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1. Introduction

The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated

with patients suffering neurological symptoms including cognitive impairment (Hosp et al.,

2021; Spudich and Nath, 2022; Taquet et al., 2022) plus an increase in the levels of dementia

and Alzheimer’s disease (AD) progression (Chen et al., 2022; Gordon et al., 2022; Golzari-

Sorkheh et al., 2023; Olivera et al., 2023). The SARS-CoV-2 genome and proteome have been

sequenced and components of the virus targeted for diagnosis and therapy (Hu et al., 2021;

Kukar et al., 2021; Mishra et al., 2021; Yadav et al., 2021). The SARS-CoV-2 spike protein

forms a trimer (Wrapp et al., 2020) that binds the angiotensin-converting enzyme 2 (ACE2)

receptor on host cell surfaces to gain entry into the cells (Benton et al., 2020). Mutations of

the receptor binding domain of the SARS-CoV-2 spike protein are found in a number of the

variants of concern that show altered binding to the ACE2 receptor (Kim et al., 2023) and this

also influences neurological symptoms (Taquet et al., 2022). The SARS-CoV-2 virus has been

found in post-mortem brains (Crunfli et al., 2022; Stein et al., 2022), but some studies have

failed to detect it (Khan et al., 2022). The mechanism of SARS-CoV-2 entry into the brain

may involve either transmission via the nasal cavity (Butowt and von Bartheld, 2022) and/or

an impaired blood-brain barrier (Yang et al., 2022). The key question is if the SARS-CoV-2

virus itself causes dementia and/or if SARS-CoV-2 infection exacerbates existing dementia

(Paterson et al., 2020; Danics et al., 2021; Ecarnot et al., 2023). Dementia has many forms

(Garcia-Ptacek et al., 2014) and some forms are associated with infections (Shinjyo et al.,

2021).

The human body contains a range of amyloid proteins which aggregate to form fibrils

that are deposited as part of disease processes (Chiti and Dobson, 2017). A classical feature

of AD is the deposition of amyloid plaques containing the amyloid-ß (Aß) protein (Rijal

Upadhaya et al., 2014). These AD amyloid plaques can also contain other amyloid proteins

including islet amyloid polypeptide (IAPP), which is linked to diabetes mellitus (Jackson

et al., 2013; Young et al., 2015). Intracellular amyloid deposition is thought to trigger

neurodegeneration and extracellular plaque formation (Oddo et al., 2006). The Aß peptide is

neuroprotective, antiviral plus antibacterial (Pearson and Peers, 2006; Bourgade et al., 2016;

Huang, 2023) and Aß may be activated in infectious disease states as a protective measure

which may explain the suggested viral involvement in Aß aggregation plus AD (Ezzat et al.,

2019; Khokale et al., 2020; Niklasson et al., 2020; Liu et al., 2023).

The SARS-CoV-2 virus proteome contains a number of amyloid-forming

protein sequences (Charnley et al., 2022; Nystrom and Hammarstrom,

2022; Tayeb-Fligelman et al., 2023), raising the possibility that COVID-19-

exacerbated dementia is either a SARS-CoV-2 amyloid disorder or that the

SARS-CoV-2 amyloids are a trigger for deposition of another amyloid, such
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as Aß, resulting in onset or worsening of preexisting dementias

such as AD. For the purposes of this opinion article, the

focus will be the SARS-CoV-2 amyloid proteins plus amyloid

Aß associated with AD and their potential involvement in

COVID-19-exacerbated dementias.

2. SARS-CoV-2 amyloid plus
interactions with endogenous amyloid

A range of viral and bacterial proteins have been shown to

have amyloid properties and this has been suggested to play a role

in the disease processes associated with the viruses and bacteria

concerned (Evans et al., 2018; Ezzat et al., 2019; Leger et al., 2020;

Sampson et al., 2020; Saumya et al., 2021).

The four main structural proteins of the SARS-CoV-2 virus

are the spike, envelope, membrane, and nucleocapsid proteins

(Yadav et al., 2021). The SARS-CoV-2 proteome also includes

non-structural and accessory proteins that are synthesized in

infected cells and contribute to virus assembly in the host

(Crooke et al., 2020). Amyloid proteins identified in SARS-CoV-2

include the structural spike (Nystrom and Hammarstrom, 2022)

and nucleocapsid (Tayeb-Fligelman et al., 2023) proteins plus

the accessory proteins ORF6 and ORF10 (Charnley et al.,

2022). Aggregation and amyloid fibril formation is a storage

mechanism for peptide hormones synthesized in large quantities

and then stored intracellularly prior to release when cells

are activated (Nespovitaya et al., 2016). SARS-CoV-2 infected

cells make multiple copies of the virus and could contain

sufficient SARS-CoV-2 amyloid proteins to allow the generation of

intracellular amyloid (Abavisani et al., 2022). However, the levels

of SARS-CoV-2 found in neuronal tissues at post-mortem are

often low and do not always correlate with pathological changes

(Thakur et al., 2021). The SARS-CoV-2 amyloid (Charnley et al.,

2022; Nystrom and Hammarstrom, 2022; Tayeb-Fligelman et al.,

2023) could also be released from infected cells and contribute

to extracellular amyloid deposits. Aggregation conditions plus

post-translational modifications of amyloid proteins such as Aß

can influence both the fibril structures and their interactions

with other human proteins (Milton and Harris, 2009) and such

interactions between SARS-CoV-2 amyloid proteins could have

effects on neuronal function. Many of the amyloid fibrils associated

with disease states are toxic in their aggregated state (Almeida

and Brito, 2020) and the neurotoxicity of SARS-CoV-2 amyloid

(Charnley et al., 2022) could contribute to the pathophysiology of

the infection.

The SARS-CoV virus (Zhong et al., 2003) is related to the

SARS-CoV-2 virus and enters cells via the same ACE2 receptor

(Xu et al., 2020). The envelope protein of SARS-CoV contains an

amyloid-forming region (Ghosh et al., 2015), which is identical

to a sequence in the SARS-CoV-2 envelope protein, suggesting

that SARS-CoV-2 envelope protein could also form amyloid. The

interaction of SARS-CoV envelope amyloid with IAPP (Ghosh

et al., 2015), an identical SARS-CoV-2 envelope protein region

and the presence of IAPP in amyloid plaques associated with AD

(Jackson et al., 2013) raises the possibility of an interaction between

the SARS-CoV-2 envelope protein and amyloid plaques in AD. The

SARS-CoVmembrane protein also aggregates (Lee et al., 2005) and

shows 90% homology with the SARS-CoV-2 membrane protein

(Thomas, 2020), raising the possibility of an aggregating form of

the SARS-CoV-2 membrane protein.

The spike protein of SARS-CoV-2 contains amyloid sequences

but does not itself form amyloid fibrils in the trimeric form

(Nystrom and Hammarstrom, 2022). Coincubation in the presence

of proteases results in the formation of amyloid fibrils raising the

possibility of in vivo SARS-CoV-2 spike protein degradation by

endogenous proteases leading to amyloid formation. The SARS-

CoV-2 spike protein also binds the Aß amyloid protein found

in AD plaques (Idrees and Kumar, 2021). Complexes involving

more than one amyloid-forming compound may play a role in vivo

leading to toxic fibril forms (Young et al., 2015) and this raises the

possibility that copolymers involving SARS-CoV-2 spike protein

amyloid and Aß (Idrees and Kumar, 2021) could play a role in

triggering AD-like pathology. The SARS-CoV-2 spike protein is

itself neurotoxic and activates Aß expression (Kyriakopoulos et al.,

2022) providing a clear link between these two amyloid-forming

proteins and neurotoxicity.

The SARS-CoV-2 nucleocapsid protein is a viral RNA-binding

protein and can form amyloid fibrils (Tayeb-Fligelman et al.,

2023). Unlike the SARS-CoV-2 spike protein, the full-length

nucleocapsid protein can form fibrillar structures (Tayeb-Fligelman

et al., 2023). Amyloid formation by the SARS-CoV-2 nucleocapsid

protein fragments occurs in the presence or absence of RNA

(Tayeb-Fligelman et al., 2023). Amyloid-binding peptides have

been suggested as therapeutic agents (Milton et al., 2012) and

targeting the SARS-CoV-2 nucleocapsid amyloid regions with

binding peptides is antiviral with the potential for development as

a COVID-19 therapy (Tayeb-Fligelman et al., 2023).

The SARS-CoV-2 accessory proteins encoded by ORF6 plus

ORF10 (Hassan et al., 2022a) form amyloid fibrils which are toxic

to neurons (Charnley et al., 2022). Neurotoxic ORF6 amyloid fibrils

(Charnley et al., 2022) could be generated in cells and may explain

the observed toxicity when ORF6 is overexpressed (Lee et al.,

2021). The presence of SARS-CoV-2 in the infected brain tissue

(Douaud et al., 2022; Stein et al., 2022) raises the possibility that

these neurotoxic forms could be generated in infected cells and

cause some of the neurodegenerative changes observed. The SARS-

CoV-2 infection may also target non-neuronal cells which express

the ACE2 receptor in the olfactory bulb (Brann et al., 2020). The

ORF10 protein has multiple roles linked to mitochondrial function

and protein ubiquitination (Hassan et al., 2022b). Models of AD in

which Aß is overexpressed show changes inmitochondrial function

and protein ubiquitination (Aso et al., 2012) raising the possibility

that the neurotoxic ORF10 amyloid protein (Charnley et al., 2022)

could mimic Aß. The potential of SARS-CoV-2 amyloid proteins

and their interactions with Aß is illustrated in Figure 1.

3. SARS-CoV-2 involvement in
dementia

COVID-19 is primarily a respiratory disease (Li et al., 2020;

Wu et al., 2020) and as such could indirectly affect the brain

by causing hypoxic changes (Solomon et al., 2020; Thakur et al.,

2021; Adingupu et al., 2023; Balsak et al., 2023). Hypoxia has

been linked to dementia and neuropathological changes (Raz et al.,
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FIGURE 1

SARS-CoV-2 amyloid formation and interactions. Extracellular SARS-CoV-2 virus enters cells via an interaction of the spike protein (S) with the

cellular angiotensin-converting enzyme 2 (ACE2) receptor. Once inside cells, the mRNA is translated into a range of viral proteins including the

structural spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins plus the accessory proteins ORF6 and ORF10, all of which can form

amyloid fibrils that are likely to be generated intracellularly. The spike (S) protein can also bind Amyloid-ß and this is likely to occur where the

Amyloid-ß fibrils are deposited extracellularly.

2016; Shobatake et al., 2022). Hypoxia is also linked to increased

Aß generation (Pearson and Peers, 2006; Salminen et al., 2017)

and SARS-CoV-2 infection is associated with hypoxia (Priemer

et al., 2022) raising the possibility that these changes are not

via a direct action of the virus within the brain. As such the

COVID-19 exacerbated dementia could be a result of the hypoxia

and other indirect changes rather than the SARS-CoV-2 virus

entering the brain.

Memory deficits have also been suggested in patients with

COVID-19 and the virus is associated with structural changes in

the brain (Douaud et al., 2022; Serrano-Castro et al., 2022). Many

amyloid proteins are linked to dementia (Garcia-Ptacek et al.,

2014), and deposits of Aß are found in brain regions linked to

memory and dementia (Furcila et al., 2018) raising the possibility

that the SARS-CoV-2 amyloid proteins (Charnley et al., 2022;

Nystrom and Hammarstrom, 2022; Tayeb-Fligelman et al., 2023)

could play a role in COVID-19-exacerbated dementia. Changes in

Aß levels, processing and deposition in amyloid plaques are also

associated with SARS-CoV-2 infections (Ma et al., 2022; Priemer

et al., 2022; Ziff et al., 2022).

The SARS-CoV-2 virus has been suggested to increase the

toxicity of Aß (Chiricosta et al., 2021) and the spike protein

binding to Aß plus other amyloid proteins (Idrees and Kumar,

2021) could promote aggregation and provide a mechanism for

the increased Aß toxicity, a process that is linked to aggregation

(Aleksis et al., 2017). This could provide a mechanism for the

increased progression of dementia in AD patients who also have

COVID-19 infections (Gordon et al., 2022). The hippocampal

region of the brain is central to memory function and is a major

site of neurodegeneration in AD (Furcila et al., 2018). The ACE2

receptor for the SARS-CoV-2 virus spike protein is found in

hippocampal neuronal precursors (Hernandez-Lopez et al., 2023)

and shows reduced expression in the hippocampus of AD patients,

(Cui et al., 2021). The ACE2 protein is also expressed in non-

neuronal cells within the brain (Brann et al., 2020) and this could

contribute to symptoms of neuronal dysfunction (Spudich and

Nath, 2022; Taquet et al., 2022) due to disruption of these cells in

COVID-19 infections.

The SARS-CoV-2 spike protein is the main target of vaccines

against COVID-19 (Wiersinga et al., 2020; Yadav et al., 2021;

Patel et al., 2022) and as such antibodies may be in circulation

to neutralize the effects of this SARS-CoV-2 infection by binding

the spike protein and blocking its interaction with the ACE2

receptor. From a dementia perspective vaccination against the

SARS-CoV-2 spike protein may be protective (Ecarnot et al.,

2023), reducing infiltration of the virus and/or amyloid fragments

of the spike protein into the brain but may not be able to

reduce levels of the virus or deposited SARS-CoV-2 amyloids
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in the brains of patients already infected with the SARS-CoV-2

virus (Stein et al., 2022).

Persistent or Long COVID-19 is increasingly recognized as a

condition (Perlis et al., 2022), is associated with old age and could be

linked to SARS-CoV-2 amyloid (Charnley et al., 2022; Nystrom and

Hammarstrom, 2022; Tayeb-Fligelman et al., 2023). The long-term

persistence of symptoms beyond SARS-CoV-2 infection remains to

be determined (Gordon et al., 2022; Serrano-Castro et al., 2022)

and a post-pandemic change in dementia rates will take time to

show. If COVID-19 is like other viral-induced dementias (Ezzat

et al., 2019; Khokale et al., 2020; Leger et al., 2020; Niklasson et al.,

2020; Saumya et al., 2021) and causes exacerbations of AD dementia

(Liu et al., 2023; Olivera et al., 2023) it would be expected that an

increase in AD levels post-pandemic may develop over time. The

COVID-19 exacerbations of AD dementia (Liu et al., 2023; Olivera

et al., 2023) may increase AD levels post-pandemic over time. It

remains to be seen if the vaccination strategies (Patel et al., 2022)

will protect from dementia. Changes in brain structure in patients

who were scanned pre and post-COVID-19 infection suggest that

the SARS-CoV-2 virus itself triggers changes (Douaud et al., 2022),

future scans will determine whether this is long-lasting and linked

to dementia.

4. Final considerations

A combination of discovered SARS-CoV-2 amyloid proteins

(Charnley et al., 2022; Nystrom and Hammarstrom, 2022; Tayeb-

Fligelman et al., 2023) and suggested possible amyloids (Lee et al.,

2005; Ghosh et al., 2015) provides a potential source of amyloid

in COVID-19 infections. As such infection with SARS-CoV-2 has

the potential to result in the production of amyloid deposits within

the host at both extracellular and intracellular locations. The ability

of the SARS-CoV-2 virion to infect neuronal and non-neuronal

cell types within the brain (Brann et al., 2020; Stein et al., 2022)

suggests a potential for a contribution of these deposits to dementia

(Taquet et al., 2022) in a manner like the endogenous amyloids

associated with dementia (Garcia-Ptacek et al., 2014). The toxicity

of some of the SARS-CoV-2 amyloid forms (Charnley et al., 2022)

could directly cause brain changes (Douaud et al., 2022) and lead to

COVID-19 exacerbated dementia (Hosp et al., 2021; Taquet et al.,

2022). The interactions with endogenous Aß plus other amyloids

(Idrees and Kumar, 2021) provide an alternative mechanism for

SARS-CoV-2 amyloid proteins triggering the deposition of other

forms of amyloid with consequent dementia such as AD (Chiti

and Dobson, 2017). In conclusion, I propose that the SARS-CoV-

2 amyloid proteins (Lee et al., 2005; Ghosh et al., 2015; Charnley

et al., 2022; Nystrom and Hammarstrom, 2022; Tayeb-Fligelman

et al., 2023) could play a potentially causative role in COVID-19

exacerbated dementia (Hosp et al., 2021; Taquet et al., 2022) and

as such may be disease-modifying targets (Tayeb-Fligelman et al.,

2023).
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