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Functional proteomics aims to elucidate biological functions, mechanisms, and
pathways of proteins and proteoforms at the molecular level to examine complex
cellular systems and disease states. A series of stability proteomics methods have
been developed to examine protein functionality by measuring the resistance of a
protein to chemical or thermal denaturation or proteolysis. Thesemethods can be
applied to measure the thermal stability of thousands of proteins in complex
biological samples such as cell lysate, intact cells, tissues, and other biological
fluids to measure proteome stability. Stability proteomics methods have been
popularly applied to observe stability shifts upon ligand binding for drug target
identification. More recently, thesemethods have been applied to characterize the
effect of structural changes in proteins such as those caused by post-translational
modifications (PTMs) and mutations, which can affect protein structures or
interactions and diversify protein functions. Here, we discussed the current
application of a suite of stability proteomics methods, including thermal
proteome profiling (TPP), stability of proteomics from rates of oxidation
(SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced
structural changes on protein stability. We also discuss future perspectives
highlighting the integration of top-down mass spectrometry and stability
proteomics methods to characterize intact proteoform stability and understand
the function of variable protein modifications.

KEYWORDS

proteomics, protein thermal stability, proteoform, mass spec, top-down proteomics

Introduction

Elucidating protein functionality is very important for understanding biological systems.
The study of protein structure, function, and interactions has traditionally been done using
classic structural biology methods, including protein nuclear magnetic resonance
(NMR)(Yee et al, 2002), protein crystallography (Smyth and Martin, 2000), and
cryogenic electron microscopy (cryo-EM)(Nickell et al, 2006). These methods are widely
used, have high structural resolution, and can inform protein structural conformation as well
as characterize interactions. Protein NMR has typically been applied for proteins from
10–30 kDa; however, some methods for protein NMR can be applied to very large proteins
(>100 kDa) (Hu et al, 2021). Protein NMR can also assess protein structure and protein
dynamics in solution and native-like environments. X-ray crystallography is the most
common method for protein structural determination accounting for nearly 90% of
structures in the PDB database (Benjin and Ling, 2020). More recent advances to
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Cryo-EM technology has allowed atomic resolution andmade its use
for protein structural determination more common (Yip et al, 2020).

However, despite these advantages, protein NMR and
crystallography suffer from requirements for a relatively large
amount of pure protein; time consuming protein expression and
purification are often required. For X-ray crystallography, protein
purification is followed by the need to grow protein crystals which
can be challenging, particularly for disordered proteins and
membrane proteins. Crystalline proteins may also have
conformations that are not consistent with proteins in solution
(Swaminathan et al, 2003; Acharya and Lloyd, 2005). Protein NMR
often requires proteins to be expressed with heavy isotopes, uses
solutions with high concentration (mM), and data analysis can be
challenging and time-consuming (Venien-Bryan et al, 2016). Cryo-
EM is currently unable to produce high resolution structures for
proteins smaller than 30–50 kDa (D’Imprima and Kühlbrandt,
2021). Additionally, proteoforms with functional modifications
such as post-translational modifications (PTMs) relevant to
protein function generally cannot be expressed and purified as
required for traditional structural biology approaches.

Overall, these structural biology methods for determination of
protein function are robust and high resolution; however, drawbacks
including low-throughput analysis of single proteins, requirement
for large amounts of pure protein, and inability to characterize
protein modifications has encouraged exploration into alternative
methods for protein structural analysis. Hence, methods that
provide structural and functional analysis of proteins using mass-
spectrometry (MS)-based proteomics have been developed
(Aebersold and Mann, 2003; Aebersold and Mann, 2016). While
the resolution of these MS-based proteomics methods tends to be
lower than the traditional structural biology methods discussed
above, they benefit from high sensitivity, ability to analyze low
purity samples or complex samples, and high throughput. Of
particular interest is the ability of the MS-based methods to
observe the structure and function of modified proteoforms (e.g.,
amino acid substitutions and post-translational modifications) that
are often functionally relevant. MS-based proteomics methods
capable of analyzing the structure, functions, and interactions of
modified proteoforms include protein footprinting and stability
proteomics methods.

A suite of MS-based protein footprinting methods, including
Hydrogen-Deuterium Exchange mass spectrometry (HDX-MS)
(Konermann et al, 2011), Fast Photochemical Oxidation of
Protein (FPOP) (Johnson et al, 2019), Hydroxyl Radical
Footprinting (HRF) (Xu et al, 2003), and Flash OXidation (FOX)
(Sharp et al, 2021) have been developed to characterize functional
proteins as well as their structures. Protein footprinting methods
generally chemically label specific amino acid residues (or, in the
case of HDX-MS, the amide backbone) that are solvent accessible in
their native state to probe the protein composition, structure, and
binding (Liu et al, 2020). Footprinting methods are generally low
resolution when compared with the traditional structural biology
methods discussed previously, typically achieving peptide-level
resolution for HDX-MS analysis. Resolution for covalent labeling
footprinting methods (excluding HDX-MS) can be limited by the
existence of amino acid residues or functional groups appropriate
for labeling. Initially, these protein footprinting methods were
limited to pure protein and simple protein mixtures (Takamoto

and Chance, 2006; Jones et al, 2011; Zhang et al, 2011; Sharp et al,
2021); however, more recent platforms such as those utilizing low-
temperature LC separation for HDX-MS(Fang et al, 2021a) and
more advanced data analysis techniques (Rinas and Jones, 2015) or
in cell labeling (Kaur et al, 2020) for FPOP have enabled analysis of
complex protein mixtures.

A series of MS-based proteomics methods, ‘stability proteomics’
has been developed to elucidate functional changes of proteins in
complex mixtures (Kaur et al, 2018; Le Sueur et al, 2022). The
tertiary structure of a protein is stabilized by various interactions
within the proteins, including hydrophobic interactions,
electrostatic interactions, hydrogen bonding, ionic bonding, and
covalent bonding (disulfide bonds) (Gromiha, 2010; Pace et al,
2014). Stability proteomics generally falls into two categories:
proteolysis-based methods and denaturation-based methods.
Proteolysis-based methods, including Drug Affinity Responsive
Target Stability (DARTS) (Lomenick et al, 2009) and Limited
Proteolysis coupled with Mass Spectrometry (LiP-MS) (Feng
et al, 2014), utilize the resistance of a protein to proteolysis to
probe protein stability. Denaturation-based methods probe protein
stability by studying the tendency of a protein to denature when
exposed to a denaturing (chemical or thermal) gradient (Kaur et al,
2018). A few commonly applied denaturation-based methods
include Stability of Proteins from Rates of Oxidation (SPROX)
(West et al, 2008), Thermal Proteome Profiling (TPP) (Savitski
et al, 2014), Chemical denaturation and Protein Precipitation (CPP)
(Meng et al, 2018), Ion-based protein precipitation with Proteome-
Integrated Solubility Alteration (i-PISA) (Beusch et al, 2022), and
pulse proteolysis (Park and Marqusee, 2005; Chang et al, 2012).

These methods utilize the resistance of a protein to chemical or
thermal denaturation or proteolysis to gauge protein stability.
Protein stability can be altered by ligand binding (Celej et al,
2003; Majewski et al, 2019), protein-protein interactions (Layton
and Hellinga, 2011), and protein modification (Le Sueur et al, 2022);
as such, change in protein stability can be indicative of protein
function (Teilum et al, 2011). The advantage of stability proteomics
is the ability to analyze protein stability in complex protein mixtures
(i.e., native or native-like environments) to observe proteome-level
changes in protein stability. These methods have been used to
observe the effect of ligand binding for drug target elucidation as
well as to observe binding to non-target proteins, the effect of
mutation and post-translational modification on proteome
stability, and the effect of disease on proteome stability among
other applications. Combinations of these techniques have also been
evaluated to compare and contrast identified drug binding proteins
between methods and compare proteome coverage (Cabrera et al,
2020; Xu et al, 2021). While these methods may offer limited
(Strickland et al, 2013) or no resolution for the site of protein
interactions, they provide a unique look at the functional proteome
to observe unknown interactions and changes in protein stability.

As protein modifications due to alternative splicing, amino acid
substitution, and post-translational modification are relevant to
protein function by way of PTM crosstalk, protein-protein
interactions, and protein activity (e.g., PTM switching (Ansong
et al, 2013)), the application of these MS-based proteomics
methods to modified functional proteoforms is of particular
interest to researchers. In this review, we discuss the application
of these stability proteomics methods (Supplementary Table S1),

Frontiers in Analytical Science frontiersin.org02

Kang et al. 10.3389/frans.2023.1186623

https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2023.1186623


with a focus on TPP, to functionally modified and mutated
proteoforms as well as the future perspectives regarding the
application of stability proteomics methods to top-down
proteomics.

Thermal proteome profiling

Among currently available stability proteomics methods, TPP
which is based on the principles of the cellular thermal shift assay
(CETSA) (Molina et al, 2013) is the most widely used to profile
proteome-wide protein thermal stability of complex protein

mixtures or intact cells (Savitski et al, 2014; Mateus et al, 2018;
Mateus et al, 2020a). In a typical TPP experiment, aliquots of a
sample (cells, cell lysate, tissue, etc.) are incubated at increasing
temperatures, causing proteins to denature and precipitate at a
specific temperature (melting point, Tm). Precipitates are
removed and the soluble protein fractions are analyzed using
bottom-up mass spectrometry with quantitative isobaric mass tag
labeling and data dependent acquisition (Franken et al, 2015; Zhang
et al, 2020) or label-free quantitation with data independent
acquisition (George et al, 2023). Normalized protein abundance
is plotted against the temperature, and the melting curve for each
protein is fit using diverse methods/software packages that can

FIGURE 1
Workflows for (A) phospho-TPP/hotspot thermal profiling (HTP), [schematic derived from Huang, J. X., et al. (2019)]; (B) post translational modification
TPP (PTM-TPP) [schematic derived from King, D. T., et al. (2022)]; (C) mutant TPP (mTPP) [schematic derived from Peck Justice, S. A., et al. (2020)].
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determine melting point shifts and melting behavior similarities
(Savitski et al, 2014; Leuenberger et al, 2017; Childs et al, 2019;
Mateus et al, 2020a; Kurzawa et al, 2020; Fang et al, 2021b). Thermal
proteome profiling has been used to study the melting behavior of
proteins in situ under differing cellular conditions (Leuenberger
et al, 2017; Mateus et al, 2020a).

TPP methods have been expanded and adapted for various
purposes including drug target discovery and determination of
binding strength. These methods include one-dimensional assays
that utilize thermal gradients, concentration gradients, or isothermal
dose-response (Franken et al, 2015; Lim et al, 2018). TPP methods
have also been applied tomany types of sample including intact cells,
tissue, and whole blood (Perrin et al, 2020; Kalxdorf et al, 2021; Ruan
et al, 2022; Zhao et al, 2022). Multidimensional methods that use
both thermal and concentration gradients have also been developed
to investigate thermal stability and binding affinity simultaneously
(Becher et al, 2016; Mateus et al, 2018; Dziekan et al, 2020).
Additionally, methods to probe the effect of protein expression,
such as gene deletion in mutant strains (Mateus et al, 2020b), on
protein expression and stability of the entire proteome have been
developed. These are just a few of the interesting applications of TPP
methods; others have been extensively reviewed in the literature
(Mateus et al, 2017; Mateus et al, 2020a; de Souza and Picotti, 2020;
Le Sueur et al, 2022; Mateus et al, 2022).

Recently, methods such as Hotspot Thermal Proteome
Profiling (HTP) (Huang et al, 2019), Post-Translational
Modification Thermal Proteome Profiling (PTM-TPP) (King
et al, 2022), and Mutant Thermal Proteome Profiling (mTPP)
(Peck Justice et al, 2020) were developed to assess changes in
protein function due to structural changes such as variable PTMs
and mutation (Figure 1). Similarly, System-wide Identification
and prioritization of Enzyme Substrates by Thermal Analysis
(SIESTA) was developed to identify and characterize enzyme
substrates by observing the effect of enzyme catalyzed PTMs on
substrate stability. (Saei et al, 2021). PTMs are covalent
modifications of proteins that can alter protein function and
increase the functional diversity of the proteome (Bagwan et al,
2021). Functionally relevant PTMs can affect protein function in
a variety of ways; for example, modulation of protein-protein
interactions (PPIs) (Seet et al, 2006; Duan and Walther, 2015),
ATP production (Ardito et al, 2017), and function of cell surface
and extracellular proteins in cancer and autoimmune disease
(Reily et al, 2019). As such, high-throughput examination of
PTM functionality has been a focus for advancement of the TPP
methods discussed here.

A subsect of TPP techniques, phospho-TPP (Potel et al, 2021;
Smith et al, 2021) and HTP (Huang et al, 2019), have been developed
to examine the effects of endogenous phosphorylation on thermal
stability and protein functionality. Phosphorylation is of particular
interest because it is an extremely common transient PTM that
influences protein binding, stability, and dynamics (Johnson, 2009;
Nishi et al, 2014). Combination of phosphopeptide enrichment
strategies and TPP was first introduced by Azimi et al to
determine the effect of protein phosphorylation on thermal
stability of the phosphoproteome of SK-Mel 24 and SK-Mel
28 human carcinoma cells, which provided insights on protein
interactions that could be targeted to counteract drug resistance
of SK-Mel 28 (Azimi et al, 2018). This study demonstrated that these

phospho-TPP methods enable determination of the effect of
phosphorylation on thermal stability and protein function.

While analysis of the stability of HEK293T proteome by Huang
et al did not report a significant difference in the Tm of the proteome
and phosphoproteome, significant changes in the melting behavior
for 25% of phosphorylated sites were reported (Huang et al, 2019).
However, independent studies have shown that only 1.5%–3% of
phosphosites significantly impact thermal protein stability (Potel
et al, 2021; Lenz and Stühler, 2022). An improved HTP workflow
involving high-pH reverse phase fractionation prior to
phosphopeptide enrichment, label-fractionate-enrich (LFE)-HTP,
has been reported for deeper phosphoproteome coverage (Stein
et al, 2021).

TPP methods have also been applied to study the effect of PTMs
such as O-GlcNAcylation on thermal stability (King et al, 2022). To
analyze stability differences between modified proteoforms, two
methods were used to observe the effect of O-GlcNAc on protein
stability: enzymatic removal TPP (erPTM-TPP) and chemical
modulators TPP (cmPTM-TPP). Though O-GlcNAc has often
been reported to stabilize proteins (Drake et al, 2018), PTM-TPP
methods found that O-GlcNAc tends to destabilize proteins due to
interference in protein-protein interactions and its competition with
protein phosphorylation (Issad et al, 2022).

Mutations of amino acids can disrupt protein function and cause
disease by disrupting protein interactions (Zhong et al, 2009; Sahni
et al, 2015), prevention of catalysis, allosteric regulation, disruption
of a PTM, or, most commonly, changing the protein folding
structure/stability (Wang and Moult, 2001; Bromberg and Rost,
2009). Additionally, site-directed mutagenesis is useful for
interrupting standard gene activity and functional studies. As
such, mutant TPP (mTPP) was developed as a high-throughput
method to study the direct causes/pathways for genetic disorders
and effects of site-directed mutagenesis and observe proteome-wide
shifts in thermal stability resulting from amino acid substitution.
mTPP was first introduced by Peck Justice et al (Peck Justice et al,
2020) to study temperature-sensitive (TS) mutants, specifically how
changes in protein structure affected the thermal stability of the TS
mutants compared to the unmodified protein and the PPI network
as a whole. In a further application of mTPP by the Mosely group,
(Peck Justice et al, 2021) applied affinity-purified protein complex as
an isobaric trigger channel to determine the melting points of low
abundance proteins.

Vieitez et al studied the functional relevance of phosphorylation
on 474 phospho-deficient yeast strains (Viéitez et al, 2019).
Screening their fitness in 102 different conditions showed
changes in thermal stability in 8 phospho-mutants, with one
exhibiting an increase and another a decrease in stability that
was not statistically significant. (Banzhaf et al, 2020). studied the
effect of an NlPI mutant on lipoproteins, finding that the deletion of
NlPI altered protein abundance and thermal stability. While mTPP
helps to understand the effect of mutations on protein stability,
producing the TSmutants used in these studies often results in many
mutations, making it difficult to determine which mutations cause
which changes in protein stability. (Peck Justice et al, 2020).

In another interesting application of TPP, SIESTA utilizes the
effect that PTMs have on protein thermal stability to identify known
and unknown enzyme substrates (Saei et al, 2021). In SIESTA, lysate
is incubated with an enzyme of interest and the enzyme cosubstrate
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to facilitate enzymatic post-translational modification of enzyme
substrates. These modified substrates often demonstrate altered
thermal stability resulting in an unbiased and high throughput
method to identify enzyme substrates.

Overall, these methods depend on enrichment or overexpression
of protein modifications to determine the effect of PTMs on protein
stability. This is generally required as modified proteins tend to be
lower in abundance than their modified proteoforms. However, very

FIGURE 2
Workflows for (A) post translational modification-limited proteolysis (PTM-LiP); (B) post translational modification stability of proteins from rates of
oxidation (PTM-SPROX), [schematics derived from Meng, H, et al. (2018)].
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recently, (Kurzawa et al, 2023), introduced an alternative approach
that applied a deep peptide identification method to TPP to observe
the effect of modification on the thermal stability of coexisting
functional proteoform groups. This technique did not require
enrichment or overexpression of modified peptides and allowed
more general analysis of changes in thermal stability caused by
modifications such as PTMs, PPIs, etc.

Other stability proteomics methods for
analysis of PTM induced stability shifts

While TPP is the most widely used stability proteomics
technique, particularly for examining the effects of PTMs on
protein stability, other stability proteomics methods, including
SPROX and LiP, have been applied to this end. SPROX is unique
in that it utilizes covalent labeling (e.g., methionine oxidation)
to monitor protein unfolding (West et al, 2008). Proteins are
unfolded using a chemical denaturant gradient and exposed to
oxidizing conditions via the addition of hydrogen peroxide (H2O2)
to selectively oxidize exposed methionine residues under each
denaturant condition (Strickland et al, 2013). Oxidation is
followed by a quenching agent (e.g., free methionine) to remove
excess H2O2 and control labeling time. Proteins are subjected
to digestion and methionine containing peptides are quantified
using TMT labeling methods to determine the concentration at
which proteins unfold and methionine residues become oxidized.
SPROX also allows the examination of site-specific unfolding to
determine the location of conformational changes or protein
interactions.

LiP is another stability proteomics method that utilizes the
resistance of a protein to proteolysis to determine protein
stability (Feng et al, 2014). In LiP, proteins are digested with a
nonspecific protease in the native state for a particular amount of
time (Malinovska et al, 2023). Under these conditions, proteins
with more accessible or unstructured regions tend to undergo
more proteolysis than proteins with more stable structures. This
reaction is quenched by heating and chemical denaturation, and
the samples are further digested with a secondary protease such
as trypsin. Tryptic and semitryptic/half-tryptic peptides are
quantified using label-free MS-based methods to determine the
extent to which a protein was digested in the native state.

SPROX and LiP have been applied to the analysis of the effect of
phosphorylation on proteoform stability to study the significance of
phosphorylation events in the MCF-7 breast cancer cell line,
Figure 2 (Meng and Fitzgerald, 2018). MCF-7 cells were cultured
in heavy and light SILAC media and the heavy lysate was treated
with alkaline phosphatase to remove protein phosphorylation.
These samples were subjected to LiP or SPROX workflows to
determine changes in protein stability as a function of
phosphorylation. Overall, SPROX and LiP found hundreds of
proteins with changes in stability related to dephosphorylation.
Additionally, these methods were able to identify changes in
stability of proteins known to be differentially phosphorylated or
stabilized in human breast cancer and proteins that are known to
have function modulated by phosphorylation (Cappelletti et al,
2021) also applied LiP to the study of overall proteome stability
in response to stress or nutrient adaptation. This study was also able

to observe changes in protein stability due to phosphorylation in
response to osmotic stress (Cappelletti et al, 2021).

While LiP and SPROX are the only stability proteomics
methods, apart from TPP, that have been applied to the analysis
of the effects of PTMs on protein stability, other methods such as
pulse proteolysis could also potentially be applied for this purpose.
Pulse proteolysis is similar to SPROX in that it probes protein
stability using a chemical denaturation gradient (Park and
Marqusee, 2005; Chang et al, 2012). Chemical denaturation is
followed by a short proteolysis to digest denatured proteins.

Perspectives and future applications

Stability proteomics methods have seen an astonishing number
of modifications and developments to make these techniques
extremely versatile and applicable for a wide variety of purposes.
The stability proteomics methods and applications reviewed here are
unique in their goal of examining the effect of protein structural
changes such as PTMs and mutation on protein stability or
interaction. These methods have been applied with much success
to determine the changes in stability caused by these modifications
on the affected proteins directly, on protein interactions, and on the
proteome generally. The bottom-up proteomics techniques
currently applied to the stability proteomics methods reviewed
here are robust, high-resolution, and have low limits of detection;
however, the required proteolysis inhibits the examination of how
structural changes affect intact proteoform stability (Catherman
et al, 2014). As many PTMs of analogous and differing varieties can
exist simultaneously on an intact proteoform to effect protein
function and interactions, as is concisely demonstrated by the
histone code (Jenuwein and Allis, 2001; Fornelli et al, 2018),
protein digestion makes characterization of the intact, biologically
active proteoform challenging. Furthermore, implementation of
PTM specific enrichment strategies at the peptide level, as is
done in many of the methods reviewed here, restricts the ability
of these methods to observe how different numbers of PTM
instances and combinations of different types of PTMs effect the
stability of these proteoforms. As modified proteoforms can not only
change the function of proteins but can also be the cause of or
demonstrative of disease states, analysis of the total PTM profile of
proteins is critical for biochemical analysis. As such, observation of
the intact modified proteoforms directly can give a better
understanding of how functional proteoforms perform and
interact in vivo.

In contrast to bottom-up approaches, top-down proteomics
approaches analyze intact proteins directly so that the structure
of functional proteoforms can be examined (Gregorich and Ge,
2014). While there are several limitations to application of high-
throughput top-down proteomics, a primary disadvantage is the
lack of methods to assign functional annotations to intact
proteoforms as recently reviewed by (Melby et al, 2021) This
challenge stems from fundamental disadvantages in top-down
proteomics including relatively low sensitivity hindering
characterization of low abundance proteoforms, limitations in the
size of proteoforms that can be analyzed using high resolution MS
methods, and difficulty in applying quantitative proteomics
methods to intact proteins. With these limitations, application of
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methods designed to probe protein functionality, such as stability
proteomics, is very challenging using top-down methods.
Fortunately, recent advancements in the area of top-down
proteomics would allow application of some of these stability
proteomics methods to examine how protein stability relates to
unique protein proteoforms resulting in more detailed information
regarding how protein modifications and combinations of
modifications are involved in regulating protein function.

Intact proteoforms have many possible charge states resulting in
wide charge state envelopes that decrease overall sensitivity. For high-
throughput top-down proteomics, the effects of decreased sensitivity are
made more prominent when proteins are coeluted from online
separation methods which can result in ion suppression and
difficulties in characterization, particularly of low abundance
proteoforms (François et al, 2009; Pirok et al, 2019). Methods such
as parallel ion parking (Chrisman et al, 2006) and ion/ion proton transfer
(Stephenson and McLuckey, 1996) have been developed to narrow the
charge envelope and increase sensitivity for MS analysis, and gas phase
separation methods such as FAIMS have been implemented to decrease
chemical noise and ion suppression (Gerbasi et al, 2021; Kaulich et al,
2022). Improving separation to decrease spectral complexity has also
been implemented to increase depth of proteome analysis and improve
intact proteoform characterization. In this vein, multidimensional
separation is a technique that utilizes sequential, orthogonal
separation techniques to improve separation resolution, proteome
coverage, and characterization of proteins in a wide dynamic range.
(Melby et al, 2021). However, the primary quantitative proteomics
technique currently applied to top-down proteomics is label-free
quantitation (Cupp-Sutton and Wu, 2020). As label-free quantitation
requires an individual analysis for each experimental condition, it is not
compatible with multidimensional separation. As such, application of
other quantitative proteomics methods to top-down proteomics will
improve quantitative accuracy and throughput.

Apart from label-free quantitation, the quantitative proteomics
techniques currently applicable to top-down proteomics are
metabolic labeling techniques and isobaric chemical tag labeling.
(Cupp-Sutton and Wu, 2020). These techniques benefit from being
compatible with multidimensional separation as well as having
multiplex options to improve proteomic throughput. While
metabolic labeling techniques have been applied for top-down
proteomics, they must be implemented during cell growth to
incorporate isotopic variants of amino acids into the protein
primary structure (Ong et al, 2002). Therefore, metabolic labeling
techniques are limited to samples that can be grown in lab and are
not commonly used in stability proteomics methods. Isobaric
chemical tag labeling, however, can be applied to any protein
sample for flexible application. Until recently, isobaric chemical
tag labeling techniques have not been widely applicable to high-
throughput top-down proteomics due to issues with protein
solubility and improper labeling under standard labeling
conditions (Hung and Tholey, 2012). Of late, optimization of
TMT labeling techniques including sample preparation and
fragmentation have been developed for complex mixtures of
intact proteins (Winkels et al, 2021; Yu et al, 2021; Guo et al,
2022a; Guo et al, 2022b; Guo et al, 2023). Application of these novel
methods would allow for highly multiplexed TDP and application of
multidimensional separations for improved quantitation and depth
of proteome characterization.

Overall, developments in top-down proteomics including
improved instrumental analysis, sample separation, and
quantitation as discussed here have paved the way for application
of top-down proteomics for more complex experimental designs
such as stability proteomics methods. Stability proteomics
techniques that do not require proteolysis (e.g., LiP, pulse
proteolysis, DARTS) may be compatible with top-down
proteomics, such as TPP, SPROX, CPP, PISA, and i-PISA. For
example, TPP utilizes a thermal denaturation gradient to probe
protein stability; therefore, the supernatant containing the soluble
proteins can be directly analyzed using quantitative top-down
proteomics approaches. MS-compatible buffers or online
desalting techniques can be used to directly analyze TPP samples
without additional sample preparation steps. Recently, the Wu lab
has developed a label-free top-down TPP platform that has been
applied to plot thermal profiles for intact proteoforms in complex
samples such as Escherichia coli and human cell lysate (unpublished
results). One possible challenge in analyzing these samples is the
incomplete removal of precipitated proteins, which may cause
column clogging, and improved methods for aggregate protein
removal may be required. Applying top-down isobaric chemical
tag labeling techniques can also improve the throughput of top-
down TPP applications (Winkels et al, 2021; Yu et al, 2021; Guo et al,
2022a; Guo et al, 2022b; Guo et al, 2023).

Other methods such as SPROX, CPP, and i-PISA can also be
coupled with top-down proteomics methods. However, these
techniques use high concentrations of MS-incompatible buffers
and reagents during sample preparation that can interfere with
ion generation and lead to ion suppression during ESI and MS
detection. For example, SPROX and CPP utilize high concentrations
of chemical denaturants such as urea or guanidinium chloride to
destabilize proteins, and i-PISA uses copper chloride for
kosmotropic protein precipitation. Coupling existing methods
(online or offline) for desalting intact protein samples (Cai et al,
2016) or protein precipitation and resolubilization [e.g., chloroform-
methanol-water precipitation (Doucette et al, 2014)] would allow
top-down proteomics analysis for these stability proteomics
methods. These additional sample handling steps can lead to
sample loss and increased error which decreases quantitative
accuracy, particularly for label-free quantitation. Application of
the intact protein isobaric chemical tag labeling protocol
discussed above would necessitate buffer exchange prior to
labeling regardless of MS compatibility of reagents used, and
multiplexing limits run-to-run variability issues and reduces error
to improve quantitation accuracy. Apart from these considerations,
the application of top-down MS methods to stability proteomics
methods largely overlap with bottom-up methods as demonstrated
in Supplementary Table S1 including the resistance of proteins to
certain types of denaturation and complexity in the denaturation
behavior. To address some of these drawbacks, multiple proteomics
methods have been applied to improve target identification and
cross-verify identified targets (Cabrera et al, 2020; Bailey et al, 2023).

Overall, coupling top-down proteomics with the stability
proteomics platforms reviewed here that focus on the
characterization of the effect of protein modification on
structural stability will open up the area of top-down proteomics
for functional annotation of proteoforms, an area of research
previously challenging to achieve.
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