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Introduction: The future wireless landscape is evolving rapidly to meet ever-
increasing data requirements, which can be enabled using higher-frequency
spectrums like millimetre waves (mmWaves) and terahertz (THz). However,
mmWave and THztechnologies rely on line-of-sight (LOS) communication,
making them sensitive to sudden environmental changes and higher mobility
of users, especially in urban areas.

Methods: Therefore, beam blockage prediction is a critical challenge for sixth-
generation (6G) wireless networks. One possible solution is to anticipate the
potential change in the wireless network surroundings using multi-sensor data
(wireless, vision, lidar, and GPS) with advanced deep learning (DL) and computer
vision (CV) techniques. Despite numerous advantages, the fusion of deep
learning,computer vision, and multi-modal data in centralised training
introduces many challenges, including higher communication costs for raw
data transfer, inefficient bandwidth usage and unacceptable latency. This work
proposes latency-aware vision-aided federated wireless networks (VFWN) for
beam blockage prediction using bimodal vision and wireless sensing data. The
proposed framework usesdistributed learning on the edge nodes (EN) for data
processing and model training.

Results and Discussion: This involves federated learning for global model
aggregation that minimizes latency and data communication cost as compared
to centralised learning while achieving comparable predictive accuracy. For
instance, the VFWN achieves a predictive accuracy of 98.5%, which is
comparable to centralised learning with overall predictive accuracy 99%,
considering that no data sharing is done. Furthermore, the proposed
framework significantly reduces the communication cost by 81.31% and
latency by 6.77% using real-time on device processing and inference.
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1 Introduction

Millimetre wave (mmWave) and terahertz (THz)
communications are considered prospective contenders for
future sixth-generation (6G) wireless communication networks.
With larger bandwidth, the mmWave and THz technologies have
the ability to meet the ever-increasing data requirements,
supporting emerging technologies, including smart healthcare,
industry 4.0, holographic telepresence, virtual or augmented
reality (VR/VR) and autonomous vehicles Khan et al. (2022);
Nishio et al., 2021. Furthermore, the higher frequencies also
provide ultra-reliable low-latency communication (URLLC),
massive connectivity and higher throughput. However, higher
frequencies and growing antenna arrays carry significant
control overhead, preventing them from achieving their full
potential. Furthermore, the propagation properties of future
wireless systems will drastically change, as mmWaves and THz
signals are notorious for their poor penetration and significant
power loss when reflecting from surfaces Alrabeiah et al. (2020a).
This emphasises the need for antenna directivity, which requires
huge antenna arrays and Line-of-Sight (LOS) links between the
base station (BS) and the end user. Therefore, beam-forming is
likely to be used in 5G and 6G communication networks owing to
its remarkable features, including higher spatial reuse, increased
throughput, higher capacity, and minimised interference Al-
Quraan et al. (2021).

LOS links are necessary for mmWave and THz
communications networks to provide sufficient receive signal
power. Moving items in the surrounding area that block these
LOS linkages may distort the communications channel or cause a
sharp decline in link quality. This is because of the considerable
penetration loss of mmWave and THz transmissions, resulting in
low reliability and higher latency Charan and Alkhateeb (2022).
The challenge of link blockage can be overcome by developing the
sense of wireless networking sounding to anticipate the potential
blockage and perform proactive handover (PHO). The
traditional approach adopted for PHO is based on the
combination of machine learning and wireless sensing
(channel response, received signal strength) Choi et al. (2017);
Alkhateeb et al. (2018). Furthermore, precise beam alignment can
be achieved using advanced technologies like sensing, AI-driven
position estimation, beam failure detection, real-time tracking,
and proactive handover. However, acquiring reliable channel
state information (CSI) is difficult due to the delay in
measuring and reporting pilot-based sensing Lu et al. (2020).
Therefore, AI-assisted sensing and positioning can transform the
pilot-based channel acquisition into location-aware channel
acquisition to simplify the optimal beam search. The challenge
with traditional artificial intelligence (AI) driven beam and
blockage prediction is associated with substantial control
overhead and reactive management. Hence, the use of multi-
modal data (wireless, vision, lidar, and GPS), the fusion of deep
learning (DL) and computer vision (CV) is an emerging trend to
solve the challenge of link blockage for future wireless networks
Nishio et al., 2021. The fusion of multi-modality allows the
wireless system to have a sense of the surrounding
environment that is envisioned to play a vital role in future
wireless communication, especially in blockage prediction, PHO,

and network resource allocation to ensure seamless connectivity
Nishio et al. (2019).

1.1 Related work

Despite of numerous benefits, the true potential of mmWaves
and THz can only be exploited by ensuring LOS link to maintain
seamless connectivity. Hence, many solutions have been proposed
to address the connectivity issues in future wireless networks. For
instance, the studies in Choi et al. (2017); Alrabeiah and Alkhateeb
(2020) demonstrated the use of wireless sensing data and advanced
DL models to efficiently differentiate the LOS and blocked links.
However, wireless sensing deals with blockage prediction problems
from a reactive perspective, which is unsuitable for future wireless
networks. Hence, the work Alkhateeb et al. (2018) took a step
forward to take the beam blockage prediction as a proactive
problem for successful handover in mmWave communication.
The proposed scheme utilised a beamforming vector using Gated
Recurrent Unit (GRU) for link blockage prediction. However, the
uni-modal wireless data fails to meet future application
requirements.

The use of multi-modality and fusion of DL and CV is an
emerging area of research in vision-aided wireless communication.
The use of multi-modality, especially vision sensing, provides
information about the surrounding environment and brings
awareness to wireless systems, which could potentially help in
beam management and blockage prediction. Therefore, the authors
in Alrabeiah et al. (2020b) developed vision wireless (ViWi), a deep
learning framework for vision-aided wireless communication. The
ViWi framework utilises wireless and vision-sensing data to provide a
holistic view of the wireless network surroundings to predict the
potential blockages proactively. The work in Alrabeiah et al. (2020a),
utilises the received signal strength and RGB images to train a DL
model using the ViWi framework. The proposed technique used a
residual neural network (ResNet-18) for successful beam blockage
prediction. The study in Charan et al. (2021b), proposed a novel DL
architecture for future beam blockage prediction, leveraging the
wireless beam sequences and their corresponding RGB images.
The proposed solution combines the CV and DL to develop an
understanding of wireless surroundings to highlight the potential
of visual data for the future wireless network. Similarly, the authors in
Charan et al. (2021a) developed a bimodal DL approach for proactive
beam blockage prediction. The proposed scheme utilised object
detection to determine the user’s location by observing the
consecutive RGB images in conjunction with wireless channels for
blockage prediction to perform handover to maintain seamless
connectivity.

1.2 Motivation and contributions

As discussed earlier, using multi-modal data and fusion of DL
and CV is an emerging trend to solve connectivity issues in future
wireless networks. It is envisioned that vision sensing allows the
wireless system to develop a sense of its surroundings to predict the
linkage blockage proactively. Despite its numerous advantages, the
fusion of DL, CV and the use of multi-modality introduces many
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challenges. For instance, the DL model for beam blockage
prediction requires a massive amount of data for model
training. In a future wireless system, BS equipped with vision
sensors will be highly densified to provide maximum coverage in
urban areas. Therefore, centralised model training requires raw
data transfer to a centralised server, causing inefficient bandwidth
usage, higher communication and storage costs with additional
network footprints. Furthermore, the centralised inference
mechanism also incurs unacceptable latency caused by the
propagation delay.

Therefore, this paper proposes a latency-aware vision-aided
federated wireless network (VFWN) for proactive beam blockage
prediction using multi-modal data. The proposed framework uses
federated learning (FL), a distributed learning paradigm for DL
model training without any data sharing. This distributed learning
mechanism offers privacy by design, on-device inference, and
collaborative intelligence McMahan et al. (2017). Our proposed
scheme consists of a federated server (FS) with multiple base stations
(BS) equipped with vision sensors capable of data processing locally.
In this approach, model parameters are shared with a centralised
entity instead of sharing raw data to obtain an optimal global model.
This distributed model training mechanism can potentially solve the
cost, latency and scalability issues, especially in ultra-dense
networks. Furthermore, an extensive comparative analysis in
terms of predictive accuracy, energy efficiency and latency is
done, and results are compared with centralised learning. To the
best of the authors’ knowledge, no prior work studied the impact of
FL and performed energy efficiency and latency analysis, especially
for vision-aided wireless communication. The main contributions of
this work are as follows.

• Using multi-modal data, we propose a novel VFWN
framework for beam blockage prediction for future 6G
mmWave communication. The proposed framework has
the ability to learn generalised DL models without data
sharing to achieve scalability with massive user
participation, solving communication costs and latency issues.

• For extensive analysis, the energy efficiency of transferring raw
data in centralised training andmodel parameter sharing in FL
training is done. Energy efficiency is the average electrical
energy consumption for raw data or model parameters
transfer via wireless link, measured in a kilo-watt hour per
gigabyte (kWh/GB). Furthermore, latency analysis is done
based on centralised and on-device inference.

• The performance of the proposed architecture is evaluated
using the publically available dataset ViWi, which consists of
bi-modal vision and wireless sensing data Alrabeiah et al.
(2020b). The evaluation results confirm the importance of
VFWN for beam blockage prediction with a significant
improvement in energy efficiency using edge processing
and low latency using on-device inference.

1.3 Paper organisation

The rest of the paper is organised as follows: Section 2 discusses
the proposed VFWN, and Section 3 explains the simulation setup,
and performance metric. Section 4 presents performance evaluation,

results and discussions, whereas Section 5 gives the conclusions and
future work direction.

2 Proposed vision-aided federated
wireless networK (VFWN) framework

This work considers a wireless communication system with edge
nodes (EN) from the set of n ∈ {1, 2, 3, . . . N}, where N is the
maximum number of EN participating in the data collection and
training process. Each EN is a wireless BS equipped with a vision
sensor, capturing the surroundings of the wireless system at regular
intervals. Furthermore, each BS or EN has an antenna array that
enables the beam-forming technology to serve users by selecting the
optimal beam. The system consists of a mobile user (car) and a
potential blocking object (bus), which blocks the LOS link.

The EN has a local copy data |Dn|≡ D, where Dn is the subset of
the dataset at n − th device and the entire dataset is given by
D � ∑N

n�1|Dn|. In the centralised mechanism for VAWC, the dataset
Dn is shared with the centralised server for model training. This
results in additional communication costs and latency. Hence, we
propose VFWN, which uses distributed learning for model training.
The system-level architecture of VFWN is shown in Figure 1. In our
proposed framework, the EN are capable of processing and model
training under the supervision of a federated server (FS), a
centralised entity that orchestrates the training process. Each EN
trains a DL model to obtain the model parameters w (weights and
bias) using a local dataset. At the start of the training process, FS
broadcasts the initial model to EN, starting the training process. The
model parameters are updated on each EN using local training and
shared with the FS for global aggregation. In order to obtain the
optimal global model, the FS optimise the global cost functionWang
et al. (2018), given as:

F w( ) � ∑N
n�1|Dn| Fn w( )
∑N

n�1|Dn|
, (1)

where Fn(w) is the cost function on the n−th device. The optimal
global model parameters are obtained by achieving the minimum
global cost function given by:

w* � arg min
w

F w( ). (2)

To obtain the minimum in Eq. 2, an iterative model training process
is adopted, which involves several communication rounds between
the EN and FS.

2.1 Model training in proposed VFWN

The entire training and aggregation process consists of four
main steps, as shown in Figure 1. In step 1, the FS initialises the
global model in the first communication round and broadcasts it to
EN, starting the training process. In the subsequent communication
rounds, the FS broadcast the updated model parameters to EN. In
step 2, the EN receives a copy of the global model and performs the
local training using data present on the EN. In step 3, the local model
parameters are shared with the FS for aggregation. It is worth
mentioning that the model parameters obtained on each EN are
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distant since the data on each EN is different from the others. In the
final step, model aggregation is done to update the global model.

2.2 Local training and aggregation in VFWN

Local model training is similar to traditional model training,
where the data from each EN is used for local training. Considering
the vision and wireless sensing data, a convolutional neural network
(CNN) is used, which consists of a 2D convolution layer with 3 ×
3 feature detector, and 16 output filters. The next is the 2D max-
pooling layer, followed by the flattened layer. The results of the
flattened layer passed through a dense layer with 100 neurons and
rectified linear unit (Relu) as an activation function, followed by a
dropout layer and output layer with sigmoid activation. In local
training, ADAM is used as an optimiser with a batch size of 32 and
the hyper-parameter is kept the same on each device to make the
system simple and computationally efficient.

Once the EN shares the local model parameters with FS,
aggregation is done to obtain the optimal global model. In this
study, we used federated averaging (FedAVG), one of the most
efficient and commonly used aggregation algorithms in FL
McMahan et al. (2016). In each communication round, multiple
local epochs are executed on the subset of local data (small batches),
reducing the frequent communication between the FS and EN. Once
the global model is shared with EN, local training is done using the
data on each client. The updated model parameters are shared with
FS, where the model aggregation is done in the weighted averaging
manner as given in Algorithm 1.

Algorithm 1. Model Aggregation Algorithm in VFWN.
Note: In VFWN, once the FS obtain the optimal global model

using FedAVG algorithm, the model is deployed on each EN for
real-time on-device inference. The EN model takes vision and
wireless sensing data as input and predicts the link, either LOS/
NLOS using. In contrast to VFWN, the EN shares the data with a
centralised server for inference; hence the proposed architecture
ensures low latency using edge computing.

3 Simulation setup for VFWN

To evaluate the performance of the proposed VFWN, we utilise
one of the scenarios in a publically available dataset ViWi Alrabeiah
et al. (2020b). The ViWi is a parametric, systematic and scalable data
framework for vision-aided studies that produce the customised
dataset for DL model training. This framework uses wireless Insite
ray tracing software and the 3D game engine Blender to generate high-
fidelity synthetic data. The synthetic dataset consists of wireless and

FIGURE 1
Proposed VFWN for beam blockage prediction for future wireless networks. In this system, we assume each BS acts as an edge nodes (EN) equipped
with vision and wireless sensing to capture real-time data, capable of local processing and model training.
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vision sensing samples collected simultaneously, with different
scenarios based on the camera locations (distributed or co-located)
and the camera view (direct or blocked). The distributed data
generation setup consists of three cameras mounted on three
different BS covering the entire street with minimum overlapping.
The outdoor scenario is simulated using Blender and wireless Insite to
collect the visual and wireless datasets on predefined trajectories.

3.1 Dataset description and data distribution

The proposed VFWN framework utilises the distributed camera
with a blocked view to generate the dataset for model training. The
scenario considers an urban street having a wireless user (car),
potential blockages (buses), and three BS equipped with vision
sensors. Each vision sensor has a specific field-of-view (FoV) that
captures additional information about the wireless system
surroundings. The received signal strength and vision sensor data
are used to categorise the user as either blocked (N-LOS) or LOS and
provide ground truth for model training.

In this study, each BS is treated as EN (client) participating in
the model training process. Therefore, the data (visual and
wireless) captured at each BS is used for local training and
never shared with the centralised server. Moreover, the entire
dataset consists of 5000 RGB images with wireless channel state
information, and each EN’s data distribution is quite different, as
given in Table 1. The global testset of 1,000 data samples is used
to evaluate the performance of the proposed scheme.
Furthermore, the results are compared with the traditional
centralised approach, where data from each EN is shared with
the central server for model training.

3.2 Performance metrics

To evaluate the performance of VFWN for beam blockage
prediction, the average classification accuracy is used as the
baseline metric. However, to avoid the accuracy paradox in the
classification problem, other metrics like precision, recall and F1-
score are also considered, which are given by:

Accuracy � TP + TN

TP + TN + FP + FN
, (3)

Precision � TP

TP + FP
, (4)

and

Recall � TP

TP + FN
, (5)

where TP denotes true positive, TN true negative, FP false positive,
and FN false negative. Furthermore, we also used the confusion
matrix (CM) to further elaborate the classification results, where
rows of CM denoted the targeted labels, whereas the column
represents the predicted labels. The TP of a class is in the
diagonal of the confusion matrix, whereas the TN is the sum of
all rows and columns, excluding the row and column of a particular
positive class. Furthermore, to evaluate the efficiency of VFWN for
beam blockage prediction problems, extensive analysis of
communication cost and latency is done, and results are
compared with a centralised model.

4 Performance evaluation, results, and
discussions

As discussed earlier, the scenario under consideration consists of
three BS equipped with a camera to cover the entire street. We

TABLE 1 ViWi dataset samples distribution for VFWN model training. To
evaluate the performance of the global model, a global testset of 1,000 data
samples is used, which is never used in the training process. The dataset is
almost balanced for both LOS and N-LOS scenarios.

Training Samples Testing Samples Total Samples

EN-1 1173 297 1470

EN-2 1653 387 2040

EN-3 1174 316 1490

4000 1,000 5000

FIGURE 2
The learning curves for proposed VFWN during model training.
(A) Training loss of each EN and validation loss for the global model,
and (B) training and validation accuracy for ENs and global model.
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assumed that each BS has the local processing capability to train a DL
model. Therefore, the FS initialise the global model and broadcasts to
EN for local training. The EN trains the CNN using local data and
shares the model parameters with FS for aggregation. This is an
iterative process that continues until the model converges.

4.1 Blockage prediction results

In the FL setup, a CNN network is used for local training,
consisting of a convolutional layer, a max-pooling layer, a dense
layer and an output layer. The architecture of CNN is intentionally
kept simple to make it computationally efficient with few model
parameters. The FL training is done for 40 communication rounds
with three local epochs, and a random search is performed to obtain
the hyperparameters. The results in Figure 2, represent the learning
curve for each client and a global model for each communication
round. The FS evaluates the performance of the global model in each
communication round using the global testset. The learning curve
exhibits the classical behaviour with steep improvement in initial
communication rounds until it reaches the slow monotonic
behaviour after a few communication rounds. For instance,
Figure 2A represents the training and validation loss of ENs and
the global model, respectively. During the first ten rounds, there is a
significant change in loss function with slow improvement in the
remaining rounds. Furthermore, the similar trend of training and
validation curves for both loss and accuracy represents the perfect
model training.

We present the confusionmatrices for both centralised learning and
proposed VFWN to validate our results further. The testing of the
proposed scheme is done on the global testset of 1,000 data samples,
which are never used in the training process. The results in Figure 3A,
present the confusion matrix of the centralised CNN model with an
overall accuracy of 0.99%with average precision, recall and F-1 scores of
0.98, 0.99 and 0.99, respectively. Furthermore, the results in Figure 3B
present the confusion matrix of the global model with an overall
accuracy of approximately 0.985%. Moreover, the precision, recall
and F-1 are recorded with the average value of 0.98, 0.989 and

0.982, respectively. Although, accuracy is one of the commonly used
metrics for a classification problem. However, the accuracy paradox in
binary classification refers to the phenomenon where a model with high
accuracy may not necessarily be the best model for the task. In such
cases, the majority class predictions will dominate the overall accuracy.
Therefore, to overcome the challenges, precision, recall, and F1-score
are more informative metrics than accuracy. For instance, precision
measures the proportion of positive predictions (blocked link) that are
true positives, indicating that the model is not making many false
positive predictions. Similarly, recall measures the proportion of actual
positive examples (blocked links) that are correctly predicted by the
model. High recall indicates that the model correctly identifies most of
the positive classes. The result presented in Table 2 presents the
comparative analysis of the proposed VFWN for beam blockage
prediction. The model training is performed multiple times, and the
results of each trial are averaged for both centralised and FL cases. The
higher precision and recall scores indicate the generalised behaviour of
the model with the ability to correctly identify the blocked and LOS
links, resulting in fewer FP and FN.

From the results, it is evident that the FL is very effective for
blockage prediction keeping the fact that no data sharing is done
during model training.

4.2 Centralised vs. FL communication cost
and latency analysis

After the accuracy comparison, we evaluate the performance of
the proposed VFWN framework in the context of energy efficiency
and latency. The cost of model training depends on multiple factors,

FIGURE 3
The confusion matrices (A) centralised learning, and (B) proposed VFWN.

TABLE 2 Comparative results for centralised learning and proposed VFWN for
beam blockage predictions.

Technique Accuracy Precision Recall F1-Score

Centralised 0.99 0.98 0.99 0.99

FL 0.985 0.98 0.989 0.982
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including communication cost (data transfer), computation cost,
and data storage cost. One of the effective metrics is energy
consumption which mainly depends on communication (energy
required to data or model transfer) and computation cost, which is
proportional to computation time. The metric of energy
consumption is given in Mian et al. (2022), mathematically
represented as:

Energy � α computation time( ) + β data transfer( )[ ] (6)
Where α is the computation constant and β is the

communication constant. To simplify our analysis, we consider
the communication cost only and take β = 0.0075. In energy
efficiency comparison, the average electrical energy consumption
for data transfer via a wireless network is considered measured as
kilowatt-hours per gigabyte (kWh/GB). This study uses
0.0075 kWh/GB energy, which is the estimated using average
energy value of 0.06 kWh/GB for UK in the year 2015, which is
halved every 2 years Blenkinsop et al. (2021); Al-Quraan et al.
(2021); Table 3 presents the extensive comparison of
communication cost in terms of energy. In centralised model
training, the raw data from each EN is shared with the
centralised server, which incurs additional communication costs.
For instance, the training dataset consists of 4,000 images with a

total size of 386.1 MB which resulted in a transmission cost of
approximately 2.89 Wh using the average energy value of
0.0075 kWh/GB. In FL, the model parameters are shared during
the training process instead of data sharing. In this case, the model
size for each EN was approximately 300 KB which is shared for
40 communication rounds until the model converges. Therefore the
model size for each EN for the FL training process was 300 × 40 × 2 =
24,000 (24 MB), where the factor of 2 is multiplied for bi-directional
model sharing. The results in Figure 4A shows a significant
improvement in energy efficiency with an overall 81.31%
reduction in communication cost. Furthermore, the size of the
local and global models is independent of the data samples. For
instance, each EN has different training samples for model training;
however, the model size for each EN was the same as each EN used
the same model architecture shared by the FS.

The proposed VFWN framework uses on-device inference
instead of centralised server inference for latency analysis. For
instance, in the traditional vision-aided blockage prediction
model, the EN captures the vision and wireless data and shares it
with a centralised server for inference. The centralised inference
incurs additional latency caused by the propagation delay of the
communication link during data sharing. This study assumes a
10 Gbps mmWave back-haul link with a camera frame rate of

FIGURE 4
Comparision of communication cost (A) and latency analysis (B) for VFWN. The proposed scheme results in 81.31% reduction in communication cost
and 6.77% reduction in inference latency.

TABLE 3 Comparison of communication cost of centralised learning vs. proposed VFWN. The communication cost is computed in terms of average electrical energy
consumption for wireless data transfer in kWh/GB.

Nodes Data size (MB) Data Tx cost (Wh) Model size (MB) Model energy cost (Wh)

EN-1 106 0.795 4.8 0.18

EN-2 193 1.447 4.8 0.18

EN-3 87.1 0.653 4.8 0.18

Total 386.1 2.89 14.4 0.54
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26 frames per second (fps) Nawaratne et al. (2019). The overall
latency is calculated using the following equation:

D � tcap + ttran + tinf, (7)
where tcap is the time taken by the vision sensor to capture two
consecutive images, ttran is the transmission time for sharing data
with the centralised server, and tinf is the model inference time. The
value of tcap is 38.5 m as the camera frame rate is 26 fps, and the ttran
is 4.4 m as the transmission time is approximately 2.2 m for image
resolution 1,280 × 720 using 10 Gbps mmWave back-haul link
Nawaratne et al. (2019); Al-Quraan et al. (2022). The tinf in our
proposed scheme is about 28 m; therefore, the overall delay in
centralised inference using Eq. 7 is 70.9 m. In FL, the optimal
global model is available on EN for on-device inference. Hence,
ttranwill be zero in the proposed scheme, and the overall delay will be
66.5 m which results in 6.77% reduction is inference latency as
shown in Figure 4B. Therefore, the proposed VFWN utilises the on-
device inference, providing the additional benefit of low latency for
time-sensitive applications. Furthermore, the tinf also depends on the
model architecture. For instance, a more complex model converges
early; however, more model parameters increase the tinf. Therefore,
there is always a trade-off between the model inference time and
model complexity.

5 Conclusion and future work

This work proposed VFWN for beam blockage prediction to
maintain seamless connectivity in high-frequency
communications. The proposed solution adopts a distributed
learning approach to train a CNN with highly decentralised
data, capable of proactive beam blockage prediction using
vision and wireless sensing (consecutive RGB images and
mmWaves beams). This approach shares model parameters
with a centralised server instead of raw data, ensuring privacy
by design, on-device inference, low communication cost, and
collaborative intelligence. To evaluate the effectiveness of our
solution, the results are compared with a centralised model
training approach using a publically available synthetic dataset.
The proposed scheme predicts the potential beam blockage
proactively and achieves the accuracy of approximately 98.5%
compared to 99% in a centralised approach. These results show
that FL is very effective and achieves a similar level of accuracy
without data sharing. Furthermore, the performance of the
proposed technique is also evaluated in the context of energy
efficiency and latency. In energy efficiency, the communication
cost for data transfer in the wireless network is considered, which is
measured as average electrical energy (kWh/GB). The results

demonstrate an overall 81.31% reduction in communication
cost compared to centralised model training. Similarly, the FL-
based on-device inference also reduces the overall latency by
6.77%. Hence, this study demonstrates the effectiveness of FL in
the future wireless network. The focus of this work was solely on
FL-based blockage prediction; therefore, an interesting future
research direction would be proactive handover using the
proposed scheme. Furthermore, the existing framework is
designed for a single user only, which could be extended for
more complex environments with multiple users.
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