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Mass spectrometry (MS) is a powerful analytical method used for various purposes
such as drug development, quality assurance, food inspection, and monitoring of
pollutants in the environment. In recent years, with the active development of
antibodies and nucleic acid-based drugs, impurities with various modifications are
produced. These can lead to a decrease in drug stability, pharmacokinetics, and
efficacy, making it crucial to differentiate these impurities. Previously, attempts
have been made to estimate the monoisotopic mass and ion amounts in the
spectrum generated by electrospray ionization (ESI). However, conventional
methods could not explicitly estimate the number of constituents, and discrete
state evaluations, such as the probability that the number of constituents is k or
k+1, were not possible. We propose a method where, for each possible number of
constituents in the sample, mass spectrometry is modeled using parameters like
monoisotopic mass and ion counts. Using Simulated Annealing, NUTS, and
stochastic variational inference, we determine the parameters for each
constituent number model and the maximum posterior probability. Finally, by
comparing the maximum posterior probabilities between models, we select the
optimal number of constituents and estimate the monoisotopic mass and ion
counts under that scenario.
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1 Introduction

Mass Spectrometry (MS) is a powerful analytical technique used for various purposes
such as drug development and quality assurance, food inspection, and monitoring of
pollutants in the environment. In recent years, with the active development of
antibodies and nucleic acid drugs, impurities with different modifications are produced.
These can cause a decrease in the stability of the drug, its pharmacokinetics, and its efficacy
(Weinberg et al., 2005; Sanghvi, 2011; Pecori et al., 2022; Tamara et al., 2022). Therefore, it is
crucial in drug development and quality assurance to distinguish these multiple impurities in
pharmaceuticals and take measures against them. Moreover, if we know the monoisotopic
mass of the constituents, it can provide valuable information for considering the cause of
impurity generation, and if the ion amounts of the constituents are known, it helps estimate
the effect of the impurity.
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However, in current mass spectrometry, it is generally difficult to
directly distinguish impurities in targets of middle molecules or
higher that have slight modifications, and to estimate the correct
number of constituents and their monoisotopic mass and ion
amounts. This challenge arises because separating such impurities
using conventional chromatography methods is problematic.
Furthermore, the MS spectra become complex due to the
isotopes in the target constituent. Especially with the most used
ionization method, Electrospray Ionization (ESI), more complex
spectra are produced because it creates multivalent ions, leading to
many interpretations and degrees of freedom, making analysis even
more challenging.

While increasing hardware resolution can differentiate
slight differences between isotopes and modifications,
methods like FT-ICR (Fourier Transform Ion Cyclotron
Resonance), which have high resolution, require massive
equipment and substantial costs, making it inconvenient to
handle. Thus, it is preferable to analyze with devices that can
be managed in general labs, such as Triple-Quadrupole-MS and
Quadrupole -Time-of-Flight-MS(Q-TOF-MS).

Therefore, there is active research in approaching signal analysis
through software. Various attempts have been made to estimate
mass from mass spectrometer data. Simple methods to derive m/z
lists from spectra include wavelet transformation (Zhang et al.,
2009). Recently, peak detection algorithms have been developed
that combine continuous wavelet transformation (CWT) and image
processing (Deng et al., 2021). This method applies image
segmentation to CWT coefficients, creating masks, and
combining them with CWT maximum values to improve peak
detection ROC (receiver operating characteristic) curve. Such
techniques are useful for resolving close mass constituents in
spectra measured with low molecules, which have a relatively
narrow isotope distribution, or when ionized with methods
producing simple charge distributions like EI (electron
ionization) or MALDI (matrix-assisted laser desorption
ionization). However, for spectra of middle to high molecules
with a wide isotope distribution, especially those generated by
ESI, which produce multivalent ions with a charge distribution,
distinguishing the monoisotopic mass of interest becomes
challenging.

For charge deconvolution and deisotoping from multivalent ion
spectra, a lot of algorithms such as heuristic gaussian fitting using
nonlinear least squares minimization (Dasari et al., 2009) have been
proposed. The ReSpect algorithm using the Max Entropy method
(Ferrige et al., 1992) has been long used (Zhang and Alecio, 1998;
Tranter, 2000; Ferrige et al., 2003). This algorithm integrates m/z
lists based on charge distribution constraints, enabling the
determination of monoisotopic mass. However, ReSpect cannot
explicitly estimate the number of constituents in the spectrum,
and it cannot evaluate discrete states, like the probability that
there are k constituents or k + 1 constituents. Also, the entropy
term of the objective function increases as the number of peaks in
the deconvolution spectrum increases, leading to the selection of
spectra with many peaks.

Recently, new methods like UniDec using Bayesian
deconvolution have emerged (Marty et al., 2015; Marty, 2020).
UniDec adopts a unique algorithm similar to the Richardson-
Lucy method (Richardson, 1972; Lucy, 1974) and is faster than

ReSpect. However, its iterative method to approximate the observed
data by a convoluted spectrum does not resolve the issue of not being
able to evaluate the probability of a certain number of constituents.

In this paper, we newly propose a method to select the optimal
number of constituents by comparing the probability of each
constituent count, and to estimate the monoisotopic mass and
ion counts under that condition. This can suggest the presence of
impurities in pharmaceuticals, assist in the search for better
synthesis conditions for middle to high molecular
pharmaceuticals, and be useful for quality assurance in factories.
For this study, we target Time-of-Flight mass spectrometers, which
are frequently used in drug development due to their high sensitivity
and resolution.

2 Proposed method

2.1 Analytical method framework

First, we model the mass spectrometry system based on
parameters like the mass and charge of each constituent,
assuming a certain number of constituents in the sample. Here, a
constituent is defined as a substance with a specific monoisotopic
mass. We then perform a MAP (Maximum A Posteriori) estimation
of these parameters from the observed spectrum. By comparing the
maximum posterior probability in models with different numbers of
constituents, we determine the model with the most appropriate
number of constituents.

However, this model has a large dimensionality of the number of
constituents multiplied by 6. Moreover, the posterior probability for
one of the parameters, the monoisotopic mass, is flat over a large
portion of the search space and has several sharp peaks locally.
Hence, gradient-based methods are not suitable for this case due to
anticipated gradient vanishing. Therefore, to estimate the
parameters, we combine the No-U-Turn Sampler (NUTS
(Hoffman and Gelman, 2014), a type of Markov Chain Monte
Carlo (MCMC), with Simulated Annealing (Kirkpatrick, Gelatt,
and Vecchi, 1983).

The purpose of using Simulated Annealing is to introduce a
temperature parameter. By selecting a high-temperature exploration
parameter distribution, we can actively explore parameters even in
areas where the posterior probability is flat or has sharp peaks. This
ensures a broader search across the parameter space, reducing the
chance of overlooking the global solution and getting trapped in
local minima.

Furthermore, NUTS can explore parameters sparsely in areas
with small gradients and can explore parameters in detail in areas
with large gradients. Thus, introducing NUTS allows efficient
exploration of the vast, high-dimensional parameter space.

On the other hand, while MCMC is good at searching for global
solutions, it does not always reach the optimal solution within a
certain number of search steps. Therefore, we use the parameters
with the highest posterior probabilities obtained from NUTS and
Simulated Annealing as initial values and apply stochastic
variational inference. By doing this, we search for the optimal
parameter where the posterior probability is maximized in the
vicinity of that initial value, aiming to improve the accuracy of
parameter estimation.
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However, simultaneously searching for parameters for all possible
numbers of constituents leads to a curse of dimensionality, where the
search space explosively expands as the number of constituents
increases, potentially reducing search efficiency and accuracy. To
avoid this problem, we sequentially increase the number of
constituents from k � 1 to the maximum conceivable number
k � kmax, and for k constituents calculate the optimal parameters
and their posterior probabilities, and efficiently focus the parameter
search areas for the k+1 constituents by these posterior probabilities.

To balance the complexity of the model (number of constituents)
and its fit (loss against the data), in addition to the prior distribution of
each parameter, we introduce a prior distribution for the number of
constituents. We also incorporate a prior distribution on the differences
between themonoisotopicmasses ofmultiple constituents. For analytical
purposes, we have defined a single constituent as a substance with a
distinct monoisotopic mass, thereby ensuring that their masses do not
mutually take the same value. When seeking to separate isomers, it is
essential to integrate other techniques such as fragmentation, ion
mobility spectrometry, and chromatography, in addition to the
proposed method. We first construct a model with k � 1 constituent,
obtain the optimal parameters and the maximum posterior probability
based on the above prior distributions and observed data.

Next, we construct a model with k � 2 constituents. For one of
the two constituents, we use a prior distribution centered on the
optimal parameters already estimated for k � 1, narrowing its range.
This suppresses the significant increase in the parameter search
space. Based on this new prior distribution, we estimate the optimal
parameters and obtain the maximum posterior probability.

Subsequently, we seek the maximum posterior probability for
each model with constituent numbers up to the upper limit kmax by
efficiently exploring the optimal parameters in the same manner.

Finally, we compare the maximum posterior probabilities
corresponding to each model with different numbers of constituents.
We select the model with the highest probability and obtain the
estimates for the monoisotopic masses and ion counts.

2.2 Physical model of mass spectrometers

In a time-of-flight mass spectrometer, the relationship between
time of filght ttof theory, mass m, and charge z can ideally be
represented as in Eq. 1 (Boesl, 2017). Here, V represents the
acceleration voltage to eject ions, and y is the flight distance of ions.

ttof theory � 0.72y

�����
m

z
· 1
V

√
(1)

The actual signal obtained is a convolution of the delta function
δ(ttof) with the detector’s response waveform R(t). Preliminary
experiments have shown that ttof has a stochastic ToF jitter
ε following the logarithmic normal distributionΛtof (μtof, σtof,E(ε) �
exp(μtof + σtof2

2 ) � 0) (E: expected value). Additionally, the height
(intensity) of the response waveform also has a stochastic response
factor α following the logarithmic normal distribution Λres(μres, σres).

Reflecting these variances in time of flight and detector response
intensity, the response S(t) when a single ion with mass m and
charge z enters the detector according to Eq. 1 can be written as:

S t, m, z( ) � α · R t( )*δ t − ttof theory − ε( )
� α · R t( )*δ t − 0.72y

�����
m

z
· 1
V

√
− ε( ) (2)

The mass m and charge z of constituent j follow a
distribution as described below. Since the natural isotopic
abundances differ by element, and each functional group has
different charge rates, the probability mass functions of
mass and charge are represented by a multinomial
distribution as:

pj m( ) � m′
j +m! ∏

a∊ H,C,N,O,S{ }

1
na!

ua
ξm (3)

qj z( ) � lj!∏lj
b�1

vb
z (4)

j: constituent IDs (j � 1, 2,/k)
k: number of constituents in the sample
m′

j: monoisotopic mass of constitutent j
na: number of hydrogen, carbon, nitrogen, oxygen, phosphorus,
sulfur atoms of constituent j (a � H,C,N,O, S)
ua: natural isotopic abundance of 2H, 13C, 15N, 18O, 34S of constitu
tent j
ξa: increased number of neutrons (a � H,C,N,O, S)
lj: number offunctional group of constitutent j
vb: each charge rate offunctional group of constitutent j (b � 1, 2,
/lj)

However, this model becomes too complex for Bayesian
inference due to its large number of parameters ∑k

j�1(lj + 10).
Therefore, we introduce an approximation that assumes equal
isotopic abundances for all elements, an increase of one neutron
in isotopes, and equal charge probabilities for all
functional groups.

Consequently, the mass distribution of constituent j can be
represented by a binomial distribution based on the
monoisotopic mass as a reference, where nj atoms contained in a
molecule are replaced by isotopes with an increase of +1Da at a
probability of uj. Similarly, for the charge distribution, lj functional
groups can be represented by a binomial distribution where they
acquire a charge of +1 (in the case the mass spectrometry system is in
positive mode) at a rate of vj. This reduces the number of parameters
down to six dimensions.

~pj m( ) � m′
j + nj

m
( )uj

m 1 − uj( )nj−m (5)

~qj m( ) � lj
z

( )vjz 1 − vj( )lj−z (6)

nj: representative number of atoms of constitutent
juj: representative natural isotopic abundance
of constitutent jvj: representative charge rate
offunctional group of constitutent j

Considering that constituent j contains up to ij ions, its
spectrum is represented as:

�Sj t( ) � ∑ij
i�1
S t, mi, zi( ) (7)
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mi ~ ~pj

zi ~ ~qj

ij: number of ions in constituent j

If the ion counts are sufficiently large, it can be approximated as:

�Sj t( ) ~ ij ∑
m∈Q+

∑
z∈Z+

~pj m( ) · ~qj z( ) · S t, m, z( ) (8)

Noise in the time-of-flight mass spectrometer is known to be
stationary and follows a normal distribution based on preliminary
experiments. It is known that the thermal noise of detection circuits
in such as mass spectrometers follows a normal distribution
(Johnson, 1928), suggesting that in this case, thermal noise is the
dominant factor in overall noise. Therefore, the noise to be added to
the entire spectrum is represented as r(t) ~ N(μnoise, σnoise).

Considering these, the conclusive spectrum combined with the
multiple spectra of single constituent is represented as:

�S t( ) � ∑k
j�1

�Sj t( ) + r t( ) (9)

2.3 Bayesian estimation of number of
constituents and parameters

When the observation data from the mass spectrometer �Sobs(t)
is obtained, assuming the number of constituents as k, the posterior
probability distribution P(θ|�Sobs(t)) for parameters
θ: [(m1

′, i1, n1, u1, l1, v1),/, (m′
k, ik, nk, uk, lk, vk)] is defined as per

Bayes’ theorem. Note that P(�Sobs(t)|θ) represents the likelihood of
parameters θ when �Sobs(t) is provided, and P(θ) denotes the prior
distribution.

P θ|�Sobs t( )( )∝P �Sobs t( )|θ( )P θ( ) (10)
Here, in addition to the prior distribution of each parameter

(uniform distribution), we incorporate a regularization term, wbic to
achieve a suitable balance between model complexity (number of
constituents) and model fit (loss with respect to data). We also
introduce a regularization term, wex, to prevent multiple
constituents within the same model from assuming the same
monoisotopic mass. Hence, we introduce the following
logarithmic prior distribution:

log P θ( )( )∝ − wbic + wex( ) (11)
To determine the appropriate number of constituents k, we

define the regularization term wbic representing the complexity of
the model with k based on the Bayesian Information Criterion
(BIC). The BIC is a statistical measure that balances the fit to the data
and model complexity (Schwarz, 1978; Neath and Cavanaugh,
2012). Here, n represents the dimension of the observation data
�Sobs(t), which in this study is the number of data points in the
time direction.

wbic � λ · k
2
· log n

λ: 300 hyper parameter( )

Furthermore, we define a constituent by its unique
monoisotopic mass. Therefore, if the estimated values of
the monoisotopic mass parameters of multiple constituents
are the same in the algorithm, the count of constituents will
not be accurate. Here, we define the logarithmic prior
distribution (regularization term) wex as follows, using a
penalty that increases exponentially according to the
difference in estimated monoisotopic mass values, as shown
in Figure 1. The integral of the spectrum ∫∞

0
�Sobs(t) dt is also

multiplied as a coefficient to ensure that the impact of the
penalty does not change depending on the scale of the
observed data.

wex � ∑k−1
i�1

∑k
j�i+1

a∫∞
0
�Sobs t( ) dt
2b

exp − mi −mj

∣∣∣∣ ∣∣∣∣
b

( ) (12)

a � 0.001, b � 0.1 hyper parameter( )
Here, by substituting the parameter θ generated from

MCMC into model (9), we obtain the spectrum as Ŝprop(t).
We assume a normal distribution for the noise. The standard
deviation of the noise denoted as σ is set to 2,000. Consequently,
the logarithm of the posterior probability distribution is
as follows.

log P θ|�Sobs t( )( )( )∝ log P �Sobs t( )|θ( )P θ( )( ) � log P �Sobs t( )|θ( )( )log P θ( )( )

∝L: � β log 1����
2πσ2

√ exp − Ŝprop t( ) − �Sobs t( )∣∣∣∣ ∣∣∣∣2
2σ2

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ − β wbic + wex( )

� −β 1

2σ2
Ŝprop t( ) − �Sobs t( )∣∣∣∣ ∣∣∣∣2 − n log σ( ) − n

2
log 2π( ) − wbic − wex( )

(13)

Here, β represents the inverse temperature. As described in
2.1, we use Simulated Annealing to ensure active parameter
exploration in flat areas or sharp peaks of posterior
probability. This is achieved by multiplying the inverse
temperature β (< 1) to the posterior probability. Initially
starting from a low inverse temperature value (i.e., high
temperature) and gradually increasing to a higher value
(i.e., low temperature). At low inverse temperatures (high

FIGURE 1
Characteristics of the regularization term wex.
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temperatures), the system explores a wide parameter space.
Conversely, at high inverse temperatures (low temperatures),
the system converges to the optimal solution. This time, we
set the temperature change in three stages: β �
0.25 → 0.24 → 0.23.

To obtain the maximum posterior probability and
parameters θ that maximize the posterior probability
(formula (13)), we conduct sampling from this posterior
probability distribution using MCMC.

2.4 Parameter exploration and optimization

From the posterior probability distribution P(θ|�Sobs(t)), we
sample the parameter θ to select the one that maximizes the
posterior probability. We use the No-U-Turn Sampler (NUTS)
for sampling, a recent and popular variant of the Markov Chain
Monte Carlo (MCMC) method. NUTS is a type of MCMC,
especially a derivative of the Hamiltonian Monte Carlo method
(HMC) (Neal, 2011; Betancourt, 2017).

FIGURE 2
Inference process overall workflow.
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After executing MCMC, the parameters of the maximum
posterior probability obtained are inherited as initial values, and
optimization of the parameters is performed using Stochastic
Variational Inference [SVI (Kingma and Max, 2013; Wingate and
Weber, 2013; Ranganath et al., 2014)]. For more details, please refer
to the Supporting Material.

2.5 Workflow for inferring constituents in
a sample

The overall picture of the workflow to determine the optimal
parameters and posterior probability for each assumed number of
constituents from the observational data of the mass spectrometer is
as shown in Figure 2.

First, as described in 2.3.1, (i) input the observational data of the
mass spectrometer with dimensions of flight time and ion counts.
Then (ii) assume that the number of constituents, k, contained in the
sample is 1. (iii) Set the inverse temperature to 0.25.

Next, as described in 2.3.2, (iv) sample 1, 000 × 4 times from the
posterior probability distribution, (v) set the MAP solution obtained
by MCMC as the initial value for the next MCMC. Then (vi) divide
the inverse temperature by 0.2. Repeat steps (iv) to (vi) three times.

As described in 2.3.3, (vii) set the parameter of the maximum
posterior probability obtained by MCMC as the initial value for SVI.
Then (viii) optimize the parameters with SVI, and (ix) set the

parameter of the maximum posterior probability obtained by SVI
as the initial value for the next MCMC.

Following 2.3.1, increase the number of constituents, k, by 1.
Repeat steps (iii) to (vi). (x) Continue this until the maximum
possible number of constituents, kmax. Finally, (xi) compare the
maximum posterior probabilities of models from constituents k � 1
to kmax, and (xii) select the model with the largest posterior
probability. Also, obtain the optimal parameters at that time.

3 Results

3.1 Validation environment

The specifications of the PC used for verifying the proposed
method, as well as the software versions, are detailed in Table 1. The
proposed method handles data with 1 million dimensions along the
time axis, requiring a large memory size. Additionally, to rapidly
explore a wide 6-dimensional parameter space using MCMC, the
high-speed probabilistic programming library, NumPyro, along
with its compatible CUDA and GPU, were used.

3.2 Creation of simulation data for validation

Based on the nucleic acid drug Fomivirsen (Perry and Balfour,
1999) (ID: A), four impurity constituents with modified base
sequences were added, and spectra for a total of five constituents
were generated via simulation. Specific values are as per Table 2. This
enables the replication of a system where the principal constituent’s
isotopic distribution and the impurity spectra are mixed.

Ion counts for each constituent were set at 20,000. To facilitate
the interpretation of results and to ensure that the algorithm treats
each constituent fairly, we will conduct evaluations using a 1:
1 concentration ratio for each component in the proposed
method. The atomic counts na for H, C, N, O, and S were
obtained from the molecular formula of each constituent. Natural
isotopic abundance ratios uj followed the NIST AtomicWeights and
Isotopic Compositions for All Elements. The representative
functional group number lj and the representative charge rate vj

TABLE 1 Validation environment.

CPU Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20 GHz

GPU Tesla V100-DGXS-16GB

RAM 264 GB

OS Ubuntu 20.04.6 LTS

Software Python 3.8.10

Numpyro 0.11.0

jax 0.4.7

CUDA 11.8

TABLE 2 Settings for constituent spectrum generation.

ID Sequence Molecular
Formula

Monoisotopic Mass
m′

j [Da]
Representative Functional

Group Number lj
Representative Charge

Rate vj
Ion

Counts

A gcgtttgctcttctt
cttgcg

C204H263N63O134P20 6361.088 224 0.035 200,000

B gcgtttgutcttctt
cttgcg

C204H262N62O135P20 6362.072 224 0.035 200,000

C gugtttgutcttctt
cttgcg

C204H261N61O136P20 6363.057 224 0.035 200,000

D gugtttgutcttctt
cttgug

C204H260N60O137P20 6364.042 224 0.035 200,000

E gugtttgutcttutt
cttgug

C204H259N59O138P20 6365.027 224 0.035 200,000
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were set to 224 and 0.035, respectively, to ensure that the generated
spectra resembled real data.

The procedure involved sampling from the multinomial
distribution represented by Eqs 3 and 4 20,000 times (total

incoming ion counts) for each constituent. Subsequently, spectra
were formed following the procedures in Eqs 2 and 7.

The mutation from C (Cytosine) to U (Uracil) is called
deamination and is generated in the synthesis process due to
solvent conditions and thermal stress (Stavnezer, 2011; Gao,
Choudhry, and Cao, 2018).

The spectra of the generated single constituents A to E were
combined according to Eq. 9 in the 15 combinations listed in
Table 3. This allows for a comprehensive combination of 2-
3 constituents based on constituent A, as well as an evaluation of
each individual constituent. We use these as test data.

3.3 Evaluation of constituent count
estimation accuracy

The results of estimating the number of constituents in the
spectra of the test data (Mixture No.1~15) using our proposed
method are as shown in Table 4. The values within the table
represent the negative logarithm of the maximum posterior
probability in the model of constituent count k. Therefore, the
smallest value should be selected.

By choosing the most suitable number of constituents based on
this criterion, the success rate for estimating the true number of
constituents was 80% (12/15). Additionally, the presence or
absence of impurities (distinguishing between k = 1 and kS2)
could be determined with 100% accuracy. We believe this is
sufficient as a standard for recognizing the presence and
number of impurities in pharmaceuticals and taking
appropriate measures.

TABLE 3 Combinations of constituents when generating spectra.

Mixture No. Constituents

1 A,B,C

2 A,B,D

3 A,B,E

4 A,C,D

5 A,C,E

6 A,D,E

7 A,B

8 A,C

9 A,D

10 A,E

11 A

12 B

13 C

14 D

15 E

TABLE 4 Negative logarithm of the maximum posterior probability assuming each constituent count (Orange background indicates the true number of
constituents, blue text indicates the minimum value across models).

Mixture No. k = 1 k = 2 k = 3 k = 4 k = 5

1 4373749.767 3756983.691 3752996.659 3758705.421 3763612.302

2 4278474.570 3765457.060 3753649.150 3756752.529 3762496.339

3 4194715.336 3771155.281 3759533.979 3765154.970 3763711.852

4 4219672.298 3748972.091 3754868.330 3761667.320 3763951.346

5 4319572.818 3773245.536 3757747.307 3758337.677 3763773.03

6 3824787.115 3750044.806 3752258.207 3757899.092 3763075.106

7 3798372.683 3746176.070 3747192.805 3752543.888 3758004.000

8 3795441.196 3744561.027 3748947.332 3756355.290 3759389.714

9 3824787.115 3750044.806 3752258.207 3757899.092 3763075.106

10 3825137.593 3769113.774 3758565.409 3769515.012 3771413.809

11 3733728.203 3738454.098 3743333.770 3748732.124 3754347.052

12 3736353.910 3739259.261 3744921.213 3750141.579 3755513.083

13 3734850.688 3738732.137 3743820.667 3751713.979 3754223.045

14 3735192.197 3740628.677 3745980.721 3751377.448 3755751.922

15 3734867.246 3738788.010 3744300.327 3749555.634 3755907.017
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3.4 Accuracy of parameter estimation with
maximum posterior

The optimal monoisotopic masses and ion counts estimated in the
model where the posterior probability ismaximum for each test data are
shown in Table 5. The monoisotopic mass had an average error of

1.348 Da and a maximum error of 4.931 Da. This is insufficient to
determine howmanymutations have occurred,making it unsuitable for
examining the cause of impurity generation with a difference of 1 Da.
Regarding the ion counts, there was an average error of 4% and a
maximum error of 82%. For instance, the standards for total desamido
impurity and total impurities in injectable glucagon are 14% or less and

TABLE 5 Optimal monoisotopic masses and ion counts of the model with the maximum posterior probability.

Mixture No. Constituents Mass [Da]
(Infer)

Mass [Da]
(True)

Absolute
Error [Da]

Ion counts
[ions](Infer)

Ion counts
[ions](True)

Relative
Error [%]

1 A,B,C 6358.073 6361.088 −3.015 138,290 200,000 −31%

6361.088 6362.072 −0.984 299,930 200,000 50%

6363.047 6363.057 −0.010 172,510 200,000 −14%

2 A,B,D 6360.088 6361.088 −1.000 207,760 200,000 4%

6361.043 6362.072 −1.029 270,470 200,000 35%

6361.081 6364.042 −2.961 132,170 200,000 −34%

3 A,B,E 6359.047 6361.088 −2.041 299,970 200,000 50%

6360.103 6362.072 −1.969 239,990 200,000 20%

6366.008 6365.027 0.981 74,160 200,000 −63%

4 A,C,D 6360.088 6361.088 −1.000 298,940 200,000 49%

6363.043 6363.057 −0.014 299,980 200,000 50%

- 6364.042 - - 200,000 -

5 A,C,E 6360.024 6361.088 −1.064 238,440 200,000 19%

6361.07 6363.057 −1.987 296,510 200,000 48%

6361.116 6365.027 −3.911 80,810 200,000 −60%

6 A,D,E 6360.079 6361.088 −1.009 297,500 200,000 49%

6362.027 6364.042 −2.015 299,940 200,000 50%

- 6365.027 - - 200,000 -

7 A,B 6357.088 6361.088 −4.000 191,670 200,000 −4%

6362.073 6362.072 0.001 220,850 200,000 10%

8 A,C 6361.043 6361.088 −0.045 113,870 200,000 −43%

6361.080 6363.057 −1.977 283,890 200,000 42%

9 A,D 6359.044 6361.088 −2.044 280,530 200,000 40%

6359.111 6364.042 −4.931 138,700 200,000 −31%

10 A,E 6357.088 - - 227,540 - -

6361.029 6361.088 −0.059 35,400 200,000 −82%

6364.010 6365.027 −1.017 157,560 200,000 −21%

11 A 6361.088 6361.088 0.000 191,840 200,000 −4%

12 B 6361.072 6362.072 −1.000 207,340 200,000 4%

13 C 6363.058 6363.057 0.001 189,640 200,000 −5%

14 D 6363.042 6364.042 −1.000 205,290 200,000 3%

15 E 6365.027 6365.027 0.000 190,240 200,000 −5%
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31% or less, respectively (Bao et al., 2022). Therefore, the accuracy of the
ion count estimation in the proposed method is insufficient to estimate
the impact of impurities.

For reference, a comparison between the spectra
reconstructed from the estimated parameters and the original
signal is shown in Figure 3. The overall view in (a) represents the
charge distribution, and the enlarged view in (b) represents the
isotopic distribution. From these results, it is clear that the
spectrum we generated closely matches the observed data.
Despite the spectra matching, errors in parameter estimation
occurred because of the high degree of freedom in isotopic
parameters that trade-off with monoisotopic mass. Even if the
monoisotopic mass was lower than the true value, by increasing
the representative atomic number nj or the representative
isotopic natural abundance uj, it is possible to make it fit the
observed data to some extent.

Also, the estimated ion counts of each constituent showed
errors of up to 82% from the true values. This is presumed to be
due to the trade-off relationship between the ion counts of each
constituent, with a decrease in the ion count of one constituent
being compensated by an increase in another. This is further
supported by the fact that the average error in ion counts
settles at 4%.

3.5 Comparison with UniDec

Deconvolution of the test data was performed using the
existing method, UniDec as well. The results of deconvolution
for each observed spectrum by UniDec are shown in Table 6.
According to these results, the accuracy for the correct number of
constituents was 13% (2/15). This is presumed to be because the

FIGURE 3
Comparison of observed and estimated spectra for Mixture No. 1. (A) Overall view, (B) Enlarged view.
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TABLE 6 Deconvolution results for each observed spectrum by UniDec.

Mixture No. Constituents Mass [Da]
(Infer)

Mass [Da]
(True)

Absolute
Error [Da]

Intensity
[a.u.](Infer)

Intensity
[a.u.](True)

Relative
Error [%]

1 A,B,C 6359.900 6361.088 −1.188 100.000 100.000 100%

6360.900 6362.072 −1.172 54.614 100.000 55%

- 6363.057 - - 100.000 -

2 A,B,D 6359.900 6361.088 −1.188 100.000 100.000 100%

6360.900 6362.072 −1.172 68.122 100.000 68%

6361.800 6364.042 −2.242 23.490 100.000 23%

3 A,B,E 6359.900 - - 100.000 - -

6360.900 - - 47.326 - -

6361.800 6361.088 0.712 22.533 100.000 23%

6362.800 6362.072 0.728 13.473 100.000 13%

6363.800 6365.027 −1.227 13.496 100.000 13%

4 A,C,D 6359.900 - - 100.000 - -

6360.900 6361.088 −0.188 94.673 100.000 95%

6361.800 6363.057 −1.257 64.641 100.000 65%

6362.800 6364.042 −1.242 19.369 100.000 19%

5 A,C,E 6359.900 - - 100.000 - -

6360.900 - - 63.684 - -

6361.800 6361.088 0.712 56.992 100.000 57%

6362.800 6363.057 −0.257 33.851 100.000 34%

6363.800 6365.027 −1.227 19.330 100.000 19%

6 A,D,E 6359.900 - - 100.000 - -

6360.900 - - 53.209 - -

6361.800 6361.088 0.712 61.898 100.000 62%

6362.800 6364.042 −1.242 70.845 100.000 71%

6363.800 6365.027 - 39.057 100.000 39%

7 A,B 6359.900 6361.088 −1.188 100.000 100.000 100%

6361.000 6362.072 −1.072 11.538 100.000 12%

8 A,C 6359.900 - - 100.000 - -

6361.000 6361.088 −0.088 40.696 100.000 41%

6361.800 6363.057 −1.257 10.199 100.000 10%

9 A,D 6359.900 - - 100.000 - -

6361.000 6361.088 −0.088 41.897 100.000 42%

6361.800 - - 26.937 - -

6362.800 6364.042 −1.242 16.351 100.000 16%

10 A,E 6359.000 - - 19.045 - -

6359.900 - - 100.000 - -

6360.900 - - 27.472 - -

6361.800 6361.088 0.712 19.107 100.000 19%

(Continued on following page)
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UniDec algorithm, which obtains the number of constituents
after multiple iterations of deconvolution, does not necessarily
guarantee the number of constituents. Please note that this use of
UniDec to determine the number of constituents is not its
intended application.

For the verification above, we used UniDec (Version 6.0.2). The
particularly set parameters during this verification are shown in
Table 7. The Mass Range was set to the same range as the proposed
method, and Sample Mass Every (Da) was set to 0.1 to sufficiently
detect impurities with a difference of 1 Da. For parameters not
mentioned, default values were used.

4 Discussion

Using NUTS, Simulated Annealing, and stochastic variational
inference, we estimated parameters such as monoisotopic masses
from observed data, and were able to choose the correct number of
constituents with a higher probability than existing methods. This is

thought to be due to the fact that we created models for each number
of constituents, allowing for the comparative evaluation and
selection of models for each number of constituents. This made
it possible to suggest the presence of impurities in pharmaceuticals,
which is useful for searching for better synthesis conditions for
middle to high molecular weight pharmaceuticals, and for quality
assurance in factories.

On the other hand, as shown in Table 5, the estimated
monoisotopic mass had a maximum error of 4.931Da from the
true value. This is thought to be due to the trade-off relationship
between the monoisotopic mass m′

j and the parameters nj and uj
that determine the isotopic distribution. Additionally, there was a
relative error of several tens of percent from the true value in the ion
counts of each estimated constituent. This is speculated to be
because the ion counts of each constituent trade off with each
other, with a decrease in one ion being compensated for by an
increase in another ion. A potential solution to these problems is to
represent monoisotopic masses and ion counts as probability
distributions. By considering the uncertainty in monoisotopic

TABLE 6 (Continued) Deconvolution results for each observed spectrum by UniDec.

Mixture No. Constituents Mass [Da]
(Infer)

Mass [Da]
(True)

Absolute
Error [Da]

Intensity
[a.u.](Infer)

Intensity
[a.u.](True)

Relative
Error [%]

6362.800 - - 27.075 - -

6363.900 - - 33.325 - -

6364.800 6365.027 −0.227 13.659 100.000 14%

11 A 6358.900 - - 48.595 - -

6359.800 6361.088 −1.288 100.000 100.000 100%

12 B 6359.900 - - 40.161 - -

6360.800 6362.072 −1.272 100.000 100.000 100%

13 C 6360.900 - - 41.609 - -

6361.800 6363.057 −1.257 100.000 100.000 100%

14 D 6361.800 - - 52.753 - -

6362.800 6364.042 −1.242 100.000 100.000 100%

15 E 6362.800 - - 54.440 - -

6363.900 6365.027 −1.127 100.000 100.000 100%

TABLE 7 UniDec setting parameters.

Parameter Setting value

UniDec Parameters Charge Range 1 to 50

Mass Range 6300–6400 Da

Sample Mass Every (Da) 0.1

Additional Deconvolution Parameters Isotopes Mono

Peak Selection and Plotting Peak Detection Range (Da) 0.1

Peak Detection Threshold 0.01

*The other settings are using default values.
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masses and ion counts of constituents in the sample, improvements
in estimation satisfaction can be expected.

Furthermore, it took about 50 h for deconvolution assuming
5 constituents per data. This is long compared to the few seconds
to a few minutes processing time of UniDec. Also, this processing
time is expected to increase almost linearly with the assumed
number of constituents. Therefore, it is expected to take a long
time when analyzing samples with many constituents, such as
serum or environmental samples. A possible countermeasure to
this problem is to divide the monoisotopic mass space into mini-
batches and perform parallel calculations.

5 Conclusion

We assumed multiple numbers of constituents in the sample
and created a mass spectrometry model from parameters such
as monoisotopic masses and ion counts. We then sought the
maximum posterior probability in the model of each number of
constituents against observed data using NUTS, Simulated
Annealing, and stochastic variational inference. As a result,
we were able to estimate the number of constituents with
high accuracy. We were also able to estimate
parameters such as monoisotopic masses and ion counts at
the same time.

Future challenges include reducing computation time, improving
mass accuracy, and improving ion count accuracy. Incorporating
chromatography or ion mobility information, addressing more
stringent concentration ratios between constituents (e.g., greater than
10:1), and adapting to complex samples with more constituents will be
pursued to expand the applicability of this method.
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