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Background

The Arachnida represent a mega-diverse lineage within the Arthropoda and are the

second largest (speciose) class of invertebrates (first are the insects with around 955.000

described species), with about 91.200 (https://www.catalogueoflife.org/) to 114.200

(Zhang, 2013) species named and described (90% of which are spiders and

mites/ticks) but an estimated 1 to 1.5 million species, especially mites, waiting to be

detected and named (Krantz and Walter, 2009; Walter and Proctor, 2013; Zhang, 2013).

The number of currently known arachnid species is more than all vertebrates together,

although the arachnid species number is just about 1/10th to 1/15th of the estimated

number of species truly present, yet is in comparison close to being complete in the

vertebrates (70.300 described species) (https://www.catalogueoflife.org/). Arachnids are

similar to insects in evolutionary success and history. The fossil history of the Chelicerata,

to which the Arachnida belong to, dates back to 500 million years ago. The Arachnida

comprise groups, such as the Acari (mites and ticks), that are extremely diverse and can

be found about anywhere in the world, from aquatic to terrestrial, from rainforests to

deserts, from mountain tops to valleys, from the icy Arctic and Antarctic to burning hot

deserts (Krantz and Walter, 2009; Walter and Proctor, 2013), while others are almost

exclusively terrestrial but similarly diverse in habitat use, i.e. the Araneae (spiders), with

just one truly aquatic species (e.g. Foelix 2010, Dimitrov and Hormiga, 2021). While the

Araneae are comparatively homogenous in foraging styles – all are true predators and

most are prey generalists, yet showing an impressive array of true predation styles, from

ambushing to active hunting to luring and trapping – the Acari are very diverse, from

strictly parasitic throughout life, to changing between parasitic and free-living, to living

on the same host throughout life and over several generations, to changing hosts to being

always free-living, from fungivores, detritivores to herbivores, carnivores and omnivores,

from habitat and diet generalists to extreme specialists exploiting just one type of food or

individual host (e.g. Walter and Proctor, 2013). Extreme diversity and variability also

apply to reproductive modes, which span from sexual direct and indirect sperm transfer

to asexual cloning (thelytoky). Together, the arachnids are mega-diverse in all major

aspects of ecology and behavior.

The grand challenges presented here are viewed from an arachnid perspective though

some are not specific to arachnids, as are some overarching questions addressed in

arachnid research. The challenges and opportunities mentioned are not meant to be

exhaustive, are certainly partly subjective and growing out of own current interests and
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/frchs.2022.1097945/full
https://www.frontiersin.org/articles/10.3389/frchs.2022.1097945/full
https://www.frontiersin.org/articles/10.3389/frchs.2022.1097945/full
https://www.catalogueoflife.org/
https://www.catalogueoflife.org/
https://www.frontiersin.org/journals/arachnid-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frchs.2022.1097945&domain=pdf&date_stamp=2022-12-22
mailto:peter.schausberger@univie.ac.at
https://doi.org/10.3389/frchs.2022.1097945
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/arachnid-science#editorial-board
https://www.frontiersin.org/journals/arachnid-science#editorial-board
https://doi.org/10.3389/frchs.2022.1097945
https://www.frontiersin.org/journals/arachnid-science


Schausberger 10.3389/frchs.2022.1097945
research. To provide structure and ease readability, the

challenges and opportunities are categorized into conceptual,

topical and operational, though some bullets could be listed

under either heading because touching on elements pertaining to

all of them. Ecology and Behavior are such broad fields that

many issues listed in other grand challenges articles of Frontiers

in Arachnid Science also apply to, or overlap with, the section

Arachnid Ecology and Behavior.

The aim of this contribution is not only to highlight grand

challenges but also to point at magnificent opportunities for

research in ecology and behavior of mites and spiders and other

arachnids. Together, the discussed issues represent an eclectic

collection of what I currently consider as important concepts

and exciting topics in contemporary arachnid ecology

and behavior.
Conceptual issues

(i) Understanding the principal factors that govern the

occurrence, distribution and abundance of species is a

fundamental challenge in arachnid ecology and behavior. Trait-

based approaches, which focus on the role and relevance of

measurable organismic/individual characteristics, have recently

become major conceptual viewpoints to explain species,

community and ecosystem patterns and processes. Identifying,

describing, collecting and linking key individual-level functional

traits, i.e. phenotypic traits such as physiological, morphological,

behavioral and life-history characteristics that correlate with

individual, population- and community-level success is a grand

challenge with the ultimate reward of allowing to compare patterns

and processes across taxa and ecological contexts (Zakharova et al.,

2019; De Bello et al., 2021; Green et al., 2022). Within arachnid

research, trait-based approaches have already taken form in the

creation of a trait-database in the Araneae (Pekar et al., 2021) and

similar databases are yet to be initiated for the Acari and other

arachnid groups.

(ii) Linked to fostering trait-based approaches is featuring

arachnids as model animals to address overarching ecological and

behavioral questions. Establish, consolidate and extend the role of

arachnids as model animals in research on predator-prey

interactions, mating (from thelytoky to indirect sperm transfer to

direct copulation) and reproduction (from pedogenesis to sexual

cannibalism as fitness-maximizing reproductive strategies) to

movement and dispersal, group-living, personality formation and

cognition. Arachnids are very peculiar in some aspects (e.g. silk and

venom production or co-evolution with hosts) but, at the same

time, some arachnid species represent formidable model organisms

to test broad general concepts and hypotheses. For example,

arachnids feature prominently in pioneering research on extended

phenotypes (e.g. Zhou et al., 2022), multi-trophic interactions (Vet

and Dicke, 1992; Van Rijn et al., 2002; Heil, 2008; Dicke, 2009,

Schausberger, et al., 2021a), multimodal sensory perception (e.g.
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Herberstein et al., 2014; Uetz et al., 2016), or co-evolutionary arms

races (Proctor, 2003; Dicke, 2009; Noel et al., 2020; Smith et al.,

2022), just to mention a few. Some mites and spiders have the

potential to become similarly significant models as honeybees and

bumblebees are for cognition (e.g. Jakob et al., 2011; Japyassu and

Laland, 2017, Cross et al., 2020; see also bullet (vi)). Mites have

served for decades as one of the prime groups in multi- and tri-

trophic interaction research such as the interaction between

predatory mites, herbivorous mites, plants, and below- and

above-ground (micro-)organisms (e.g. Vet and Dicke, 1992;

Schausberger et al., 2012). The prominent role of mites in this

field started with the seminal findings by Sabelis and van de Baan

(1983) and Dicke and Sabelis (1988) that plants change their

volatiles upon attack by herbivorous spider mites to recruit

predatory mites to help the plants defend themselves against the

attackers. Spiders and mites present life styles all the way from

solitary to group-living; though no eusocial arachnid species is

known, some have highly evolved ways of living together (such as

the group-hunting Anelosimus – Lubin and Bilde, 2007; Avilés and

Guevara, 2017- and nest-constructing and -sharing bamboo mites -

see Saito, 2010 and Schausberger et al., 2021b for an overview - or

aggregating harvestmen – Escalante et al., 2022). Some mite species

with fast development, high reproduction and short generation

times, such as two-spotted spider mites Tetranychus urticae, are also

amenable to experimental evolution (e.g. Belliure et al., 2010; Macke

et al., 2011), which parallels some insect species, such as Drosophila

melanogaster, and is almost impossible to achieve over reasonable

timescales in any of the large long-lived animals.

(iii) Adopting multi-, inter- and cross-disciplinary research

approaches. Linking diverse disciplines and approaches is a

grand challenge across the biological and ecological sciences.

The ascent of Behavioral Ecology in recent decades (e.g. Krebs

and Davies, 1978 and later editions, and other textbooks;

Stuhrmann, 2022) is a prime example of a relatively young

discipline being highly successful, because it is multidisciplinary,

combining evolution, behavior and ecology, by its very nature.

Behavioral Ecology is also one of the most integrative areas of

modern biology, because of uniting the study of function and

mechanisms (Monaghan, 2014). Arachnids feature prominently

in Behavioral Ecology, in particular in research on animal

personalities (e.g. Duran et al., 2021), group-living (e.g. Avilés

and Guevara, 2017, Schausberger, et al., 2021b), sexual selection

(Proctor, 1998; Herberstein et al., 2014; Oku, 2014; Andrade,

2019; Peretti et al., 2021), or phenotypic plasticity ( Agrawal

et al., 2002, Walzer and Schausberger, 2011; Evans et al., 2019;

Yip et al., 2021; Schausberger and Rendon, 2022), just to

mention some areas. One of the cornerstones of Behavioral

Ecology is quantifying the adaptive value of a given behavior.

Many arachnids, like other small and comparatively short-lived

animals, have the enormous advantage over larger long-lived

ones that it is relatively easy to measure and link behavioral, life

history and fitness traits, up to lifetime reproductive success.

Many of those small-sized and comparatively short-lived
frontiersin.org
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animals are also favorable regarding experimental replication

and inter-individual variability. Laboratory or experimental

populations of larger animals are often founded by one or few

individuals, which compromises variability among tested

individuals and with that the explanatory power and

generalizability of traits measured. Though primarily

concerned with questions 3 and 4, contemporary Behavioral

Ecology embraces studies that implement Tinbergen’s classic

four approaches to studying behavior, considering both ultimate

and proximate causation (Bateson and Laland, 2013).

(iv) Increasing the level of resolution in behavioral

investigations, from group means to individual differences, and

fostering individual-based approaches in population and

community ecology. Arachnids have proven as superb animals

for studying animal personalities (Réale et al., 2007) and cascading

effects of personalities to higher organizational levels and

interactions with other taxa (e.g. Loftus et al., 2022). In animal

personality research, spiders feature similarly prominently as the

much more numerous and speciose insects (search in Clarivate

Analytics, Web of Science Core Collection October 30 2022,

“spider” AND “personality” 232 hits, just in abstracts 80 hits;

“insect” AND “personality” 210 hits, just in abstracts 76 hits) and

there is more to come.

(v) Silk producing arachnids are marvelous model animals

for evolutionary-grounded research into extended phenotypes

(Dawkins, 1982). Web spiders (Araneae) and spider mites

(Tetranychidae) have extended phenotypes through their silk

threads and webs. They are constantly informed about more

distant events as long as they are attached to their web for

example via signal threads (Mortimer et al., 2015), and they can

perceive changes happening in the web or on single threads via

chemical, tactile and/or visual sensory modalities (e.g. Zhou

et al., 2022). Science writer Robson (2020) has put it in flowery,

albeit also provocative, words “But we are now discovering that

some arachnids possess hidden cognitive abilities rivalling those of

mammals and birds, including foresight and planning, complex

learning and even the capacity to be surprised. Stranger still, the

delicate silk threads they spin out behind them, so easily swept up

by a feather duster, help them to sense and remember their world.

Indeed, spiders’ silk is so important to their cognitive abilities that

some scientists believe it should be considered part of their mind.”

(vi) Extending bullets (ii), (iv) and (v) is highlighting the

potential of arachnids to put vertebrate-biased (vertebrocentric)

paradigms of how big a brain, or how many neurons, are needed to

perform advanced cognitive tasks, and/or interpretation of

mastering these tasks, to the test. Arachnids have the potential to

keep up with the amazing capabilities of model insects that have,

a.o., shown to master tool use (Alem et al., 2015 for bumblebees;

Maak et al., 2020 for ants), flexibility in novel task solving

(innovation; Loukola et al., 2017 for bumblebees), play behavior

(Dona et al., 2022 for bumblebees), or teaching behavior (Coolen

et al., 2005 for crickets). All these phenomena were initially thought

to be only accomplishable by large brainers. Arachnid cases in point
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are the amazing novel problem-solving capacities of jumping

spiders Portia spp. (Cross et al., 2020), the orb-weaving Cyclosa

spp. creating spider-like decoys to fool predators (Tseng and Tso,

2009; Drake, 2014) or social experience-based attentional shifts in

phytoseiid predatory mites (Strodl and Schausberger, 2012). These

and many other pertinent arachnid and other arthropod studies

(e.g. Lihoreau et al., 2012) contribute to rethink how large a brain, or

which central nervous system (CNS)/body ratio, is needed tomaster

seemingly cognitively challenging tasks and/or to rethink

interpretation of accomplishing these tasks. Due to their

amenability to manipulative experimentation and the ease of

linking life history and behavioral traits, arachnids are ideal

models to assess the adaptive value and constitutive and

operational benefit-cost trade-offs of cognitive functions such as

learning (Mery and Kawecki, 2003; Mery and Kawecki, 2005). As a

side note, a prominent experimental “intelligence” paradigm has

recently been seriously challenged within the vertebrates, that is, the

paradigm of the mirror test being suitable to provide evidence of

self-awareness has been hijacked by 40 mg-brain mass cleaner

fishes, Labroides dimidiatus, passing the mark test (Kohda et al.,

2019; Kohda et al., 2022). These fishes are more than twice as large

(~8 cm average body length) but inferior in CNS volume to large

golden orb-weaver females Nephila spp. (Quesada et al., 2011).

(vii) Explaining the relevance of fundamental research to, and

translating fundamental science into, applied problem-solving. By

their very nature, arachnids are great animals for translational

science because many arachnid species are relevant in agriculture

as either pests or beneficial natural enemies or in human and

veterinary medicine as parasites and vectors of diseases. Also,

arachnids are a rich source, particularly because of silk and

venom production, for the development of bio-inspired products

(see also Kuntner, 2022). Arachnid ecology and behavior is an

excellent field for translation of fundamental knowledge to help

achieve sustainability goals (alleviating global hunger, warranting

food security, and natural resources preservation), via science-based

applied ecology and behavior such as for biological control of crop

and livestock pests (e.g. Knapp et al., 2018) and other ecosystem

services provided by mites and spiders. Providing basic ecological

and behavioral knowledge about arachnid groups transmitting

human diseases such as ticks can contribute to global health. The

afore-mentioned trait-based approaches are relevant in these

challenges by identifying characteristics of promising biocontrol

agents or invasive species or pests or human followers (Pekar

et al., 2021).
Topical issues

(i) Recurrent themes across biology and ecology, and across

taxa, are interpreting the causes and effects of phenotypic plasticity

and sensitivity to environmental variability. Understanding the

links between genotypes and phenotypes is a prime issue in

biology and ecology, particularly for the evolution and
frontiersin.org
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regulation of phenotypic plasticity and reaction norms, and how

behavior interacts via feedback loops with other types of responses

(e.g. Sih et al., 2015). This applies to both within- and

transgenerational plasticity and their interaction (e.g.

Bonduriansky and Day, 2009; Stamps and Bell, 2021;

Schausberger and Rendon, 2022). Furthering our understanding

of behavioral variation and how it underlies variation in ability to

cope with contemporary human-induced, rapid environmental

change (HIREC), and finding out how HIRECs and climate (or

global) change affect the ecology and behavior of arachnids are

urgent tasks. Pertinent research must be conducted in

consideration of adaptability and phenotypic plasticity; pre-

experimental treatments and experimental designs must be well-

thought out because artificial, abrupt exposure to extreme future

conditions may lead to erroneous inferences. Behavior is typically

the first response when organisms are confronted by changes in

the external environment, and also, via choice of environment, a

way whereby organisms can influence their environmental factors

that affect the development and expression of all their traits.

Behavior thus plays a key role in shaping the development and

expression of integrated responses to the environment.

Investigating adaptations to urban versus natural habitats (also

linked to arachnid personality research) and trade-offs in

adaptation of arachnids to “novel” human-altered or human-

made habitats and ecosystems are related challenges. Spider mites

and other herbivorous mites are big in applied ecology, serving as

model animals for the ability to respond to agricultural

intensification and environmental stressors such as pesticides

and resistance development (e.g. Van Leeuwen and Dermauw,

2016). Many spiders are highly sensitive indicators to any kind of

human disturbance of their habitats (e.g. Mader et al., 2016).

(ii) Conservation of arachnids is an emerging grand

challenge and an especially difficult task for mites for their

small size and most species as yet being undetected,

undescribed and unnamed (see the arachnid groups in the

IUCN species survival commission: https://www.iucn.org/our-

union/commissions/group/iucn-ssc-spider-and-scorpion-

specialist-group and https://www.iucn.org/our-union/

commissions/group/iucn-ssc-mite-specialist-group). Many

mite species will go extinct before we even knew that they

existed; if lucky, future researchers will then detect some of

these species embedded in amber or fossilized in some other

way. At which point or when to conclude that a given minute

mite species is threatened or gone extinct? Clearly, conservation

efforts of arachnids, and especially mites, must be heavily

concerned with knowing about and defining the habitat and

microhabitat characteristics that are needed by a given species or

species ensemble (Ozman-Sullivan and Sullivan, 2021). Trait-

based approaches (see conceptual bullet (i)) play a role here too.

Disappearance or alterations of critical habitat or microhabitat

or host features may then be used to make inferences to

extinction risk of the species concerned. Also, the use of exotic

arachnids in biological control and their possible impact on
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native fauna is an issue in conservation though one should keep

in mind that many agricultural and horticultural plants are of

exotic origin and so are many of their pests and natural enemies.

The nowadays occurrence of many of these initially exotic plant

and animal species is thus in part an inevitable phenomenon of

humankind since adopting agricultural habits more than 12.000

years ago. Another issue to consider in conservation are cryptic

species (applies especially to the Acari), which remains a

somewhat slippery concept because of confusion which species

concept is applied in the determination of crypticity (Heethoff,

2018; see also Kuntner, 2022). In most cases, entities that are

considered cryptic species based on molecular data have not

been tested whether they also represent different species

according to the biological species concept (Mayr, 1942).

(iii) Considering arachnids as holobionts with all the micro-

and macro-organisms that live on and in them permanently or at

least over extended periods of time (Medina et al., 2022). Mites

and spiders are rich in harboring reproductive and other-function

endosymbionts and other microorganisms (Goodacre, 2011; Zhu

et al., 2018; Schausberger, 2018; Pelmutter and Bordenstein, 2020;

Konecka, 2022). Some of these microorganisms change between

individual animals within and between species and animals and

plants (Staudacher et al., 2017). Microorganisms in the

belowground sphere of plants may influence the plant-

inhabiting arachnids aboveground (Schausberger et al., 2012);

belowground microorganisms such as mycorrhizal fungi

connect individual plants with each other, with their mycelia

functioning as communication railroads (e.g. Song et al., 2010)

and thereby creating fascinating cross-kingdom networks. Micro-

and macro-symbionts and -parasites may strongly affect the

phenotypes (e.g. Goodacre and Martin, 2012; Zhang et al., 2018;

Durkin et al., 2021) and take some or complete control of their

host behavior such as for example observed in zombie spiders that

are heavily manipulated in web-spinning behavior by their

ectoparasitoids, acting as master manipulators (Takasuka et al.,

2015). For many arthropods, including some spiders and mites,

researchers started to unveil the composition of their microbiomes

(e.g. Pekas et al., 2017; Busck et al., 2020) yet only a few of those

microorganisms and their interactions are known for their

functions and effects on the phenotype of their hosts. Exploring

the functions of the microbiome members and scrutinizing their

role in shaping the phenotypes of their hosts are grand

future challenges.
Operational issues

(i) Most arachnids are small (body length commonly

between 0.5 and 15 mm when adult), with some eriophyid

mites being as tiny as 0.1 mm (Krantz and Walter, 2009).

Small size can be challenging in field studies and biochemical

and molecular analyses but can be a huge asset in manipulative

experiments. Detectability of specificities and differences in
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chemical signatures used in social recognition or other contexts

or in metabolism and endocrinology or in individual genetic

makeup can be challenging because of little biomass. Marking,

tracing and tracking multiple tiny individuals can be a challenge

for videotaping and automated behavioral analyses, and is

especially difficult in the field. Regarding the latter, novel

marking techniques such as SmartWater open great

opportunities for individual trackability even for such tiny

animals as plant-inhabiting mites, which have body lengths of

0.5 mm and less (e.g. Rosser et al., 2022). On the very positive

side, small size renders some mite and spider species perfectly

accessible for manipulative experimentation in the laboratory;

their small size allows keeping and observing single individuals

and even populations and communities in small microcosms of

few cm² or cm³.

(ii) Refining choice of measurable parameters that best reflect

the behavioral tendencies in animal personality research and

identifying critical traits for trait-based ecological approaches.

These challenges are not specific to arachnids but arachnids play

prominent roles in these areas, as laid out in the conceptual issues.

In their review, Carter et al. (2013) provide for a nice treatise of the

critical relevance of what and how and under which circumstances

to measure, and determining the parameters that reliably reflect

behavioral tendencies in any of the five trait categories of animal

personalities, i.e. activity, aggressiveness, sociability, exploration

and boldness (Réale et al., 2007). Originally developed for plants,

but also applicable to animals, Lavorel et al. (2007) set out the

requirements for individual traits to be useful in trait-based

ecology: connected with a function; easy to observe and quantify;

measurable in a standardized way across species and

environmental settings; range of values that is comparable

among individuals, species and habitats.

(iii) Further integrating “omics” into behavior and ecology

(see also Kuntner, 2022). Despite molecular biology having started

to rise already six to seven decades ago, with gaining momentum

three to four decades ago with the advent of techniques such as

PCR, it is still a grand challenge to integrate “omics” (genomics,

proteomics), epigenetics and behavioral and ecological

investigations. Such efforts hold promising potential for big

leaps in research concerning the link between phenotypes and

gene regulation and expression, or pinpointing genes that are

involved in given behaviors. Molecular tools have already allowed

tremendous advances in arachnid research on tri-trophic

interactions (e.g. Van Leeuwen and Dermauw, 2016; Staudacher

et al., 2017), paternity determination (Schausberger et al., 2016),

prey digestion (e.g. Gomez-Martinez et al., 2020; Parimuchova

et al., 2021), interaction with micro-organisms (e.g. Pekas et al.,

2017; Zhu et al., 2018), or taxonomy (e.g. Skoracka et al., 2015;

Dimitrov et al., 2017; Starrett et al., 2017; Dos Santos and Tixier,

2017). The work by Smith et al. (2022) on hair follicle mites is an

illustrative example of how the clever integration of diverse

methodological approaches can result in comprehensive, multi-
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faceted knowledge gains of the ecology and behavior of

an arachnid.

(iv) Pre-experimental history/pipeline is often kind of a

Pandora’s box in behavioral and individual-centered ecological

studies. The STRANGE framework developed by Webster and

Rutz (2020) is a commendable critical initiative to mitigate the risk

of sampling bias, to help avoiding biased inferences and to improve

representativeness and generalizability of findings in animal

behavior research. STRANGE is the acronym for several inter-

related pre-experimental factors being critical to interpretation and

generalizability of animal behavior studies, i.e. social background,

trappability and self-selection, rearing history, acclimation and

habituation, natural changes in responsiveness, genetic makeup

and experience. This framework is concerned with raising

awareness of the potential of inadvertent influences before

experimentation that bias the experimental outcome, strives to

improve representativeness of animal behavior studies, and

suggests reporting guidelines to allow viewing published studies

within this context. Reporting should already start with information

about where, when, how and howmany specimens were sampled in

the wild or obtained from other sources to found laboratory

populations, how representative are they, did inbreeding occur, or

the time elapsed between founding and experimentation. Individual

pre-experimental history and treatments with respect to housing

conditions, feeding, mating, social interactions, multiple use in

experiments, or miscellaneous abiotic and biotic stressors, may all

exert inadvertent influences on experimental outcomes and

interpretations. The STRANGE framework and guidelines

(Webster and Rutz, 2020) apply to any type of, and any taxon

used in, animal behavior studies, and is encouraged by arachnid

ecology and behavior.
Conclusions

The journal Frontiers in Arachnid Science is the first to unite

research on spiders, mites and other arachnids under one roof and

thereby serves for a fresh, inspiring and stimulating outlet for

arachnid research. Arachnid research is also a proud part of the

entomological sciences, with many parallels and similarities

between the eight-legged and the six-legged. Can arachnid

researchers contribute to meet the grand challenges set out by the

world’s largest entomological organization, the Entomological

Society of America, i.e. global health, feed the world and invasive

species (https://entomologychallenges.org/)? Yes, we can! Arachnid

research is highly relevant to each of these global grand challenges

and ready to take on many other, more specific basic and applied

challenges, as illustrated by the Arachnid Ecology and Behavior-

related issues discussed here, as well as by the field grand challenge

in Frontiers in Arachnid Science byMatjaz Kuntner (Kuntner, 2022)

and the specialty grand challenges in Arachnid Morphology,

Systematics and Evolution by Jason Bond, in Arachnid Diversity,
frontiersin.org

https://entomologychallenges.org/
https://doi.org/10.3389/frchs.2022.1097945
https://www.frontiersin.org/journals/arachnid-science
https://www.frontiersin.org
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Conservation and Biogeography by Ingi Agnarsson and in Arachnid

Microbiota and Diseases by Alejandro Cabezas-Cruz, all published

in this very journal.
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