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Discriminant-type analyses arise from the need to classify samples based on their measured
characteristics (variables), usually with respect to some observable property. In the case of
samples that are difficult to obtain, or using advanced instrumentation, it is very common to
encounter situations with many more measured characteristics than samples. The method of
Partial Least Squares Regression (PLS-R), and its variant for discriminant-type analyses (PLS-
DA) are among the most ubiquitous of these tools. PLS utilises a rank-deficient method to
solve the inverse least-squares problem in a way that maximises the co-variance between the
known properties of the samples (commonly referred to as the Y-Block), and their measured
characteristics (the X-block). A relatively small subset of highly co-variate variables are
weighted more strongly than those that are poorly co-variate, in such a way that an ill-
posed matrix inverse problem is circumvented. Feature selection is another common way of
reducing the dimensionality of the data to a relatively small, robust subset of variables for use in
subsequent modelling. The utility of these features can be inferred and tested any number of
ways, this are the subject of this review.
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1 INTRODUCTION

The output of modern chemical instrumentation can provide a high degree of dimensionality, or
number of features, to describe each sample that can be used to gain insight into complex chemical
mixtures. Analysts often use this information to construct models for discriminant-type problems,
but the burden of dimensionality limits the application of typical algorithms such as Support Vector
Machines (SVM) (Crammer and Singer, 2001), or Canonical Variates Analysis (CVA). CVA is
commonly referred to in the literature as: Linear Discriminant Analysis (LDA) (Nørgaard et al.,
2006), and the two terms are often used interchangeably. However LDA refers specifically to the
calculation of one ormany classification thresholds while CVA refers to the dimensionality reduction
technique that maximises class separation along the latent variables. Reducing the dimensionality is
critical for representative and interpretable models, and often relies on methods such as Partial Least
Squares (PLS) (Wold et al., 2001) to weight variables in the X-block that are highly co-variate with
those values in the Y-block. However, the resultant regression coefficient output is not always
particularly informative, since the analyst needs to make decisions for which regression coefficient
loadings are more or less significant than others for inclusion into their resultant interpretation of the
data. PLS-DA alone offers very little recourse in those instances where the regression coefficient
scores of the models are not particularly useful for classifying samples external to the training set.
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Applications of discriminant-type problems have enjoyed
considerable attention over the past few decades, thanks in
part to the explosion of interest in metabolomics (Dettmer
et al., 2007). By examining the differences in metabolite
expression, quantitative differences between biological states
can be inferred through the use of discriminant analyses. This
can simplify the problem of biological interpretation, but the
question of what regression coefficient scores ought to be deemed
significant is still relevant. Simplifying the output of the data
analysis routine to include only those features that are deemed to
be significant for subsequent interpretation is one motivation for
employing a feature selection routine.

There is an idealised linear relationship between the
analytical response of one or several chemical factors and
their absolute quantities. While this relationship is not
always observed at the limits of the dynamic range of the
instrument, through careful method optimisation it is usually
safe to make the assumption that the underlying chemical
phenomena can be studied using linear methods. This is as true
for regression-type problems as it is discriminant-type
problems, and simplifies the practical application of these
technologies. Hence in chemometrics the focus for variable
selection and modelling typically favours linear methods
(Hopke, 2003). Though better performance has in some
cases, been reported for non-linear models (de Andrade
et al., 2020), linear models are more easily interpretable and
thus favoured for applications where underlying correlation
and causal relationships are being sought.

Different assumptions can be made about the data, depending
on whether a discriminant or regression analysis is being
performed, and variable selection techniques that may be
appropriate for regression-type problems may not be
applicable for discriminant-type problems. Known
characteristics of the X-block are also relevant for certain
variable selection routines, based on the properties of the
instrumentation used for data collection. In this article, we
distinguish between two basic types of data, based on what are
commonly encountered by analysts: discrete, pre-processed,
identifiable, tabulated data (e.g.,: peak table data output from a
chromatographic system), and continuous data (e.g.,: raw
chromatographic or spectroscopic data). More tools can be
applied for continuous data, since “windows” of adjacent
variables can be considered all at once and variables within
certain regions can be assumed to correlate with one another
and some underlying chemical information. However, variables
will often correlate to multiple chemical species simultaneously,
making interpretation less straightforward.

1.1 Discriminant Analyses as Regression
Feature selection may be used to improve the mathematical
characteristics of the problem–to avoid the computation of an
ill-poised problem. For either regression or discriminant-type
problems, when the number of variables exceeds the number of
observations, or samples, there are an infinite number of possible
solutions to the equation:

Y � Xβ (1)

The solution to Eq. 1 identifies a useful variable subset in X
that is able to accurately predict those values in Y via the
regression coefficient, β. This in effect is minimising the
following cost function in the least-squares sense, yielding an
solution to Eq. 1 via β

SSR � ‖Y −Xβ‖22 (2)
β̂ � argminβ SSR( ) � XTX( )−1XTY (3)

Where ‖.‖22 denotes square of the L2 norm of error term, often
referred to as the sum of squared residuals (SSR) and β̂ is the
predicted value for β, determined empirically in a way that
minimises Eq. 2.

In this case, the only meaningful difference between a
discriminant-type analysis and a regression-type analysis is the
content of the Y-block. Namely, if the Y-block contains
categorical information for two or more classes, then the
information encoded is discrete, and the analysis is a
discriminant-type analysis. For continuous, quantitative
information encoded in the Y block, the analysis is generally
referred to as a regression. Considerations for scaling are also
different for regression-type vs discriminant-type problems:
while scaling is critical for a Y-block of continuous data, it is
optional for categorical data since the manner in which the
observations are weighted is consistent across all observations.
However, treatment of a classification problem as a regression
problem is only commonly seen in those instances where PLS is
used, although principal component scores have also been
investigated (Yendle and MacFie, 1989). Even in those cases
where PLS-DA is employed, a number of critical parameters
such as residuals must be ignored, since a line-of-best-fit through
binary classification data is assumed to have high and poorly
informative residuals due to the very nature of regression
problems. Within the context of a regression, a feature
selection routine indicates which variable contributions are
negligible, and removes them from the model. In essence, this
is analogous to setting certain variable contributions within a
regression vector to zero.

1.2 Canonical Variates Analysis (CVA)
Rather than calculating a linear model that best minimises the
sum of squared residuals through categorical data, it is also
possible to deploy CVA to maximise Fisher’s discriminant
ratio (FDR) (similar to Equation 8) of two or more classes
based on each sample’s projection scores on a series of latent
variables. This method is more robust against outliers and
unequal numbers of samples versus regression methods, but
assumes homoscedasticity for deriving the decision threshold
(Theodoridis, 2020). CVA is calculated via the co-variance
matrices that reflect within-class variance, versus between-class
variance Nørgaard et al. (2006):

Swithin � 1
n − g( ) ∑gi�1 ∑nj

j�1
xij − �xi( ) xij − �xi( )T (4)

Sbetween � 1
g − 1( ) ∑gi�1 ni �xi − �x( ) �xi − �x( )T (5)
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xij refers to the i
th class and jth observation, and ni and nj refer

to the total number of classes and observations, respectively. For
Swithin, each entry in xij is scaled relative to the i

th class, denoted as
xi. For Sbetween, the variance of each class centroid, xi is
determined relative to the overall mean, �x.

A solution for CVA can be found once the problem is written
as an eigenvalue problem:

S−1withinSbetweenw � λw (6)
Where w is the eigenvector, or latent variable that

maximises F(w):

F w( ) � wTSbetweenw
wTSwithinw

(7)

As a classifier, CVA is used relatively infrequently relative to
PLS-DA, since it cannot handle singular co-variance matrices as
either Swithin or Sbetween. However, since PLS-DA makes use of a
regression to effect its discrimination, it does suffer from the same
drawbacks as any other classifier that is informed by a linear line-
of-best-fit. CVA has been modified to account for ill-posed
problems where PLS-DA is typically applied, through its
application as a technique for solving the matrix inverse of
high-dimensional data. This was first described by (Nørgaard
et al., 2006) as Extended Canonical Variates Analysis (ECVA).
For either traditional CVA, or ECVA the decision threshold is
calculated by fitting a multivariate normal distribution to each
class, and assigning predictions based on each sample’s highest
modelled likelihood of belonging to each class.

1.3 Types of Feature Selection
Feature selection routines can be categorised as belonging to
either filter, wrapper, or embedded methods (Kohavi and John,
1997). There also exist hybrid methods that combine at least
two of these approaches. True to their name, filter methods use
some variable ranking scheme, and include only those
variables with a value greater than a particular threshold.
While simple and computationally efficient, filter methods
require extensive user intervention to determine an
appropriate value for the threshold, and may or may not
account for correlations between variables depending on the
variable ranking metric used. Wrapper methods evaluate
several candidate variable subsets and select the variable
subsets with the best performance. While wrapper methods
can be robust, they are computationally expensive due to a
inherent degree of redundancy built into the algorithms.
Embedded methods include variable selection as a part of
the calculation of the model itself.

This review will describe methods for variable selection, rather
than methods for variable weighting such as Projection Pursuit
Analysis (PPA) (Hou and Wentzell, 2011), PLS, or manifold
learning for non-linear modelling (Van der Maaten and Hinton,
2008). While variable significance can be judged and subsequent
variable selection performed this requires human intervention,
and so such techniques are widely considered to be
dimensionality reduction techniques rather than variable
selection techniques.

2 FILTER METHODS

Filter methods proceed following variable ranking, and may
require user intervention in order to determine an appropriate
cut-off for variable significance. Variables scoring above the
threshold are included in the model, and the rest are
discarded. The advantage of filter methods is that they are
relatively easy to apply, and certain variable ranking metrics
may include the importance of co-variate or correlated
variables as they affect a latent variable discriminant analysis
such as PLS-DA or CVA (Kvalheim, 2020). However since many
latent variable discriminant analyses have a tendency to over-fit
the data, the use of variables acquired using metrics derived from
the latent variable model are only as useful as the latent variable
model itself.

2.1 Variable Ranking Metrics
2.1.1 Fisher(F)–Ratios
The simplest variable ranking filter is arguably the Fisher or
F-ratio, which describes the pooled variance of all samples over
the variance attributable to class means relative to the overall
mean (Maddala and Lahiri, 1992). These two considerations have
already been described in Eq 4, Eq. 5, and the F-ratio is described
quite simply as:

F � Sbetween
Swithin

(8)

A key difference between the F-ratio for variable significance,
versus for CVA, is that the F ratio is calculated for individual
variables, and a multivariate optimisation for class separation is
not performed.

The F-ratio described by the F-distribution, which includes
degree-of-freedom values for both the numerator and
denominator as (g − 1) and (n − g) respectively as input
parameters, where n is the total number of samples and g
refers to the number of classes. Critical values of significance
can be used to inform the appropriate threshold based on the
parametric F-Distribution, but there is no guarantee that the
observed distribution of F-ratios will follow a theoretical one -
especially in cases where the data is not normally distributed,
since Equation 8 can also be written as:

F ]1, ]2( ) � χ21/]1
χ22/]2 (9)

Where the numerator and denominator are χ2 values with
degrees of freedom ]1 and ]2 respectively. This relationship
highlights the Gaussian assumptions of the F-distribution
(Box, 1953), and by extension CVA.

The F-ratio has been used extensively in discriminant-type
analyses of chemical data, owing to the simplicity of its
application, relationship to one-way ANOVA via Eq. 9 and
the fact that direct variable-variable comparisons evade issues
surrounding the dimensionality of the data. Experiments where
the number of identifiable underlying chemical features greatly
outnumber the number of samples (e.g.,: many omics problems
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and non-target environmental analyses) see frequent use of the F-
ratio (Johnson and Synovec, 2002; Marney et al., 2013; de la Mata
et al., 2017; Pesesse et al., 2019), in part because the costs
associated with sample analysis make any attempts to lessen
the impact of dimensionality much less practical. Since the
objective of any analysis of F-ratios is a descriptive rather than
an inferential one, it could be argued that F-ratio measurements
are not a learning technique, but rather a descriptive statistical
analysis. However, the act of applying a threshold for variable
significance introduces bias to the model which nonetheless
warrants further confirmation with external samples.

F-ratios can be applied on either continuous or peak-table
data. Synovec’s research group (Pierce et al., 2006; Marney
et al., 2013) has frequently compared F-ratios of each ion
channel (mass-to-charge ratio, m/z) from samples of known
classes to qualitatively identify regions of two-dimensional
chromatograms where there is “discriminating” information
using either a pixel-based or tile-based approach. In these
approaches, the variance across individual mass channels are
compared via Fisher ratio, accounting for known class
membership, and the Fisher ratios are summed across all
mass channels to visualise the significance of each pixel on
a chromatogram. It is worth noting that the pixel-based
approach can falsely indicate significance if there is
significant chromatographic drift between samples. This
issue has been overcome somewhat by the tile-based
approach, wherein peaks are expected to drift within the tile
spaces themselves. In the tile-based approach, an additional
summation step is used to indicate the quantity of a particular
ion within the tile. For complex data and/or large studies with
hundreds or thousands of samples, there may still be issues
with peaks drifting in and out of tiled regions across the data
set if the tiles are not sized appropriately or if signals drift too
much over the course of the study (this would affect the
subsequent determination of the F-ratios).

2.1.2 Selectivity Ratios
The Selectivity Ratio (SR) (Rajalahti et al., 2009) is another metric
for variable ranking. It encodes multivariate and co-linearity
information within the rank of each variable as informed by
the ratio of its variance explained within the predictive model
versus its variance within the residual matrix:

XLV � TPT + E (10)
Where XLV is an m × n reconstruction of observations and

variables via a latent variable analysis such via PLS, as informed
by a regression model Y = Xb, and E is an error or residual matrix
of similar dimensions. SR is defined for a particular variable as the
ratio between the variance explained in the latent variable space
versus its contributions to the noise. Here, for j ∈ [1, n], SRj is the
selectivity ratio for the jth variable out of n:

SRj �
‖TPT

j ‖2
‖Ej‖2 (11)

This method has been applied in a number of studies
(Rajalahti et al., 2009; Amante et al., 2019) for discriminant-

type problems, due in part to the ease with which it can be
integrated within the framework of PLS-DA.

2.1.3 VIP Scores
Variable Importance in Projection (VIP) scores are a measure of a
particular variable’s influence on the latent variable model, which
is correlated to the variance explained in the Y block. They are
calculated as the weighted sum of squares as a product of the
amount of variance explained by the model (Farrés et al., 2015).
VIP scores were originally described by (Wold et al., 1993).
However, the article (Chong and June 2005) arguably first
popularised the method, which is described using Equation 12:

VIPj �

�������������������
n∑k

i�1b
2
i t

T
i ti wij/‖wi‖( )2∑k
i�1b

2
i t

T
i ti

√√
(12)

In Equation 12, for a matrix of m × n samples by variables,
VIPj refers to the VIP score for the jth variable, and n refers to the
total number of variables. For a k-component PLS model, bi
indicates the ith entry of the regression vector for the ith

component derived from the vector or matrix of observed
values relative to the score matrix, T. ti indicate the ith vector
of the score matrix T. wij indicate the weights of the PLS model in
the X block for each component, i, and variable j normalised to
the euclidean norm of the weight vector for the particular
component.

Many analysts use a threshold of 1 (Stoessel et al., 2018) to
indicate what VIP scores are significant, but examination of the
resultant projections before and after variable inclusion or
exclusion are advised to prevent over-fitting of the data
(Andersen and Bro, 2010). VIP scores are included as a
method of variable ranking in the popular online platform
MetaboAnalyst (Pang et al., 2021), and are used in many
publications, with an unsurprisingly high representation in
fields related to metabolomics (Seijo et al., 2013; Stoessel et al.,
2018; Ghisoni et al., 2020; Sinclair et al., 2021).

Although other variable ranking metrics are used (Tran et al.,
2014;Mehmood et al., 2020), the F-ratio, selectivity ratio, and VIP
score are among those most frequently encountered in
chemometrics for discriminant problems. Selectivity ratios and
VIP scores can tend towards over-fitting the data, since they rely
on parameters returned by PLS-DA which suffers from problems
both related to dimensionality and the application of a regression
model for a discriminant-type problem. Despite this, selectivity
and VIP scores account for co-linearity, unlike the F-ratio.
Despite this drawback, the calculation of F-ratios is a more
statistically informative criterion for discriminant-type
problems than VIP scores and the selectivity ratio, and
remains popular as a simple method for selecting variables
that feature a high degree of univariate discrimination.

Also of note: Talukdar et al. (2018) utilised non-linear kernel
partial least squares (kPLS) and eliminated poorly weighted
coefficients in the model to improve prediction accuracy,
indicating that filter methods can be easily applied in
conjunction with more sophisticated modelling and variable
significance techniques.
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3 WRAPPER METHODS

Wrapper methods evaluate a number of different variable subsets
through multiple iterations of the algorithm, and return the best-
performing variable subset Kohavi and John (1997). Choice of
performance metrics used to evaluated the variable subsets, as
well as the methods for determining the variable subsets have a
profound effect on the resultant output of the algorithm.
Wrappers can evaluate a single operation iteratively through a
single dataset (Rinnan et al., 2014) followed by validation on an
external or cross-validated set, or can be evaluated at each
iteration using different combinations of the data (Sinkov
et al., 2011).

3.1 Variable Subset Selection
3.1.1 Forward Selection, Backwards Elimination
Regardless of the method used to determine a variable subset,
some initial assumptions about what variables are likely to be
useful in the final model must be made, since generating and
evaluating random subsets is computationally prohibitive for
high-dimensional data. This may qualify certain wrapper
methods as hybrid approaches, due to their reliance on a filter
method in a preliminary variable ranking step. The simplest
methods for variable subset selection use either forward selection,
where variables are successively added to a model; or backwards
elimination, where variables are successively removed from a
model. In either case, the performance of the variable subset is
determined at each step where a variable is either added or
removed. Studies that use a hybrid forward selection/
backwards elimination routine (Sinkov et al., 2011) have been
proposed for systems when there are many thousands, or even
millions of data points describing each sample. When using one
of either forward selection or backwards elimination, the only
challenge is selecting a high-performing variable subset, and
frequently all variables are tested. But in order to utilise both
forward selection and backwards elimination, an initial
population of variables for the backwards elimination must be
chosen, followed possibly by a point where one should stop the
subsequent forward selection. This has been done by estimating
the distributions of each variable’s Fisher ratios (Adutwum et al.,
2017), and an estimate for the optimal “start” and “stop” was
performed within this framework using numerical experiments.

3.1.2 Genetic Algorithms
Genetic algorithms (GAs) are another method for selecting a
variable subset: high performing variable subsets “evolve” and are
selected to share information with other informative subsets to
create new subsets. The theory being that at each iteration the
surviving subsets become more informative as variables
contained within poorly performing subsets are excluded from
further consideration. Genetic algorithms are poorly
characterised mathematically, since they imitate biological
processes, rather than try to exploit specific mathematical
characteristics of the data. They are best understood through
their dynamic programming routine, which can be summarised
for classification problems (Cocchi et al., 2018):

Algorithm 3.1.2: Variable Subset Selection by Genetic
Algorithm.

1. A user-defined (A) number of individual “chromosomes”,
each containing binary information indicating the presence
or absence of the variables, are randomly generated and the
performance criteria for each evaluated.

2. A user-defined (B) number of highly performing individual
chromosomes are selected to move forward to the next
“generation”.

3. The highly performing individual chromosomes randomly
exchange information to create new individuals, typically of
the same population size (A). In each case there is a small
probability (C) for a random mutation to occur. Following
this, the fitness of each individual chromosome is reassessed.

4. Reiterate steps 2, 3 for a set number of iterations (Da), or until
a performance criterion Db is reached (Lavine et al., 2011).

As described in Algorithm 3.1.2, there are a number of
required user input parameters that can have a profound
impact on the feature selection routine. Genetic algorithms
can also be quite slow due to their reliance on dynamic
programming to select a high-performance variable subset. As
such, the use of GAs can be difficult for high-dimensional data.
Ballabio et al. (2008) demonstrated dimensionality reduction
techniques prior to a feature selection step using GAs, to
circumvent this problem.

Lavine has proposed a number of feature selection methods
based on GAs acting as wrapper functions, for source
identification of jet fuel using Solid Phase Microextraction
(SPME) and Gas Chromatography (Lavine et al., 2000) and
fuel spill identification (Lavine et al., 2001) among others.

A drawback of wrapper methods, is that while the
performance evaluation functions themselves are generalisable,
the same cannot be said for their implementation. Oftentimes,
several nested internal validation routines are used to train and
evaluate the candidate features in a way that is tailor-made to the
data, especially if there are hierarchical classifications involved. If
these routines are not perfectly transparent they may not be
reproducible, and are poorly generalisable to data with different
characteristics.

3.1.3 Methods Based on PLS
Many wrapper methods based on PLS exist in the literature -
arguably the most widely-known and most influential of these
methods is Uninformative Variable Elimination (UVE) (Centner
et al., 1996). Through several iterations, a model is trained on a
number of samples, and variables that are under-performing
(typically based on an analysis of the regression vector) are
eliminated. The resultant variable subset is then assessed based
on its ability to correctly indicate the samples external to the
model, and variables that are consistently selected are included in
the final model. While most broadly applicable for regression-
type analyses, this technique has also been used to distinguish
different cultivars of corn using Terahertz (far-infrared)
spectroscopy (Yang et al., 2021).
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For spectroscopic data with a high degree of co-linearity,
different wavelength bands can be selected as candidate
variable subsets. This is the principle of Interval-PLS
(Nørgaard et al., 2000). It has also been applied in
discriminatory analyses: for example, Peris-Díaz et al. (2018)
compared the performance of different spectral regions based on
their ability to distinguish different samples of amber based on
geological age and region of origin with Raman spectroscopy. The
wrapper function in this case is the use of several PLS models
calibrated on different spectral regions, which can be either
sequentially backwards eliminated or forward selected
(Mehmood et al., 2012).

Although a number of methods based on PLS exist, it is also
worth noting that not all of these methods have been applied
for discriminant-type analyses. Recursive weighted partial
least squares (rPLS) (Rinnan et al., 2014), has not been
widely demonstrated on discriminant problems, although it
has been used in one recent publication to select relevant
features for different cultivars of saffron by Aliakbarzadeh
et al. (2016). In this publication, the features selected by rPLS
appeared to correspond well to features selected using other
methods. rPLS iterates through incrementally scaled versions
of the X block, weighted using the regression coefficient (for
PLSR) calculated at each iteration (r), where Dr is the diagonal
of the regression vector (b) that is normalised to its maximum
value in Equation 13. The algorithm reaches convergence once
each variable that is included in the final variable subset
approaches 1, and the ones not deemed to be significant
approach 0.

Xr � Xr−1Dr (13)

XR � X∏R
r�1

Dr (14)

3.2Methods for Evaluating the Performance
of the Discriminant Function
3.2.1 Traditional Measures
Performancemetrics can strongly inform the resultant output of a
wrapper-based method that iterates through several
combinations of internal training and test sets. The results of
a discriminant type analysis can typically be summarised in the
form of a confusion matrix, which is a table that summarises the
distribution of the predicted samples classes relative to their
known class. Although accuracy (the number of true positives
and true negatives over the total number of samples) is a
commonly used metric, it is not particularly informative on
grossly unbalanced datasets, and is inappropriate in fields such
as diagnostics where sensitivity (the number of correctly
indicated positive samples over the number of known
members of the “true” class) is a much more important
consideration than specificity (the number of correctly
indicated negative samples over the known number of
members of the “negative” class) for binary classification
problems. Nonetheless, considerations for the predictive power
of a classification model must be appropriately summarised in

order to simplify the problem such that the variable subset can be
optimised relative to a single cost function.

3.2.2 Fβ Scores
The F1-score (Not to be confused with the F-ratio in this
manuscript) is a summary of the model performance,
incorporating measures of sensitivity and precision (true
positives over the sum of true positives and false positives),
and is given by the equation:

F1 � 2
PPV × TPR

PPV + TPR
( ) � 2TP

2TP + FP + FN
(15)

Where the F1 score can be summarised simply as the harmonic
mean of sensitivity and precision. In those instances where the
analyst would like to bias the performance measure somewhat to
better reflect the needs of the analysis, it is also possible to
incorporate an additional β coefficient that weights the relative
importance of sensitivity vs. precision:

Fβ � 1 + β2( ) PPV × TPR

β2 × PPV( ) + TPR
(16)

Where PPV describes precision (Positive Predictive Value)
and TPR describes sensitivity (True Positive Rate).

3.2.3 Area Under the Curve
The Area Under the Curve (AUC) value for the Receiver
Operator Characteristics of a classification is also used as a
measure of model performance. The Receiver Operator
Characteristics of a binary classifier plot the True Positive
Rate against the False Positive Rate as a function of the
position of the decision boundary relative to the samples
being classified. Intuitively, a decision boundary that
classifies all samples as belonging to class 1 would have
both a high false positive and true positive value. If the
samples being considered are perfectly resolved along the
discriminant axis, then the true positive rate has no effect
on the false negative rate. However, for misclassified samples,
a reduction in the true positive rate has some demonstrable
effect on the false negative rate. The AUC is the area under the
Receiver operator curve, which is a value between 0 and 1,
with 1 being a perfectly performing classifier. This has not
frequently been used to guide feature selection routines in
chemometrics, although it has been demonstrated in adjacent
fields (Wang and Tang, 2009).

3.2.4 Cluster Resolution
Cluster Resolution (CR) is a statistical measure of model
performance that measures the maximum confidence interval
over which two confidence ellipses are non-intersecting in two
or more dimensions. This has been demonstrated in a linear
subspace such as principal component space for uncorrelated,
orthogonal scores. It was first described by Sinkov and Harynuk
(2011), using a dynamic programming approach. A numerical
determination was proposed by Armstrong et al. (2021), that
minimised the χ2 value of significance between a binary set of
clusters. It is a particularly useful method for those instances
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where there are a number of missing values in the X block, which
is a persistent problem in non-target analytical studies involving
complex samples. In these data sets, single chemical features
are not always reliably registered in the same column across
the X-block across all samples, and when considering trace
compounds, they may not always be properly detected if their
abundance is near the abundance threshold for inclusion in the
data table. An advantage of CR is that single chemical
components registered in multiple columns of the dataset
will be highly correlated, and thus identifiable as being useful
features when projected into principal component space. CR is
also a less granular metric than those derived from classification
performance metrics, and can offer information about the
discriminatory power of different variable subsets without
samples crossing a decision threshold. Therefore, the
observation of relatively minor changes are easily scrutinised
when evaluating a feature selection routine. However, a
drawback of this technique is that, when compared to other
methods, it requires a larger number of samples (20–30 per class
as a minimum) for proper estimation of variances along the
principal component axes.

4 EMBEDDED METHODS

4.1 Regularisation Methods
Regularisation methods add an additional term to the
minimisation of the least-squares problem, that constrains some
components of the regression coefficient (β) to be equal to zero.
These methods constrain the length of β, via a regularisation
constant γ, such that certain entries of the regression vector are
weighted more significantly, or with λ such that certain entries are
excluded from the final model as zeros.

β̂ � argminβ‖Y −Xβ‖22 + γ‖β‖22 (17)
The length of the regression vector can be constrained via the

Euclidean norm (the L2 norm) as in Equation 17, where it is
described as being a ridge regression or Tikhonov regularisation.
Or, via the Lagrangian (L1) norm:

β̂ � argminβ‖Y −Xβ‖22 + λ|β|1 (18)
The sparse regression coefficient, β̂R for Equation 17 can be

solved analytically as:

β̂R � XTX + γI( )−1XTY (19)
Equation 18 is referred to as a Least Absolute Shrinkage and

Selection Operator (LASSO) Regression by Tibshirani (1996),
although a similar approach was first described earlier by Santosa
and Symes (1986). The L2 norm of any vector (x) is can be
described as ‖x‖2 �

���
xTx

√ �
������∑n

i�1x2
i

√
, and the L1 norm as the sum

of the absolute values of x: |x|1 � ∑n
i�1|xi|. In either case, the

regularisation coefficient, λ, must be selected by the user. This is
typically done by picking a value that maximises the prediction
accuracy of the model, achieved by analysing the sum of residual
squares for a set of previously unconsidered samples in the case of

regression-type problems, or by analysing the prediction accuracy
for discriminant-type problems.

However for LASSO, the coefficient β̂L must be determined
through convex optimisation. Despite reliance on numerical
methods for optimisation, it has been proven that a unique
solution exists for LASSO regressions of ill-posed problems
(Tibshirani, 2013).

An extension of LASSO for use in discriminant analyses via
CVA was proposed by Trendafilov and Jolliffe (2007); however, it
was applied on datasets containing relatively few numbers of
variables, which is not a common occurrence in chemometrics.
Witten and Tibshirani (2011) implemented a different
formulation of the problem, and proved its utility on far
higher dimensionality data, which has been released as the R
package penalizedLDA (Witten and Witten, 2015). This package
has been used in chemometrics-type work, in distinguishing wild-
grown and cultivated Ganoderma lucidum using Fourier
transform infrared spectroscopy (Zhu and Tan, 2016), which
also included a comparison of various other methods for sparse
discriminant analyses. Also of note, was LASSO coupled to a
logistic regression for classification of different fabric dyes using
UV-Vis Spectroscopy (Rich et al., 2020).

For values of m≪ n in X, it may be helpful to select a number
of variables that are highly correlated with each other–especially
for spectral data where the bandwidth of any particular transition
implies a degree of co-linearity within the dataset. Using a LASSO
regression, only the most highly correlated variables are usually
included in the final model, but due to the regularisation
parameter some correlated variables may be lost. As a
consequence, the model may be less predictive, and it may be
harder to interpret the output of the model. By adding both
regularisation parameters from Eqs 17, 18, it is possible to include
more correlated features in the final model:

β̂ � argminβ‖Y −Xβ‖22 + γ‖β‖22 + λ|β|1 (20)
Based on Equation 20, Clemmensen et al. (2011) developed a

sparse extension of CVA for classification of highly co-linear data,
which is of particular interest in chemometrics. This algorithm
has been released as the R package: sparseLDA (Clemmensen and
Kuhn, 2016) and has been used to analyse data from a Direct
Analysis in Real Time - High Resolution Mass Spectrometry
(DART-HRMS) experiment, to the end of classifying personal
lubricants for forensic analysis (Coon et al., 2019), and for
distinguishing different printer inks by micro-Raman
spectroscopy (Buzzini et al., 2021).

Sparsity has also been used for variable selection via PLS-DA.
This approach was first reported by using a sparse PLS regression
step as described by Chun and Keleş (2010), followed by
classification using a standard classifier such as CVA or a
logistic regression. Lê Cao et al. (2011) developed a single-step
solution for sparse PLS-DA using an approximation of the
LASSO regularisation function via:

argminui,vi‖XTY − uiv
T
i ‖2F + sign ui( ) |ui| − λ( )+ (21)

Where i ∈ [1, . . . , K] describe the number of vectors that span
the partial least squares subspace, calculated from the iterative
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deflation: i − 1 of matrices Y and X. The iterative approach used
was previously described in literature illustrating its application
for sparse PCA (Shen and Huang, 2008), and the approximation
of the LASSO regularisation function used was a soft thresholding
approach, where only the positive values of ui where used as the
sparse vectors. This method has been included in the R package
mixOmics (Rohart et al., 2017). Sparse PLS-DA was shown to
improve classification accuracy on previously published datasets
in chemometrics, although manipulation of the regularisation
coefficient in addition to the number latent variables certainly
adds a layer of complexity to the analysis (Filzmoser et al., 2012).
It was also applied to distinguish between conventional and
organic walnut oils by solid-phase micro-extraction GC-MS in
a recent publication (Kalogiouri et al., 2021).

Also of note is a sparse discriminant analysis implemented
using a Bayesian information criteria by Orlhac et al. (2019), and
another sparse method using shrunken centroids (Chen et al.,
2015)–both for simultaneous classification and feature selection.

In many of the previous citations, sparse methods for
discriminant-type analyses are not used as a primary means of
investigation, and it appears that for chemometrics research
sparse methods are often included to the sake of comparison
to existing methods. In some cases, it appears that sparse methods
do not improve upon the classification accuracy versus more
standard chemometrics tools such as PLS-DA, or reduction of the
data dimensionality via PCA prior to an analysis of the resultant
scores by CVA (Buzzini et al., 2021). Sparse methods may also
suffer from the drawbacks associated with other embedded
methods for feature selection, such as a tendency to over-fit to
the training set. For hyphenated chromatographic-mass
spectrometric data where analysts have come to expect a high
level of missing features from their datasets, a feature selection
method that optimises some criterion of the training set, may not
correctly predict the test or validation set. This problem may be
attributed to the high sensitivity of hyphenated instruments, but a
complacency with low industry standards for data pre-processing
is also suspected (Lu et al., 2008). It is also worth noting that most
sparse methods for discriminant analysis or regression appear to
be published in the R programming language, and since the
working language for much of chemometrics is MATLAB, this
could be another possible reason why these methods are not
widely applied.

4.2 Sparse Projection Pursuit Analysis
Kurtosis minimisation as a projection index has long been utilised
in chemometrics and performs well for classification problems,
since scores with low measures of kurtosis typically are well-
resolved within a linear subspace (Hou and Wentzell, 2011;
Wentzell et al., 2021a,b). Kurtosis is described as the fourth
statistical moment, following mean, variance, and skew
(Equation 22). Distributions with a high degree of kurtosis
describe data with higher tendency for outliers relative to a
normal distribution. For the purposes of revealing clustering
of the data, distributions with a low value of kurtosis can
indicate a bimodality in their distribution. This bimodality
naturally lends to clusters that are readily observable in higher
dimensions, which are calculated step-wise for univariate

measures of kurtosis (Equation 23), but can also be calculated
simultaneously via a multivariate determination of kurtosis (Eq.
24) to avoid categorising samples into nominal clusters. What is
interesting about PPA is that it is an unsupervised method, and
does not calculate the subspace in a way that is informed by class
information. It has been argued that this makes it less prone to
over-fitting (Hou and Wentzell, 2011); however, it performs
poorly for ill-posed problems and a dimensionality reduction
step has historically been applied prior to its use. Being an
unsupervised method, the use of a separate classifier is
typically required following the analysis.

K �
1
m∑m

i�1 zi − �z( )4
1
m ∑m

i�1 zi − �z( )2( )2 (22)

K � m∑m
i�1 vTxixTi v( )2
vTXTXv( )2 (23)

K � m∑m
i�1

tr VTXTXV( )−1 VTxix
T
i V( )( )( )2 (24)

In Equation 22 the kurtosis of the ith sample’s projection (as
zi) to a latent variable space is described for all samples i ∈ [1, m]
where m is the total number of samples for an m × n matrix.
Minimisation of Eqs 23, 24 as a function of the latent variables
individually (v) or collectively (V), operates on the sum of the
projections of each sample as xi.

Hou and Wentzell (2014) implemented a regularisation
parameter to the minimisation of kurtosis via a quasi-power
algorithm. More recently, Driscoll et al. (2019) utilised a genetic
algorithm to reduce the dimensionality of the feature set in order
to perform PPA using kurtosis minimisation as a projection index
(kPPA).

5 HYBRID, AND MISCELLANEOUS
APPROACHES

5.1 Decision Trees
Decision trees, or more specifically Classification and Regression
Trees (CART) are trees that perform binary operations based on
some information criteria of the variable such as entropy or Gini
impurity to establish a threshold for the decision (Questier et al.,
2005). Each tree is comprised of nodes (τ) that are connected by
branches. Each node is a point at which a decision is made about a
particular sample given the information encoded by a single
variable. If one node leads to two other nodes, it is described
as a parent node–otherwise it is considered a terminal node,
wherein a final decision regarding the class membership of a
sample is made by weighing the outcomes of the decisions made
previously further up the tree.

The heterogeneity, or disorder of each decision can be measured
using entropy (∑1

k�0 − pklog2(pk)). Due to the logarithmic
operator however, this term is computationally expensive. The
Gini impurity, (Δk � ∑1

k�0pk(1 − pk)) is more efficient to
calculate and closely resembles entropy. In either case, pk is the
probability of a given sample being labelled as the kth class based
on the characteristic being measured at a particular node.
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Further details about decision trees can be found in an article
by Zhang et al. (2005).

5.2 Random Forests
A Random Forest (RF) is comprised of a large number of decision
trees, T that vote on the membership of an unknown sample. RFs
are frequently used as a variable selection step, since the method
largely evades the issue of dimensionality through a number of
randomly determined variable subsets voting on the model
outcome. RF is also a method that is especially simple to use,
with the only critical parameter being the number of decision
trees to include. This parameter is easy to optimise, since the
number of decision trees usually scales with the relative
dimensionality of the data. The functionality of RF can be
used to overcome problems related to over-fitting of individual
decision trees, through the consensus of a majority of parallel
models. RFs are a widely-used tool in data analysis broadly
speaking, and have long been used for Quantitative Structure-
Activity Relationship (QSAR) modelling (Svetnik et al., 2003) in
particular.

Random Forests (RFs) Breiman (2001) are difficult to classify
as belonging to one of either filter, wrapper or embedded
approaches. RFs are large collections of decision trees used to
vote on the class membership of a sample based on its
characteristics. The randomly generated variable subsets for
each decision tree liken the method to wrapper methods, but
since the method performs both classification and feature
selection simultaneously Menze et al. (2009), they are also
widely considered to fall under the umbrella of embedded
methods. For interpretation of the most significant features;
however, a threshold of variable significance is typically
employed as part of the analysis, which could also qualify RFs
as a filter method. For the purposes of this review, feature
selection by RFs will be classified as a “hybrid” method, if
only to signify that it is somewhat of an outlier compared
with the methods that have been previously discussed.

Similar to PLS-DA and PPA, the importance of each variable
in RF can be summarised by their relative importance in the
model. In RF, the Gini importance is a measure of how often a
variable was used to split the data across multiple decision trees,
considering its discriminating value via For the jth variable:

Gini j( ) � ∑T
t�1

∑τ
r�1

Δk τ, T( ) (25)

Where Δk indicates the Gini impurity, or the ability of a
variable to separate two classes (in a binary example), and Gini(j)
is the sum of this discriminatory power summed over all nodes (τ)
and trees (T) in the RF model (Menze et al., 2009). The Gini
coefficient has been used for feature selection routines for the
detection of bovine spongiform encephalopathy via serum
(Menze et al., 2007).

Mean decrease in accuracy (MDI) is also sometimes used for
variable selection with RF, and describes the difference in
prediction accuracy when a considered variable is excluded
from the model. This method was used in conjunction with
VIP scores usingMetaboAnalyst by Azizan et al. (2021) to the end

of detecting lard adulteration using fatty acids as analysed by
GC-MS.

Although variable impact can be assessed using RFs, the exact
manner in which they correlate with each other is not
immediately clear using RFs. This is due to the fact that both
decision trees and RFs are non-linear methods, and as such
cannot be summarised by considering the co-linearity of
variables directly. With that being said, it is nonetheless
possible to interpret the selected features in the context of a
linear model (Azizan et al., 2021). Despite its limited application
in chemometrics for classification problems, RF has been
included in a number of popular data analysis suites,
including MetaboAnalyst (Pang et al., 2021) and
ChromCompare+ (an analysis suite for GC×GC-TOFMS data),
likely owing to the simplicity of its operation for
inexperienced users.

5.3 Hybrid Methods
The cluster resolution function has been used in a number of
studies as an objective function to select variables via a hybrid
backwards elimination/forward selection approach (de la Mata
et al., 2017; Nam et al., 2020; Sorochan Armstrong et al., 2022).
The algorithm used for these studies, frequently called Feature
Selection by Cluster Resolution (FS-CR), proceeds once the
variables have been ranked, and appropriate cutoffs
determined for backwards elimination to start, and for
forward selection to end (as mentioned earlier, the start and
stop numbers).

Hybridisation of wrapper and filter methods are common for
assessing an initial subset of variables to perform backwards
elimination or forward selection on, or for intelligently
selecting a number of variables to consider using other subset
selection methods (Zhang et al., 2019; Singh and Singh, 2021).

6 CONCLUSION

Analysts demand the most predictive subset of features using the
fewest number of parameters possible. Fewer parameters typically
rely more strongly on well-informed methodologies to optimise
variable subsets, and offer fewer avenues of recourse should the
routine fail to correctly indicated external samples to the model.
Routines with more parameters to optimise may be more
dependent on a skilled analyst, who may explore a number of
avenues to gain better insight into the classification problem. A
number of factors must be considered, including the relative
dimensionality of the data and/or the total number of features
(which may scale poorly regardless of the number of samples
depending on what technique is being used), the number of
missing elements in the data, the number and severity of outliers
present in the dataset, and of course the instrumentation being
used. The effect of outliers can be explored using unsupervised
methods like PCA or PPA, and the effect of missing data can be
observed by projecting previously unconsidered samples into the
model to assess potential over-fitting.

The vast majority of feature selection routines that see
frequent use in chemometrics return a subset of variables
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whose linear combination can provide adequate discrimination,
assuming that the instrument was operated within its linear range
during the data acquisition step. However despite the fact that
linear methods can account for co-linear variables, some data
may require non-linear methods for subset determination or
evaluation if the variables or combinations thereof are not
sufficiently informative. Non-linear methods for variable
selection and evaluation such as genetic algorithms or RFs can
offer more discriminating power, but subsequent model
interpretation may be difficult, and extensive user
experimentation may be required for methods based on
genetic algorithms to optimise a high number of user-input
parameters.

A recent study by Vrábel et al. (2020) examined the result of a
contest for a challenging classification problem based on laser-
induced breakdown spectroscopy. Each team used various
combinations of either linear or non-linear approaches for
feature selection and classification, but the winning team was
the one that focused on manual data exploration and
interpretation to inform a simple classifier using PLS-DA. This
study highlights the conventional wisdom that human
interpretation and insight is difficult to beat using machines,
regardless of the technique used.

The orthodoxy of linear modelling and feature selection in
chemometrics may yet be challenged at some point in the future,

where feature selection tools based on highly non-linear methods
(Upadhyay et al., 2020; Ranjan et al., 2021) are eventually
explored using chemical data. Uniform Manifold
Approximation and Projection (UMAP) is generating a lot of
interest in fields adjacent to chemometrics, in particular the
-omics fields, where the underlying biological phenomena may
not always be described using the same linear assumptions that
are suitable for most chemical analyses (Shen et al., 2020).
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