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Semantic segmentation over three-dimensional (3D) intra-oral mesh scans (IOS) is an
essential step in modern digital dentistry. Many existing methods usually rely on a limited
number of labeled samples as annotating IOS scans is time consuming, while a large-scale
dataset of IOS is not yet publicly available due to privacy and regulatory concerns.
Moreover, the local data heterogeneity would cause serious performance degradation
if we follow the conventional learning paradigms to train local models in individual
institutions. In this study, we propose the FedTSeg framework, a federated 3D tooth
segmentation framework with a deep graph convolutional neural network, to resolve the
3D tooth segmentation task while alleviating data privacy issues. Moreover, we adopt a
general privacy-preserving mechanism with homomorphic encryption to prevent
information leakage during parameter exchange between the central server and local
clients. Extensive experiments demonstrate that both the local and global models trained
with the FedTSeg framework can significantly outperform models trained with the
conventional paradigm in terms of the mean intersection over union, dice coefficient,
and accuracy metrics. The FedTSeg framework can achieve better performance under
imbalanced data distributions with different numbers of clients, and its overall performance
is on par with the central model trained with the full dataset aggregated from all distributed
clients. The data privacy during parameter exchange of FedTSeg is further enhancedwith a
homomorphic encryption process. Our work presents the first attempts of federated
learning for 3D tooth segmentation, demonstrating its strong potential in challenging
federated 3D medical image analysis in multi-centric settings.

Keywords: federated learning, medical image analysis, semantic segmentation, homomorphic encryption, tooth
segmentation

1 INTRODUCTION

The research on deep learning has brought remarkable progress inmany interdisciplinary fields, such
as medical image analysis Litjens et al. (2017) Lundervold and Lundervold, (2019) Zhou et al. (2021).
Lots of novel designated neural network architectures and corresponding end-to-end solutions have
been proposed to assist diagnosis and treatment planning in real-world clinical applications, with the
goal of providing better and more intelligent healthcare services by improving the diagnosis
efficiency of doctors and reducing the treatment cost of patients. These techniques become
prevalent, especially in two-dimensional (2D) or three-dimensional (3D) volumetric medical
image analysis. For example, for lung disease diagnosis, Gordienko et al. (2018) in their study
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performed lung segmentation in X-ray scans with a UNet-based
Ronneberger et al. (2015) structure. A multi-scale convolutional
neural network (MCNN) was proposed by Shen et al. (2015) to
detect lung nodules in computed tomography (CT) slices with 3D
volumetric images. More applications are also investigated, such
as in liver segmentation by Christ et al. (2017) and Long et al.
(2015) and breast cancer diagnosis, brain magnetic resonance
imaging (MRI) analysis, etc. by Bejnordi et al. (2017). Besides
regular 2D or 3D grid images, geometrical medical data, such as
3D meshes, point clouds, or molecules, also become even more
popular in many medical applications, while satisfactory
intelligent data analysis algorithms are yet under construction.

In dental research, intra-oral scanners (IOSs) have been
popularized and extensively used in digital orthodontics. They
can generate a 3D mesh of teeth anatomy, which is more accurate
than a plaster model. In clinical diagnosis, an important step is to
segment the individual tooth and gingiva precisely in the IOS
meshes acquired from the scanners, i.e., 3D tooth segmentation.
Specifically, given an IOS mesh consisting of more than 150,000
triangulated faces, 3D tooth segmentation would predict and
classify each face to corresponding teeth or gingiva following the
FDI Herrmann, (1967) notation. The segmented outputs are an
indispensable prerequisite for subsequent steps, such as diagnosis
and treatment planning in orthodontics and implanting. Several
pioneering researchers carried out by Xu et al. (2019), Tian et al.
(2019), Zanjani et al. (2019), Cui et al. (2021), Lian et al. (2020),
and Hao et al. (2021) have worked on the 3D tooth segmentation
problem with geometry-based or deep-learning-based methods,
such as models based on conventional 2D or 3D convolutional
neural networks (CNN) or designated tooth segmentation
networks. These methods achieve good performance on their
individual test set, but there still exist some limitations as
elaborated below.

Accurate and automatic 3D tooth segmentation remains a
challenging task on the following grounds. On one hand, the IOS
samples vary significantly among patients, such as different tooth
shapes (tooth with cavities or defective restoration or attrition),
tooth numbers (missing teeth, hypodontia, or hyperdontia), tooth
sizes (microdontia and macrodontia), positional varieties (tipped,
rotated, or shifted tooth and crowding teeth), leading to a large
data heterogeneity among patients samples Hao et al. (2021).
Such a large data heterogeneity imposes serious challenges to
developing robust and accurate 3D tooth segmentation solutions.
On another hand, most of these methods are only evaluated with
their own test set due to the lack of publicly available large-scale
and multi-centric IOS datasets. For example, the method given in
a study by Cui et al. (2021) is only evaluated with less than 50
samples collected from patients without third molars from the
same center. Previous research also demonstrated that their
performance would degrade a lot if they are evaluated on a
large-scale dataset with more complicated cases Hao et al.
(2021). Following the aforementioned two constraints, it is
worthwhile if we could aggregate data samples from multiple
hospitals and clinics, i.e., collecting much more data samples with
high heterogeneity as they are collected from different sites and
patients. However, data sharing and exchange among hospitals
and clinics might be awkward due to privacy and regulatory

concerns. Overcoming such data island issues is of high necessity
to achieve clinically applicable solutions for 3D tooth
segmentation in multi-centric scenarios.

Recently, the federated learning (FL) framework is proposed
for collaborative and distributed learning across multiple
participants (such as hospitals) without explicit data sharing
McMahan et al. (2017). Participants, which are also termed as
clients, no matter whether in large hospitals or small clinics, can
utilize their computation resources to perform training based on
premium local datasets, and share their model parameters to a
central server. Within this collaborative mode, clients could
contribute to the same global model and significantly boost
the model performance without exchanging their local data.
FL has been applied to many fields, including mobile-edge
computing Lu et al. (2020) and the Internet of Things (IoT)
Ren et al. (2019). There is also some pioneering work about
federated learning in medical image analysis Kaissis et al. (2020);
Rieke et al. (2020); Fan et al. (2021); Warnat-Herresthal et al.
(2021). For example, Liu Q. et al. (2020) in their study improved
prostate segmentation by learning the shared knowledge from
heterogeneous datasets in multiple sites. However, to the best of
our knowledge, there is no previous work exploring the feasibility
of FL for 3D tooth segmentation due to challenges in 3D
geometrical medical image analysis, though the demand
becomes burning with the drastically increasing number of
dental patients.

In this study, we propose the framework FedTSeg based on the
general FL framework for distributed 3D tooth semantic
segmentation with a privacy-preserved module under various
settings. We first formulated the 3D tooth segmentation as a
point cloud segmentation task and designed the corresponding
segmentation architecture based on the EdgeConv blocks Wang
et al. (2019). Under the general FedAvg setting McMahan et al.
(2017) that can easily scale to a large-scale dataset with competing
performance, we investigated the tooth segmentation performance
of the FedTSeg with balanced or imbalanced distributions of data
samples among clients. We also study the effect with different
numbers of clients with heterogeneous IOS samples. Furthermore,
to resist the potential parameters leakage during the federated
process, we adopted a homomorphic privacy-preserving module in
FedTSeg to strictly protect the communication between clients and
the server. Comprehensive experiments with 500 IOS samples
demonstrate that FedTSeg can achieve a mean intersection of
union (mIoU), dice coefficient (DSC), and accuracy (ACC) of
81.49, 86.42, and 92.53%, respectively, significantly outperforming
the conventional counterparts trained with a local paradigm.
Moreover, the overall performance with FedTSeg is on par with
the central model trained with the aggregated data from all clients
with privacy-preserved distributed learning. Our work presents the
first attempt in federated learning for 3D tooth segmentation over
geometric medical data, demonstrating the strong potential of
federated learning for challenging 3D medical image analysis
tasks in the distributed multi-centric setting.

Our main contributions can be summarized as follows:

• We established the federated tooth segmentation (FedTSeg)
framework based on the deep graph convolutional neural
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networks for privacy-preserved distributed 3D tooth
segmentation and investigated the IOS tooth
segmentation performance under various settings, such as
a varying number of clients or different distributions of
heterogeneous IOS mesh scans.

• We achieved privacy-preserving federated 3D tooth
segmentation with a homomorphic encryption
mechanism to prevent potential parameter leakage during
communication.

• We demonstrated the effectiveness of the proposed FedTSeg
framework with comprehensive experiments, which exhibit
that FedTSeg could attain a better global model than
conventional local training. Meanwhile, FedTSeg strictly
protects the patient’s privacy and secures the
communication between clients and the central server.

The rest of the study is organized as follows. The related work
is reviewed in Section 2, a system model used in this study is
introduced in Section 3, methods are elaborated in Section 4,
experiments performed are described in Section 5, the discussion
and analysis of this work are given in Section 6,and conclusions
of this study are given in Section 7.

2 RELATED WORK

2.1 3D Tooth Segmentation
We formulate the 3D tooth segmentation task as a 3D point cloud
segmentation task, which is a specific branch of 3D shape
segmentation. There has been substantial work for 3D shape
segmentation. PointNet Qi et al. (2017a) and PointNet++Qi et al.
(2017b) are widely used when it comes to dealing with point
clouds. They support semantic segmentation of objects and
scenes, but cannot capture the geometrical relationships
between points, leading to inferior performance in complex
scenes. In their study, Wang et al. (2019) came up with the
dynamic graph convolutional neural work (DGCNN) based on
the EdgeConv block, which can obtain both local and global
representations. However, the performance of these methods for
3D tooth segmentation is not good as expected, as the IOS tooth
mesh, with higher-resolution and complicated anatomical
structures, is significantly different from nature objects.
Recently, there have been several works toward improved
performance of 3D tooth segmentation based on point cloud
segmentation. Some methods first extract predefined geometrical
features from the original mesh and then resolve the 3D tooth
segmentation task via 2D/3D convolutional neural network
(CNN) Xu et al. (2019) and Tian et al. (2019). Some
specifically designed neural networks are also proposed to
improve the performance of tooth segmentation, such as DC-
Net Hao et al. (2021), TSegNet Cui et al. (2021), and MeshSegNet
Lian et al. (2020). They achieve precise segmentation on the
regular upper jaw or lower jaw scans but perform poorly if
restricted to limited training data or tested with heterogeneous
IOS samples, while the large-scale annotated dataset is not
publicly available. In our work, we employ the FL framework
with a segmentation backbone composed of EdgeConv blocks

and CNNs, which can take advantage of distributed IOS samples
from multiple hospitals and clinics for local training and global
aggregation, to obtain a well-trained global model while getting
around the privacy concerns.

2.2 Federated Learning
Federated learning was first raised to conduct distributed training
from decentralized data across various client devices. In contrast
to conventional centralized learning paradigms, FL does not
require explicit data sharing among clients or institutions. A
typical algorithm is federated averaging (FedAvg) McMahan et al.
(2017), which gives a general platform consisting of a central
server and a number of distributed clients. More advanced FL
frameworks are also proposed to tackle different issues in FL, such
as robustness, privacy, and heterogeneity [FedBN Li et al. (2021),
FedProx Li et al. (2020), MFL Liu W. et al. (2020)]. But there still
exist some challenges preventing federated learning from being
applicable, such as performance decline in non-iid settings and
heterogeneous data distribution, low communication efficiency
under huge traffic pressure, and potential privacy leakage. In
clinical situations, there have been some recent works adopting
the federated learning framework for specific medical tasks, such
as brain-tumor segmentation Sheller et al. (2020), COVID-19
screening Feki et al. (2021), and prostate cancer classification Yan
et al. (2021). Besides, Kaissis et al. (2020) in their study presented
an overview of cutting-edge secure methods in federated learning
with medical imaging. Fan et al. (2021) in their study provided an
FL framework for 3D brain MRI images. In their study, Warnat-
Herresthal et al. (2021) developed a decentralized edge-
computing framework for medical imaging with a permitted
blockchain. In this work, we focus on the challenging 3D
tooth segmentation task that is not investigated under the FL
setting. The previous work by Yeom et al. (2018), Melis et al.
(2019), and Song et al. (2020) has shown that an unreliable server
could deduce the feature of training data via reverse engineering
during model updating. These attackers could conduct inferences
about label information and features of local datasets through
gradient information uploaded by clients. Thus, secure protection
for model parameters is needed during the communication
between clients and servers. From the perspective of protecting
patients’ privacy, we further include the homomorphic
encryption mechanism to strengthen privacy during parameter
exchange between clients and the server.

2.3 Federated Learning for Medical Image
Segmentation
There has been previous work focusing on improving the
performance of segmentation with a federated learning system.
In their work, Li et al. (2019) proposed an FL framework with
differential privacy for brain-tumor segmentation to preserve
patient data privacy. In their work, Bercea et al. (2021)
proposed a framework for federated unsupervised brain
anomaly segmentation. In their work, Lo et al. (2021) showed
that a federated learning model could achieve similar results as
models trained on fully centralized data for microvasculature
segmentation. While these methods mainly focus on regular 2D
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segmentation tasks for grid images, this work, in contrast,
investigates the more challenging 3D tooth segmentation task
over complicated and heterogeneous geometrical medical data.
To the best of our knowledge, there exists no prior work on
federated learning for 3D medical image segmentation tasks,
while our work presents the initial step on FL for tooth
segmentation on large-scale heterogeneous 3D IOS meshes.

3 PROBLEM FORMULATION AND SYSTEM
MODEL

We aim to solve the 3D tooth segmentation task by simulating
cooperation among a large group of medical institutions with a
federated learning framework. Let us first define the 3D tooth
segmentation task on IOS meshes concretely. Let m = (V, F)
denote an IOS mesh, where V is the vertices and F is the
triangular faces of the mesh. The goal of 3D IOS tooth
segmentation is to assign a corresponding label yt for each
triangular faces ft, where
yt ∈ 0, 11 − 18, 21 − 28, 31 − 38, 41 − 48{ } denotes the gingiva
and FDI Herrmann, (1967) notations for 32 permanent teeth,
respectively.

Our system model is illustrated in Figure 1. The system
contains three parts: n distributed clients, a global server, and
an independent encryption authority component. The clients
represent medical institutions participating in federated
learning, such as clinics or hospitals, and the IOS scans from
patients are securely stored in their local database. For large
institutions, such as public hospitals, the amount and diversity of
the dataset would be larger than small institutions, such as clinics,
which is simulated in our experiments as well. Within this
framework, the clients can make use of their data and
computation capability to perform local training and
participate in a federated learning process by sending their
local model parameters wi to a global server. The global server
will aggregate the parameters from the distributed clients and
send the updated parameters w to the local clients.

The federated learning process is further secured by an
additional homomorphic encryption authority component.
The encryption authority is a third party independent from
the server. Before sending local parameters, clients will request
public and private keys from an encryption authority, and use the
public key to encrypt their local model’s parameters. The
encrypted model parameters from each client are aggregated
by the server and distributed back to each client in one
communication round. By doing so we can prevent
information leakage to preserve privacy during federated
communications, such as avoiding leakage of gradients that
can be used to reconstruct the original training data. The
detailed algorithm of federated learning and homomorphic
mechanism will be introduced in the following sections.

4 METHODS

In this section, we systematically introduce the proposed FedTSeg
framework. We first introduce the federated learning framework,
which consists of the clients and server modules. Next, we present
the details of our segmentation backbone for 3D IOS tooth
segmentation, which is built with the EdgeConv blocks and
inspired by the DGCNN. Finally, we mathematically define the
homomorphic encryption process that can help secure the
federated learning process.

4.1 Federated Learning Framework
The FedTSeg framework is mainly based on the general FedAvg
architecture, which can easily scale to large-scale datasets. Below
is a detailed description of the federated learning framework with
multiple distributed clients, e.g., hospitals and clinics that can
perform model training locally, and a global server that
aggregates models from the clients.

4.1.1 Client Module
Assume there are n clients participating in the federated tooth
segmentation, i.e., C � {c1, c2, . . . cn}, where C denotes all the

FIGURE 1 | A systemmodel of our FL architecture. ω1, ω2, . . .ωn represent the encrypted local model parameters of each client. ωt+1 represents the updated global
model’s parameter after aggregation.
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clients, and ck denotes the k-th client. Each client ck is associated
with a local dataset Dk � {dki }

Nk

i�1, where Nk � |Dk| denotes the
size of the local dataset. Each data sample is defined as
dki � (xi, yi), where xi represents the IOS scan from the i-th
patient, and yi denotes the corresponding annotated labels for
each mesh face.

We define the feature extraction and learning process in each
client. As mentioned above, we transform the original
segmentation task over the 3D IOS surfaces to a segmentation
task over 3D point clouds following. Suppose we have an IOS
mesh m = (V, F), where V are the vertices and F are the faces of
the mesh. We first randomly sample N face centers from all
triangular faces and extract a 15-dimensional feature for each
point, leading to a point cloud P � pi|Ni�1. In particular, for each
triangular face ft, we have three vertices v � (xi, yi, zi)|3i�1, where
x, y, and z are the 3D Cartesian coordinates of the vertex. The
center of the triangle is denoted as vc � 1

3∑
3
1(xi, yi, zi). We further

extract more geometrical features from the original mesh for each
point. Specifically, we compute the normal vector hn of the
triangular face and a structure descriptor hs ∈ R9. With three
vertices v and triangle center vc, we have
hs � concat([vi − vc]3i�1), where concat () means concatenation
of the vectors. Hence, each point pi is associated with a feature
vector h � vc, hs, hn{ } ∈ R15. Besides, each point pi is also
associated with a corresponding label yi that assigns each face
into different tooth codes, where
yi ∈ 0, 11 − 18, 21 − 28, 31 − 38, 41 − 48{ } denotes the gingiva
and FDI (Federation Dentaire Internationale) notations for 32
permanent teeth. In our framework, each client follows the same
approach to perform feature extraction.

Before communicating with the central server, clients will
conduct local training for E epochs based on the segmentation
neural network, which is described in Section 4.2. The goal of
each client is to find the local model’s parameters, ω, that
minimize the loss function ℓi (ω; xi, yi), which can quantify
the distance between the predicted labels ŷi (determined by ω)
and true labels yi, as defined in Section 4.2. Consider all samples
in the local dataset, the objective function for client k is

Lk ω( ) � 1
Nk

∑
i∈Dk

ℓi ω; xi, yi( ). (1)

During local training, each client updates their local
parameters using the stochastic gradient descent (SGD)
method: ω ← ω − η∇Lk(ω), where η is the learning rate, and
∇Lk(ω) represents the average gradient on local training. An
advanced SGD optimizer, such as Adam by Kingma and Ba
(2015), might be used for better convergence and performance
during training. When the t-th round of local training is finished,
the client will request a public key and a private key from the
encryption authority, and encrypt the local model parameter ωk

t
with the public key. Then, the client will upload their ciphertext
(local-encrypted parameters) to the server.

Upon receiving the updated encrypted message from the
server, the client will decipher the message with the private
key and get the updated model parameters ωk

t+1. Afterward, it
will begin the next round of local training. Due to the

encryption–decryption mechanism, the model parameters are
under strict protection during the communication period.

4.1.2 Server Module
The global server is responsible for aggregating model parameters
from each client and distributing the updated global model back
to clients. In the vanilla FedAvg framework, the server will collect
the local model parameters from each client, perform weighted
average (Eq. 2) operations, and then send the updated parameters
back to each client. Here, we define the model aggregation process
as follows:

ωk
t+1 ← ∑

n

k�1

Nk

N
ωk
t , where N � ∑

n

k�1
Nk. (2)

In our FedTSeg framework, we modified the Eq. 2 to
incorporate the encryption mechanism to ensure secure
parameter exchange. Let ζk denote the encrypted local model
parameters. The server will update new model parameters ζt+1
with Eq. 3 following equation:

ζkt+1 ← ∑
n

k�1
Nkζ

k
t , (3)

which excludes the division operation. The reason is that the
additive homomorphism does not support the multiplication
between an encrypted message and a float number. It supports
the addition between two ciphertexts, easily inferring that it also
supports the multiplication between ciphertext and a non-
negative integer. Hence, in our FedTSeg setting, the server will
send the number N back to each client, and ask each client to do
the division operation locally.

4.2 3D Tooth Segmentation Network
Architecture
In this work, we design the 3D tooth segmentation neural
network based on the EdgeConv blocks as inspired by the
DGCNN Wang et al. (2019), which is capable of processing
point clouds and can be trained and evaluated in an end-to-end
manner. The network architecture is illustrated in Figure 2.

4.2.1 Transform Net
We first align each input point cloud to canonical space with a
transform Net Qi et al. (2017a), which will be fed into subsequent
EdgeConv blocks for further representation learning and
segmentation. Specifically, we sample n points on the input
IOS mesh to generate the feature vector x with a shape of n ×
f, where f = 15 denotes the dimension of features as defined in the
feature extraction process above. In our implementation, we set
n = 10, 000. The transform net is composed of consecutive 2D
convolutional layers (Conv2D), a max-pooling layer, and fully
connected layers (FC). In particular, we use a transform net with
four Conv2D layers with 64/128/128/1024 filters, respectively.
Each convolutional layer uses a 1 × 1 kernel and a stride of 1,
followed by batch normalization and ReLU activation. The
output of the convolution layers is processed with a max-
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pooling layer, followed by two consecutive FC layers with 256/512
hidden units. Finally, the input point cloud is transformed into a
canonical space by a transformation matrix that is estimated by
the transform net.

4.2.2 Network Architecture
The segmentation backbone is built on top of the EdgeConv
block, which is illustrated in the bottom of Figure 2. The
EdgeConv can capture local geometric features while
preserving permutation invariance Wang et al. (2019).
Stacking multiple EdgeConv layer can further capture high-
level semantic features. Let X � x1, x2, . . .xn{ } ∈ Rn×f

represent a f-dimensional point cloud with n sample points.
The point cloud can be transformed to a directed graph
G � E,V{ }, where E and V denote edges and vertices,
respectively. The EdgeConv uses a k-NN graph to capture the
edge feature eij between each point xi and its k nearest neighbors
xj: (i, j) ∈ E{ }. Mathematically, in our network, eij is
computed as

eij � ReLU θm · xj − xi( ) + φm · xi( ), (4)
where θ1, ..θm, ϕ1, ..ϕm{ } are learnable parameters, ReLU is the
ReLU activation function, and features xi, xj{ } ∈ R15. Compared
with the vanilla EdgeConv block, our EdgeConv further applies
channel-wise symmetric aggregation with both max-pooling and
mean-pooling to better fuse neighbor information. This
modification could help learn more expressive local and global
representations. The architecture of our EdgeConv can be
described as: a k-nn graph for edge feature extraction, three
consecutive Conv2D layers with 64 filters, and a max/mean-
pooling layer. In particular, we set k = 30 for the segmentation
network, and we employ three stacked EdgeConv blocks to
extract the hierarchical representations and concatenate each
layer by another Conv2D layer and max-pooling. Furthermore,
to include the category information about mandible and
maxillary, we feed a one-hot categorical vector into a Conv2D
layer, and the output is concatenated with the corresponding

point representations learned from stacked EdgeConv blocks.
The detailed settings of each layer is illustrated in Figure 2.

The overall schema and working mechanism of our tooth
segmentation network can be summarized as follows. The input
mesh is transformed into a 3D point cloud with a shape of
R10000×15, which will be sent to the transform net to aligned into a
canonical space. Afterward, three EdgeConv are stacked,
consecutively, to extract hierarchical point representations,
i.e., the bottom EdgeConv block can learn local geometrical
features, while the top EdgeConv block can learn high-level
semantic features. Such hierarchical representation learning is
achieved because we compute the k nearest neighbors based on
the outputs from proceeding layers of EdgeConv blocks. Hence,
the proximity is dynamically updated from layer to layer, leading
to extracted local geometrical features in bottom EdgeConv
blocks and high-level semantic features in top EdgeConv
blocks. These hierarchical features are gathered by a Conv2D
and max-pooling layer to obtain pointwise features fused with
both local and global representations. After encoding the one-hot
category information, the concatenated outputs will be fed into a
series of convolution layers and dropout layers to learn global
features and generate the final segmentation results ŷi ∈ R10000×33,
where 33 is the number of classes in our segmentation task.

4.2.3 Loss function
We use the cross-entropy loss to train the network. To avoid
overfitting, we further add an L2 regularization term in addition
to the cross-entropy loss. The loss function is defined as follows:

L � − 1
N

∑
N

i�1
yi ln Softmax ŷi( )( )

︸︷︷︸
Cross−Entropy−Loss

+ λ · ∑
υ∈[

υ2

︸︷︷︸
L2−Loss

, (5)

where N denotes the number of points in the point cloud, yi and
ŷi represent the true label and predicted label of i-th point,
respectively. υ denotes the weight parameters in the trained
model [, and λ is a hyperparameter to adjust the significance
of the L2 regularization term.

FIGURE 2 | The architecture of our 3D tooth segmentation network: Input mesh→ Point cloud x ∈ Rn×f → Transform net→ EdgeConv→ EdgeConv→ EdgeConv
→Conv2D[1024]→Maxpool→Conv2D[256]→Dropout→Conv2D[256]→Dropout→Conv2D[128]→Output. n denotes the number of sample points, and f denotes
the number of features. In our implementation we set n = 10, 000 and f = 15. The segmentation output y ∈ Rn×p gives pointwise prediction for p semantic labels. ⊗
represents concatenation. Conv2D[64] denotes a 2D convolutional layer with 64 filters.
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4.3 Encryption Authority
The encryption authority is a third-party agency that provides
public and private keys for clients participating in federated
learning. It is necessary that the encryption authority is
independent of the server, i.e., the server should not obtain the
private key for decryption. Here, we introduce homomorphic
encryption (HE) in our federated learning framework. HE is an
encryption method that allows the mathematical operation to be
performed on the ciphertext, and the result of the operation after
decryption is consistent with that of the direct operation on the
plain text. Rivest et al. (1978) in their study raise the concept of
homomorphic encryption. From the perspective of mathematical
operation, it mainly consists of two branches: fully homomorphic
encryption (FHE) and partial homomorphic encryption (PHE).
The PHE is further divided into two parts: addition
homomorphism and multiplication homomorphism. The FHE
algorithm supports both multiplication and addition.
Consequently, FHE would request a lot more computation
resources than PHE. Normally an HE algorithm contains three
parts: key generation, encryption, and decryption, denoted by
Keygen, Enc(), and Dec(), respectively. Keygen will generate the
public key Kp for encryption and private key Kv for decryption. Let
m1, m2 denote the plain text, HE has the following property:

Enc m1, Kp( ) ⊗ Enc m2, Kp( ) � Enc m1 ⊕ m2( ), (6)
where ⊗ and ⊕ represent mathematical operators. If the
encryption method satisfies Eq. 6, it conforms the
homomorphism on ⊕ operation, such as addition or
multiplication. Recent work by Kaissis et al. (2020) and Shah
et al. (2021) has shown popularity and feasibility to include
addition homomorphism in distributed learning. In our
encryption authority, we employ the Paillier algorithm, which
is an addition homomorphism invented by Paillier, (1999):
Enc(m1, Kp)·Enc(m2, Kp) = Enc(m1 + m2).

During the communication, each client encrypts their local
model parameters with public key requesting from the encryption
authority, i.e., ζkt ← Enc(ωk

t , Kp). Upon gathering all clients’
uploaded messages, the server will perform aggregation on the
messages as shown in Eq. 3, and then distribute the updated
message ζkt+1 and total size of training data N to each client. The
updated model parameters are calculated as: ωk

t+1 ←
Dec(ζkt+1 ,Kv)

N
.

4.3.1 Paillier Cryptosystem
Paillier cryptosystem is a probabilistic public key encryption
system raised by Paillier in 1999. It supports addition
homomorphism, i.e., the addition of two ciphertexts. It also
supports ciphertext multiplied by a non-negative integer
plaintext. The algorithm of key generation, encryption, and
decryption is presented in Algorithm 1

Based on FedAvg McMahan et al. (2017), we established our
privacy-preserving framework with a homomorphic encryption
mechanism. Assume there are n clients collaboratively contributing
to a global model, the objective is tominimize the global loss function:

arg min
ω

∑
n

k�1
αkLk ωk( ), (7)

Algorithm 1. Paillier cryptosystem.

Algorithm 2. FedTSeg.

where αk � Nk
N
and ∑n

k�1αk � 1. Lk () is the local loss function
for client k defined in Eq. 1. In our framework, we let all
participants update their local model for a certain training
period E, where they use the stochastic gradient descent
(SGD) method to calculate weight updates in each round.
Finally, the overall algorithm for our FedTSeg is presented in
Algorithm 2. Key notations are present in Table 1

5 EXPERIMENT

5.1 Experimental Setup
5.1.1 Dataset and Preprocessing
We collect 3,000 IOS meshes with labels annotated by experts.
Each scan exhibits a 3D mesh for a patient’s mandible or
maxillary with corresponding labels for each face denoting the
tooth and gingiva. We randomly split the dataset into 80% for the

TABLE 1 | Symbol notations.

Parameter Description

Dk The dataset of kth client

dk
i

The ith patient sample in kth client dataset

Nk The size of the dataset in kth client
ℓi Loss function
ωk Local model parameters in kth client
E Number of epochs during a local training
ζk Encrypted model parameters in kth client
Kp, Kv Public key and private key
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training set and 20% for the testing set. The training set will be
distributed to clients following different experimental settings,
while the testing set is the same for each client. The training
samples are randomly transformed to get multiple augmentations
to achieve better generalization ability. In particular, the
transformation is defined as T � [R|S|τ], where R,S, τ
denote the rotation, scaling, and translation, respectively. For
rotation R, the mesh will rotate around an arbitrary axis with a
random degree chosen from [0°, 5°, 10°]. The scaling S will scale
the mesh with a factor randomly chosen from (83%, 115%). We
will apply a global translation to the mesh under the 3D Cartesian
coordinates. Each data sample would be augmented four times,
and the corresponding features are extracted following the
procedure given in Section 4.1.1.

5.1.2 Implementation Details
As shown in Figure 2, the network architecture is summarized as:
Input mesh → Point cloud x ∈ R10000×15 → Transform Net →
EdgeConv → EdgeConv → EdgeConv → Conv2D [1024] →
Maxpool → Conv2D[256] → Dropout → Conv2D[256] →
Dropout → Conv2D[128] → Output. The number in the
bracket denotes the number of filters in the 2D convolutional
layer. Unless otherwise indicated, all the Conv2D layers use a
kernel size of 1 × 1 and a stride of 1 with batch normalization and
ReLU activation. We set k = 30 for k-nn graph in EdgeConv
block. The dropout ratio is 0.6. The output layer is a Conv2d[33]
without batch normalization and ReLU activation. The network
is trained with a batch size of 4. During local training, each client
uses an Adam optimizer for gradient descent, with a basic
learning rate η = 0.002, an exponential decay rate of 0.7, and
decay steps of 16,0000. To keep the fairness of performance
evaluation, we measure all models with the same testing set. All
experiments are conducted using a GPU of NVIDIA GeForce
RTX 3090 (24G) and Intel(R) Xeon(R) Gold 6139M CPU @
2.30GHz, including but not limited to training, testing,
encryption/decryption process, and inference.

5.1.3 Federated Setting
In our experiments, we simulate a real-world situation where
different medical institutions participate collaboratively in 3D
tooth segmentation. We considered two distributions: “balanced”
and “imbalanced.” “Balanced” distribution means the size of the
training set for each client is the same, and “imbalanced”
distribution means the sizes are not necessarily the same. Let
E denote local training epochs between each communication
round. Unless specified, we set E = 20, i.e., for every 20 epochs,
each client should send their local model’s parameter to the
server.

5.1.4 Metrics
In performance analysis, we include three metrics to evaluate the
segmentation performance measuring the performance of
models: mean intersection over union (mIoU), dice coefficient
(DSC), and pointwise classification accuracy (Acc). Let X denote
the segmentation results and Y denote ground truths, then
DSC � 2·|X ∩ Y|

|X|+|Y| , mIoU � |X ∩ Y|
|X ∪ Y|.

5.2 Results
5.2.1 FL vs. w/o FL
We first compare the performance between global/local models
with FedTSeg (FL) and average/local models without FedTSeg
(w/o FL). We simulate five independent clients under balanced
distribution (c_1, c_2, ..c_5). Each client uses 20% of the original
training set to carry on local training. The result is shown in
Table 2. As for the global model with FedTSeg and the average
performance of five local models without FL, the global model of
FedTSeg reaches 80.63% mIoU, 86.03% DSC, and 91.39% Acc,
outperforming the average model without FL by 10.05% mIoU,
8.24% DSC, and 5.93% Acc. Such a large performance margin
demonstrates the effectiveness and necessity of employing
federated learning for 3D tooth segmentation.

As for the local models, we can notice that, without FedTSeg,
c_3’s local model gets the highest performance with Acc 90.68%,

TABLE 2 | Performance of five clients’ local models when epoch = 100. “Size”means the proportion of the dataset for each client; w/FLmeans clients are within the FedTSeg
framework; w/o FL means clients perform purely local training; global denotes the global model after aggregation; and avg calculates the average testing accuracy of five
local models without the FL framework.

Distribution Client (size) w/FL w/o FL

mIoU DSC Acc mIoU DSC Acc

Balanced c_1(20%) 70.68 77.49 87.4 70.12 78.12 86.76
c_2(20%) 78.24 84.09 90.61 72.62 79.66 86.82
c_3(20%) 78.54 84.60 90.19 73.69 80.83 87.67
c_4(20%) 76.22 82.79 87.88 79.63 85.10 90.68
c_5 (20%) 78.85 84.70 90.33 56.88 65.26 75.30
global/avg 80.63 86.03 91.39 70.58 77.79 85.46

Imbalanced c_1′(8%) 77.90 84.06 89.62 40.45 46.46 64.64
c_2′(8%) 72.39 79.08 88.05 70.49 78.33 84.17
c_3′(24%) 76.85 82.69 90.69 44.87 48.99 68.11
c_4′(26%) 75.02 81.18 89.66 74.18 81.22 87.96
c_5′(34%) 78.41 83.95 91.69 64.18 72.92 80.12
global/avg 81.49 86.42 92.53 58.83 65.58 77

CL (as reference) c_1 (100%) 82.56 86.97 93.26
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DSC 85.10%, and mIoU 79.63%, while c_5’s local model gets a
terrible performance with Acc 75.30%, DSC 65.26%, and mIoU
56.88%. Though the sizes of training sets are the same, there is still
a large variance among their final results, which indicates that the
data heterogeneity significantly influences the local model
performance. The global model of FedTSeg, trained with the
aggregated dataset, significantly outperforms all local models
without FedTSeg. Besides, there is a substantial decrease in the
variance among five clients with FedTSeg. In particular, the
standard deviation of Acc decreases from 5.27% (without FL)
to 1.35% (with FL), indicating that the influence of data
heterogeneity is materially alleviated by FedTSeg.

We further conduct experiments with five clients under the
imbalanced distribution, i.e., the clients are denoted as (c_1′, c_2′,
. . ., c_5′). As shown in the bottom part of Table 2, c_1′ and c_2′
hold the smallest training set with a size of 8%, and c_5′ holds the
largest training set with a size of 34%, simulating the scenarios of
small clinics and large hospitals in the real world. Without
FedTSeg, the avg model under imbalanced distribution is
worse than that under balanced distribution by 11.75% mIoU,
12.21% DSC, and 8.46% Acc. Since the size of the training set is
too small, c_1′‘s model only gets a result of 64.64% Acc, 46.46%
DSC, and 40.45% mIoU, while c_2′‘s model gets a better result of
84.17% Acc, 78.33% DSC, and 70.49% mIoU. Though using the
same size of the training set, there still exists a large gap in
performance between c_1′ and c_2′, indicating a significant
influence of data heterogeneity. The variance of performance
grows larger than that of balanced distribution with a standard
deviation increase from 5.27 to 9.08% due to data heterogeneity
and varying amounts of local training data under imbalanced
distribution.

But with FedTSeg, the performance of local and global five-
client models is significantly boosted, e.g., c_1′‘s Acc increases
from 64.64 to 89.62%. We can notice that all five clients’ local
models improve their performance while maintaining a smaller
variance, as compared to the local model trained without
FedTSeg. Moreover, the global model outperforms all local
models, including those with FedTSeg. Thus, clients could
obtain a better global model with FedTSeg, especially for those
who only possess a small amount of training data.

We also study the training process and investigate the
convergence properties of network training with or without
FedTSeg under imbalanced distribution. The training process
of the five-client setting is illustrated in Figure 3A. We can see
that the convergence of clients c_1′ and c_2′ during training is
relatively slower than client c_5′, which possesses a larger size
than the local dataset. The convergence performance is positively
correlated with local data size, while our FedTSeg could break the
limit and boost the convergence of training, i.e., all five clients’
convergence speed within FedTSeg is faster than clients with pure
local training. Moreover, the clients exhibit a relatively smaller
fluctuation of training accuracy during learning, as demonstrated
by the smoother lines in Figure 3A.

Lastly, we trained a model under the centralized learning (CL)
paradigm where we assumed that all data samples could be
aggregated and available during learning. The performance of
this CL model could be regarded as the upper bound of our 3D
tooth segmentation task. The results are reported in Table 2. We
can notice that the performance of the FedTSeg framework is on
par with CL, i.e., CL only slightly outperforms the global model
with FedTSeg by 1.07% mIoU, 0.55% DSC, and 0.73% Acc.
Compared to the large margin between models with or
without FedTSeg, such an improvement is relatively smaller,
demonstrating the effectiveness of our FedTSeg model when
data sharing is prohibited due to privacy concerns.

5.2.2 More Clients in Imbalanced and Balanced
Distribution
In real-world scenarios, we suppose there are more clients
participating in the FedTSeg framework. Thus, we simulate
FedTSeg under balanced and imbalanced distribution with
more clients, i.e., 15 and 20 clients. The detailed distribution
of the local training dataset and the testing accuracy of each
client’s local model with FedTSeg under imbalanced distribution
are displayed in Figure 4. The performance of the global model
with different numbers of clients is reported in Table 3.

We can notice that the global model under imbalanced
distribution gets better performance than that of balanced
distribution. To better understand such an effect, we record
the convergence performance of experiments related to

FIGURE 3 | Convergence analysis of each experiment. (A) Demonstration of the convergence of five clients under imbalanced distribution within FedTSeg (solid
line) and without FedTSeg (dash) for 100 epochs. (B)Demonstration of the convergence of different clients and distributions with FedTSeg for 100 epochs. (C) Extension
of the five-client experiment and 15-client experiment in Table 3, to 260 epochs.
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Table 3 in Figure 3B. For reference, we also add the convergence
curve of the centralized learning paradigm. We can see that the
convergence under imbalanced distribution is slightly faster than
that under balanced distribution. Hence, we conjectured that the
clients with large-scale high-quality data predominate during
parameter updating, which could greatly contribute to an
excellent global model, especially in the early stage of training.
Such a conjecture is empirically demonstrated in Figure 3C;

FIGURE 4 | Details of imbalanced distribution for local training set size and local model’s test accuracy at Epoch = 100 before aggregation.

TABLE 3 | Performance of imbalanced and balanced distribution on different clients’ number at epoch = 100.

Clients Imbalanced Balanced

mIoU DSC Acc mIoU DSC Acc

5 81.49 (+0.86) 86.42 (+0.39) 92.53 (+1.14) 80.63 86.03 91.39
15 78.32 (+3.14) 84.59 (+2.38) 89.76 (+1.64) 75.18 82.21 88.12
20 76.13 (+1.99) 83.34 (+1.99) 88.12 (+0.36) 74.14 81.35 87.76

TABLE 4 | Performance of the FL global model for 5 clients and 15 clients at epoch
= 100 and epoch = 260.

Clients Epoch = 100 Epoch = 260

mIoU DSC Acc mIoU DSC Acc

5 81.49 86.42 92.53 85.40 89.28 94.14
15 78.32 84.59 89.76 82.41 86.97 92.76

FIGURE 5 | Visualization of segmentation results under balanced distribution with FedTSeg framework and without FedTSeg framework. “FL” denotes the global
model with FedTSeg and “w/o FL” denotes the local model under pure local training. The differences are annotated with dotted circles.
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Table 4, i.e., the gap of Acc between the five-client and 15-client
global model shrinks from 2.77% (trained for 100 epochs) to
1.38% (trained for 260 epochs). In particular, though the
performance of the global model with five clients is saturated
when trained 100 epochs, the performance of the global model
with 15 clients still can be slowly improved if the training epoch is
increased. This is reasonable because the global model needs to be
progressively improved, especially in settings with lots of clients
each with a smaller number of local training samples.

We can also notice that both global models of 15 clients and 20
clients outperform the local models under balanced and
imbalanced distribution, which is consistent with the above
results of the five-client setting, demonstrating that FedTSeg
can gather the advantages of multiple clients and boost the
performance of local models. Under imbalanced distribution,
the performance of the global model consisting of five clients is
better than that of 15 clients by 3.17% mIoU, 1.83% DSC, and
2.77% Acc, and the 15-client global model is better than the 20-
client model by 2.19% mIoU, 1.25% DSC, and 1.64% Acc. Under
the balanced distribution, the five-client global model is better
than 15-client global model by 5.45% mIoU, 3.82% DSC, and
3.27% Acc, and 15-client’s better than 20-client’s by 1.04%mIoU,
0.86% DSC, and 0.36% Acc. Since these three experiments (5, 15,
and 20 clients) use the same original training data, the average
size of clients would decrease when the number of clients
increases, leading to performance degradation in experiments.

5.3 Visualizations
We demonstrate the effectiveness of our method with detailed
case visualizations. Five visualization cases of segmentation
results under balanced distribution are displayed in Figure 5,
where each column represents a specific case. By comparing the

segmentation results of models with or without FedTSeg, we can
see that the global model of FedTSeg could predict a more precise
segmentation result than pure local training under balanced
distribution. Concretely, we can notice that the “w/o FL”
model would mistakenly recognize part of the lateral incisor as
cuspid, as shown in case 1. Without FedTSeg, there are errors of
omission at the boundary between the central incisor and gingiva
(tooth-gingiva boundary) in cases 2 to 5. More mistakes are also
committed for the tooth–tooth boundary, i.e., there are boundary
segmentation errors between the second bicuspid and first molar
as in cases 2 and 5. As for the segmentation of molars, we can see
that the predicted shape of the second molar by “w/o FL”model is
visibly different from the ground truth, as shown in case 4. In
contrast, the model trained with FedTSeg, though not perfect,
rarely commits such mistakes, leading to much better
segmentation results that would be more appealing to real-
world clinical applications.

We visualized another five cases of segmentation results under
imbalanced distribution, as shown in Figure 6. In cases 2, 4, and
5, there are obvious mistakes predicting tooth parts of the cuspid
and first bicuspid without FedTSeg. In cases 2, 3, 4, and 5, the
boundaries among the second molar, first molar, and second
bicuspid are not correctly segmented. While with FedTSeg, these
errors are significantly solved, which further demonstrates the
effectiveness of the FedTSeg framework under imbalanced
distribution.

5.4 Communication Analysis
In FedTSeg, each client will encrypt their model parameters and
decrypt the ciphertext for each communication round using
Paillier algorithm. To quantify the magnitude of external
communication cost, we record the training time, encryption

FIGURE 6 | Visualization of segmentation results under imbalanced distribution with FedTSeg and without FedTSeg. Some distinct errors are annotated with
dotted circles.
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time, and decryption time. Specifically, we used Tensorflow to
train our network, where the model is stored in “ckpt” format.We
used the open-source framework “Python-Paillier” to perform
element-wise encryption on the model, i.e., each floating number
inside the tensors is encrypted by the public key. For each model,
there are 295 tensors with 545,6841 floating points to be
encrypted.

The result is reported in Table 5. It takes about 6 min to train
one epoch in the five-client setting with the balanced distribution.
It takes 36 and 15 min to encrypt a local model and decrypt the
upcoming global model using the 256-bit public key and private
key.With the increase in key length, the ciphertext is more secure.
However, the time cost for encryption and decryption also
increases, respectively. What calls for special attention is that
the computation ability of GPU/CPU can influence the training
and homomorphic time cost, thus the value in Table 5 only gives
a referenced value in our experimental setup as described in
Section 5.1.

6 DISCUSSION

There are nevertheless some limitations of our work. First, there
still exists a gap between FL and the centralized paradigm. As
shown in Figure 7A, there are some mistakes in annotating small
tooth parts in the lateral incisor with FedTSeg, while the
segmentation from CL is more precise. Meanwhile, though our
FedTSeg can detect the missing unlabeled teeth and avoid manual
mistakes, it is still inferior to the CL in extreme cases. Ideally, an
applicable federated learning framework should be able to reach
the same performance as a centralized learning paradigm or even
surpass it. More domain-specific design might be required to
better resolve the federated 3D tooth segmentation tasks, e.g.,
frameworks considering the anatomical and morphological
features of different oral diseases.

Moreover, the federated learning framework should be able to
generalize to settings with a large number of clients efficiently. In
our preliminary results, more training time is required to better
convergence of FedTSeg with more clients, though we simulate it
with fewer samples in each client. It is reasonable that enlarging
the local training set might help faster convergence of the FL
framework with many clients. But novel designs are also
appealing to deal with the scenarios where there are lots of
distributed clients with a relatively smaller number of training
samples. This is also the case when we have lots of small clinics
rather than large hospitals for federated medical image analysis in
practice.

Last but not least, further exploration is of high necessity to
improve the communication and model aggregation efficiency,
though some recent research already shed light on this direction.
There exists computational heterogeneity among clients. For those
hospitals with stronger computation ability, they would finish
training and encryption faster than others, then they would have
to wait for others to finish their communication. The cannikin law
indicates that our framework would be limited by the slowest client.
Asynchronous model aggregation might be adopted for faster
convergence. Moreover, the weight parameters of the neural
networks could be quantized or pruned to decrease the
communication overload for better communication efficiency.
Combining federate learning with cutting-edge deep-neural-
network-compression techniques is a promising solution to
learning powerful models efficiently with lots of mobile-edge devices.

7 CONCLUSION

In conclusion, we design and develop a federated learning
framework FedTSeg for federated 3D IOS tooth
segmentation, and achieve privacy-preserving via
homomorphic encryption. Comprehensive experimental

TABLE 5 | Time analysis of the homomorphic encryption process. For training time, we record the average time for training one epoch with 20% data.

Key length Training time (min) Encryption time (min) Decryption time (min)

256 6 (20% training set) 36 15
512 216 78
1024 1333 441

FIGURE 7 | Visualization of segmentation results under a centralized paradigm and federated learning framework. (A) Comparison between FL and CL. (B)
Comparison between FL and GT.
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results reveal that FedTSeg could obtain much better global and
local models than conventional local training paradigms, and
could achieve segmentation performance on par with the
centralized paradigms where we assure all data could be
aggregated. Moreover, the data is strictly protected with
homomorphic encryption, preventing attacks during
parameter exchange. Our future work will focus on handling
the performance degradation issue in scenarios with a large
number of clients, each associated with a limited number of
local training data, which is closely related to the long-tailed
learning problem. Further techniques to resolve communication
efficiency issues are also highly demanded to help deploy our
framework to real-world applications.
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