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Introduction

Arachnids, an ancient lineage of chelicerate arthropods, are the largest order of

carnivorous animals on the planet. Their diversity and abundance render them the

prominent predators of insects and other arthropods in most ecosystems. Yet, they are

relatively poorly known, for example, the known diversity of spider around 51,000 species

represents but a fraction of their actual diversity that may be as great as 150-200,000 species.

Arachnids as a whole may comprise a lineage of over a million species. Most of the yet to be

discovered species are likely tropical. Recent years have seen a major growth in the

understanding of arachnid biogeography, where they are highly informative due to great

variability in dispersal potential. Some spiders are among the first organisms to arrive in any

newly formed habitat, such as islands emerging from the sea, other arachnids may move less

than a meter in their entire lives. With respect to conservation, research on arachnids is just

beginning to emerge. Yet arachnids show great promise in conservation biology due to their

diversity, role as key predators, and the highly geographically structured populations of

dispersal limited groups. Thus opportunities in research of arachnid diversity, conservation,

and biogeography abound.

The Arachnid Diversity, Conservation and Biogeography section of Frontiers in

Arachnid Science aims to serve as a forum for new ideas, perspectives, and innovative

research approaches utilizing arachnids to enhance our understanding of biodiversity in its

broadest sense, including its formation and preservation. It publishes high quality, rigorously

peer-reviewed, research, reviews, and commentaries where emphasis will be placed on

comparative and integrative studies that place arachnids as eminent research objects to

understand global patterns of diversity, historical biogeography, and conservation in the light

of ongoing drastic changes in habitat and climate. One key aim is to offer a catalytic venue

that synergistically unites research from historically disparate groups of scientists (i.e.

acarologists and those studying the remaining arachnological orders), and also to invite

articles on other extant or extinct chelicerates. Especially welcome are papers that utilize

arachnids to investigate broad biological questions that should be of interest to audience far

beyond their taxonomic scope. Grand challenges will include:
• Assess arachnid species richness on local and global scales for comparative

biodiversity.
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• The distribution of diversity, endemism, origin of species, and

fundamental and comparative biogeography addressing how

species became to occupy landmasses and the patterns and

processes of diversification along broad time scales.

• Estimation of conservation priorities, assessment and

conservation status of species, clades, and communities, and

research on topics such as habitat degradation and climate

change that cause major threats to biodiversity.
All of these will benefit from the rapidly developing genomic

techniques where transcriptomic and phylogenomic methodology

can aid in diversity estimation, biogeographic reconstruction, and

conservation research, ranging from ecological to evolutionary

time scales.
Grand Challenge 1. Assess
arachnid species richness for
comparative biodiversity

Research on biodiversity goes back many centuries but was in

some sense formalized with the publication of the 10th edition of

Systema Naturae by Linnaeus, 1758. Naturalists were, of course,

aware of biodiversity before this time, but the book is the origin of

formal classification and tabulation of species that we still recognize

today. With one exception: In spiders, cataloging of biodiversity

started a year earlier when a student of Linnaeus, Carl Alexander

Clerck, published Aranei Svecici (Clerck, 1757). The book describes

taxonomically 67 species of spiders found in Sweden. These 67 species

are the first described species acknowledged in the currently used

synthesis of global biodiversity (World Spider Catalog, 2022).

Perhaps we may attribute this privileged position of spiders to

happenstance, however, arachnids continue to play a prominent role

in biodiversity research today. Arachnids are impressively diverse

with over 110,000 known species (Adis and Harvey, 2000; World

Arachnida Catalog, 2022), which is believed to be only a fraction of

actual diversity (e.g. Schatz and Behan-Pelletier, 2008; Agnarsson

et al., 2013). An important aspect of spiders is that they form the

largest clade of exclusively predatory organisms on earth, and the

planet’s preeminent consumers of insects (e.g. Coddington and Levi,

1991; Foelix, 2011; Kuntner, 2022). Many other arachnids are also

predators, while especially among the Acari, there is enormous

richness of key parasites and pests of great economic interest such

as ticks or herbivorous mites. The interplay between the diversity of

predatory vs prey animals is a topic of broad interest (Shurin et al.,

2002; Griffin et al., 2013), but poorly studied in arachnids. Further, the

intimate association of parasites and their hosts are starting to reveal

enormous gaps in our understanding of diversity among relatively

poorly studied parasitic organisms such as Acari (Magalhães et al.,

2007; Skoracka and Dabert, 2010; Skoracka et al., 2015). The global

distribution of arachnids in practically every terrestrial habitat also

renders them ideal to study diversity and diversification in specialized

habitats such as mountaintops and caves, characterized by rapid

species turnover and extraordinary beta diversity, and where

knowledge gaps are particularly large (Arnedo et al., 2007; Cardoso,

2012; Esposito et al., 2015; Hendrixson et al., 2015; Harms, 2018;
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Mammola, 2019; Mammola et al., 2019; Agnarsson et al., 2023).

Challenges and opportunities therefore abound in the study of

arachnid biodiversity.

Arachnid biodiversity research, especially on spiders, has featured

prominently in the development of species richness inventories. These

influences led to improved study design (Coddington et al., 1991;

Sorensen et al., 2002; Cardoso, 2009), where arachnologists have helped

bringing about progress in empirical and analytical methodology such

as estimation of species richness from inventory data (Colwell and

Coddington, 1994; Cardoso et al., 2009, Coddington et al., 2009). For

arachnids, the use of molecular and integrated data for species

identification (Hebert et al., 2003), and for circumscription and

diagnosis (Bond and Stockman, 2008; Macias-Hernandez et al., 2010;

Hamilton et al., 2011; Bond et al., 2021) are notable. Indeed, through

use of integrative approaches in taxonomy, the Acari are emerging as a

group where cryptic diversity may be rampant and currently known

species richness may be only a fraction of true biodiversity (Skoracka

et al., 2015; Dantas-Torres, 2018; Young et al., 2019; Lienhard and

Krisper, 2021; Pfingstl et al., 2021). Many arachnids, including spiders,

have a complete up to date taxonomic database online (World

Arachnida Catalog, 2022) and spiders have featured in the

development of improved methods of imaging and referencing

images (Ramirez et al., 2007), computer databasing and

georeferencing of specimens (e.g. Goblin Spider PBI, http://research.

amnh.org/oonopidae/), cyber-informatics (Penev et al., 2009; Penev

et al., 2010; Miller et al., 2012), collection digitization and linking of

distribution data to public databases such as the Global Biodiversity

Information Facility (GBIF http://www.gbif.org/). Another recent

progress is the development of less subjective criteria for species

delimitation (Bond and Stockman, 2008).

Of course, no consideration of arachnid biodiversity is complete

with reference only to their high number of species. Arachnids

contribute massively to biodiversity through their function e.g. as

major predators and parasites in ecosystems, resulting in great

diversity of species interactions and ecosystems. Furthermore,

arachnids are prolific producers of biomaterials most notable among

which are venoms and silks (Foelix, 2011). The variety of such

biomaterials (Sethy and Ahi, 2022), and their genetic underpinnings

(Arakawa et al., 2022; Babb et al., 2022)—most of which remain largely

unknown (e.g. we know only a handful of the likely hundreds of

thousands of silk types produced by tens of thousands of species)—

represent underappreciated dimensions of biodiversity. Further, the

structures produced, for example, through silk use such as spider webs

are both nets and habitats that contribute to habitat diversity. Thus, a

great challenge remains in detailed understanding of arachnid

biodiversity far beyond their species richness.

In sum, research on arachnid biodiversity is at the forefront of the

field as a whole and Frontiers in Arachnid Science aims to provide a

venue for studies that continue to demonstrate broad patterns and test

key questions relevant to the broadest possible audience in the field.

Among prominent challenges are estimates of true species richness of

arachnids, the diversity of their ecological interactions, and greatly

understudied diversity of biomaterial products and constructs. Filling

knowledge gaps both in the largest groups as well as among small,

cryptic, specialized, and poorly studied—but likely highly diverse group

—may revolutionize our understanding of the biodiversity and role of

arachnids in natural and anthropogenic ecosystems.
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Grand Challenge 2. Biogeography and
the origin, diversity, and distribution of
species through time

A critical question in biology is how organisms come to occupy

the areas and habitats they are found in, and what factors underlie

diversification, persistence, and extinction of lineages. The modern

field of biogeography encompasses the distribution of organisms

through time, and the history of splitting (diversification) as it

relates to geography, geographical changes over millions or

hundreds of millions of years, and a variety of geographical barriers

that may limit gene flow among populations (e.g. Cox et al., 2023).

Furthermore, biogeography aims to marry both historical and current

processes, drawing from the massive toolboxes of evolutionary and

ecological disciplines (Wiens and Donoghue, 2004; Rominger et al.,

2016). Given the multidisciplinary nature of biogeography, and the

ancient time scales that can be involved, the field faces some uniquely

arduous challenges. First, historical biogeography assumes accurately

dated phylogenies. While progress is currently rapid in both data

gathering through NGS and methodology to integrate hundreds or

thousands of loci to best infer trees, phylogenies remain hypotheses

filled with ambiguities due to various issues such as rapid speciation,

incomplete lineage sorting, reticulation, horizontal gene transfer, gaps

in taxonomic knowledge, incomplete taxon sampling, long branch

attraction, and others (Young and Gillung, 2019; Kapli et al., 2020).

Layered on top are challenges with accurately dating ambiguous

phylogenies with sparse and often speculative fossil evidence and

inaccurate molecular clocks. These data then have to be aligned—to

our best abilities—with geological history, itself fraught with

difficulties, for example, due to ambiguities in existence, position,

and timing of landmasses and potential barriers (for bibliography of

vicariance biogeography see Agnarsson et al., 2019). Furthermore,

obligate hematophagous ectoparasites within Arachnida such as ticks

offer a unique challenge to the field of biogeography, as their dispersal

and distribution results from the interplay of several factors including

host dispersal, vegetation coverage and climate variables which in

turn influence the distribution of vector-borne diseases (Estrada-Peña

et al., 2012; Estrada-Peña et al., 2014). As biogeographers we like to

tell stories and stories attract readership; a major challenge is to curb

our narrative to candidly reflect the great ambiguity inherent in our

discipline. Thus, we especially welcome work that critically assesses

the weight of the evidence favoring one hypothesis over another.

Megadiverse lineages, such as arachnids, are perhaps the best suited to

study nuances of biogeography in part directly due to their diversity

(high resolution tools, redundancies that may compensate for

incomplete sampling), and (often) abundance (relative ease of

intensive sampling without great impact on populations). The

growing emphasis on invertebrate biogeography, where various

arachnids play an important role (Boyer et al., 2007; Opatova et al.,

2013; Fernández and Giribet, 2015; Chamberland et al., 2018;

Nogueira et al., 2019; Pfingstl et al., 2019; Chamberland et al., 2020;

Chamberland et al 2022; Cain et al., 2021; Derkarabetian et al., 2021;

Santibáñez-López et al., 2021; Monjaraz-Ruedas et al., 2022),

demonstrates the opportunities that lie ahead in the field.

One grand biogeographic challenge has long been how to explain

occurrence of biota on widely separated landmasses, and on oceanic
Frontiers in Arachnid Science 03
islands, especially among organisms that lack wings or other obvious

means of transoceanic transport. Early in the discipline the field seemed

to face an unpleasant choice between unlikely alternative hypotheses,

preposterous landbridges lacking geological evidence and nearly

unfathomable long-distance dispersal shared by different taxa

differing in dispersal abilities. As an early skeptic of hypothetical

landbridges created almost at will to explain global biogeography,

Darwin went to great lengths testing and demonstrating the ability of

different organisms to disperse over water (reviewed in Winkworth,

2010). Dispersal was a convenient and all-encompassing explanation

(in principle, all distributions can be explained via ad hoc hypotheses of

long-distance dispersal) and was soon favored over poorly founded

land-bridge hypotheses. However, with the eventual acceptance of

Wegener´s theory of plate tectonics (Wegener, 1924), dispersal

hypotheses came under increased scrutiny, with a common criticism

of it being a theory that can potentially explain everything, thus in the

end explaining nothing. A robust field of biogeography then developed

that attempted to explain all distributions with reference to geological

change; phylogeny was to recapitulate geography. More recently, the

obvious role of dispersal has been reappreciated (de Queiroz, 2005;

Gillespie et al., 2012). In fact, modern historical biogeography spends a

lot of thinking on the relative importance of geography (vicariance)

versus dispersal in shaping biotas and driving diversification. There,

arachnids are playing a pivotal role in this discipline. For example,

theoretical foundations for testing dispersal hypotheses have been laid

down by Rosemary Gillespie and colleagues (Gillespie et al., 2012), an

arachnologist that has worked for decades on spiders on islands,

especially Hawaiian and Polynesian spiders. Hence, among arachnids

we find severely dispersal limited groups that carry the deep imprints of

geological history and are excellently suited to test ancient vicariance

biogeographical patterns (Boyer et al., 2007; Opatova et al., 2013; Xu

et al., 2015; Cain et al., 2021; Giribet et al., 2022) and others that are

more prone to movement (among them taxa that are distributed across

the globe via jet streams high in the atmosphere) and have helped

inspire the modern field of island biogeography (Gillespie, 2002;

Hormiga et al., 2003; Gillespie, 2004; Gillespie et al., 2008; Gillespie

et al., 2012; Rominger et al., 2016). Yet, a major challenge remains in

accurately estimating dispersal probabilities, usually simply inferred

from the organism’s biology and e.g. record of ballooning in spiders.

Better estimations of dispersal propensities will improve the discipline

(Kuntner and Turk, 2022). Thus, the role of arachnids in understanding

local and global biogeographical patterns as they reflect the interplay

between dispersal and vicariance will likely continue to grow.
Grand Challenge 3. Conservation
research and measures to protect
biodiversity in times of planetary crisis

Once we have discovered and described species (first section above)

and have some understanding of their phylogenetic relationships and

processes shaping their distribution and diversification (second section

above), we can start looking at questions surrounding the value of

biodiversity and the importance and means of its conservation. It is

well-known that despite the vast majority of life on earth being

invertebrates, little effort is afforded to conservation research and
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planning and implementation of conservation action for this ´silent

majority´. Cardoso et al. (2011) identified seven impediments to

effective conservation of invertebrates, among them most have to do

with lack of knowledge on the animals and their roles, from lack of

scientific knowledge such as true number of species (including lack of

funding, species description, distribution etc.), and from knowledge and

interest from the public and policy makers. The effort allocated to

invertebrate conservation is overshadowed not the least in comparison

to popular larger mammals or other ´charismatic´ species (Cardoso

et al., 2011; Cardoso et al., 2017; Milano et al., 2021) who receive so

much attention as to cast a ´conservation shadow´ over the majority of

life on earth—a ´conservation charisma challenge´. For example, while

there are over 50,000 known spider species only 148 are currently listed

on the IUCN red list (Milano et al., 2021), the lack of information and

conservation effort is likely even poorer for other arachnids. As outlined

above many arachnids may be cryptic and occur in specialized habitats,

can have very short ranges, and high endemism. Species delimitation in

such groups can have ´High-stakes´ conservation implications (Hedin,

2015), for example, through identifying important habitats, where

charismatic megafauna may be absent. Also, invertebrates may serve

as early indicators of localized habitat loss. Jason Bond (Bond, 2012) e.g.

described a species of Aptostichus spider subsequent to its extinction

from its very restricted habitat patch. Ticks may be an interesting and

perhaps controversial example on the ´value´ of biodiversity, as debate

exists on viewing parasites as biodiversity or pest, and choosing from

using the languages of conservation or control and elimination

(Mihalca et al., 2011).

Therefore, great challenges lie ahead in boosting research effort,

publication of data, and implementing conservation plans and actions

for invertebrate, not the least arachnids. The Diversity, Conservation

and Biogeography section of Frontiers in Arachnid Science thus

especially invites manuscripts on arachnid conservation assessment,

planning, and implementation of conservation action. We aim to be

the preeminent outlet for papers tackling the ´conservation charisma

challenge´, where the public and decision makers fail to see the value

of the many due to the bright light shone by the few. What is the

answer to this dilemma? Clearly it lies in 1) detailed understanding of

the distribution of biodiversity and the large-scale protection of

habitats rather than massive focus on a few species, and 2) in

recognizing major threats to biodiversity, primarily among them

climate change and habitat destruction, and the role arachnids can
Frontiers in Arachnid Science 04
play in both detecting change and guiding conservation effort.

Utilizing information from arachnids to aid in conservation efforts

focused on habitats and regions is a key challenge in the next decades

and we invite papers that move the field forward in this direction.
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