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Increasing raw material variability is challenging for many industries since it adversely
impacts final product quality. Establishing multivariate specification regions for selecting
incoming lot of raw materials is a key solution to mitigate this issue. Two data-driven
approaches emerge from the literature for defining these specifications in the latent space
of Projection to Latent Structure (PLS) models. The first is based on a direct mapping of
good quality final product and associated lots of raw materials in the latent space, followed
by selection of boundaries that minimize or best balance type I and II errors. The second
rather defines specification regions by inverting the PLS model for each point lying on final
product acceptance limits. The objective of this paper is to compare both methods to
determine their advantages and drawbacks, and to assess their classification performance
in presence of different levels of correlation between the quality attributes. The comparative
analysis is performed using simulated raw materials and product quality data generated
under multiple scenarios where product quality attributes have different degrees of
collinearity. First, a simple case is proposed using one quality attribute to illustrate the
methods. Then, the impact of collinearity is studied. It is shown that in most cases,
correlation between the quality variable does not seem to influence classification
performance except when the variables are highly correlated. A summary of the main
advantages and disadvantages of both approaches is provided to guide the selection of
the most appropriate approach for establishing multivariate specification regions for a
given application.

Keywords: multivariate specifications, direct mapping, PLS-model inversion, projection to latent structures, quality
control

1 INTRODUCTION

For many manufacturing industries, reaching market standards in terms of product quality is a
priority to ensure sales. Product quality is influenced by different factors, but one of the most
important is the variability in raw material properties. If no corrective action is applied, these
fluctuations propagate directly to final product quality. This is a real problem for many industries
especially those processing bio-based materials using raw materials extracted from natural resources.
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Ensuring good quality control may attenuate the impact of raw
material variability. This can be performed in three ways: defining
specifications for raw material properties, choosing adequate
operating conditions, and characterizing final products for
quality (Amsbary, 2013). A particular attention should be paid
to the first as it deals directly with the source of the problem.
Defining specifications and acceptance criteria for incoming lots
of raw materials is key to achieve high and consistent quality final
product. This is a useful tool to determine whether a lot of raw
materials is processable, and indicates the risk of not reaching
desired quality.

The main approach commonly used in the industry is to
determine the acceptability of lots of raw materials based on a set
of univariate specifications, past experiments, and/or the
properties of the best suppliers (Duchesne and MacGregor,
2004). As the properties of any material are often highly
correlated, univariate limits may lead to misclassification (De
Smet, 1993; Duchesne and MacGregor, 2004). If the multiple
univariate specifications are set large enough to accept all past
good lots of raw materials, the risk of accepting bad quality lots
increases. To mitigate this, univariate specification limits can be
tightened to minimize acceptance of poor quality raw materials.
However, this increases the rejection rate of good lots of
materials, which typically leads to higher purchasing costs.
Thus, the correlation structure between the raw material
properties needs to be considered to minimize the risk of
inadequate decisions. Establishing multivariate specification
regions to select incoming lots of raw materials is a solution
to this problem. The concept was first introduced by De Smet
(1993). It consists of building a Projection to Latent Structures
model first to relate the rawmaterial properties to the final quality
attributes. Then, each lot of rawmaterials is projected in the latent
space of the PLS model. Its class assignment (e.g., good or bad
quality) is inherited from the corresponding final product quality
assessment, hence the name Direct Mapping (DM) approach.
Finally, a boundary is established to discriminate the two classes
by balancing type I and II errors or by minimizing one. The
resulting region is then used to decide whether a new incoming
lot of raw materials should be accepted or rejected.

As the impact of process control actions, changes in process
operating conditions and disturbances on final product quality
were not considered by De Smet (1993), Duchesne and
MacGregor (2004) extended the previous approach. They
proposed a framework for different scenarios based on how
process variability affects final product quality, and its level of
collinearity with raw material properties. The methods are
illustrated using simulated and industrial data from a film
blowing process (Duchesne and MacGregor, 2004). Tessier
and Tarcy (2010) have also applied the technique in the
context of the aluminum production.

Further improvements were then proposed. To increase the
size of the dataset and to include more variations in the context of
pharmaceutical process scale-up, García-Muñoz (2009)
introduced a new step prior to the Duchesne and MacGregor
technique to take into account data collected frommultiple scales.
Later, Azari et al. (2015) suggested using the Sequential Multi-
Block PLS algorithm (SMB-PLS) instead of PLS as a more

efficient method to establish multivariate specifications when
raw material properties and process operating conditions are
correlated. This approach allows to clearly identify the variation
in raw material properties uncompensated by control actions.
Finally, to establish specifications in situations where several
different types of raw materials are used, MacGregor et al.
(2016) have proposed a new approach based on Monte Carlo
simulations to calculate the risk of accepting a new lot.

A similar concept to multivariate specifications called Design
Space (DS) was introduced by the Internal Conference of
Harmonization (2009) mainly for the pharmaceutical industry.
The goal is to determine: “the multidimensional combination and
interaction of input variables (e.g., material attributes and process
parameters) that have been demonstrated to provided assurance
of quality.” Essentially, the general objective of establishing a
design space is to reduce product quality variability by design
rather than by inspection techniques aiming at characterizing
final product properties (MacGregor and Bruwer, 2008; Godoy
et al., 2017). One main advantage of this approach is that
modifications applied to the process or raw material variability
within the DS are not considered as a change for the regulatory
agencies as Food and Drug Administration (FDA) (ICH, 2009;
Lawrence et al., 2014).

Even if the two concepts (raw material specifications and DS)
aim at improving product quality control, differences exist
between them. The DS is typically defined during the product
development stage using raw material properties and process
conditions simultaneously. Multivariate specifications, however,
are built using larger sets of industrial historical data, and require
that variability introduced by process variables be removed prior
to defining the specification region. In addition, even if both
concepts are based on PLS models, they use different
mathematical approaches to determine the acceptance region.
Defining a DS in latent space is mostly performed using PLS
model inversion of a single desired quality attribute (Facco et al.,
2015; Bano et al., 2017; Palací-López et al., 2019) while, in the
past, multivariate specification regions were obtained using direct
mapping of final product quality based on several correlated
attributes. As suggest by Garcia-Muñoz et al. (2010), the
inversion technique could be an alternative to DM for
developing raw material multivariate specifications. Applying
PLS model inversion using multivariate product quality
attributes was demonstrated by Jaeckle and MacGregor (1998)
and Jaeckle and MacGregor (2000) in the context of product
development problems.

The objective of this paper is to compare the two approaches
for establishing multivariate specification regions, namely PLS
model inversion and direct mapping, in terms of classification
performance for a given application, and to determine their
advantages and drawbacks. It also shows how to establish
multivariate specification regions by PLS inversion for a
multivariate set of quality attributes, and assess the influence
of different levels of correlation between them for both
techniques. Such a comparison for one or multiple quality
attributes has not been attempted in the past, to the best
knowledge of the authors. The proposed paper should be
considered as a guide to support the development of
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multivariate specifications using the most appropriate technique
for a given application.

This work is quite ambitious since many scenarios need to be
considered and several decisions had to be made to ensure a fair
comparison. First, simulated data is used to allow multiple
scenarios to be generated. A simple model involving four raw
material properties and two final product quality attributes was
developed to facilitate the comparisons and interpretations. The
shape of the final product quality acceptance region was selected
to be elliptical to reflect the correlation structure between the
quality attributes. When building the PLS models between final
product quality attributes and raw material properties, the
number of components retained in both approaches is chosen
as that maximizing classification performance for the PLS
inversion approach. This choice was made to avoid
introducing biases in the comparison since the direct mapping
approach has more flexibility. For each combination of final
product quality attributes, a single PLS model is built and
used to define the specification regions with both approaches.
Finally, the classification performance is assessed without
considering the uncertainty back propagation (Bano et al., 2017).

The paper is organized as follows. First, the simulator used to
generate the datasets is presented. Then, the proposed
methodology is exposed. The section includes a brief
description of PLS regression, how to establish multivariate
specifications using direct mapping and PLS inversion, as well
as the classification metrics used to calculate classification
performance. The results are then presented and discussed.
Thereafter, the main conclusions are drawn.

2 DATASET GENERATION

Within the scope of the study, to simplify the comparison
between the two techniques, multivariate specifications are
developed under the hypothesis that process variables do not
influence the quality of the product (i.e., the process is under
control). However, how to cope with process variations in
establishing multivariate specifications and design spaces was
already extensively studied (Duchesne and MacGregor, 2004;
Azari et al., 2015; Facco et al., 2015; MacGregor et al., 2016).
The comparative analysis proposed in this study is generic, and is
applicable in scenarios where process variations significantly
affect product quality. Hence, in this study, only two blocks of
data X (N×M) and Y (N×K) are involved when building PLS
models. The first containsM raw material properties characterized
in the laboratory or on-line using spectroscopy techniques, for
instance, and the second K quality attributes of the final product
collected for N observations or lots of raw materials. The data
contained in these matrices are generated by simulations using
analytical equations as described in the following subsection to
facilitate the generation of combinations of y-variables spanning
the full range of correlation. In addition, for the N observations
included in the dataset, the quality of the final product is assigned
to a class using a binary variable (i.e., good/bad quality) which is
used to assess classification performance. The methods used to
establish multivariate specification regions are then presented.

2.1 Simulated Process
The X-dataset is inspired from the model proposed by De Smet
(1993). A total of four equations are used to generate variations in
raw material properties:

x1 � 22 + h1 (1)

x2 �
�������������
0.1 + 2h2 + 3x1

√
(2)

x3 � 1.5 + 0.3x1 + 0.5x2 + h3 (3)

x4 � 12 + 0.5h4 (4)

where hi are random numbers following a standard normal
distribution N(0,1). Correlation exists between properties 1–3
while the fourth is independent of the others.

For each lot of raw materials, i.e. an observation in X, two
quality attributes are calculated using the following equation:

yj � ∑4
i�1

ki,jgi,jxi (5)

and the values are stored in the Ymatrix. The binary variables ki,j
determine if the ith raw material property affects the jth quality
attribute while gi,j consists of random integers between −5 and 5.
These were used to generate different magnitude for the effect of
each x-variable on the y-variables. As the objective of this article is
to compare the performance of two approaches for defining
specification regions under different levels of correlation
between both y-variables, the same X dataset is used
throughout the analysis to generate different combinations of
y-variables by changing parameters ki,j and gi,j. When the
product of these two parameters results in similar values for
both y-variables, a high level of correlation is obtained.
Conversely, very different values for this product leads to a
low correlation. The span of different levels of correlations is
owing to the random values generated for gi,j. It should be noted
that each combination is obtained randomly and not by smoothly
increasing the correlation level between the y-variables.

Noise is added to all variables. The measured values ym,j and
xm,i are obtained using the following equations:

ym,j � yj + (εy,jyj)ey,j (6)

xm,i � xi + (εx,ixi)ex,i (7)

where ey,j and ex,i represent the errors added to the y- and x-data.
These random errors also follow a standard normal distribution
N(0,1). Their magnitude is characterized by the error standard
deviation set as a percentage ε of the mean x or y for each
variable. In all simulations, noise was generated in the same way.
The values of ε and x are presented in Table 1 while y are not
shown since they vary from one dataset to another. The mean
values are obtained using the calibration dataset which contained
500 observations.

TABLE 1 | Noise percentage and nominal signal values.

x1 x2 x3 x4 y1 y2

ε [%] 1 0.5 2 3 1 0.5
xi 22.01 8.13 12.18 11.99 N/A N/A
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In addition to the calibration set, two other datasets are
generated. The first is used to determine the number of PLS
components needed while the classification performance of
the specification regions is assessed using the second. Each of
these datasets contains 10,000 observations. This number was
selected in such a way that stable classification performance
for each metric is obtained. Note that a large number of data
points were generated as a mean to compare the direct
mapping and inversion methods using a fair and sound
statistical approach. However, both methods have already
been demonstrated as effective on smaller datasets collected
on simulated and industrial processes (Duchesne and
MacGregor, 2004; Facco et al., 2015).

2.2 Definition of Product Acceptance
Establishing multivariate specification regions using a data-
driven approach begins with identifying past lots of products
of good and poor quality. This involves a product acceptance
region in the Y-space. As the data used in this work are obtained
from simulations, an indicator associated with the final quality of
the product needs to be defined to identify good and bad
products. The acceptance limit used in this study has an
elliptical shape: (y − y)Σy(y − y)′≤ ζ (8)

where y (1 × K) is the vector containing the means of each
y-variable, and Σy(K × K) is the y-covariance matrix.
Parameter ζ is adjusted to specify the size of the region
and to control the proportion of data assigned to good and
bad quality. Once this parameter is selected, a binary variable
was used to assign each observation to good and bad classes.
In this work, ζ was chosen to ensure a proportion of good/bad
products of 4:1. Even if the ratio of bad product is quite high
compared to what is usually observed in industry, this choice
was made to reduce the impact of class imbalance. There is no
specific rule stating that a dataset should not be used as it is
too imbalanced. However, in practice, ratios ranging from 2:1
to 10:1 are considered to be between marginally and modestly
imbalanced (Weiss, 2013). Therefore, a choice was made to
find a compromise between a realistic situation and balanced
classes. When using industrial data, the ratio should be adjusted
to obtain a more balanced dataset by oversampling the smallest
class or under-sampling the most populated one (He and Garcia,
2009).

3 METHODS

This section presents the direct mapping and PLS inversion-
based approaches used to define multivariate specifications
regions. As both techniques are based on PLS regression, a
brief overview of this latent variable method is provided.
Finally, the classification metrics used to quantify the
performance are described.

3.1 Projection to Latent Structure
Regression
Before building PLS models between X and Y, the data are mean-
centered and scaled to unit variance. As the X and Y matrices
contained collinear data, latent variable modelling techniques are
suitable approaches. PLS regression is retained as it builds the best
linear relationships between the X and Y while modelling the
variability contained in both spaces.

Variability is extracted using a group of A orthogonal latent
variables known as scores T (N × A). PLS regression is defined
mathematically by the following set of equations:

X � X̂ + E � TP′ + E (9)

Y � Ŷ + F � TC′ + F (10)

T � XWp � XW(P′W)−1 (11)

where E (N ×M) and F (N ×M) are the model residuals.
C (K × A) and P (M × A) are the loadings of the Y and X
spaces, respectively. The loadings and the score values are
computed using the NIPALS algorithm (Wold et al., 2001). It
also provides the weight matrices W(M × A) and Wp (M × A)
allowing to make predictions of Y based on X.

Prior applying PLS to new X-data, it is important to ensure
that they are consistent with historical data used to build the
model. This is achieved by computing the squared prediction
error SPEX and the Hotelling’s T2, and verifying that they fall
below their respective statistical limits. The SPEX is used to check
consistency of the correlation structure of new data. It is defined
as follows:

SPEXi � eiei′ (12)

where ei (1 × K) is the X-residual vector for the ith observation:
ei � xi − tiP (13)

As the SPEX values follow approximately a χ2 distribution
with 2m2

v degrees of freedom (Nomikos and MacGregor, 1995), a
(1- α) upper control limit (UCL) can be obtained:

SPEUCL � v

2m
χ22m2

v
, α

(14)

where v and m are respectively the variance and the SPE mean
calculated during the model calibration.

The Hotelling’s T2 is used to measure the distance of projected
new observations from the origin of the latent variable space. It is
typically used to confirm whether a new observation falls within
the so-called knowledge space (KS). The KS represents the space
spanned by historical data in the latent variable space of the PLS
model. The T2 value for the ith observation is obtained as follows:

T2
i � ∑A

a�1
(ta,i
sa
)2

(15)

where ta,i is the score values obtained for the ath component and
sa its standard deviation calculated in calibration.
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The T2 values are known to follow a Fischer distribution
approximately (Jackson and Edward, 1991). A (1-α) upper
control limits as proposed by Weirda (Wierda, 1994) can be
calculated using the number of points in the calibration dataset N
and the number of components retained A using the following
equation:

T2
UCL �

A(N2 − 1)
N(N − A)FA,N−A,α (16)

where FA,N−A,α is the value of the Fischer distribution for A and
(N-A) degrees of freedom. This elliptical-shaped limit is typically
drawn in the scores space. The length of each axis ra is equal to:

ra �
�����������������
A(N2 − 1)
N(N − A)s

2
aFA,N−A,α

√
(17)

which is deduced from Eq. 15 and Eq. 16.
One important step in the model development is to select the

optimal number of components. The appropriate method
depends on how the model will be used. If the objective is to
build PLS models for making predictions, criteria such as
cumulative predicted variance Q2Y or the root mean squared
errors of prediction (RMSEP) in cross-validation or calculated on
an external dataset should be used. For a classification problem,
such as defining multivariate specification regions, the optimal
number of components should be the one that maximizes the
classification performance on an external dataset. Classification
performance is obtained by using the accuracy as defined in a
following section.

The same PLS model is used to establish multivariate
specification regions using both DM and inversion techniques.
The number of components maximizing classification
performance may be different for both approaches, but a
single value of A needs to be selected for the comparative
study. As the direct mapping is based on a compromise
between type I and type II errors, which is an additional
degree of freedom compared to inversion, using direct
mapping might introduce a bias when choosing the number of
components. To overcome this issue, the number of components
is determined by maximizing classification performance obtained
with the inversion approach, and this number of components is
also used for DM.

3.2 Direct Mapping Approach
Defining multivariate specifications using direct mapping is
performed in two steps. First, a PLS model is built using the
quantitative y-data. Second, the specification limit in the latent
space is defined by mapping product quality in the scores space.
In other words, the class assigned to the score values (i.e., good/
bad) corresponds to that of the final product obtained for the
same lot of rawmaterials. The goal is to define a region that allows
the separation of the two classes. Note that the quality classes are
only used to assess classification performance in the latent space
and not for building discriminant PLS models (i.e., PLS-DA). The
shape of the region is defined by the user. In this study, a similar
shape as that of the product quality acceptance region is chosen
for both methods. Since the limit in the Y-space is elliptical and

the PLS model is linear, the region obtained in the score space by
inversion is also elliptical. For this reason, the following elliptical-
shaped specification region was selected for the DM approach:

tΛt′≤ η (18)

where Λ (A × A) is the score covariance matrix. The value of η is
used to adjust the size of the elliptical region. The strategy used to
select η depends on the context in which the specification will be
used, and the consequence of each type of misclassification. One
may prefer minimizing type I or type II error while another could
seek a compromise between both. By definition, type I error
represents a sample predicted as bad quality when it is good while
a type II error is a sample of truly bad quality predicted as good.
For this work, as there is no specific context or limitation, the
value of η is chosen to be the one leading to the same percentage
of type I and type II errors.

Prior to using the specified region for incoming new lots of raw
materials, the correlation structure of each observation needs to
be assessed to ensure the model validity for this lot. This is done
by defining an upper control limit on SPEX during the PLS model
calibration as discussed in the previous section. If a given lot
violates the limit, it should be flagged as having an inconsistent
correlation structure compared with historical data, and should
be rejected unless it is desired to process it, and used it to update
the model and/or improve the specification region definition.

3.3 Projection to Latent Structure Model
Inversion
Alternatively, multivariate specification regions in the score space
can be established by inverting the PLS model for each point lying
on the final product quality acceptance limit. In other words,
instead of adjusting a limit within the score space using product
quality class assignments, the limit is propagated from the
Y-space acceptance region using the model structure.

As the limit in the Y-space is elliptical in this study, its
parametric equation is used to generate combinations of
quality attributes (y1, y2) lying on the ellipse to use for the
inversion. The transformation for the matrix to the parametric
equation is the following:[y1, y2] � V

��
D

√ [cos(θ), sin(θ)] (19)

where D (K ×K) is a diagonal matrix containing the eigenvalues
of ζΣy and V (K × K) the corresponding eigenvectors while θ
contains value between 0 and 2π.

For each combination (y1, y2) which is named ydes (1 ×K),
the PLS inversion method proposed by Jaeckle and MacGregor
(1998) and Jaeckle and MacGregor (2000) allows calculating the
corresponding score vector tdes (1 × A). Computations begin
with the PLS model equation for the Y-space:

ydes � tdesC′ (20)

where the dimensions of the loading matrix C yields three
possible cases depending upon the number of PLS
components A and the number of y-variables K, as described
in the following subsections.
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3.3.1 Case 1: A � K
This case is the simplest one since there is a unique solution
(i.e., number of equations equal to number of unknown
parameters). As C is a square matrix, solving for tdes from Eq. 20
yields the following result:

tdes � ydes(C′C)−1 � ydes(C′)−1 (21)

which directly provides the score vector associated with a
combination of y-variables lying on the product acceptance
region. The two terms are equivalent since C is a square matrix.

3.3.2 Case 2: A < K
In this case, since the number of unknown parameters is lower
than the number of equations, there is no solution. As the matrix
C is not square, to obtain tdes from Eq. 20 a right inverse is used.
The resulting equation is the following:

tdes � yC(C′C)−1 (22)

In fact, the solution is the result of an ordinary least squares
prediction between y and C where the prediction error of y is
minimized (Jaeckle, 1998).

3.3.3 Case 3: A > K
For DS estimation, this case is the one that happens the most
frequently (Facco et al., 2015; Palací-López et al., 2019). Since
there are more unknown parameters than equations, the number
of solutions is infinite. To obtain all of the possible solutions,
Jaeckle and MacGregor (1998), Jaeckle and MacGregor (2000)
proposed the following approach. As C′C is singular, solving for
tdes requires using the Moore-Penrose inverse. Prior to the
inversion, Jaeckle and MacGregor (2000) suggested to
transform the score vector t into two new matrices to facilitate
proper scaling:

ydes � tC′ � uSC′ (23)

where u (1 × A) is an orthonormal vector and S (A × A) is a
diagonal matrix where the diagonal values are equal to

����
T′T

√
.

Then, using the Moore-Penrose inverse for a combination of
y-variables stored in ydes, the predicted value tpred is obtained:

tpred � ydes(CS′SC′)−1CS′S (24)

which is the solution that is the closest to the origin of the PLS
model plane. The other possible solutions tdes are distributed
along the null space:

tdes � tpred + tnull (25)

where tnull spans an orthogonal subspace of A −K dimensions.
To obtain tnull values, singular value decomposition is applied on
SC′ to extract the left singular vectors. Only the (A-K) vectors
associated with null singular values are kept in matrix
G2 (A × (A − K)). The tnull vector is then calculated as follows:

tnull � λG2′S (26)

by specifying a (A-K) vector of constants λ(1 × (A − K)) that
represents a position along the null space.

As the specification region is defined using an infinite number
of equations (i.e. one for each point of the ellipse in the y-space),
determining whether an observation falls within the specification
limits or not is not simple. Geometrical approaches such as
triangularization or visual inspection of score plots when A < 4
are needed to determine the position of one observation towards
the region. When A > 3, more complex manipulations and
calculations are necessary to determine the position of the
scores with respect to the specification limits. Hence, in this
study, it was decided to limit the number of PLS components to
A ≤ 3. Also, before projecting a new lot into the specification
region, the same approach using the SPEX limit needs to be
performed to ensure that the model is valid for new
observations.

3.4 Classification Metrics
As the main objective of this study is to compare two methods for
developingmultivariate specification regions, metrics are needed to
compare their classification performance. Five different metrics are
considered. They are based on the elements of the confusion table,
which is schematically represented in Figure 1A.

The figure shows the relationship between the ground truth for
good (G) and bad (B) final product, and the predicted class labels Ĝ
and B̂. In summary, a true positive TP is a good product well
classified while false negative FN is a good product predicted as bad.
On the other hand, a bad product which is misclassified is
considered a false positive FP, and a true negative TN when it is
well classified. It should be noted that FN and FP correspond to type
I and II errors, respectively.

The first performance metric used is accuracy (ACC), which
consists of the ratio of well-classified samples over the whole
population:

ACC � TP + TN
TP + TN + FP + FN

(27)

The next four metrics are shown in (Figure 1B) illustrated as
the element of the confusion matrix. This allows a better
visualization of the calculated ratios. Precision, also known as
positive predictive value (PPV), is defined as:

PPV � TP
TP + FP

(28)

which is the ratio of predicted good products to all the good
observations. Recall, or true positive rate (TPR), is defined as
follows:

TPR � TP
TP + FN

(29)

It is the proportion of the well classified good product. False
positive rate (FPR):

FPR � FP
FP + TN

(30)

is used to quantify the percentage of misclassified bad products.
The last metric is the false omission rate (FOR) which represents
the percentage of errors made in assigning bad quality products to
the right class:
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FOR � FN
TN + FN

(31)

4 RESULTS AND DISCUSSION

The results are presented in three parts. First, a simple example
considering a single quality attribute is shown to illustrate the
methodologies, and to explain the main criteria used for
comparing both techniques. Then, the impact of collinearity
between the two quality attributes on the shape and size of the
specification regions is presented. Finally, the main advantages
and disadvantages of both techniques are highlighted based on
the observations made during the analysis.

For ease of presentation,Table 2 summarizes all the information
used to generate the different scenarios. The table is divided in three
parts. First, the columns identified as Y-space definition show the
values of the simulation model parameters selected for generating
the datasets. This includes the coefficients (ki × gi) needed to define
the y-variables, and the level of correlation between them, as well as
the quality constant ζ that allows obtaining a 4:1 good/bad class
ratio. The second part provides an overview of the PLS model
performance in validation. The accuracy (ACC) obtained when

inverting themodel, which was used to choose the number of Latent
Variables (LV) retained A, as well as the cumulative predicted
explained variance Q2Y are shown in the table. The last part
provides the values of the DM constant adjusting the size of the
specification region, and the resulting percentage of type I and
II error.

4.1 Scenario 1–Illustration Using a Simple
Example
The first scenario proposed is obtained by using one quality
attribute. The output is simulated with all raw material properties
affecting the quality attribute (i.e., ki ≠ 0) with a different value of
gi for each x-variable as shown in Table 2. Then, the product
quality acceptance zone is defined. Since the Y-space is univariate,
the product acceptance region consists of lower and upper
bounds using Eq. 8 where ζ � 1.75.

After mean-centering and scaling the data using the calibration
dataset, the PLS model is built, and the number of components is
selected to maximize classification accuracy for PLS inversion.
Table 2 shows that an optimal accuracy of 88.3% is obtained
using 2 components. The resulting model predicts 84% of the
y-variance (Q2Y) based on the validation set. This model is then

FIGURE 1 | Schematic representation of the classification metrics: (A) confusion matrix (B) classification metrics.

TABLE 2 | Summary of the parameters involved in establishing specification regions with DM and PLS inversion, as well as some performance statistics for the different
scenarios investigated.

Scenario Y-Space definition Validation performance DM constant η

Coefficients
in eq. 5 (ki × gi)

|r| [%] Quality constant ζ ACC inversion [%] Q2Y [%] A Value Error type I and
II [%]

1 [3, -2, -1, 1] − 1.75 88.3 84 2 3.51 8.8

2A)
[-5, 0, 3, -3]

30 3.35 90.3 89 2 3.54 4.4
[0, 0, 2, -1]

2B)
[-1, 0, -1, -4]

−66 3.25 86.5 79 2 3.34 5.8
[0, 0, 0, 2]

2C)
[0, 0, 2, 1]

95 3.25 86.2 92 2 3.23 10
[-1, 0, 5, 0]

4
[0–1 0 1]

−40 3.29 88.9 87.5 3 4.78 7.8
[3 0 0 0]
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used to define the DM specification region by finding the value of η
that gives the same percentage of type I and type II errors. The
obtained value of 3.51 leads to 8.8% of both types of errors.

At this point, both specification regions are defined and drawn
in the latent space. For ease of visualization, Figure 2 shows a
subsampling of the testing dataset where the proportion of each
class is preserved. The solid black line represents the DM region
obtained previously.

Since the number of components is higher than the
number of quality attributes (A>K), the specification
region was determined using the inversion case 3 which
considers the presence of a null space. The lower and
upper y-limits are inverted to obtain the corresponding
tpred values represented by red stars. The null-space (NS)
is calculated and shown by the solid red line. Thus, all score
values falling between these two lines are associated with good
quality final product as per the inversion approach. However,
this region is opened which may lead to misclassification as
the predicted score values outside the knowledge space (KS)
extrapolate. Therefore, the solution is constrained by the 95%
upper Hotelling’s T2 limit as advocated in some papers
(Tomba et al., 2012; Facco et al., 2015; Bano et al., 2017).
The gray dash line represents the KS.

It is observed in Figure 2 that the DM is already included inside
the KS. This was expected because, the DM ellipse is designed to
discriminate the classes using the calibration dataset which is the
same used to define the KS. In addition, the inversion seems slightly
better compared to direct mapping. Better performancemight have

been obtained if another shape was chosen for DM regions (i.e., the
shape is an additional degree of freedom for DM).

Based on these observations, the performance in classification
is analyzed using the classification metrics described in section
Classification Metrics. Three different specification regions are
considered. The first is the region obtained with the inversion
alone (NS). The second is the NS region constrained by the KS
(NS ∩ KS). The third is the DM region.

For all the metrics, the performance obtained with PLS
inversion approaches are quite similar except for the false
omission rate that is higher when considering the KS limit.
Constraining the region within the KS generates more good
samples predicted as bad, which increase the number of FN as
shown in Figure 2.

When comparing direct mapping and inversion coupled with
KS, Figure 3 shows that the performance are better for inversion
for all the metrics. A particular attention should be paid to FPR
and FOR for the DM as the difference is higher compared to other
metrics. For the FPR, it can be seen in Figure 2 that the edge of the
ellipse allows accepting more lots of bad quality which is not the
case for the inversion. The higher FOR metric is caused by the
bounding of the region with the KS limit.

Globally, Scenario 1 allowed to illustrate the methodology with
a simple example using a univariate quality attribute. The basis is
set to analyze more complex cases with multiple quality
attributes. For the proposed example, the inversion is slightly
better compared to direct mapping based on the five metrics.
Also, the acceptance region is more restrictive for the direct
mapping since its area is smaller compared to inversion. The
performance might have been better if the shape of the DM

FIGURE 2 | Score plot showing the multivariate specification regions
obtained using both Direct Mapping and PLS Inversion for Scenario 1.

FIGURE 3 | Classification performance metrics for Scenario 1.
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regions would have been modified to exploit this additional
degree of freedom.

4.2 Scenarios 2, 3 and 4: Impact of
Collinearity Between Quality Attributes on
the Specification Regions
The impact of collinearity between the two quality attributes is
studied with respect to the three inversion cases (i.e., A<K,
A>K and A � K). Initially, 400 combinations of two quality
attributes were generated using the simulator (Eq. 5). For each
of them, the number of components was chosen based on
maximizing classification accuracy for PLS inversion.
Figure 4 shows the number of y-combinations for the
different levels of correlation, and the number of
components retained when building the PLS model. Note
that both negative and positive correlations were obtained,
but the absolute value is shown in the figure.

As it can be observed in Figure 4, 58.5% of the combinations
require three components and they cover the full range of
correlations. The samples associated with two components also
spanned the entire range. This is not the case for the datasets
where a single component is selected. Less than 5% of the
combinations fall in this category and they concentrate in the
zone of high levels of correlation i.e., with a value of |ry1−y2|
greater than 80%. This was expected as when correlation
coefficient tends toward unity, fewer components are needed
since both y-variables are almost the same, and so is X.

It should be noted that the number of components retained
depends strongly on the selected performance criteria. If another
metric would have been selected or if the performance had been
calculated using the direct mapping, the number of combinations

associated with each inversion cases and their distribution relative
to the level of correlation between both y-variables might have
been different.

4.2.1 Scenario 2: Impact of Collinearity When A � K
In this scenario (involving inversion Case 1), the 148
combinations associated with A � 2 in Figure 4 are
considered to analyze the impact of correlation between
both y-variables. For each of them, the specification regions
were defined with both techniques. Figure 5 shows the
performance calculated with the test dataset for the different
metrics. It should be noted that the FOR metric was not shown
as in previous analysis, because it provides redundant
information with TPR. To facilitate interpretation of the
figure, the data were filtered using a moving average and a
window of five samples to minimize the stochastic variations
introduced by random generation of the model parameters
in Eq. 5.

First, the accuracy is analyzed as it gives an overview of
classification performance since it measures the proportion
of well-classified samples. Classification performance is
judged against the so-called no-skill line (NSL). The latter
represents the accuracy that would be obtained if the samples
were randomly assigned to a class. The performance of a
useful classifier needs to be above the NSL. As the ratio of
good to bad samples is 4:1 in this study, the NSL is set at 80%.
Except for a few regions obtained from direct mapping with
combination of highly-correlated quality attributes, the
accuracy is above the no-skill line. This shows that both
methods performed better than making random decisions.
Also, for low to moderate levels of correlation (i.e., up to 60%)
accuracy is almost the same for both methods. To
discriminate both methods in this zone, other metrics need
to be analyzed.

It is possible to observe that a distinction exists between both
methods at all correlation levels. The PPV is greater for direct
mapping which means the classifier has a better precision.
However, the TPR rate is lower because the predictions for
the positive class is better with the inversion. Usually, a
compromise between TPR and PPV needs to be achieved to
identify the best classifier. Also, it can be observed that the FPR
is lower for direct mapping. This is considered an advantage for
DM when the goal is to minimize the risk of producing bad
quality products, since the probability of accepting a bad lot
is lower.

For levels of correlation higher than 60%, the gap between the
two methods widens especially for the TPR metric. The DM
technique becomes more restrictive and generate more rejection
of good lots of raw materials whereas the region obtained with
inversion leads to accepting all the good lot as it tends toward
100%. For the FPR, a large increase is observed for both methods.
However, even if the rate doubles and seems more drastic
compared to the other metrics, it is normal to have higher
values since there are fewer bad lots than good ones. Based on
the ratio of bad and good samples, an increase of one FP leads to
an increase of 4% of the FPR, while an increase of one FN causes a
decrease of 1% of the TPR.

FIGURE 4 | Distribution of the combinations of y-variables and the
corresponding number of PLS components as a function of level of
collinearity.
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To better understand what happens when the level of correlation
increases, three examples were drawn from the set of 148 combinations
to compare the acceptance regions obtained with both techniques as
collinearity between quality attributes increase. The simulator’s
parameters used for these examples and their respective level of
correlation is presented in Table 2 (Scenarios 2A–C). The
classification metrics for all three examples are shown in Figure 5
usingmarkers. Themarker shape discriminates the level of collinearity,
and its color is associated with the methods (DM or inversion).

As shown in Figure 6A, at low levels of correlation (here 30%),
the two regions are almost the same. This explains why the
accuracy was quite identical for DM and inversion. When
collinearity increases to 66% (Figure 6B), a slight difference
between the regions is observed. The largest region obtained
by inversion increases acceptance of good lots at the expense of
bad lots. The same observation can be made from Figure 6C
when the correlation level is very high, i.e., 95%.

The three examples need to be compared together to explain the
cause of increasing FPR with collinearity. As the level of correlation
increases, good and bad products in the score space overlap to a
greater extent which increases the difficulty to obtain distinct
classes. This can also be observed in Table 2 through the
compromise between type I and II errors used for choosing the
η constant in direct mapping. The percentage of classification
errors increases with collinearity to achieve the desired balance
between the two types of errors. This does not seem to be caused by
the model performance in prediction since at high levels of
correlation the model has a Q2Y value of 90% as shown in
Table 2, which is the case at low levels of correlation. The most
likely cause for this behavior is that bad lots projecting near the
origin of the scores space (i.e., generating a FP) are associated with

observations in the y-space located in close to the edge of the
product acceptance limit, but near the origin.

A particular attention should be paid to changes in the trends
of TPR for both methods at high levels of correlation, which differ
from those of other metrics. For DM, the TPR decreases and this
may be explained similarly as for the increase in FPR. As the
overlapping of the two product classes in score space is more
important, the specification region needs to be more restrictive
for good lots which generates more FN to obtain the same
performance in terms of type I and II errors.

For PLS inversion, however, the trend is very different. The
TPR increases to 100%, which means accepting all good lots of raw
materials. Scenario 2C) in Figure 6C illustrates this situation. The
ellipse obtained by inversion is stretched over the latent space
which results in an acceptance region that includes a larger area
where there are no or very few points (i.e., there is a risk of model
extrapolation). The reason behind this behavior originates from the
inversion of the C’ matrix. When the correlation increases between
the two y-variables, this is reflected in the y-loading matrix C,
which eventually becomes ill-conditioned. Inverting this loading
matrix increases of the norm of the scores and results in a larger
ellipse. This is just like what happens to ordinary least squares
regression parameters when highly correlated predictors are used.

Globally, Scenario 2 allowed showing that high correlation levels
between both y-variables (i.e., higher than 80%) influences the
classification performance of both methods. This may be caused
by the proximity of observations to the product quality attribute
acceptance limit in the y-space, the increasing overlap between both
product classes in score space and model extrapolation for inversion.
Concerning the classification performance itself, a distinction between
bothmethods is observed for all themetrics. Directmapping obtains a

FIGURE 5 |Classification performance for Scenario 2: (A) Accuracy, (B) Positive Predictive Value, (C) True Positive Rate, and (D) False Positive Rate. The symbols
mark the specific combinations investigated further, and their color indicate the method (DM or inversion).
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better FPR at the expense of TPR compared to the inversionwhere the
relationship is opposite. Which one is best depends on the specific
context and the relative cost of FPR vs. TPR.

4.2.2 Scenario 3: Impact of Collinearity when A < K
The third scenario illustrates the inversion Case 2 in which the
number of PLS components is smaller than the number of
y-variables. As the model investigated further in this section has
only one component, the multivariate specification region in the
latent space boils down to univariate limits (i.e., lower and upper
bounds). Applying PLS inversion to several points on the product
acceptance ellipse results in scores evolving between aminimum and
a maximum value. These are used to define the univariate limits.

The simulations used to generate data in this study only led to
a few combinations where A < K, and in all of those cases, A � 1
(see Figure 4). The 18 occurrences generated concentrate in the
high correlation levels (i.e., mostly above 0.9). The classification
performance is presented in Figure 7. Compared to Figure 5, the

classification metrics are noisier due to the fact that the moving
average was not apply due to the low number of samples.

Determining the impact of correlation is more difficult for this
scenario since no information are available for the level of
correlation ranging between 0 and 0.75. For the available data,
a distinction between both methods can be observed in Figure 7
for each metric, and is comparable to Scenario 2. For the same
range of correlation, the direct mapping provides similar
performance for both scenarios. For the inversion, using one
component leads to PPV and FPR that are slightly worse
compared to what is obtained with two components. For the
TPR, the same behavior is observed where the values tend toward
100%. This was expected since the inversion cases 1 and 2 are
obtained by minimization of prediction errors (e.g., for case 1, the
resulting objective function value is 0).

For the same range of levels of correlation, the conclusions
drawn for Scenario 3 are similar to those of Scenario 2. However,
if FPR in inversion had been chosen as the criteria to determine
the number of components it might be expected that some of
these samples would have been moved to Scenario 2 (A � K) since
for the same range of correlation level, the FPR is lower when
using A � K. This shows that the criteria used for determining the
number of components influence the distribution of the sample
between the three inversion cases.

4.2.3 Scenario 4: Impact of Collinearity When A > K
The last scenario considers the situations where A > K. In the
context of this study, this means that three PLS components leads
to the best accuracy in inversion. In contrast with Scenario 2, the
specification regions obtained by inversion are not bounded due to
the existence of a null space. For this reason, the specification regions
were established in three ways and compared: inversion alone (NS),
inversion constrained by the KS (NS ∩ KS), and DM. For the
different levels of correlation, the performance of the methods is
presented in Figure 8. As for Scenario 2, a moving average window
was applied to remove noise and make the interpretation clearer.

For accuracy and TPR, a large gap exists in the inversion
results when constraining the region to be within the KS or not.
This makes sense since adding a limit on the knowledge space
tightens the specification region, and makes it more restrictive.
The chance of rejecting a good lot is increased, which leads to a
reduced number of well-classified good lots. Considering these
two metrics, when bounded, the inversion technique gives similar
performance compared to the direct mapping.

However, for PPV and FPR, the performance of PLS inversion
using both approaches are very similar. The KS bounding does not
seem to have an impact or only a slight one on themisclassification
of bad lots. The difference observed in ACC is then mainly caused
by misclassification of good lots. By comparing the inversion and
direct mapping, the PPV in Figure 8 shows that inversion is
slightly better mainly because of lower FPR for this technique.
However, the gap between the two techniques is smaller compared
to Scenario 2. For the FPR in direct mapping for low to moderate
correlation levels, adding one PLS component seems to double the
rate when Figure 8 and Figure 5 are compared. This suggests that
if the number of components had been selected using the FPR
obtained by direct mapping, the partition of combinations might

FIGURE 6 | Score plot showing the specification regions obtained with
DM and inversion for different levels of correlation between the quality
attributes (Scenario 2): (A) 30%, (B) 66%, and (C) 95%.
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have been different. When testing this hypothesis, for almost all
combinations, the number of components minimizing FPR is
achieved using two components (i.e., A � K).

Figure 8 also allows interpreting the impact of the collinearity
between the y-variables. Compared with Scenario 2, the correlation
does not seem to have an impact on performance. Even when some

fluctuations are present, the performance are relatively stable, and
no systematic trend is observed in the different classification
metrics. In addition, the performance at high levels of
correlation does not degrade as observed in Scenario 2. In the
latter, a unique solution exists for all combinations. For Scenario 4,
the system of equations to solve is under-determined because the

FIGURE 7 | Classification performance for Scenario 3: (A) Accuracy, (B) Positive Predictive Value, (C) True Positive Rate, and (D) False Positive Rate.

FIGURE 8 |Classification performance for Scenario 4: (A) Accuracy, (B) Positive Predictive Value, (C) True Positive Rate, and (D) False Positive Rate. The symbols
mark a specific combination investigated further, and their color is used to identify the method (DM or inversion).
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number of components (i.e. scores) is greater than the number of
equations. The solution provided by Eq. 24 results from the
minimization of the Euclidian norm of the score vector under
the hard constraint imposed by Eq. 20. This forces the solution to
be close to the origin of the latent space and results in a tighter and
bounded specification region. The impact of collinearity between
y-loading (i.e., c’s) seems less important, and the TPR tend to be
more stable (i.e., no increase as for Scenario 2).

In addition, Scenario 4 allows showing that specifications in
three dimensions are more difficult to use compared with Scenario
2. To illustrate the situation, an example named Scenario 4, is
drawn from the different combinations of y-variables requiring
three PLS components.Table 2 shows the parameters used to build
the specification region while Figure 8 shows the performance
metrics of the selected combination using a makers (dots). This
example is representative of the average performance across all
levels of correlation. Figure 9 shows the difference between
inversion and DM in terms of the size of the specification
regions. For ease of interpretation, the direct mapping and
inversion are presented in different plots but using the same scale.

As in Scenario 2, the DM technique shown in Figure 9A)
leads to a smaller region included in the knowledge space
compared to inversion. Figure 9B) presents the predicted
score vector tpred , the one that minimises the distance to the
origin of the latent space for all the combination of y-variables.
The null space representation is shown using a light color to
provide a clearer image. In fact, the real representation is an
elliptical cylinder where the periphery is modelled by an infinity
of NS lines. If the region is unbounded, the new prediction needs
to fall within the cylinder. When bounded, the point should fall
at the intersection of the KS ellipsoid and the cylinder to be
classified as a good lot. Thus, it is necessary to test the limit of the
Hotelling T2

first, and then to determine if the observation falls
within the cylinder. Since the equation representing the
specification region is unknown, it is more difficult to assess
the position of a new observation using an automatic approach
compared to DM.

4.3 Advantages and Drawbacks of the
Methods
The various scenarios investigated allowed to identify the main
advantages, and drawbacks of the two methods used for defining
multivariate specification regions. This section wraps-up all the
observations made through previous analyses and highlights the
most important points to consider when choosing the method
used to define the regions in Table 3.

Globally, the direct mapping approach is more restrictive in
terms of volume/area compared with the inversion as the selected
region is always included within the knowledge space. This can
also be seen as an advantage since the user does not need to define
a second limit to be within the KS. Furthermore, the DM allows a
higher level of flexibility regarding the choice of the specification
region shape. The inversion technique forces a similar shape to
the product acceptance region in the y-space.

The type of classifier resulting from both approaches is
different. Direct mapping provides a soft classifier since a
choice is made by the user to set the limit. The limits can be
adjusted by using the most relevant or important classification
metric based on the specific objective of the case considered, for
example to minimize acceptance of bad lots (i.e., FP). On the other
hand, with inversion, no degree of freedom is available to adjust the
position of the region based on the classification performance. The
only exception is when choosing the number of components to use
in the model. However, if the region is restricted to lie within the
KS, the classifier becomes soft since the user needs to specify the
confidence level of the T2 limit.

The previous results have shown that it is easier to calculate the
performance in classification and the location of a new sample
against the specification region with direct mapping since it involves
solving a simple inequality. To calculate performance using
inversion, the equation of the resulting region is difficult to
obtain, at the least. For example, the elliptical cylinder shown in
Figure 9 is constructed with a series of points. The current technique
to determine whether a point falls within the specification region

FIGURE 9 | Example of an acceptance region for the case A > K using a 3 components PLS model obtained by (A) direct mapping, and (B) inversion.
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obtained by inversion requires performing triangularization of the
area. This leads to more complex calculation compared to direct
mapping where it is straightforward to use the ellipsoid equations to
determine if a new prediction is included or not in the acceptance
region. For 2-dimensional cases, an easier way would be to use a
graphical tool to check where the point fall compared with the
region. The same approach could be used for 3 dimensions, but it
would be more difficult to determine if the predicted point is within
the specification region volume. For more than 4 components,
further research is needed to find the best way to calculate the
positioning of a new lot automatically.

Based on these analyses, identifying the best approach for
defining specification regions is not straightforward and depends
on the user’s objective. As classification performance is not
superior for all the metrics for either method, one of them
cannot be discarded. A compromise needs to be made during
the development stage. PLS model inversion should be used when
the cost of false negatives (FN) is higher than that of false positives
(FP), and maximizing recall (or TPR) should be prioritized, and/
or when the user prefers defining the shape of the specification
regions using the PLS model structure. Otherwise, the direct
mapping approach should be considered. Also, a careful attention
should be paid when the y-variable are very correlated. This may
lead to degradation of the classification performance. As a solution,
using fewer y-variables to reduce redundancy or performing PCA
on the y-space and using the scores to define the specifications
could provide simple alternatives (Jaeckle, 1998).

5 CONCLUSION

The variability of raw materials is increasing, and affects the
quality of the final product in many industries. To mitigate the

situation, efforts are made to improve quality control. A key
solution is to establish specifications regions for the properties of
incoming lots of raw materials to detect unsuitable materials
before processing it. In this work, a comparative analysis of two
data-driven approaches for establishing multivariate specification
regions using PLSmodels is proposed, namely the direct mapping
and PLS inversion. Their classification performance is compared
using multiple metrics. A focus was made on assessing the impact
of collinearity in the y-space on the region classification
performance.

It was shown that classification performance of bad quality lots
of raw materials are poorer when quality attributes are highly
correlated, when the number of PLS components is less than or
equal to the number of y-variables. At low to moderate levels of
correlation, the performance is slightly better for direct mapping
when minimizing the false positive rate (TPR) or, alternatively
Type II errors, is prioritized (i.e., reducing the risk of accepting
poor quality rawmaterials). For the case where the PLSmodel has
more components than the number of quality attributes, the
performance is quite stable across the range of correlation levels.
Both methods give similar classification performance when the
specification region obtained by inversion is included within the
knowledge space.

This study has shown that the decision of choosing a method
for defining multivariate specification regions for raw materials
depends on different factors. None of the method is superior in all
possible cases. Direct mapping offers a higher degree of flexibility
in the definition of the multivariate specification compared to
inversion since the user can choose the shape of the region, and
adjust its size/volume based on the most relevant criteria for a
given industrial application. This technique is also advantageous
in terms of computing resources as it requires solving an
inequality to determine whether a new observation falls inside

TABLE 3 | Summary of the main features of direct mapping and inversion techniques.

Direct mapping Inversion (A = K) Inversion (A > K)

Specification region shape No restriction
Same as the y-space acceptance region Same as the y-space acceptance region

extending along the null space

Multivariate
specification equation

Inequation
Area based on points in space.

No direct equation to determine the position
of a new point

Ease of use on
new data

Results obtained directly from the equation Requires the use of triangularization or graphical
tools if A is lower than 4 dimensions. Otherwise,

calculation becomes more complicated

Classifier Type Soft Hard Soft/Hard

Permissiveness More restrictive
More permissive

Better classification of good sample

Position of the MVspecs and KS Always inside Might be partially outside When unbounded, always partially
outside

Impact of correlation and performance
(A � K)

PPV and FPR performance decrease at high levels of correlation —

Higher precision and lower FPR Higher recall

Impact of correlation and performance
(A > K)

No impact of correlation — No impact of correlation
Worst or equal performance for all metrics Unbounded specifications give

better performance
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the region or not instead of the more complex approaches
required with inversion. All in all, the work presented should
be considered as a guide for establishing multivariate
specifications regions for incoming raw materials. Knowing the
main advantages/drawbacks, and selecting the most relevant
classification metric for their application will help users
choosing the most appropriate approach for defining their
specification regions.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AP led this research, performed the simulations, analysed the
results and wrote the manuscript. CD and ÉP supervised the
work, and reviewed the manuscript.

ACKNOWLEDGMENTS

The authors acknowledge financial support of the Natural
Sciences and Engineering Research Council of Canada
(NSERC) (RGPIN-2019-04800 and ESD3-547424-2020) and
the Fonds de Recherche Nature et Technologie (FQRNT)
(Scholarship 287725).

REFERENCES

Amsbary, R. (2013). Raw Materials: Selection, Specifications, and Certificate of
Analysis. Quality Assurance & Food Safety [Online]. Available at: https://
www.qualityassurancemag.com/article/aib0613-raw-materials-requirements/
(Accessed June 20, 2021).

Azari, K., Lauzon-Gauthier, J., Tessier, J., and Duchesne, C. (2015). Establishing
Multivariate Specification Regions for Raw Materials Using SMB-PLS. IFAC-
PapersOnLine 48 (8), 1132–1137. doi:10.1016/j.ifacol.2015.09.120

Bano, G., Facco, P., Meneghetti, N., Bezzo, F., and Barolo, M. (2017). Uncertainty
Back-Propagation in PLS Model Inversion for Design Space Determination in
Pharmaceutical Product Development. Comput. Chem. Eng. 101, 110–124.
doi:10.1016/j.compchemeng.2017.02.038

De Smet, J. (1993). Development of Multivariate Specification Limits Using Partial
Least Squares Regression. Master. Hamilton, ON, Canada: McMaster
University.

Duchesne, C., and MacGregor, J. F. (2004). Establishing Multivariate Specification
Regions for Incoming Materials. J. Qual. Technol. 36 (1), 78–94. doi:10.1080/
00224065.2004.11980253

Facco, P., Dal Pastro, F.,Meneghetti, N., Bezzo, F., and Barolo,M. (2015). Bracketing the
Design Space within the Knowledge Space in Pharmaceutical Product Development.
Ind. Eng. Chem. Res. 54 (18), 5128–5138. doi:10.1021/acs.iecr.5b00863

García-Muñoz, S., Dolph, S., and Ward, H. W. (2010). Handling Uncertainty in the
Establishment of a Design Space for the Manufacture of a Pharmaceutical Product.
Comput. Chem. Eng. 34 (7), 1098–1107. doi:10.1016/j.compchemeng.2010.02.027

García-Muñoz, S. (2009). Establishing Multivariate Specifications for Incoming
Materials Using Data from Multiple Scales. Chemometrics Intell. Lab. Syst. 98
(1), 51–57. doi:10.1016/j.chemolab.2009.04.008

Godoy, J. L., Marchetti, J. L., and Vega, J. R. (2017). An Integral Approach to
Inferential Quality Control with Self-Validating Soft-Sensors. J. Process Control.
50, 56–65. doi:10.1016/j.jprocont.2016.12.001

Haibo He, H., and Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE
Trans. Knowl. Data Eng. 21 (9), 1263–1284. doi:10.1109/TKDE.2008.239

ICH (2009). “Pharmaceutical Development Q8(R2). ICH Harmonised Tripatite
Guideline [Online]. Available at: https://database.ich.org/sites/default/files/
Q8%28R2%29%20Guideline.pdf (Accessed June 20, 2021).

Jackson, J., and Edward, A. (1991). User’s Guide to Principal Components. New
York: John Willey Sons. Inc., 40.

Jaeckle, C. M., and MacGregor, J. F. (1998). Product Design through Multivariate
Statistical Analysis of Process Data. Aiche J. 44 (5), 1105–1118. doi:10.1002/
aic.690440509

Jaeckle, C. M., and MacGregor, J. F. (2000). Industrial Applications of Product
Design through the Inversion of Latent Variable Models. Chemom. Intell. Lab.
Syst. 50, 199–210. doi:10.1016/S0169-7439(99)00058-1

Jaeckle, C. M. (1998). Product and Process Improvement Using Latent Variable
Methods. PhD. Hamilton, ON, Canada: McMaster University.

MacGregor, J. F., and Bruwer,M.-J. (2008). A Framework for theDevelopment ofDesign
and Control Spaces. J. Pharm. Innov. 3 (1), 15–22. doi:10.1007/s12247-008-9023-5

MacGregor, J. F., Liu, Z., Bruwer, M.-J., Polsky, B., and Visscher, G. (2016). Setting
Simultaneous Specifications on Multiple Raw Materials to Ensure Product
Quality and Minimize Risk. Chemom. Intell. Lab. Syst. 157, 96–103.
doi:10.1016/j.chemolab.2016.06.021

Nomikos, P., and MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring
Batch Processes. Technometrics 37 (1), 41–59. doi:10.1080/
00401706.1995.10485888

Palací-López, D., Facco, P., Barolo, M., and Ferrer, A. (2019). New Tools for the Design
and Manufacturing of New Products Based on Latent Variable Model Inversion.
Chemom. Intell. Lab. Syst. 194, 103848. doi:10.1016/j.chemolab.2019.103848

Tessier, J., and Tarcy, G. P. (2010). Multivariate Specifications of Raw Materials:
Application to Aluminum Reduction Cells. IFAC Proc. Vol. 43 (9), 1–6.
doi:10.3182/20100802-3-ZA-2014.00001

Tomba, E., Barolo, M., and García-Muñoz, S. (2012). General Framework for
Latent Variable Model Inversion for the Design and Manufacturing of New
Products. Ind. Eng. Chem. Res. 51 (39), 12886–12900. doi:10.1021/ie301214c

Weiss, G. M. (2013). “Foundations of Imbalanced Learning,” in Imbalanced
Learning. Editors H. He and Y. Ma (Piscataway, NJ: IEEE Press).

Wierda, S. J. (1994). Multivariate Statistical Process Control-Recent Results and
Directions for Future Research. Stat. Neerland 48 (2), 147–168. doi:10.1111/
j.1467-9574.1994.tb01439.x

Wold, S., Sjöström, M., and Eriksson, L. (2001). PLS-Regression: a Basic Tool of
Chemometrics. Chemom. Intell. Lab. Syst. 58 (2), 109–130. doi:10.1016/S0169-
7439(01)00155-1

Yu, L. X., Amidon, G., Khan, M. A., Hoag, S. W., Polli, J., Raju, G. K., et al. (2014).
Understanding Pharmaceutical Quality by Design. Aaps J. 16 (4), 771–783.
doi:10.1208/s12248-014-9598-3

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Paris, Duchesne and Poulin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Analytical Science | www.frontiersin.org November 2021 | Volume 1 | Article 72973215

Paris et al. Establishing Multivariate Specifications: A Comparison

https://www.qualityassurancemag.com/article/aib0613-raw-materials-requirements/
https://www.qualityassurancemag.com/article/aib0613-raw-materials-requirements/
https://doi.org/10.1016/j.ifacol.2015.09.120
https://doi.org/10.1016/j.compchemeng.2017.02.038
https://doi.org/10.1080/00224065.2004.11980253
https://doi.org/10.1080/00224065.2004.11980253
https://doi.org/10.1021/acs.iecr.5b00863
https://doi.org/10.1016/j.compchemeng.2010.02.027
https://doi.org/10.1016/j.chemolab.2009.04.008
https://doi.org/10.1016/j.jprocont.2016.12.001
https://doi.org/10.1109/TKDE.2008.239
https://database.ich.org/sites/default/files/Q8%28R2%29%20Guideline.pdf
https://database.ich.org/sites/default/files/Q8%28R2%29%20Guideline.pdf
https://doi.org/10.1002/aic.690440509
https://doi.org/10.1002/aic.690440509
https://doi.org/10.1016/S0169-7439(99)00058-1
https://doi.org/10.1007/s12247-008-9023-5
https://doi.org/10.1016/j.chemolab.2016.06.021
https://doi.org/10.1080/00401706.1995.10485888
https://doi.org/10.1080/00401706.1995.10485888
https://doi.org/10.1016/j.chemolab.2019.103848
https://doi.org/10.3182/20100802-3-ZA-2014.00001
https://doi.org/10.1021/ie301214c
https://doi.org/10.1111/j.1467-9574.1994.tb01439.x
https://doi.org/10.1111/j.1467-9574.1994.tb01439.x
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1208/s12248-014-9598-3
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/analytical-science
www.frontiersin.org
https://www.frontiersin.org/journals/analytical-science#articles

	Establishing Multivariate Specification Regions for Incoming Raw Materials Using Projection to Latent Structure Models: Com ...
	1 Introduction
	2 Dataset Generation
	2.1 Simulated Process
	2.2 Definition of Product Acceptance

	3 Methods
	3.1 Projection to Latent Structure Regression
	3.2 Direct Mapping Approach
	3.3 Projection to Latent Structure Model Inversion
	3.3.1 Case 1: A = K
	3.3.2 Case 2: A < K
	3.3.3 Case 3: A CODE(0xdcd07ac) K

	3.4 Classification Metrics

	4 Results and Discussion
	4.1 Scenario 1–Illustration Using a Simple Example
	4.2 Scenarios 2, 3 and 4: Impact of Collinearity Between Quality Attributes on the Specification Regions
	4.2.1 Scenario 2: Impact of Collinearity When A = K
	4.2.2 Scenario 3: Impact of Collinearity when A < K
	4.2.3 Scenario 4: Impact of Collinearity When A CODE(0xdcd07ac) K

	4.3 Advantages and Drawbacks of the Methods

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


