 2023.
The second is between 4th March and 28th June 2024. Inside the
greenhouse, three plots with different shading systems were set up:
(i) without shade (W), (ii) with a fixed and conventional shade
nets with 50% of reflection of the solar radiation (F), and (iii) a
mobile mesh with photovoltaic shading (P). In each of the plots
and on the exterior of the greenhouse, the mean values of the
main climate variables were recorded at 10-min intervals, such as
ambient temperature and humidity, as well as the intensity of the
solar radiation. The mean values of the energy variables were also
determined, related to the photovoltaic mesh, at 10-min intervals.
In each plot, grafted plants (G) and non-grafted plants (N) were
used, with two watering events, according to the needs of the crop,
through Allen et al. (2006) method (complete irrigation, C), and
with deficit irrigation at 60% of said value (D). The total number
of plants used in each treatment was 36 plants. Agroecological
strategies and techniques were followed during the management of
the crop, such as the application of biostimulants and integrated
pest management. Table 3 shows the treatments applied during
the assay.

To establish the sustainability of the production strategies
used, criteria related to the agronomical, physiological, and
biochemical responses of the plant were used, such as production
(kg ha−1) and quality, determined starting with the maturity
index (◦Brix/Acidity) and nutritional composition (%). The profit
obtained (e ha−1) with respect to the economic sustainability of the
treatments was also considered. The water consumption (m3 ha−1)

TABLE 4 Criteria taken into account to grade the treatments.

Key Criteria

BI1 Production (kg ha−1)

BI2 Profit (e ha−1)

BI3 Water consumption (m3 ha−1)

BI4 CO2 fixation (t ha−1)

BI5 Labor (e ha−1)

BI6 Maturity index (◦Brix/Acidity)

BI7 Nutritional composition (%)

and CO2 fixation (t ha−1) allowed us to consider the environmental
sustainability of the treatments. In addition, the social effect was
determined starting from the labor used in each treatment. Table 4
shows the criteria used.

Five experts on the subject were consulted to establish
confidence in the results obtained in each of the criteria for each
of the treatments utilized, and to support the making of decisions
on its possible application at a commercial exploitation scale.

To improve the analysis of the sustainability of the agronomic
strategies utilized, a sustainability index calculated from the
IPOWA CRITIC assignment is proposed. The value of this index
varies between 0 and 1. A value of 0 corresponds to the treatment
with the worst results according to the criteria used (Table 4), and a
value of 1 indicates the best treatment.

2.5 Statistical analysis

The results were statistically evaluated using an analysis of
variance, ANOVA, with a 95% confidence interval. The differences
between the means of the treatments were analyzed using the least
significant difference test of Fisher (LSD) at a probability level of
95%. Significance levels were expressed as: ∗ p < 0.05; ∗∗ p < 0.01;
∗∗∗ p< 0.001; NS not significant. The results of all treatments were
analyzed in each of the 2 years of cultivation, and no significant
differences were found between them. The results for the 1st year of
cultivation are presented here.

3 Results and discussion

The values of the IPOWA-CRITIC and its extensions were
obtained according to the procedure described above.

Step 1. Identify the results matrix for each criterion and
alternative (Table 5). The results obtained in each of the criteria by
the treatments applied are shown in Table 5. As shown, treatment
A1 (WGC) showed a production of 72,870 kg ha−1, higher than the
rest. With respect to the water consumption, the treatments were
mainly distributed into two groups, the ones that were irrigated
at 100% of their needs (C), with a consumption of approximately
3,300 m3 ha−1, and those that were irrigated at 60% (D), with a
consumption of approximately 2,000 m3 ha−1. As for CO2 fixation,
this was higher in the treatments with photovoltaic shades due
to the elimination of CO2 during the generation of the electrical
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energy consumed. The use of labor is related to production, being
higher in the treatments with a higher production, such as WGC.
The plants without shading had a higher maturity index value,
followed by plants with fixed and conventional shading (F) and
plants with photovoltaic shading. On its part, the nutritional
composition of the tomatoes in the plot without shading was similar
to that from the plot with photovoltaic shading (P), and both were
inferior to that determined in the plot with F treatments.

Step 2. To be able to compare all the criteria, they are
standardized. The normalized values are shown in Table 6. Except
for the consumption of water, all the criteria show profits, as it is
better if the values are higher. In the case of water consumption,
BI3, the value represents a cost, so it is better if this value is
lower. Therefore, expression (11) was used for all, except for BI3,
in which case, expression (12) was used. As can be observed,
treatment A1 (WGC) has higher values in most of the criteria,
except for water consumption and CO2 fixation, which show a
null value, and nutritional composition (% nutrients), with a value
of 0.605. Table 6 also shows the sum of the distances relative
to the ideal values of each treatment, which will be used as an
induced value in the case of using the IOWA. Moreover, the OWA
standard deviation is shown, in agreement with the expression
(Equation 13).

Step 3. Since the weights of each criterion in OWA-CRITIC
depend on its dispersion, the OWA standard deviation of
each criterion is obtained. As a prior step before obtaining
the standard deviation of each criterion, Table 7 (column 2)
shows the confidence of the results of the treatment for their
subsequent passage to commercial exploitation, where 0 represents
no confidence, and 1 represents maximum confidence. For this, five
experts were consulted, and mean values were calculated. The third
column in Table 7 shows the probability of each treatment, dividing
the confidence of each treatment by the total sum of the treatments.
The fifth column provides the weight ωi assigned in expression
(Equation 14) corresponding to , so that a higher weight is assigned
to the totals that correspond to a treatment closer to ideal values.
FPearson−IPAOWA uses the same weights but assigns a greater weight
to the treatment with lower values in Table 6 (column 9). OWA
standard deviation values of criterion j are presented in Table 8
(row 9).

Step 4. To analyze the conflict between criteria, Table 8 shows
the Pearson-IPOWA considering δ = 0.6, that is, considering the
weighting of its differences and quadratic differences with 60% of
the OWA element and 40% of the probability element.

Step 5. Determination of the quantity of information emitted
by the jth criterion (Table 9, row 4) was obtained as the product
of the standard deviation (Table 9, row 2) by the aggregates
∑|J|

k=1

(

1− FPearson−IPOWAj,k

)

(Table 9, row 3).

Step 6. Obtaining the weight of the jth criterion. The quotient
of the amount of information emitted by criterion j divided by the
sum of the amount of information emitted by all the criteria allows
us to obtain the weight of criterion j (Table 9, row 5).

Step 7. Calculation of the multicriteria score.
7.1. Multicriteria score with IPOWA-CRITIC of alternative

i (Table 10, column 2) is obtained by multiplying the weighting
vectors from Table 9 (row 5) by the relative scores of Table 6
(row Ai).

7.2. Multicriteria score with IPOWA-S-CRITIC. The
multicriteria score of the alternative i (Table 10, column 3) is
obtained by multiplying the weighting vectors from Table 9
(row 5) by the relative scores zih, h = 1, ...7, where zih is the
highest hth of the (Table 6) of the row corresponding to the
alternative Ai, i = 1, ..., 12.

Step 7.3. Multicriteria score with IPOWA-W-CRITIC. The
multicriteria score of the alternative i (Table 10, column 4) is
obtained bymultiplying the weighting vectorψh, h = 1, ..., 7, where
ψh is the highest hth of the ωj from Table 9 (row 5) by the relative
scores of Table 6 (row Ai).

Step 7.4. Multicriteria score with IPOWA-S-W-CRITIC. The
multicriteria score of the alternative i (Table 10, column 5) is
obtained by multiplying the weighting vectors ψh, h = 1, ..., 7,
where ψh is the highest hth of the from Table 9 (row 5) by the
relative score zih, h = 1, ...7, where zih is the highest hth of the
(Table 6, row Ai) of the row corresponding to the alternative Ai, i =
1, ..., 12.

3.1 Comparative analysis

In order to validate the proposed model, we proceeded to
compare the results obtained by applying IPOWA-CRITIC, aside
from IPOWA-S-CRITIC, IPOWA-W-CRITIC, and IPOWA-S-W-
CRITIC, with other methodologies such as CRITIC, and other
selected due to their simplicity, rationality, comprehensibility,
good computational efficiency and ability to measure the relative
performance for each alternative in a simple mathematical
form, such as the scoring methods: Simple additive weighting,
SAW (Podvezko, 2011), and Complex Proportional Assessment,
COPRAS, based on the evaluation of different alternative through
basic arithmetic operations, adding each normalized value of
each criterion by its corresponding weight; and distance-based
methods: Multicriteria optimization and compromise solution,
VIKOR (Opricovic and Tzeng, 2004), and Technique for order
of preference by similarity to ideal solution (TOPSIS), based on
the calculation of each distance between each alternative and
specific point.

Table 11 shows the rank of different alternatives. For CRITIC,
TOPSIS, VIKOR, and SAW, the following was used as the
weighting vector: ω = {0.20, 0.18, 0.17, 0.15, 0.13, 0.10, 0.07}, using
a coefficient of 0.90 for the Manhattan distance and 0.10 for infinite
one in the VIKOR method. As shown, the proposed extensions
(IPOWA-S-CRITIC, IPOWA-W-CRITIC, IPOWA-S-W-CRITIC)
show a very high correlation, obtained from Spearman’s correlation
coefficient (rs), with respect to the IPOWA CRITIC method, being
higher than 0.64 in all cases, and also of the IPOWA CRITIC with
respect to other methodologies such as CRITIC, TOPSIS, VIKOR
and SAW, being higher than 0.76 in all of these cases.

The analysis of the sustainability of the agroecological strategies
used in Muchamiel tomato cultivation, obtained from the IPOWA-
CRITIC ranking, offers very consistent results. To improve the
interpretation of the results, Figure 2 shows the average allocation
values obtained for each of the main factors used. The sustainability
of the agronomic strategies is inversely proportional to the
values obtained.
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TABLE 5 Values of the criteria used (from BI1 to BI7) to rank the treatments applied (from A1 to A12).

Alternatives BI1 BI2 BI3 BI4 BI5 BI6 BI7

A1 72,870.00 69,588.63 3,336.17 −7,119.23 42,065.15 13.64 9.43

A2 67,450.00 61,757.88 1,963.68 −6,664.80 40,981.15 13.55 9.33

A3 58,400.00 48,917.63 3,311.43 −6,537.39 39,171.15 12.70 9.18

A4 56,800.00 47,962.88 1,999.19 −6,318.86 38,851.15 13.48 9.20

A5 37,000.00 5,022.63 3,321.91 −3,530.01 34,891.15 12.22 9.73

A6 37,600.00 8,027.88 2,013.90 −3,888.43 35,011.15 11.78 9.46

A7 40,400.00 16,517.63 3,315.13 −4,607.23 35,571.15 12.17 9.32

A8 32,200.00 3,682.88 1,975.35 −3,970.31 33,931.15 12.88 9.12

A9 44,600.00 38,249.43 3,294.27 9,929.74 38,314.35 11.33 9.53

A10 37,800.00 10,823.57 2,008.33 10,977.96 36,954.35 10.46 9.42

A11 48,600.00 33,713.32 3,258.37 9,118.41 39,114.35 11.46 9.33

A12 43,400.00 26,278.57 1,984.01 9,638.28 38,074.35 12.00 8.97

TABLE 6 Normalized values of the criteria used (from BI1 to BI7) to rank the treatments performed (from A1 to A12), sum of the relative distances to the

ideal values, and values of the OWA standard deviation.

Alternatives BI1 BI2 BI3 BI4 BI5 BI6 BI7 Sum

A1 1.000 1.000 0.000 0.000 1.000 1.000 0.605 4.605

A2 0.867 0.881 1.000 0.025 0.867 0.973 0.471 5.083

A3 0.644 0.686 0.018 0.032 0.644 0.706 0.276 3.007

A4 0.605 0.672 0.974 0.044 0.605 0.951 0.302 4.153

A5 0.118 0.020 0.010 0.198 0.118 0.552 1.000 2.018

A6 0.133 0.066 0.963 0.179 0.133 0.415 0.644 2.532

A7 0.202 0.195 0.015 0.139 0.202 0.538 0.460 1.750

A8 0.000 0.000 0.991 0.174 0.000 0.762 0.197 2.125

A9 0.305 0.524 0.031 0.942 0.539 0.271 0.732 3.345

A10 0.138 0.108 0.967 1.000 0.372 0.000 0.596 3.181

A11 0.403 0.456 0.057 0.897 0.637 0.312 0.473 3.236

A12 0.275 0.343 0.985 0.926 0.509 0.484 0.000 3.522

Mean 0.391 0.413 0.501 0.380 0.469 0.580 0.480 3.213

The Muchamiel tomato is a crop that is well adapted
to Mediterranean edaphoclimatic conditions (Garcia-Martínez,
2016). Thus, the values of commercial production in the
treatments without shading are adequate. The plants with fixed and
conventional shading had lower production values, perhaps due to
reduced photoassimilates. However, their nutritional composition
was the best in all the treatments applied. This effect coincides with
what was described byMilenkovic et al. (2020); in our experimental
conditions, the shading nets were not beneficial for Muchamiel
tomatoes. Despite the tomato plants using diffused light more
efficiently than direct radiation (Hemming et al., 2008), in our
experimental conditions, photoassimilation was limited, negatively
affecting production and the index of maturity. It is possible that
the reduction in solar radiation caused by the shading nets used
was excessive.Milenkovic et al. (2020) used shading nets of different
colors, with a reduction in solar radiation similar to that recorded

in our study, with tomatoes Optima’ F1 and “Big beef” F1, finding
an improvement in production and quality. These results can be
explained, considering the influence of the genetic material on the
response of these plants to these types of treatments. In addition,
the color nets have an influence not only on the quantity of
solar radiation that reaches the plants but also on their quality
(Timmermans et al., 2020).

The shading treatments showed significant differences
considering the sustainability criteria used. Thus, the sustainability
of the Muchamiel tomato crop without shading and with mobile
photovoltaic shading was similar between them, and was higher
than the plants with conventional fixed shading (Figure 2). This
is because the 50% fixed shade used in the assay limited the
photosynthetic activity of the plants, reducing production. Among
the no-shade treatments, only the non-grafted plants with full
irrigation obtained an unfavorable score (treatment A3 occupies
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TABLE 7 Level of confidence in the treatments and probability, and

weight coe�cients of for each position.

Treatment Confidence Probability Order ωi in
FPearson−IPOWA

A1 0.200 0.057 1 0.200

A2 0.300 0.038 2 0.180

A3 0.300 0.057 3 0.170

A4 0.300 0.189 4 0.150

A5 0.100 0.151 5 0.130

A6 0.400 0.132 6 0.100

A7 0.500 0.094 7 0.020

A8 0.200 0.057 8 0.010

A9 0.800 0.075 9 0.010

A10 0.500 0.038 10 0.010

A11 0.700 0.019 11 0.010

A12 1.000 0.094 12 0.010

Sum 1.000 1.000

10th place, Table 11). Independent of the shading used, this result
can be generalized, that is, the non-grafted plants and those with
full irrigation had the worst behavior (treatments A3, A7, and A11

occupied the 10th, 12th, and 6th positions, respectively, Table 11).
The results can be explained if we take into account the effect of the
graft on production. Non-grafted plants had a lower production,
perhaps due to the presence of fungi and nematodes in the soil,
which reduce the absorption of water and nutrients (Phani et al.,
2024). Intensive production to maximize performance and satisfy
demand makes attacks by plagues and diseases critical threats for
producers, in both field conditions and greenhouses (Capinera,
2020; Phani et al., 2021). Despite the heavy losses due to the action
of nematodes, the management options of this disease are limited,
highlighting grafting among them (Martínez-Ballesta et al., 2010).
Therefore, the full irrigation of non-grafted plants implies higher
operational costs, although the production is lower than that of
the treatments that used grafted plants, so the use of non-grafted
plants is particularly unfavorable in our experimental conditions.

The use of grafts tends to improve the sustainability of the
production, considering the criteria utilized (Figure 2). Thus, the

evaluation of the grafted plants was better than that of non-
grafted ones, in every case, with the exception of the plants under
photovoltaic shading and deficit irrigation treatment (treatments
A10 and A12, Table 11). This exception is particularly notable, as
treatment A12 (PND) was found in first place (Table 11). This
result can be explained by considering the multicriteria analysis
performed. In this way, the use of deficit irrigation, along with the
mobile photovoltaic mesh, mitigates the reduction of production,
which implies the use of non-grafted plants in the experimental
conditions utilized. On the one hand, the appropriate deficit
irrigation of tomatoes can save a significant amount of water and
improve quality, without negatively affecting production or the
economic results (Khapte et al., 2019). On the other hand, the shade
produced by the photovoltaic installation can avoid the reduction
in tomato production (Ureña-Sánchez et al., 2012). This could be
true, especially in our case, due to the use of the mobile mesh,
which only produces shade in the middle of the day. In this way, the
photoinhibition of tomato could be avoided, which is produced by
excessive radiation, and can lead to a reduction in photosynthetic
activity and production (Shi et al., 2022; Wang et al., 2018).

Tomato crops demand a large amount of water (Peet,
2005), especially during the flowering phase (Khapte et al.,
2019). Deficit irrigation in the experimental conditions utilized
improved the sustainability of the Muchamiel tomato. Thus, the
top four treatments used deficit irrigation, and in general, all
the even-numbered treatments (deficit irrigation) were better
evaluated, that is, their allocation is lower than the odd-numbered
treatments just before (identical treatment with full irrigation)
(Table 11). Irrigation is a determining factor in the sustainability
of production. In areas with warm and/or Mediterranean climates,
with a scarcity of water, the maximization of the productivity of
water of crops can be more beneficial for the farmer than the
maximization of crop performance (Pereira et al., 2002).

TABLE 9 Standard deviation, aggregation of the Pearson-IPOWA,

quantity of information emitted by the jth criterion, and final weight of the

criterion j.

Criterion BI1 BI2 BI3 BI4 BI5 BI6 BI7

OWA SD 0.317 0.322 0.479 0.448 0.280 0.320 0.247

∑|J|
k=1

(

1− FPearson-IPOWA j,k

)

3.846 3.805 6.721 8.329 3.858 4.664 6.730

C − OWAj 1.217 1.226 3.223 3.734 1.082 1.494 1.662

ωj 0.089 0.090 0.236 0.274 0.079 0.110 0.122

TABLE 8 Pearson-IPOWAmatrix and aggregation of values.

Criteria BI1 BI2 BI3 BI4 BI5 BI6 BI7

BI1 1.000 0.967 −0.048 −0.578 0.925 0.807 0.080

BI2 0.967 1.000 −0.106 −0.427 0.956 0.721 0.083

BI3 −0.048 −0.106 1.000 −0.095 −0.099 0.226 −0.600

BI4 −0.578 −0.427 −0.095 1.000 −0.225 −0.847 −0.158

BI5 0.925 0.956 −0.099 −0.225 1.000 0.574 0.011

BI6 0.807 0.721 0.226 −0.847 0.574 1.000 −0.145

BI7 0.080 0.083 −0.600 −0.158 0.011 −0.145 1.000
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Currently, the Overall Life Cycle Sustainability Assessment
(OLCSA) is the most utilized method to estimate the sustainability
of products, goods, or services. The application to agri-food systems
has specific limitations related to the definition of the system,
the interval of assessment, or the spatiotemporal resolution of the
databases utilized, among others. In addition, there is a potentially
high variability between independent agricultural businesses due
to the differences on cultivation practices, agroclimatic conditions,
seasonality, and distances between the places where activities
considered in the lifecycle of the product are carried out
(Notarnicola et al., 2017). To avoid these inconveniences, the
application of multicriteria methods has been recently developed,
such as the one proposed in the present study, which seeks to
organize the different strategies as a function of the environmental,
economic, social, cultural, etc., criteria. Thus, studies have been
conducted on the valorization of agricultural waste (Escalante
et al., 2016), joint management of agro-livestock farms and

TABLE 10 Multicriteria score for the IPOWA CRITIC and its extensions.

Treatment IPOWA
CRITIC

IPOWA-
S-

CRITIC

IPOWA-
W-

CRITIC

IPOWA-
S-W-
CRITIC

A1 0.442 0.789 0.415 0.796

A2 0.632 0.789 0.668 0.828

A3 0.294 0.515 0.284 0.534

A4 0.546 0.619 0.588 0.724

A5 0.261 0.248 0.210 0.455

A6 0.429 0.350 0.449 0.515

A7 0.208 0.237 0.186 0.334

A8 0.389 0.271 0.435 0.495

A9 0.501 0.509 0.457 0.608

A10 0.627 0.481 0.639 0.638

A11 0.478 0.472 0.449 0.572

A12 0.635 0.513 0.681 0.659

agricultural farms (Reyna-Ramírez et al., 2025), tomato ketchup
packaging design (Wohnera et al., 2020), irrigation management in
conditions of water deficit (Montazar and Snyder, 2012), fertigation
management in tomato cultivation (Heiba et al., 2023), strategies
for improving field-grown cereal yield (Di Bene et al., 2022), and
evaluation of the sustainability of tomato cultivation (Sadiq et al.,
2025). Overall, this is a very interesting approach and is considered
a suitable complement to OLCSA methods for decision-making
in the agri-food value chain. The continued performance of this
type of analysis is needed to make advances on the sustainability
of the agricultural sector, improve its resilience, and respond to
societal demands.

4 Conclusion

The prioritization of agricultural production processes is an
extremely complex process, which on many occasions requires
subjectivity from the agents involved in the selection process. The
CRITIC methodology is based on the objective information from
the results of different treatments. However, the opinion of the
decision-makers must be considered, so that the introduction of the
OWA allows us to weigh the different attributes so that they can
be overestimated or underestimated according to the attitudinal
character of the decision-maker.

The present study has proposed an extension of Pearson’s
correlation coefficient, named Pearson-IPOWA, which allows for
the calculation of the correlation, considering the attitudinal
character of the decision-maker, weighing to a greater or lesser
extent, and the elements that have a sum higher than their
relative scores.

The introduction of the IPOWA correlation coefficient,
together with the use of the OWA-variance, has allowed
us to propose an IPOWA-CRITIC that adequately introduces
the attitudinal character of the decision-maker, as well as its
extensions IPOWA-S-CRITIC, IPOWA-W-CRITIC, and IPOWA-
S-W-CRITIC. Finally, the comparison with the traditional CRITIC

TABLE 11 Ranking alternatives.

Treatment CRITIC TOPSIS VIKOR SAW IPOWA
CRITIC

IPOWA-S-
CRITIC

IPOWA-W-
CRITIC

IPOWA-S-W-
CRITIC

A1 5 2 2 6 7 2 9 2

A2 1 1 1 4 2 1 2 1

A3 10 12 8 8 10 4 10 8

A4 4 9 3 7 4 3 4 3

A5 11 10 12 12 11 11 11 11

A6 8 8 9 9 8 9 6 9

A7 12 11 11 11 12 12 12 12

A8 9 7 10 10 9 10 8 10

A9 6 4 6 2 5 6 5 6

A10 3 5 7 5 3 7 3 5

A11 7 6 5 3 6 8 7 7

A12 2 3 4 1 1 5 1 4

Spearman (rs) 97% 76% 78% 85% 64% 97% 83%
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FIGURE 2

Mean values and standard deviation of the sustainability index for
the main factors used (shading, grafting, and irrigation). In each
shading type, n = 4, W: no shading; F: conventional fixed shading; P:
photovoltaic shading. In grafting, n = 6, G: grafted plants; N:
non-grafted plants. In irrigation, n = 6, C: full irrigation; D: deficit
irrigation. The di�erences were analyzed with Fisher’s least
significant di�erence test (LSD; p = 0.05); di�erent letters in each
column indicate significant di�erences between treatments at p <
0.05. In the ANOVA, the significance level is represented by p < 0.01
and 0.001 (** and ***, respectively) and “NS” indicates no significant
di�erences.

method with the diverse alternatives proposed allows us to see how
the attitudinal character of the decision-makers affects the final
ranking of the treatments.

The results of the classifications conducted indicate that the use
of mobile photovoltaic mesh is a sustainable production strategy,
due to its effect on production and quality of the crop, CO2 fixation,
and irrigation water savings.

The proposed methodology for calculating the correlation
coefficient and its application in the CRITIC is a generalization
of the traditional method. It is evident that the use of different
induced variables can lead to differences in the final results, so
the result shown can be considered a particular case of all the
possibilities offered by the proposed methodology. Therefore, it
is essential that in each case, the decision-maker selects the one
most appropriate to their objectives and needs. In this case, the
selected variable shows a very high degree of correlation with
the other methodologies with which it has been compared. It
is necessary to continue with this type of analysis to facilitate
the making of decision of farmers and to make advances on the
sustainability of the processes of agricultural production and the
agri-food sector.
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Brotons-Martínez and Cámara-Zapata 10.3389/frai.2025.1599334

Sadiq, F. K., Yaqub, M. T., Maniyunda, L. M., Alalwany, A. A. M., Abubakar,
F., and Anyebe, O. (2025). Soil classification and land suitability evaluation for
tomato cultivation using analytic hierarchy process under different land uses. Heliyon
11:e41681. doi: 10.1016/j.heliyon.2025.e41681

Shi, Q., Sun, H., Timm, S., Zhang, S., and Huang, W. (2022). Photorespiration
alleviates photoinhibition of photosystem i under fluctuating light in Tomato. Plants.
11:195. doi: 10.3390/plants11020195

Sun, H., Wei, G. W., Chen, X. D., and Mo, Z. W. (2022). Extended EDAS method
for multiple attribute decision making in mixture z-number environment based on
CRITIC method. J. Intell. Fuzzy Syst. 43, 2777–2788. doi: 10.3233/JIFS-212954

Timmermans, G. H., Hemming, S., Baeza, E., van Thoor, E. A. J., Schenning, A.
P. H. J., and Debije, M. G. (2020). Advanced optical materials for sunlight control in
greenhouses. Adv. Optical Mater. 8:2000738. doi: 10.1002/adom.202000738

Turhan, A., Ozmen, N., Serbeci, M. S., and Seniz, V. (2011). Effects of grafting
on different rootstocks on tomato fruit yield and quality. Hortic. Sci. 38, 142–149.
doi: 10.17221/51/2011-HORTSCI

Ureña-Sánchez, R., Callejón-Ferre, Á. J., Pérez-Alonso, J., and Carreño-Ortega, Á.
(2012). Greenhouse tomato production with electricity generation by roof-mounted
flexible solar panels. Sci. Agric. 69, 233–239. doi: 10.1590/S0103-90162012000400001

Wang, F.,Wu, N., Zhang, L., Ahammed, G. J., Chen, X., Xiang, X., et al. (2018). Light
signaling-dependent regulation of photoinhibition and photoprotection in Tomato.
Plant Physiol. 176, 1311–1326. doi: 10.1104/pp.17.01143

Wohnera, B., Gabriela, V. H., Krenna, B., Krautera, V., and Tacker, M. (2020).
Environmental and economic assessment of food-packaging systems with a focus
on food waste. Case study on tomato ketchup. Sci. Total Environ. 738:139846.
doi: 10.1016/j.scitotenv.2020.139846

Xiao, L., Zhang, S. Q., Wei, G. W., Wu, J., Wei, C., Guo, Y. F., et al. (2020). Green
supplier selection in steel industry with intuitionistic fuzzy Taxonomymethod. J. Intell.
Fuzzy Syst. 39, 7247–7258. doi: 10.3233/JIFS-200709

Xing, C., Yao, L., Wang, Y., and Hu, Z. (2022). Suitability evaluation of the
lining form based on combination weighting–set pair analysis. Appl. Sci. 12:4896.
doi: 10.3390/app12104896

Xu, T. Y., Liu, X. J., and Zhang, Z. L. (2020). Simplified likelihood estimation of
ship total loss using GRA and CRITIC methods. Transport. Plan. Techn. 43, 223–236.
doi: 10.1080/03081060.2020.1717147

Yager, R. (2006). Generalizing variance to allow the inclusion of decision
attitude in decision making under uncertainty. Int. J. Approx. Reason. 42, 137–158.
doi: 10.1016/j.ijar.2005.09.001

Yager, R., and Beliakov, G. (2010). OWA operators in regression problems, IEEE T.
Fuzzy Syst. 18, 106–113. doi: 10.1109/TFUZZ.2009.2036908

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in
multi-criteria decision making. IEEE T. Syst. Man Cyb. 18, 183–190. doi: 10.1109/21.
87068

Yager, R. R. (1996a). Quantifier guided aggregation
using OWA operators. Int. J. Intell. Syst. 11, 49–73.
doi: 10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.3.CO;2-L

Yager, R. R. (1996b). On the inclusion of variance in decision making
under uncertainty. Int. J. Uncertain. Fuzz. 4, 401–419. doi: 10.1142/S02184885960
00238

Yager, R. R., and Filev, D. (1999). Induced ordered weighted averaging operators.
IEEE T. Syst. Man Cyb. 29, 141–150. doi: 10.1109/3477.752789

Yazdani, M., Ariza-Montes, A., Arjona-Fuentes, J. M., and Radic, A. (2024).
Cruise hotel sustainable supplier management using a grey-based decision support
framework. J. Travel Tour. Mark. 41, 538–558. doi: 10.1080/10548408.2023.
2285927

Yuan, H. T., Ma, X. J., Cheng, Z. N., and Kari, T. (2024). Dynamic comprehensive
evaluation of a 660 MW ultra-supercritical coal-fired unit based on improved criteria
importance through inter-criteria correlation and entropy weight method. Energies
17:1765. doi: 10.3390/en17071765

Zhao, Y. S., Li, P. F., Wang, T., Kang, Y., and Zhao, Y. B. (2022). “Equipment
health assessment based on AHP-CRITIC dynamic weight,” in 41ST Chinese
Control Conference (CCC). Hefei, China, Jul, 25-27 (Proceedings), 5841–5846.
doi: 10.23919/CCC55666.2022.9902488

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2025.1599334
https://doi.org/10.1016/j.heliyon.2025.e41681
https://doi.org/10.3390/plants11020195
https://doi.org/10.3233/JIFS-212954
https://doi.org/10.1002/adom.202000738
https://doi.org/10.17221/51/2011-HORTSCI
https://doi.org/10.1590/S0103-90162012000400001
https://doi.org/10.1104/pp.17.01143
https://doi.org/10.1016/j.scitotenv.2020.139846
https://doi.org/10.3233/JIFS-200709
https://doi.org/10.3390/app12104896
https://doi.org/10.1080/03081060.2020.1717147
https://doi.org/10.1016/j.ijar.2005.09.001
https://doi.org/10.1109/TFUZZ.2009.2036908
https://doi.org/10.1109/21.87068
https://doi.org/10.1002/(SICI)1098-111X(199601)11:1$<$49::AID-INT3$>$3.3.CO
https://doi.org/10.1142/S0218488596000238
https://doi.org/10.1109/3477.752789
https://doi.org/10.1080/10548408.2023.2285927
https://doi.org/10.3390/en17071765
https://doi.org/10.23919/CCC55666.2022.9902488
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	The evaluation of performance for agroecological greenhouse tomato strategies by the CRITIC-OWA model
	1 Introduction
	2 Materials and methods
	2.1 Ordered weighted average
	2.2 Variance, covariance, and correlation coefficient
	2.3 IPOWA-CRITIC and its extensions
	2.4 Empirical application
	2.5 Statistical analysis

	3 Results and discussion
	3.1 Comparative analysis

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


