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Minimizing the power consumption in mobile communication networks while ensuring a
minimum quality of service (QoS) for applications is essential in light of the unprecedented
expected increase in the number of connected devices and the associated data traffic
beyond the fifth generation of wireless networks (B5G). This paper considers a cloud-radio
access network (C-RAN) model where a central processor (CP) is connected to the base
stations (BSs) via limited capacity fronthaul links. In the context of our C-RAN setting, we
consider the practical case where the CP has only statistical knowledge of channel state
information (CSI). While conventional wireless systems adopt the treating interference as
noise (TIN) strategy to deal with the interference in the network, this paper instead
considers that the CP applies the rate splitting (RS) strategy by dividing each user’s
message into two parts: a private part to be decoded by the intended user only and a
common part to be decoded by a subset of users, for the sole reason of interference
mitigation in the network. To best account for the channel estimation errors, this paper
addresses the problem of transmit power minimization under minimumQoS constraints on
the achievable ergodic rate per user, so as to determine the beamforming vectors of the
private and common messages as well as the rate allocated to all the users. The
considered problem is of stochastic, complex, and non-convex nature. This paper
addresses the problem intricacies through an iterative approach that leverages both
the sample average approximation (SAA) technique and the weighted minimum mean
squared error (WMMSE) algorithm to obtain a stationary point of the optimization problem
in the asymptotic regime. The numerical results demonstrate the gain achieved with the RS
strategy as compared to TIN, especially under high QoS requirements.
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1 INTRODUCTION

The sixth generation (6G) of mobile communication networks is expected to handle unprecedented
amount of data traffic stemming from a wide spectrum of applications with the diverse nature of
requirements (Saad et al., 2020). To date, traffic growth is driven by content-based applications such
as Netflix and YouTube (Ericsson, 2019; Saad et al., 2020). However, with widespread deployment of
Internet of things (IoT) systems that aim to connect an enormous number of people and devices, the
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focus of future 6G networks is limited not only to maximizing the
achievable data rates of the users but also to efficiently using the
available resources to satisfy the requirements of services
requested from the network.

Hence, keeping the power consumption under manageable
levels is essential for effective operation of 6G networks and also
for reduction of CO2 emissions of information and
communication technology (ICT) toward a green ICT
industry. From the network architectural perspective, cloud-
assisted radio access networks (C-RANs) enable dense
networks and spatial reuse by taking advantage of cloud
computing technologies to realize software-defined radio
(SDR) concepts which can adapt the network resources to
current traffic (Yang et al., 2019). Hence, the elasticity of
provision of resources helps in optimizing the power
consumption in the network while at the same time satisfying
the requirements of users and their applications.

In C-RANs, the base stations (BSs) are connected to the
central processor (CP) via limited capacity fronthaul links.
Using advances of cloud computing technology, the CP
centrally processes the user’s data and allows for efficient use
of computing and radio resources. Through advanced multicell
processing algorithms (Wubben et al., 2014), C-RAN helps in
achieving a significant increase in spectral and energy efficiency
of the wireless network. In particular, the CP jointly encodes the
user’s data and shares the encoded data stream of each user with a
subset of BSs. The CP then establishes cooperative transmission
schemes among the BSs within each cluster by coordinating the
beamforming design.

However, due to the limited fronthaul capacity, the cluster
size of cooperating BSs for each data stream is limited. Hence,
the interference cannot be removed using coordinated
beamforming alone (Gesbert et al., 2010). In non-
orthogonal multiple access–based wireless systems, the
interference in the network becomes the main limiting
factor for achieving a good performance, especially in dense
networks (Gesbert et al., 2010).

Most works in the literature, which study multi-antenna
systems in general (and C-RANs in particular), adopt treating
interference as noise (TIN) as a transmission scheme. In TIN, the
receiver ignores the interference resulting from communicating
with other receivers and considers it as noise (Shi et al., 2015; Pan
et al., 2017a) when decoding its own signals. However, future
wireless networks are anticipated to be dense in order to address
the challenges of emerging applications requiring massive
connectivity under the IoT umbrella (Saad et al., 2020). In this
context, it is essential to come up with a new multiple access
scheme which accounts for the interference in the network. From
the information theoretical perspective, TIN is in general not
optimal and can lead to significant degradation of the
performance in strong interference regimes (Etkin et al., 2008;
Charafeddine et al., 2012). Alternatively, the rate splitting (RS)
scheme which is first proposed in the late seventies by Carleial
(1978) has been shown to achieve the best known performance in
the information theoretical model of two-user interference
channel (IC) (Te Han and Kobayashi, 1981; Etkin et al., 2008).
Although the two-user IC is a simple model of non-orthogonal

multiple access networks, the complete characterization of the
capacity of the two-user IC is still an open problem in general.

To reach the full benefits of cooperative transmission
strategies and the advanced multicell processing in C-RANs,
the majority of works in the literature assume the availability
of perfect channel state information at the transmitter (CSIT), an
assumption which is rather optimistic and difficult to satisfy in
practical systems. The CSI acquisition process in practice is
subject to multiple sources of errors. For instance, in
frequency-division duplex (FDD) systems, the imperfections in
CSI can be due to limited resources in the feedback link (Love
et al., 2008). Other sources of CSIT errors may be due to hardware
imperfections (Maddah-Ali and Tse, 2010), outdated CSI (Zhang
et al., 2009), or simply acquisition of partial CSI only which is
reasonable specifically in dense networks to reduce the overhead
(Shi et al., 2015; Razaviyayn et al., 2016). Inspired by the ability of
the RS strategy to manage the interference in wireless networks,
this paper employs a scalable and robust RS scheme in the C-RAN
with limited fronthaul capacity links between the CP and the BSs.
We study the problem of minimizing the weighted sum of power
consumption subject to per-BS fronthaul constraints with
minimum quality of service (QoS) guarantees for each user,
under the assumption of CSIT imperfections. Next, we discuss
the relevant works in the literature.

1.1 Related Work
Minimization of power consumption is an essential target for
optimizing the performance of dense communication networks
such as the C-RAN. For its importance, the problem of
minimizing the network-wide power consumption while
ensuring a QoS target for all users has been attracting the
interest of research communication in the recent few years.
Pan et al. (2017a) studied the problem of network power
minimization in a green multiple-input multiple-output
(MIMO) C-RAN system. A two-stage algorithm is proposed,
where in stage I an admission control procedure is performed to
guarantee the feasibility of stage II, which deals with joint
precoding and BS selection to minimize the network power
consumption. Pan et al. (2017b) studied the problem of joint
precoding and user selection to minimize the total power
consumption in dense C-RANs with incomplete CSI. Shi et al.
(2014) studied the problem of coordinated sparse beamforming
design minimizes the power consumption in C-RANs. Xia et al.
(2018) investigated a mixed time-scale problem to minimize the
network power consumption which includes the computation
power at the CP and transmit power at the BSs. A joint transmit
power and fronthaul transmission cost minimization problem in
a downlink C-RAN with local caches was considered by Tao et al.
(2016). Pan et al. (2019) also studied a C-RAN with imperfect
CSIT. Pan et al. (2019) investigated a weighted sum-rate
maximization problem in C-RANs with imperfect channel
state information. They proposed a global optimization
algorithm to find the global optimal solution of the problem.
Furthermore, a polynomial complexity algorithm based on the
WMMSE–rate relationship was proposed, which provides a
suboptimal solution to the challenging non-convex problem at
a lower computational cost. The numerical simulations show that
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the performance of the polynomial complexity algorithm is
comparable to the performance of the exponential complexity
global optimization algorithm.

All the works by Tao et al. (2016), Pan et al. (2017a), and Pan
et al. (2017b) assume that the receivers apply the treating
interference as noise (TIN) strategy. From an information
theoretical perspective, TIN is in general a suboptimal
strategy, especially in dense networks as C-RANs
(Charafeddine et al., 2012; Gherekhloo et al., 2016). In the
early 80s, Carleial (1978) and Te Han and Kobayashi (1981)
showed that, for a basic interference channel (IC) which consists
of two transmitters and two users, splitting the message of a user
into a private part decoded solely by the intended receiver and a
common part decoded by both receivers can significantly
improve the achievable rates in such a network. The seminal
work of Etkin et al. (2008) shows that such a rate splitting (RS)
and common message decoding (CMD) strategy achieves to
within one bit of the interference channel capacity. The work
by Dahrouj and Yu (2011) conveys RS–CMD from the
information theory territory and applies it to realistic
scenarios. Dahrouj and Yu (2011) considered minimizing the
transmit power in multicell networks subject to QoS
requirements and adopted RS–CMD. Recently, RS is applied
in different scenarios. In addition to TIN and RS, several
works in the literature have studied the non-orthogonal
multiple access (NOMA) scheme. Gu et al. (2018) investigated
the outage probability from a stochastic geometry point of view in
a downlink C-RAN assisted with NOMA. Gu et al. (2018) showed
the efficiency of NOMA compared to state-of-the-art multiple
access schemes in terms of spectral efficiency of the C-RAN and
improved fairness among users. In Jaafar et al. (2020), several
orthogonal and non-orthogonal multiple access schemes have
been reviewed for an aerial network based on wireless
communications of unmanned aerial vehicles (UAVs).
Nevertheless, Mao et al. (2018) showed that RS generalizes
classical linear precoding methods such as TIN and NOMA
and can significantly improve the spectral efficiency in the
downlink multiple-input single-output broadcast channel
(MISO-BC). Recently, many works study the performance of
RS techniques in the MISO-BC, and the benefits of such a
multiple access scheme have been shown to significantly
outperform the classical TIN transmission scheme (Clerckx et
al., 2016; Dai et al., 2016; Joudeh and Clerckx, 2016b; Joudeh and
Clerckx, 2017; Clerckx et al., 2019; Mao et al., 2019). Rate splitting
multiple access (RSMA) in C-RANs has been explored by Yu et al.
(2019) and Ahmad et al. (2020b), who considered the
compression and data-sharing transmit strategies, respectively.
Alameer Ahmad et al. (2019) and Ahmad et al. (2021) considered
using RS–CMD in C-RANs to improve the spectral efficiency of
the system and assumed perfect and statistical CSIT, respectively.
Reifert et al. (2021) explored the problem of max–min fairness in
a cache-assisted downlink C-RAN that applies the rate splitting
multiple access scheme. In Reifert et al. (2021), we propose a
polynomial time algorithm that is based on SAA and
WMMSE–rate relationship to tackle the challenging non-
convex optimization of the resource allocation problem.
However, as opposed to the work by Reifert et al. (2021), the

resource allocation problem is not guaranteed to be always
feasible as the QoS user’s requirements could not be satisfied
if, e.g., the channel state conditions are bad for some users. Hence,
for instance, the clustering algorithm proposed by Reifert et al.
(2021) does not apply to the problem formulated in this paper.

1.2 Contributions
This paper studies the problem of minimizing the network
transmit power while satisfying ergodic QoS constraints. We
consider a C-RAN assisted with RS techniques in which the
CP only knows the distribution of the wireless channel. The RS
design is linear with the number of users and only requires the
knowledge of the users’ positions, which makes it scalable and
robust against CSI imperfections.

The major contributions of this paper are as follows:

1) Novel problem formulation: We formulate a resource
allocation problem in an RS-assisted C-RAN that tackles
the ergodic nature of the QoS constraints. In contrast to
the optimistic assumption of full CSIT, in this paper, we
consider the practical setup in which the CP is assumed to
have only access to the channel’s distribution, i.e., we consider
the case of statistical CSIT. The resource allocation problem is
then formulated so that the transmit power in C-RAN is
minimized while the ergodic QoSs of all users are satisfied.
The resulting problem is a mixed integer non-linear stochastic
program (MINLSP) and known to be NP-hard. This paper
proposes an optimization framework that first applies the
sample average approximation (SAA) to the ergodic QoS
expressions. After that, we propose a clustering approach
to find a feasible solution to the discrete part of the
problem. Finally, we adopt the weighted minimum mean
squared error (WMMSE)–rate relationship to solve the
resulting continuous non-convex problem using the
alternating optimization approach.

2) Clustering: This work focuses on a C-RAN with the data-
sharing strategy to describe the communication exchange
between the CP and the set of BSs. Due to the limited
capacity of the fronthaul links, each user can be served by
a subset of BSs. We propose a clustering algorithm that takes
the QoS requirements into account. As opposed to the
clustering algorithm proposed by Ahmad et al. (2021), in
this work, we formulate a general assignment problem to
associate the users with the serving BSs.

3) Numerical simulations: We perform extensive numerical
simulations to evaluate the performance of the proposed
scheme against TIN in a practical C-RAN system. In
particular, we show the gain of the proposed algorithm in
different practical scenarios.

1.3 Notations
The notations used throughout this paper are as follows: (·)T and
(·)H denote the transpose and Hermitian transpose operators,
respectively, and 0L denotes a column vector of length L with all
elements equal to zero. We use lowercase letters to denote scalars
and boldface lowercase letters to denote vectors. Let
an ∈ CL×1 ∀n ∈ 1, . . . ,N{ } denote a complex-valued vector of
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length N, then ab vec a1, . . . , aN{ } is equivalent to the following
operator: a ∈ CNL×1 b [aT1 , . . . , aTN ]T . Next, we give an overview
of the organization of this paper.

1.4 Organization
The rest of this paper is organized as follows. Section 2 introduces
the considered system model and the rate splitting scheme.
Section 3 presents the signal model and the rate expressions,
in the statistical CSI case, followed by formulation of the
stochastic optimization problem. In Section 4, we discuss the
optimization techniques to solve the problem where we discuss
the SAA approach coupled with the WMMSE algorithm. Section
5 revisits the same problem under perfect CSIT. In Section 6, we
present the simulation setup and the numerical results. At the
end, this paper is summarized and concluded in Section 7.

2 SYSTEM MODEL

The system model considered in this paper consists of the
downlink rate splitting (RS)-enabled C-RAN with a set of
multi-antenna BSs N � 1, 2, . . . ,N{ }, serving a set of single-
antenna users K � 1, 2, . . . ,K{ }. Each BS n ∈ N is equipped
with L ≥ 1 antennas and connected to a central processor
(CP) at the cloud via a fronthaul link with limited capacity Fn,
and an example of the system model is shown in Figure 1. The
downlink communication can be explained as follows: The user k
requires a message vk, where the achievable data rate at user k is
denoted Rk, which is a function of the channel state of user k, the
rate splitting transmission schemes, the design of the cooperative
transmission scheme, and the associated beamforming vector. In
this work, we consider that each user needs to be served with a
minimum data rate, denoted rMin

k , which characterizes the quality
of the service target of user k. The CP jointly processes the
messages of all users, encodes them into streams sk, ∀k ∈ K, and
forward the encoded streams with the BSs through the fronthaul
links. The CP can share the encoded messages with the BSs if the

sum-rate of users served by BS n does not exceed the fronthaul
capacity limit Fn. In this scenario, the received signal model at
user k is given by

yk � hH
k x + nk, (1)

where hk b vec h1,k, . . . , hN ,k{ } ∈ CNL×1 is the network-wide
aggregate channel vector of user k to all BSs, nk ∼ CN (0, σ2)
is the additive white Gaussian noise (AWGN), and
xb vec x1, . . . , xN{ } ∈ CNL×1 is the aggregate transmit signal
from all BSs. Obviously, the transmit power from each BS
must be finite. Therefore, the transmit signal xn from BS n is
subject to the following per-BS maximum transmit power
constraint: E xHn xn{ }≤ PMax

n . Next, we discuss the channel
model adopted in this paper.

2.1 Stochastic CSI Model
We define the instantaneous channel state at time slot t as
h(t)b vec h1(t), . . . , hK(t){ } ∈ CNLK×1. This paper considers a
block-fading model in which the channel state h(t) remains
constant over multiple time slots and may vary
independently in a random fashion from one block to
another according to some stochastic process. Specifically,
in a block b with length tb, the following relation in the block-
fading model is satisfied:

h(t) � h(b),∀t ∈ (b − 1)tb + 1, . . . , btb{ }. (2)

We focus in this paper on optimizing the transmission strategy
for a single transmission block. Hence, we drop next the
dependency of the channel on the time variable and focus on
the channel state in one block. We assume that the channel
between BS n and user k follows the distribution hn,k ∼ (0,Qn,k),
where Qn,k is a symmetric positive semi-definite matrix and
depends mainly on the path loss between BS n and user k. To
estimate the channel state within each transmission block at the
CP, the receivers which are assumed to know the channel
perfectly send a quantized feedback of their estimate to the
CP. In this work, we distinguish between the following:

• Case 1: The CP estimates the channel state perfectly while
the error due to quantized feedback is considered to be
negligible, i.e., full CSIT case. In this case, the CP has
knowledge of all elements in the vector h.

• Case 2: Obviously, a full CSIT case involves a large
communication overhead between the users and the CP,
which requires a huge amount of resources that may even be
not affordable in dense networks. Alternatively, the CP can
estimate the matrices Qn,k| n ∈ N , k ∈ K{ }, i.e., the CP has
knowledge about channel distribution of all users. This case
is referred to throughout this paper as statistical CSIT as the
CP does not know the channel coefficients
hn,k| n ∈ N , k ∈ K{ } exactly, but their distribution is
available to the CP. Note that the perfect estimate of the
channel distribution can be easily done as it depends mainly
on the user locations which can be accurately estimated
using of-the-shelf global positioning system (GPS) devices
(Cui et al., 2019).

FIGURE1 | AC-RAN in the downlink with three BSs and four users. User
1 receives both its private and common messages from BS 2, while user 2
receives its private message from BS 2 and the common message from BS 3.
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In the next subsection, we describe the rate splitting (RS)
procedure as performed at the CP for each requested message.

2.2 Rate Splitting in C-RAN With Data
Sharing
As illustrated in Figure 1, the CP first creates two sub-messages
out of vk, the requested message by user k, namely, a private
message denoted v p

k and a common message denoted v c
k .

Afterward, the CP encodes the private and common messages
into s pk and s ck , respectively. The coded messages s pk and s ck are
assumed to be independent and identically distributed (i.i.d.)
circularly symmetric complex Gaussian with zero mean and unit
variance. The CP then shares the private stream s pk with a cluster
of BSs which exclusively sends the beamformed private stream to
user k and the common stream s ck with a cluster of BSs which
exclusively sends the beamformed common stream to user k. We
define the set of users which receive the private and common
streams, respectively, from BS n as follows:

Kp
n :� k ∈ K|BS n delivers s pk to user k{ }, (3)

Kc
n :� k ∈ K|BS n delivers s ck to user k{ }. (4)

Let the beamforming vector for transmitting the private
message of user k from all BSs be
wp

k ∈ CNL×1 b vec wp
1,k,w

p
2,k, . . . ,w

p
N ,k{ }, then similarly we

define the aggregate beamforming vector to transmit the
common message of user k as follows:
wc

k ∈ CNL×1 b vec wc
1,k,w

c
2,k, . . . ,w

c
N ,k{ }, where wp

n,k ∈ CL×1 and
wc

n,k ∈ CL×1 are the beamforming vectors to transmit the
private and common streams, respectively, from BS n to user
k. Since the capacity of the fronthaul link per BS is limited, the size
of the BS’s cooperating cluster to serve the stream of each user
cannot be very large, as each BS can only support a limited
number of streams. Hence, if BS n does not participate in the
cooperative transmission of the private or the common message
to the k-th user, then wp

n,k � 0 or wc
n,k � 0 in the respective

aggregate beamforming vectors. Thus, we can write the
transmitted signal from the n-th BS as

xn � ∑K
k�1

w p
k s

p
k + w c

k s
c
k( ). (5)

In the theoretical model two-user IC network, which is the
simplest non-orthogonal multiple access model, each user needs
to decode the common message of the other user. However, in a
practical network as the RS-enabled C-RAN, we need to
determine for each user the set of other users which decode its
common message. To this end, let us denote the common
message set of user k as Mk which is defined as

Mk b j ∈ K| user j decodes sck{ }. (6)

In other words, the set Mk includes the indices of all users
which decode the common message of user k. In a similar
manner, we define the set of common messages decoded at
user k as

Φk b j ∈ K| k ∈ Mj{ }. (7)

From Eqs 6, 7, we see that if the sets Mk{ }Kk�1 are determined,
then the sets Φk{ }Kk�1 are also determined, and vice versa. Next, we
discuss the receiver model adopted in this paper.

2.3 Receiver Model
In this paper, we assume that each user employs a successive
decoding order (SIC) strategy. Hence, the streams intended to be
decoded at user k are decoded in a successive fashion according to
some specific order. Figure 2 shows an example of the SIC
receiver at user 1. Now, we can rewrite the received signal at
user k as

yk � hH
k w

p
k s

p
k + ∑

j∈Φk

hH
k w

c
j s

c
j

⎛⎝ ⎞⎠
︸�����������︷︷�����������︸

Signals to be decoded

+ ∑
j∈K \k

hH
k w

p
j s

p
j + ∑

l∈Ψk

hH
k w

c
l s

c
l + nk.︸�������������︷︷�������������︸

Interference plus noise

(8)

Here, the set Ψk includes the indices of users whose common
messages are not decoded at user k, i.e., Ψk � {K \Φk}. Next, we

FIGURE 2 | A block diagram for an SIC at user 1. In this example, the
common messages decoded at user 1 are Φ1 � {1, 2, 4}. The decoding order
at user 1 is then given as π1: Φ1 → {3, 1, 2}.
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discuss the expressions of instantaneous signal-to-interference-
plus-noise ratio (SINR) and the achievable rates.

2.4 Instantaneous SINR and Achievable
Rates
We assume that each user decodes its private stream at last, while
the common messages are decoded according to specific order
with the aim of maximizing the total achievable rate. The
intuition behind this choice is that by decoding the common
messages first, one would remove part of the interference from
the received signal, thereby increasing the SINR when decoding
the private stream, which leads to better achievable rates. The
common messages of the users indexed by the setΦk are decoded
according to the following order:

πk(j): Φk → 1, 2, . . . , Φk| |{ }.
Here, the decoding order at user k, πk(j), represents a bijective

function of the set Φk with cardinality |Φk|, i.e., πk(j) is the
successive decoding step in which the message j ∈Φk is decoded at
user k. In other words, πk (j1) > πk (j2) (where j1 ≠ j2) implies that
the user k decodes the common message of user j1 first and then
the common message of user j2. To this end, let cpk denote the
SINR of user k when decoding its private message and cci,k denote
the SINR of user k when decoding the common message of user i,
then we can write

c
p
k � hH

k ,w
p
k

∣∣∣∣ ∣∣∣∣2
∑K

j∈K\ k{ } hH
k ,w

p
j

∣∣∣∣∣ ∣∣∣∣∣2 + ∑
l∈Ψk

hH
k ,w

c
l

∣∣∣∣ ∣∣∣∣2 + σ2
, (9)

cci,k � hH
k ,w

c
i

∣∣∣∣ ∣∣∣∣2
σ2 +∑

j∈K
hH
k ,w

p
j

∣∣∣∣∣ ∣∣∣∣∣2 + ∑
l∈Ψk

hH
k ,w

c
l

∣∣∣∣ ∣∣∣∣2 + ∑
m∈Ωi,k

hH
k ,w

c
m

∣∣∣∣ ∣∣∣∣2· (10)

Here, Ωi,k b m ∈ Φk| πk(m)> πk(i){ }. Based on the
expressions in Eqs 9, 10, the instantaneous achievable rates for
each user k satisfy the following expressions:

c p
k ≥ 2

Rp
k
/B − 1 ∀k ∈ K, (11)

c c
k,i ≥ 2

Rc
k
/B − 1 ∀i ∈ Mk and ∀k ∈ K, (12)

where B is the transmit bandwidth, Rp
k is the instantaneous

achievable private rate, and Rc
k is the instantaneous achievable

common rate. Thus, the total achievable rate of user k is then
defined as

Rk � Rp
k + Rc

k. (13)

From Eqs 9, 10, we note that the SINR expressions in an RS-
enabled C-RAN depend not only on the beamforming vectors but
also on the common message set choice and the decoding order
for each user, i.e., Mk and πk. Moreover, the expressions in Eqs
9–12 are deterministic only when the CP has full CSI. Hence, the
instantaneous rates are achievable only in the full CSIT case.
However, the uncertainty in the CSIT introduces some technical
challenge for the transmitter design, and the instantaneous rate

expressions are no longer valid. Next, we discuss the ergodic rate
(ER) which is adopted in case of statistical CSIT.

2.5 Ergodic Rates
With perfect CSI at the CP, we can adapt the beamforming
vectors and eventually the transmit rate to each channel state.
Obviously, with full CSIT, we can achieve the best possible rate to
send the streams to users. However, with statistical CSIT, the
transmitter cannot adapt the beamforming vectors and the rate to
each channel state as the latter is not known at the transmitter. In
this case with the channel distribution knowledge at the CP, we
instead consider sending the private and common streams of user
k at the ergodic rates (ERs) (Goldsmith, 2005). The total ergodic
rate of user k is defined as Eh Rp

k + Rc
k{ }bR

p
k + R

c
k, where R

p
k is the

ER to send the private stream and R
c
k is the ER to send the

common stream of user k. The achievability relations of the
ergodic private and common rates can be written as

R
p
k ≤BEh log2 1 + c

p
k( ){ } ∀k ∈ K, (14)

R
c
k ≤ BEh log2 1 + cck,i( ){ } ∀i ∈ Mk and ∀k ∈ K. (15)

Now, we are ready to discuss the problem we investigate in
this paper.

3 PROBLEM FORMULATION

We focus on the problem of joint optimization of coordinated
beamforming vectors, clusters of BSs to serve private and
common messages to all users, and the rate allocation per
user such that the weighted transmit power consumption is
minimized. We consider a data-sharing strategy between the
CP and the BSs and apply rate splitting at the CP and BSs
followed by a successive decoding strategy at the receivers. We
assume all BSs operate in the active mode. Another option
would be to consider minimizing the network power
consumption by considering the set of active BSs as well as
the power consumption due to computation operation which
is necessary to perform the base band processing tasks, but this
falls outside of the scope of the current paper and is left for our
future investigation. We define the transmit power
consumption as PTr(w)b∑K

k�1αk(∑N
n�1‖wp

n,k‖22 + ‖wc
n,k‖22),

where αk is a coefficient which represents the weight
associated with the transmit power assigned to user k. The
weights αk represent here the heterogeneity of the applications
that request services from the cloud. For instance, an
application which requires a service under the ultra-reliable
low-latency communication (URLLC) category has higher
priority than a service that requires some software update
in an IoT category. Hence, the higher priority services should
be associated with lower weights as compared with lower
priority services. Next, we formulate the mathematical
optimization problem describing the resource allocation to
minimize the transmit power such that per-user QoS
requirements are satisfied.
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3.1 Optimization Problem
In the general setup where the CP only knows statistical CSI, the
optimization is performed subject to per user-target ergodic rate
constraints to account for the lack of full CSIT. The optimization
problem considered in this paper can then be formulated in its
general form as follows:

(P0): minimize
V0

∑
k∈K

αk wp
n,k

���� ����22 + wc
n,k

���� ����22( ) (16a)

subject to (9) and (10), (16b)

∑
k∈Kp

n

R
p
k + ∑

k∈Kc
n

R
c
k ≤ Fn ∀n ∈ N , (16c)

R
p
k + R

c
k ≥ r

Min
k ∀k ∈ K, (16d)

R
p
k ≤Eh B log2(1 + c

p
k){ } ∀k ∈ K, (16e)

R
c
k ≤Eh B log2(1 + c

p
k,i){ } ∀i ∈ Mk and ∀k ∈ K.

(16f)

Here, rMin
k is the minimum ergodic rate requested by user k, Fn

is the fronthaul capacity of BS n, and V0 is the set of optimization
variables given as

V0 � : wp
k,w

c
k,R

p
k,R

c
k, πk,Mk,Kp

n,Kc
n| ∀k ∈ K,∀n ∈ N{ }. (17)

The problem (P0) is a mixed integer non-linear stochastic
program (MINLSP) that is generally difficult to solve. The main
difficulty stems from the combinatorial nature of the set of variables

πk,Mk,Kp
n,Kc

n| ∀k ∈ K,∀n ∈ N{ }, (18)

besides that the constraints (Eq. 16b) are non-convex
functions of the beamforming vectors and the constraints
(Eqs 16e,f) are of stochastic nature, where the expected value
has no closed-form expression. Thus, solving the problem
(P0) for global optimality is very challenging and may be
computationally prohibitive even for small instances. In this
paper, instead, we propose an optimization framework in
which we first fix the set of common messages and the
decoding order a priori. Furthermore, we use the sample
average approximation (SAA) to deal with the stochastic
constraints and WMMSE algorithm to resolve the joint
optimization of beamforming vectors and rate allocation.
Before presenting the optimization algorithm developed to
solve the problem (P0), we wish to note that, for the sake of
numerical simplicity, the choice of the set of common
messages adopted in this paper follows a distance-
dependent heuristic. To this end, this paper next presents
the approach this paper utilizes for determining the set of
common messages, together with the decoding order. The
next section, afterward, presents the optimization algorithm
developed to solve the problem (P0).

3.2 Common Message Set and Decoding
Order
We suggest designing the common message set based on the
network topology and avoiding the CSI to assure the robustness

of the proposed RS scheme against channel imperfections. Hence,
we propose a practical procedure that does not depend on the
channel state’s knowledge and requires only the user’s
geographical locations. The user’s positions can be easily
obtained using global positioning system devices with little
communication overhead. In particular, let dk1 ,k2 denote the
distance between users k1 and k2, then we define the common
message set for user k as follows:

Mk � j ∈ K| djk ≤ δ{ }, (19)

where δ is a threshold in meters. Hence, in this procedure, the
common message set of user k includes all users’ indices, which
are located within a given distance of user k. While such a
heuristic design of Mk has no optimality guarantees, the
intuition behind such a simple design is that the user’s
interference is at strongest when the users are spatially close to
each other. Hence, decoding the common messages among such
groups can significantly mitigate the interference and result in
better achievable rates. Besides, the users in the proximity of the
user k have potentially good channel quality to the serving cluster
of BSs of the common stream of user k as they experience similar
path-loss conditions. Hence, they achieve higher rates of the
common stream of user k, as the common stream of user k is of
multicast nature. Therefore, its achievable rate is determined by
the weakest user. Next, we consider the design of the decoding
order strategy at user k with statistical CSIT. We adopt the
following rule: the SIC receiver at user k starts to decode the
streams based on their proximity to user k. Hence, the common
messages of users which are closer to user k are decoded before
the common messages of users that are more distant from user k.
Specifically, the common message of user i is decoded before the
common message of user j if dik < djk. Again, this rule is heuristic;
however, it is reasonable as by doing so, we make sure that the
common rate of the users in the proximity of user k does not drop
significantly, which potentially improves the total achievable rate
and helps the users meeting their QoS requirements efficiently.

In what follows, we discuss another approach for determining
the clustering variables, based on the general assignment
formulation. Hence, we first determine the serving clusters so
that the fronthaul constraint of each BS is satisfied. Afterward, we
apply an optimization framework that merges the SAA approach
with the WMMSE algorithm to find a KKT condition–satisfying
solution of the resulting continuous stochastic optimization
problem.

3.3 Clustering Variables and Assignment
Problem
Let qn,k be the channel quality between user k and BS n, measured
as the inverse of path loss between them. We define the utility
function of the assignment problem as

U(n, k) � qn,k. (20)

The utility function in Eq. 20 measures the benefit of
associating user k with BS n. The intuition behind this choice
is that the utility function in Eq. 20 computes the benefit of
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associating user k with BS n based on the channel strength
between them. Now, we can define the general assignment
problem using Eq. 20 as follows:

maximize
a

∑
(n,k)∈N×K

an,k U(n, k)
subject to ∑

k∈K
an,kr

min
k ≤ Fn, ∀n ∈ N ,

(21a)

∑
n∈N

an,k ≤ 1, ∀k ∈ K, (21b)

an,k ∈ 0, 1{ }. (21c)

The optimization is carried over the binary association
variables in set V5 which is defined as

ab vec an,k| ∀k ∈ K,∀n ∈ N{ }. (22)

Note that the constraint in Eq. 21amakes sure that the sum of
the minimum rates required by users associated with BS n does
not exceed its fronthaul capacity limit. Moreover, the constraint
in Eq. 21b guarantees that each user is associated with at least one
BS. The problem in Eqs 21a–c is an integer linear program that
needs special solvers such as MOSEK and Gurobi. In this work,
we use global optimization methods such as the branch and cut
algorithm to find a solution to the problem in Eqs 21a–c. Note
that the problem in Eqs 21a–c is an integer linear problem.
Therefore, we can find its global optimal solution efficiently for
the problem’s size considered in this paper. The binary variables
in Eq. 22 associate users to BSs, which is equivalent to associating
the private streams (e.g., in TIN) with the corresponding BSs.
However, when using RS–CMD, both private and common
streams need to be associated with the BSs. To accomplish
this task, we propose the following procedure: First, for each
common stream, we find a subset of BSs as a candidate serving
cluster. Let Dc

k bMk. Furthermore, letN c
k denote the candidate

cluster of BSs to serve common streams of user k. Since each
common stream should be decoded by multiple users, each BS n
in the candidate clusterN c

k needs to have good channel quality to
all users, which decode this particular stream. The quality of the
channel is measured based on the large-scale fading coefficient.
We propose a criterion based on the collective channel quality to
all users decoding a specific stream. Let qn,Dc

k
denote the collective

channel quality from BS n and to all the users decoding the
common stream of user k, i.e., sck. qn,Dc

k
is given as

qn,Dc
k
� 1

|Dc
k|∑j∈Dc

k
qn,j. Here, qn,j is the channel quality between

user j and BS n and is inversely proportional to the path loss
between them.

The candidate cluster of BSs serving the common messages of
user k is then given as

N c
k � {n1, . . . , nμ}4N | qn1 ,Dc

k
≥ . . . ≥ qnμ ,Dc

k
{ }, (23)

whereN c
k is a set with cardinality μ. It contains the subset of BSs

that have good channel quality to all users decoding the common
message of user k.

After that, we use the solution of the assignment problem in
Eqs 21a–c to specify the serving clusters for private streams. In

particular, we choose the BS clusters for transmitting the private
and common streams to the users as follows:

Kp
n � {k ∈ K| apn,k � 1}, (24a)

Kc
n � {k ∈ K| n ∈ N c

k}. (24b)

We are now ready to discuss the algorithm to solve the
problem P2. Note that the choice of clusters in Eqs 24a,b
preserves the feasibility of the assignment problem in Eqs
21a–c. Specifically, as a special case, we can set
Kc

n � {∅}, ∀n ∈ N , i.e., we assign zero rates for the common
streams. In this special case, both RS–CMD and TIN are
equivalent. Any other option for the clusters serving the
common messages allows RS–CMD to efficiently manage the
interference, potentially resulting in a lower transmit power cost.
Using the heuristic procedures in Eq. 19 to determine the
common message sets and the problem in Eqs 21a–c together
with Eqs 24a,b to determine the clustering variables, we get the
following optimization problem formulation:

(P2): minimize
V2

∑
k∈K

αk wp
n,k

���� ����22 + wc
n,k

���� ����22( )
subject to (16f ), (16e), (9), and (10),∑

k∈Kp
n

R
p
k + ∑

k∈Kc
n

R
c
k ≤ Fn, ∀n ∈ N ,

(25a)

R
p
k + R

c
k ≥ r

min
k , ∀k ∈ K, (25b)

where the set of optimization variables is given by

V2 b wp
k,w

c
k,R

p
k,R

c
k| ∀i ∈ Mk,∀k ∈ K,∀n ∈ N{ }. (26)

The next section discusses the optimization techniques to
approach such a challenging stochastic and non-convex
optimization problem.

4 OPTIMIZATION APPROACH

4.1 WMMSE–Rate Relationships
We start this section by discussing the WMMSE–rate
relationship, which turns out to be crucial in developing an
efficient algorithm to solve the problem (P2). To this end, each
user estimates the intended transmit private and common
streams using a linear receiver. Let ŝ

p
k b upk(yk −∑j∈Φk

hHk w
c
j s
c
j )

be the private stream estimate at user k after removing all the
common messages, decoded at user k. Furthermore, let uci,k be the
linear receiver used by user k to decode the common stream of
user i, i.e., the estimated common stream of user i when decoded
at user k is defined as ŝci,k b uci,k(yk − ∑

m∈Ψk

hHk w
c
ms

c
m).

To this end, let us define the mean squared error (MSE)
when decoding the private stream at user k and the common
stream of user i at user k as epk � E |ŝpk − spk|2{ } and
eck,i � E |ŝci,k − sck|2{ }. Using Eq. 8, we can write the MSE’s
expressions as follows:

epk � upk
∣∣∣∣ ∣∣∣∣2Tp

k − 2R up
kh

H
k w

p
k{ } + 1, (27)
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eci,k � uci,k
∣∣∣∣ ∣∣∣∣2Tc

i,k − 2R uc
i,kh

H
k w

c
i{ } + 1. (28)

Here, Tp
k and Tc

i,k are defined as

Tp
k � hH

k w
p
k

∣∣∣∣ ∣∣∣∣2 + ∑
j∈K\k

hH
k w

p
j

∣∣∣∣∣ ∣∣∣∣∣2 + ∑
l∈Ωk

hH
k w

c
l

∣∣∣∣ ∣∣∣∣2 + σ2︸�������������︷︷�������������︸
Ip
k

,
(29)

Tc
i,k � hH

k w
c
i

∣∣∣∣ ∣∣∣∣2 +∑
j∈K

hH
k w

p
j

∣∣∣∣∣ ∣∣∣∣∣2 + ∑
l∈Ωk

hH
k w

c
l

∣∣∣∣ ∣∣∣∣2 + ∑
m∈Ψi,k

hH
k w

c
m

∣∣∣∣ ∣∣∣∣2 + σ2

︸�������������������︷︷�������������������︸
Ic
i,k

,

(30)

where Ipk and Ici,k are the interference plus noise at user k when
decoding its private message and the common message of user i,
respectively. By checking the first-order optimality of the
expressions in Eqs 27, 28, we write

ze pk
zup

k

� 0 0 Tp
ku

p
k,mmse − (wp

k)Hhk � 0, (31)

zeci,k
zuc

i,k

� 0 0 Tc
i,ku

c
i,k,mmse − (wc

i )Hhk � 0. (32)

Thus, the optimal receiver coefficients that result in the
minimum MSE, i.e., MMSE, are given as

upk,mmse � (wp
k)Hhk

Tp
k

, (33)

uc
i,k,mmse � (wc

i )Hhk

Tc
i,k

· (34)

By plugging the MMSE receiver’s expressions from Eqs 33, 34
in Eqs 27, 28, we get the expressions of the MMSE as

epk,mmse � Ipk
Tp

k

, (35)

eci,k,mmse � Ici,k
Tc

i,k

· (36)

Before we proceed, we define the augmented MSEs when decoding
theprivate streamofuserk and the common streamof user kbyuser i as

ζpk b ρpke
p
k − log2(ρpk), ζ ck,i b ρck,ie

c
k,i − log2(ρck,i), (37)

where ρpk and ρck,i are some weighting coefficients.
An essential observation in this work is the following connection

between the achievable ergodic rates and the WMMSE.
Proposition 1. The maximum achievable rate of user k when

decoding its private stream and of user i when decoding the
common stream of user k can be expressed as

log2(1 + cpk) � 1 +max
up
k
,ρ
p
k

log2(ρpk) − ρpke
p
k( ) � 1 − ζpk,mmse, (38)

log2(1 + cck,i) � 1 + max
uc
k,i
,ρc
k,i

log2(ρck,i) − ρck,ie
c
k,i+( ) � 1 − ζ ck,i,mmse,

(39)

where ζpk,mmse and ζ ck,i,mmse are the optimal augmented WMMSE
expressions defined as

ζpk,mmseb min
up
k
,ρp
k

ρ p
k e

p
k − log2(ρ p

k )( ), (40a)

ζ ck,i,mmse b min
uc
k,i
,ρc
k,i

ρck,ie
c
k,i − log2(ρck,i)( ), ∀i ∈ Mk. (40b)

Proof. To show the equivalence, let us look at the right-hand side
of Eq. 38 which represents an unconstrained optimization problem.
By checking the first-order optimality of this problem, through
taking the partial derivative of the objective with respect to upk and
setting the result to zero, we find out that the optimal receivers are in
fact as given in Eq. 33, i.e., the MMSE receivers (upk)

* � up
k,mmse. By

taking the partial derivatives with respect to the weighting coefficient
ρpk and setting the result to zero, we get the first-order optimal
coefficients given as (ρ p

k )
* � 1

e pk,mmse

. By plugging the optimal values of
upk and ρpk in Eq. 38 and using the value of epk,mmse as defined in Eq.
35, we get exactly the expression of the left-hand side ofEq. 38which
is the achievable rate of user k when decoding the private stream
(assuming a normalized transmit bandwidth). By following the same
proof steps, we show in a similar manner the equivalence in Eq. 39
which completes the proof.
For the rest of this paper, we drop the word “augmented” and we use
only “WMMSE” to refer to the quantities defined in Eqs 40a,b.
Equations 38, 39 describe the instantaneous rate–WMMSE
relationship. By taking the expectation over the channel variable
of both sides, we get the following ergodic rate–ergodic WMMSE
relationship:

Eh log2(1 + c
p
k){ } � 1 − Eh{ζpk,mmse}, (41a)

Eh log2(1 + cck,i){ } � 1 − Eh{ζ ck,i,mmse} ∀i ∈ Mk. (41b)

Here, Eh{log2(1 + c
p
k )} and mini∈MkEh{log2(1 + cck,i)} represent

the maximum achievable private and common ergodic rates of
user k. Moreover, Eh{ζpk,mmse} and maxi∈MkEh{ζ ck,i,mmse} represent
the minimum ergodic private and common WMMSEs of user k.
Next, we discuss the sample average approximation approach to
approximate the ergodic rate and ergodic WMMSE expressions.

4.2 SAA Method
The problem (P2) is of stochastic nature, and the expected value
in constraints in Eqs 16e,f is not in the closed form, which makes
it very challenging. To overcome this obstacle, we assort to use the
SAA (Shapiro et al., 2009) to approximate the ergodic rate and
ergodic WMMSE expressions. To this end, we define an i.i.d.
sample set of the wireless channel as follows:

HM � {hm| 1≤m≤M}, (42)

where M ∈ N denotes the sample size and hm is a realization of
the aggregate channel state of all users given as
hm ∈ CNKL×1 b vec hm1 , h

m
2 , . . . , h

m
K{ }.

The stochastic constraints can then be expressed as

R
p
k −

B
M

∑M
m�1

log2 1 + cpk(m)( )≤ 0 ∀k ∈ K, (43)
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R
c
k −

B
M

∑M
m�1

log2 1 + cck,i(m)( )≤ 0 ∀i ∈ Mk,∀k ∈ K. (44)

Moreover, we define the SAA of the ergodic private and
common WMMSEs in Eqs 41a,b as follows:

ζ
p

k(M)b 1
M

∑M
m�1

ζpk(m), (45a)

ζ
c

k,i(M)b 1
M

∑M
m�1

ζ ck,i(m), ∀i ∈ Mk. (45b)

Here, we made the dependency of the SINR expressions
c
p
k(m), cck,i(m) in Eqs 43, 44, and the instantaneous private and
common WMMSEs in Eqs 45a,b, respectively, on the channel
realization hm explicit. Note that, for simplicity of notations, we
only keep the index of the channel realization in Eqs 43, 44, 45a,b.
In particular, we have ζpk(m)b ζpk(h

m, upk(m), ρpk(m)) and
ζ ck,i(m)b ζ ck,i(h

m, uck,i(m), ρck,i(m)), where the receiver and MSE
weights depend on the specific channel realization,
i.e., upk(m) � upk(h

m), uck,i(m) � uck,i(h
m), ρpk(m) � ρpk(h

m), and
ρck,i(m) � ρck,i(h

m). For each user k, let us define the following
sample vectors: upk b vec{upk(m)| 1≤m≤M} and
uck,i b vec{uck,i(m)| 1≤m≤M}. Similarly, we define
ρpk b vec{ρpk(m)| 1≤m≤M} and ρck,i b vec{ρck,i(m)| 1≤m≤M}.

Let us introduce the SAA of the ergodic rate–ergodicWMMSE
relationship as

1
M

∑M
m�1

log2 1 + c
p
k(m)( ) � 1 − ζ

p

k,mmse(M), (46a)

1
M

∑M
m�1

log2 1 + cck,i(m)( ) � 1 − ζ
c

k,i,mmse(M) ∀i ∈ Mk,

(46b)

where ζ
p
k,mmse(M) and ζ

c
k,i,mmse(M) are the SAA of ergodic

WMMSEs Eh{ζpk,mmse} and Eh{ζ ck,i,mmse}, using the channel
sample HM , and are given as

ζ
p

k,mmse(M)b min
up
k
,ρp
k

ζ
p

k(M), (47a)

ζ
c

k,i,mmse(M)b min
uc
k,i
,ρc
k,i

ζ
c

k,i(M) ∀i ∈ Mk. (47b)

Here, the min(·) operator is taken per channel realization.
Now,we can reformulate the stochastic problem (P2)with thehelp of

the rate–WMMSE relationship and the SAA approximation as follows:

(P3(M)): minimize
V3

∑
k∈K

αk wp
n,k

���� ∣∣∣∣22 + wc
n,k

���� ����22( ) (48a)

subject to (47), (16c), (16d), (48b)

R
p
k − B(1 − ζ

p

k,mmse(M))≤ 0 ∀k ∈ K, (48c)

R
c
k − B(1 − ζ

c

k,i,mmse(M))≤ 0 ∀i ∈ Mk,∀k ∈ K.

(48d)

Here, V3 is the set of optimization variables associated with the
optimization problem (P3(M)) defined as

V3 � : wp
k,w

c
k,R

p
k,R

c
k, u

p
k, ρ

p
k, u

c
k, ρ

c
k| ∀k ∈ K, ∀n ∈ N{ }, (49)

where uck b vec{uck,i| ∀i ∈ Mk} and ρck b vec{ρck,i| ∀i ∈ Mk}.
The problem (P3(M)) is still non-convex and challenging to

solve, and the optimization variable space is larger than that
associated; however, it is more tractable than its stochastic
counterpart (P2). It is obvious that the optimization problem
(P3(M)) depends on the sample size M. As M grows large, the
SAA becomes more accurate, at the cost of increasing the
complexity of solving the problem (P3(M)). Hence, in the
asymptotic regime, when M → ∞, there is no loss in
optimality of the stochastic problem (P2) by solving the
deterministic problem (P3(M)), and this is captured in the
following theorem.

Theorem 1. The set of global optimal solutions of the
problem (P3(M)) asymptotically converges to the set of
optimal solutions of the problem (P2) uniformly with
probability one.

Proof. The proof is provided in the Appendix.Next, we
discuss the iterative algorithm to provide a first-order optimal
solution to the optimization problem (P3(M)).

4.3 WMMSE-Based Algorithm
As discussed above, the optimization problem (P3(M)) is non-
convex, and it is difficult to solve for a global optimal. Hence, in
this paper, we consider an iterative algorithm that converges in
a finite number of iterations to a first-order optimal solution
which satisfies Karush–Kuhn–Tucker (KKT) optimality
conditions of the problem (P3(M)). To this end, we first note
that the feasible set of problem (P3(M)) is non-convex due to
constraints in Eqs 48c,d. Hence, the constraints in Eqs 48c,d are
not jointly convex in the optimization variables. However, the
SAA of the WMMSE expressions in Eqs 47a,b is convex in each
set of variables independently. Based on this observation,
the classical WMMSE algorithm uses the alternating
optimization framework by optimizing over one set of
variables and fixing all the rest. This process is repeated until
convergence. However, in the problem (P3(M)), we cannot
apply the alternating optimization directly due to the
constraint in Eq. 16c. The iterative algorithm starts by
initializing the beamforming vectors to a feasible value. After
that, we compute the optimal set of variables upk, u

c
k and ρpk, ρ

c
k,

separately. The advantage of the WMMSE algorithm is that this
set of optimal variables can be found in the closed form as

up
k(m) � (wp

k)Hhm
k

Tp
k(m) , uc

k,i(m) � (wc
k)Hhm

i

Tc
k,i(m) , (50)

ρpk(m) � 1/epk,mmse(m), ρck,i(m) � 1/eck,i,mmse(m), (51)

where epk,mmse(m) and eck,i,mmse(m) are the optimal MMSEs as
defined in Eqs 35, 36. The next step is to plug in the optimal
values as defined in Eqs 50, 51 in the constraints in Eqs 48c,d
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by using theWMMSE expressions ζpk and ζ
c
k,i as defined in Eq. 37.

To express the approximate optimization problem in a compact
manner, we define the following auxiliary variables:

tpk �
1
M

∑M
m�1

ρpk(m) up
k(m)���� ����22, tck,i �

1
M

∑M
m�1

ρck,i(m) uc
k,i(m)���� ����22,

(52)

l
p

k �
1
M

∑M
m�1

(1 − ρpk(m) + log(ρpk(m))), (53)

l
c

k,i �
1
M

∑M
m�1

(1 − ρck,i(m) + log(ρck,i(m))), (54)

f
p

k �
1
M

∑M
m�1

ρpk(m)hm
k (up

k(m))H ,

f
c

k,i �
1
M

∑M
m�1

ρck,i(m)hm
i (uc

k,i(m))H , (55)

Y
p
k,k �

1
M

∑M
m�1

ρpk(m) up
k(m)���� ����22hm

k (hm
k )H( ), (56)

Y
c
k,i �

1
M

∑M
m�1

ρck,i(m) uc
k,i(m)���� ����22hm

i (hm
i )H( ). (57)

By using Eqs 27, 28, 37, we define the approximate
optimization problem as

(P4): minimize
V4

∑
k∈K

αk wp
n,k

���� ����22 + wc
n,k

���� ����22( ) (58a)

subject to (47), (16c), (76), (58b)

∑
j∈K

(wp
j )HYp

k,kw
p
j + ∑

l∈Ωk

(wc
l )HYp

k,kw
c
l − 2R (fpk)Hwp

k{ }+
log(2)Rp

k

B
+ σ2tpk − l

p

k ≤ 0 ∀k ∈ K,

(58c)

∑
j∈K

(wp
j )HYc

k,iw
p
j + ∑

l∈Ωi

(wc
l )HYc

k,iw
c
l + ∑

m∈Ψk,i

(wc
m)HYc

k,iw
c
m

+(wc
k)HYc

k,iw
c
k −2R (f ck,i)Hwc

k{ }
+log(2)R

c
k

B
+ σ2tck,i − l

c

k,i ≤ 0, ∀i ∈ Mk, ∀k ∈ K, (58d)

where V4 is defined as

V4 � : wp
k,w

c
k,R

p
k,R

c
k| ∀k ∈ K,∀n ∈ N{ }. (59)

The approximate optimization problem (P4) is convex and can
be solved efficiently, e.g., using an interior point method as
implemented in commercial solvers (Grant and Boyd, 2014).
After solving the optimization problem, we update the
beamforming vectors. The detailed steps of the iterative
algorithm are listed below.

Theorem 2. Let qu{ }∞u�1 b wu, uu,Ru, ρu{ }∞u�1 be the sequence
generated by Algorithm 1, where u is the iteration number. The
sequence qu{ }∞u�1 converges to a KKT solution of the
problem P3(M).

Proof. The details are given in Appendix B.

5 SPECIAL CASE: FULL CSIT

We start by discussing a special case in which the CP has full
knowledge of CSI. In this scenario, the optimization is
performed subject to per-BS maximum transmit power,
fronthaul capacity, and user-target instantaneous rate
constraints. The corresponding optimization problem can
be expressed as

(P6): minimize
V6

∑K
k�1

αk ∑N
n�1

wp
n,k

���� ����22 + wc
n,k

���� ����22( )⎛⎝ ⎞⎠
subject to (9) and (10),

(60a)

∑
k∈Kp

n

log2 1 + c
p
k( ) + ∑

k∈Kc
n

min
i∈Mk

log2 1 + cck,i( ){ }≤ Fn/B,
∀n ∈ N , (60b)

∑
k∈Kp

n

log2 1 + c
p
k( ) + ∑

k∈Kc
n

min
i∈Mk

log2 1 + cck,i( ){ }≥ rmin
k ,

∀k ∈ K, (60c)

where V6 is the set of optimization variables associated with the
problem P6 and is given as

V6 b wp
k,w

c
k,R

p
k,R

c
k| ∀k ∈ K,∀n ∈ N{ }. (61)

The discrete variables Kp
n,Kc

n are determined by solving the
problem in Eqs 21a–and using Eqs 24a,b. In contrast to (P0), the
problem (P6) is deterministic as the instantaneous rate expressions
in Eqs 11, 12 are achievable, thanks to the full CSIT knowledge.
Ahmad et al. (2020a) proposed an inner convex approximation
(ICA)-based iterative algorithm to solve the class of optimization
problems as the problem (P6). However, in this paper, we assort to
use the WMMSE-based iterative algorithm to solve both problems
(P6) and (P0). In contrast to the ICA-based algorithm investigated
by Ahmad et al. (2020a), our proposedWMMSE-based algorithm is
scalable and its complexity is independent of the sample size M.
Thus, the computational complexity is significantly reduced when
using the WMMSE-based algorithm compared to the ICA-based
algorithm.

To this end, we explain the WMMSE-based algorithm to solve
the optimization problem (P6) under the assumption of full CSIT
knowledge. By using the instantaneous rate–WMMSE
relationship, we reformulate the problem (P6) as follows:

ALGORITHM 1 | Joint rate allocation and beamforming for minimizing the sum-
transmit power with stochastic QoS constraints.
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(P7): minimize
V7

∑K
k�1

αk ∑N
n�1

wp
n,k

���� ����22 + wc
n,k

���� ����22⎛⎝ ⎞⎠
subject to (40),∑

k∈Kp
n

1 − ζpk,mmse( )+
∑

k∈Kc
n

min
i∈Mk

1 − ζ ck,i,mmse( ){ }≤ Fn/B,
∀n ∈ N , (62a)

1 − ζpk,mmse( )+ min
i∈Mk

1 − ζ ck,i,mmse( ){ }≥ rmin
k , ∀k ∈ K,

(62b)

where V7 is the set of optimization variables associated with the
problem (P7) and is given as

V7 b wp
k,w

c
k, u

p
k, ρ

p
k, u

c
k, ρ

c
k| ∀k ∈ K,∀n ∈ N{ }. (63)

The problem (P7) is still non-convex and challenging to solve
as the expressions of the WMMSE in Eqs 40a,b are non-jointly
convex in all the variables. Therefore, we propose to iteratively
optimize over each independent set of variables for which
the expressions become convex. To this end, by using the
optimal values of the receiver and weighting coefficients,
i.e., {upk, ρpk, uck, ρck| ∀k ∈ K}, and similar to the reformulation of
the problem (P4), we write

(P8): minimize
V8

∑K
k�1

αk ∑N
n�1

wp
n,k

���� ����22 + wc
n,k

���� ����22⎛⎝ ⎞⎠
subject to
Rp
k + Rc

k ≥ r
min
k , ∀k ∈ K,

(64a)

∑
k∈Kp

n

Rp
k + ∑

k∈Kc
n

Rc
k ≤ Fn/B ∀n ∈ N , (64b)

∑
j∈K

(wp
j )HYp

k,kw
p
j + ∑

l∈Ωk

(wc
l )HYp

k,kw
c
l − 2R (fpk)Hwp

k{ }
+ log(2)R

p
k

B
+ σ2tpk − lpk ≤ 0, ∀k ∈ K,

(64c)

∑
j∈K

(wp
j )HYc

k,iw
p
j + ∑

l∈Ωi

(wc
l )HYc

k,iw
c
l + ∑

m∈Ψk,i

(wc
m)HYc

k,iw
c
m

+(wc
k)HYc

k,iw
c
k − 2R (f ck,i)Hwc

k{ }
+ log(2)R

c
k

B
+ σ2tck,i − lck,i ≤ 0,∀i ∈ Mk,∀k ∈ K,

(64d)

where

V8 b wp
k,w

c
k,R

p
k,R

c
k| ∀k ∈ K,∀n ∈ N{ }. (65)

Here, the auxiliary variables tpk, t
c
k,i, l

p
k, l

c
k,i, f

p
k, f

c
k,i,Y

p
k,k,Y

c
k,i{ } are

the deterministic version of the sample average functions defined
in Eqs 52–57, and they can be written as

ρpk � 1/epk,mmse, ρck,i � 1/eck,i,mmse, (66)

tpk � ρpk upk
���� ����22, tck,i � ρck,i u

c
k,i

���� ����22, (67)

lpk � (1 − ρpk + log(ρpk)), lck,i � (1 − ρck,i + log(ρck,i)), (68)

fpk � ρpkhku
p
k, f ck,i� ρck,ihiu

c
k,i, (69)

Yp
k,k � ρpk up

k

���� ����22hk(hk)H( ), Yc
k,i� ρck,i u

c
k,i

���� ����22hi(hi)H( ). (70)

The optimal receiver coefficients and the MMSE
expressions are given by Eqs 50, 51. Note that the
problem (P8) is now convex. With the help of the general
assignment problem in Eqs 21a–ca–c Eqs 21a–c and Eqs
24a,b, we guarantee the fronthaul capacity constraints are
respected. However, in contrast to the weighted sum-rate
problem studied by Alameer Ahmad et al. (2019) and
Ahmad et al. (2021), the feasibility of the problem (P8) is
not assured. If some users have poor channel quality, the
network designer cannot make sure that all users can meet
their requirements in Eq. 64a. The determination of the
complete set of feasible values rmin

k for a given CSI is, indeed,
equivalent to the characterization of the capacity region for
a multi-antenna interference channel, which remains an
open problem in the communication theory area. Thus,
solving the feasibility issue of problem (P8) falls out of
this paper’s scope. Instead, we focus on the feasible
instances of the problem (P8) in the analysis and
numerical simulations. Now, we discuss the block
coordinate descent algorithm to find a solution for the
problem (P7), whenever it is feasible. The idea is to
iteratively solve the approximate problem (P8) and
enhance the approximation after each iteration. The
detailed steps of such an approach, hereafter called
Algorithm 2, are shown below.

6 NUMERICAL SIMULATIONS

This section illustrates the performance of the proposed
algorithms in a realistic network setup. We first describe the
adopted simulation parameters. Then, we present the numerical
results in detail.

6.1 Simulation Parameters and Studied
Schemes
The adopted channel model is standardized by the 3rd
Generation Partnership Project (3GPP) (3GPP, 2015) and used
in most of the works in the literature, e.g., Björnson and
Jorswieck, 2013; Shi et al., 2014; Wei Yu and Yu, 2014:

hn,k � Dn,ken,k. (71)

ALGORITHM 2 |Weighted sum-Power minimization subject to QoS constraints..
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Here, Dn,k � 10−PL(dn,k)/20 ������
gn,ksn,k

√
, where gn,k is the shadowing

coefficient, sn,k is the antenna gain, and PL(dn,k) is the path-loss
coefficient defined as

PL(dn,k) � 128.1 + 37.6 log10(dn,k). (72)

Here, dn,k is the distance between BS n and user k in km. The
coefficients en,k ∈ CL×1 in Eq. 71 represent the small-fading
component and are modeled as en,k ∼ CN (0L, IL). In this
work, we mean by a full CSIT scenario that the CP has
full knowledge of the coefficients {hn,k| ∀k ∈ K,∀n ∈ N },
i.e., both large-scale fading coefficients
{Dn,k| ∀k ∈ K,∀n ∈ N } and small-scale fading coefficients
{en,k| ∀k ∈ K,∀n ∈ N } are perfectly estimated at the CP. In
the statistical CSIT, alternatively, we consider the CP can
perfectly estimate the large fading coefficients Dn,k

(Razaviyayn et al., 2013); however, the small-fading
coefficients are unknown at the CP. Note that, in this
scenario, the covariance matrix of the channel between
user k and BS n is given by Qn,k � D2

n,kIL. In the
simulations, we use the proposed algorithms in full CSIT
and in statistical CSIT scenarios, and we test dynamic and
static clustering algorithms. The parameters for specifying
the common message sets and the serving clusters are,
respectively, given as δ � 150 m and μ � 5 unless we state
otherwise. The noise spectral density is set to −120 dBm/Hz.
The weights for the user’s rates are considered to be αk �
1∀k ∈ K unless otherwise mentioned. The transmit
bandwidth is equal to 10 MHz. In the following
simulations, we compare our proposed RS–CMD scheme
with state-of-the-art multiple access schemes. Specifically,
we consider the following schemes under the assumption of
statistical knowledge of CSI at the CP:

1) TIN: The conventional TIN scheme.
2) RS-scheme 1: This benchmark is proposed by Joudeh and

Clerckx (2016a). This scheme uses a broadcast transmit signal
as a common message that must be decoded by all users in
addition to the private messages that need to be decoded by
intended users only.

3) NOMA: This scheme relies on superposition coding (SC)
at the transmitter and successive interference
cancellation at the receivers. In the simulations, we
adopt the SC-SIC per group multi-antenna NOMA
strategy, similar to the scheme adopted by Mao et al.
(2018) for an MISO-BC.

6.2 Full CSIT
In this scenario, we consider the CP has perfect CSI. We
perform a set of numerical simulations to evaluate the
performance of the assignment algorithm that uses the
solution of the optimization problem in Eqs 21a–c and Eqs
24a,b in addition to Algorithm 2. Both algorithms are used to
solve the optimization problem (P6) in the special case of full
CSIT. Note that, in contrast to the optimization problem (P2),
the problem (P6) is deterministic as the QoS constraints are
given in terms of instantaneous rates. We compare our

proposed RS–CMD transmission strategy to the
conventional scheme TIN. The simulations are averaged
over one hundred feasible network realizations. Note that
the optimization problem (P6) is not always feasible. The
non-feasible problem instances are ignored. Nevertheless,
the impact of both transmission schemes on the feasibility
of the problem is analyzed.

6.2.1 Transmit Power as a Function of the Required
Instantaneous QoS
In this simulation, we consider a C-RAN that consists of ten
BSs, each equipped with two antennas and a fronthaul link
with a capacity of 70 Mbps, serving a set of eight users. The
required QoS per user is increased from 2 to 16 Mbps. Figure 3
shows the performance of RS–CMD and TIN transmission
schemes in this setup. As expected, more transmit power is
required in the C-RAN as the QoS demands become larger.
However, the gain of RS–CMD considerably increases
compared to that of TIN when the QoS values grow. Above
a specific QoS value, both transmission schemes fail to find
feasible solutions. Nevertheless, using RS–CMD, the C-RAN
can accommodate higher QoS demands.

Next, we explore the impact of the user’s number on the
performance.

6.3 Transmit Power as a Function of the
User’s Number
In this simulation, we generate a C-RAN of five BSs, each
equipped with two antennas and a fronthaul link with a
capacity of 100 Mbps. We increase the number of users
from two to ten and investigate two scenarios. The first one
considers a minimum rate of rmin

k � 6Mbps per user, and in the

FIGURE 3 | The optimal value of the optimization problem (P6) as a
function of the deterministic required QoS per user.
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second one, each user requests a minimum rate of rmin
k � 8

Mbps. As shown in Figure 4, the results coincide with our
expectation; when increasing the QoS demands, both
transmission schemes require more transmit power to
satisfy the user requirements. The gain of RS–CMD
becomes significant as the number of users and their
demands increase, which shed light on the importance of
the RS–CMD transmission scheme enabling future
communication networks satisfying the demands of a large
number of users. In the following section, we discuss the
statistical CSIT case and investigate the role of RS–CMD in
such a network setup.

6.4 Statistical CSIT
This scenario considers that the CP only acquires the channel
distribution and not the full CSI. Numerical simulations are
performed to analyze the performance of RS–CMD and TIN
transmission schemes. We deploy the optimization algorithm
(Algorithm 1). The simulations are averaged over one hundred
feasible network realizations. For each network realization, the
CP uses the statistical CSI knowledge for generating a Monte
Carlo sample to perform the SAA. The sample consists of M �
1000 independent and identically distributed (i.i.d.) channel
realizations.

6.4.1 Impact of Sample Size on the Accuracy of SAA
The accuracy of SAA that approximates the ergodic rate (or
equivalently the MMSE expressions) depends on the sample
size M. We know from Theorem 1 that the SAA converges
almost surely to the ergodic rate expressions.

As aforementioned, in the numerical examples, we choose
the sample size to be M � 1000, representing a reasonable
value that balances the complexity versus accuracy. To justify
this choice, we investigate the impact of the sample size on

the convergence of the SAA. We generate a C-RAN that
consists of eight BSs, each equipped with two antennas,
serving six users. We consider two scenarios; in the first
one, each user requests a minimum ergodic rate of 3 Mbps. In
the second scenario, each user requests a minimum ergodic
rate of 4 Mbps. Thus, we solve the optimization problem (P2),
using different sample sizes, as shown in Figure 5. Each point
on Figure 5 is averaged over one hundred feasible network
realizations. We note that our proposed RS–CMD scheme
significantly outperforms the conventional TIN in both
scenarios. Interestingly, the SAA converges from sample
size M � 500 onward. Thus, the changes after M � 500 are
minimal and can be ignored. That is, the sample size choice of
M � 1000 is reasonable and can accurately approximate the
ergodic rate expressions using the SAA. We emphasize here
that the main advantage of the rate–WMMSE optimization
approach adopted in this paper is that the complexity of
solving the problem (P2) becomes independent of the
sample size.

Next, we investigate the impact of the number of users on the
achievable network transmit power and the feasibility of the
optimization problem (P2).

6.5 Impact of the Number of Users on the
Transmit Power
In this simulation, we study the performance of RS–CMD and
TIN transmission schemes as the number of users increases from
two to ten. We consider a C-RAN of fifteen BSs, each with two
antennas and a fronthaul link with a capacity of 40 Mbps. The
minimum ergodic rate requested by each user is considered to be
5 Mbps.

FIGURE 4 | The optimal value of the optimization problem (P6) with
deterministic QoS constraints as a function of the number of users.

FIGURE 5 | The optimal value of the optimization problem P2 as a
function of the sample size.
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As shown in Figure 6, the RS–CMD strategy outperforms
the conventional TIN and achieves less sum-transmit power.
The gain of RS–CMD increases as the number of users
increases. That is, when the number of users becomes
larger, the interference level increases. Interestingly, the
feasibility of the problem is considerably improved.
Specifically, under the same physical conditions, RS–CMD
can accommodate up to nine users, while the conventional
TIN stops at five users. As shown in Figure 6, under the same
sum-power, we can serve up to seven users using RS–CMD,
while we can serve five users using TIN. Note that, for each
point, the number of feasible realizations drops below 50% of
the studied network realizations. That is, we consider the
transmission strategy is not able to accommodate the
corresponding number of users. The feasibility percentage
of each studied scenario for both transmission schemes is
depicted in Table 1.

The feasibility percentage is measured by simulating two
hundred network realizations. The result in Table 1 is very
interesting. It says by using the RS–CMD transmission strategy,
we can significantly extend the feasible region without using
additional complicated measures, e.g., admission control. In the
next generation of wireless communication networks, using
RS–CMD may, therefore, be indispensable to fulfill the
heterogeneous QoS of many applications. Next, we discuss the
impact of the requested QoS on the performance of both
considered transmission schemes.

6.6 Impact of the Stochastic QoS on the
Transmit Power
In this simulation, we generate a C-RAN of five users and ten
BSs each with two antennas and a fronthaul capacity of
40 Mbps. We increase the minimum ergodic rate
requested by each user from 1 Mbps to 8 Mbps. The
performances of RS–CMD and TIN transmission schemes
are compared. As a benchmark, we also consider the case
when the CP has full CSIT knowledge. As shown in Figure 7,

when the CP has perfect CSIT, the C-RAN requires less
transmit power to satisfy the user’s requirements. Moreover,
with RS–CMD, the C-RAN can achieve lower sum-transmit
power compared to the case when TIN is employed. This
result can also be interpreted as follows: With the same sum-
transmit power, by adopting the RS–CMD transmit strategy,
the C-RAN can accommodate users with higher QoS
requirements compared to that when adopting TIN.

To shed light on the effect of increasing the number of
transmit antennas on the performance, we simulate the same
C-RAN, but we increase the number of antennas per BS to
four antennas. The result of simulating this network is
depicted in Figure 8. The performance of all studied
schemes improves as the number of antennas becomes
larger. However, the performance gap between TIN and
RS–CMD shrinks, compared to the previous scenario.
Thus, with a higher number of antennas, the C-RAN can
efficiently mitigate the interference. Moreover, the
optimization problem’s feasibility improves, especially for
the transmission scheme TIN. To investigate the feasibility
of both studied schemes, we illustrate the percentage of
feasible instances of the optimization problem (P2) when
using TIN and RS–CMD for both scenarios, that is, when the
number of antennas per BS is equal to two and four, in
Tables 2, 3, respectively. The transmission scheme RS–CMD
significantly extends the feasibility region of the
optimization problem, especially when the user’s demands
increase, and the optimization problem becomes more
challenging. Specifically, when the minimum QoS ergodic
rate requested by each user is equal to 6 Mbps, the percentage
of feasible instances using RS–CMD is equal to 94.4%. This
percentage drops down to 8.4% when using TIN in the case,
where each BS is equipped with two antennas. When we
double the number of antennas per BS, the percentage of
feasible instances increases to 97.2% when using RS–CMD
and reaches up to 12.4% using TIN for the same value of the
requested QoS per user. Thus, the benefits of employing
RS–CMD are not limited to increasing the network
throughout as we saw in our previous works or
minimizing the network transmit power as illustrated in
this section. However, RS–CMD can also help extending
the feasibility region and therefore enabling the C-RAN to
accommodate a higher number of users and greater
demands, without extra psychical resources.

6.7 Comparison With Other Benchmark
Schemes
In this simulation, we compare the performance of our
proposed RS–CMD scheme with different multiple access
schemes. In particular, we consider the performance of
NOMA as described by Mao et al. (2018) and of the RS
scheme as proposed by Joudeh and Clerckx (2016a) in
addition to the conventional TIN as benchmarks. We
consider a C-RAN that consists of five BSs and the
fronthaul capacity link of 80 Mbps per BS. Figure 9
illustrates the performance of all studied schemes.

FIGURE 6 | The optimal value of the optimization problem (P2) as a
function of the number of users. We compare the performance of TIN and
RS–CMD transmission strategies.
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Figure 9 shows that the RS-based multiple access schemes
achieve the best performance. Moreover, NOMA also
outperforms TIN, especially as the number of users
increases the gain of the RS-based scheme, and NOMA
becomes more pronounced. This result coincides with the
findings by Mao et al. (2018) as it is shown that RS-based
schemes generalize and outperform both TIN and NOMA in
the MISO-BC. Interestingly, the feasibility of the problem
significantly improves as the fronthaul capacity per BS
increases.

Figure 10 shows the performance as a function of the QoS
requirements per user with the number of users set to 8.
Figure 10 also shows the superiority of the RS-based
transmission scheme. Again, our proposed RS–CMD
scheme achieves the best performance among all studied
multiple access schemes. The gain increases as the problem
becomes more challenging by increasing the required QoS
per user.

7 CONCLUSION

This paper demonstrates the benefits of using RS–CMD in the
C-RAN. In particular, it sheds light on the significant gain in
minimizing the transmit power costs in the network while
ensuring the minimum QoS for the users. We consider two
scenarios: the full CSIT in which the QoS constraints are
expressed in terms of the minimum instantaneous rate
required by each user and the statistical CSIT where the CP
has only the channel’s distribution information. In this case,
QoS constraints are stochastic and expressed in terms of the
minimum ergodic rate required by each user. In the full CSIT
scenario, we formulate first an assignment problem that
exploits the full CSIT to associate the BSs with users.
Afterward, we use the WMMSE algorithm to solve the
resulting non-convex optimization problem. The statistical
CSIT is more challenging as the QoS constraints are
stochastic and non-convex. In this case, we first use the
assignment problem to associate the BSs with users by
exploiting the statistical information of the CSI. The
resulting non-convex stochastic problem is tackled by
leveraging both SAA and WMMSE algorithms. The
proposed RS–CMD significantly outperforms the
conventional TIN in reducing the network transmit power
subject to QoS constraints. Furthermore, the benefit of using
QoS is particularly high in terms of maximizing the feasible set
of admitted users as compared to the classical TIN approach.

TABLE 1 | Percentage of feasible instances of the optimization problem (P2) when deploying TIN and RS–CMD transmission strategies.

Number
of users

2 3 4 5 6 7 8 9 10

Feasibility of TIN (%) 100 96.5 90.5 69 45 19 5 1 0
Feasibility of RS–CMD (%) 100 100 100 99.5 99 90.5 76.5 55.5 30.5

FIGURE 7 | The optimal value of the optimization problem (P2) as a
function of the minimum ergodic rate requested by users. We compare the
performance of TIN and RS–CMD transmission strategies. Each BS has two
antennas.

FIGURE 8 | The optimal value of the optimization problem (P2) as a function
of the minimum ergodic rate requested by users. We compare the performance of
TIN and RS–CMD transmission strategies. Each BS has four antennas.
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TABLE 2 | Percentage of feasible instances of the optimization problem (P2) when deploying TIN and RS–CMD transmission strategies. Each BS is equipped with two
antennas.

rmin
k 1 2 3 4 5 6 7 8

Feasibility of TIN (%) 100 100 100 83.6 44.8 8.4 2 0.4
Feasibility of RS–CMD (%) 100 100 100 99.6 99.2 94.4 83.2 62

TABLE 3 | Percentage of feasible instances of the optimization problem (P2) when deploying TIN and RS–CMD transmission strategies. Each BS is equipped with four
antennas.

rmin
k 1 2 3 4 5 6 7 8

Feasibility of TIN (%) 100 100 100 91.2 50.4 12.4 2.4 1.2
Feasibility of RS–CMD (%) 100 100 100 100 100 97.2 89.2 71.6

FIGURE 9 | The optimal value of the optimization problem (P2) as a
function of the number of users. We compare the performance of TIN, NOMA,
RS-scheme 1, and RS–CMD transmission strategies.

FIGURE 10 | The optimal value of the optimization problem (P2) as a
function of the minimum ergodic rate requested by users. We compare the
performance of TIN, NOMA, RS-scheme 1, and RS–CMD transmission
strategies. Each BS has two antennas.
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