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You have interrupted me again!:
making voice assistants more
dementia-friendly with
incremental clarification

Angus Addlesee1* and Arash Eshghi1,2

1Interaction Lab, Heriot-Watt University, Edinburgh, United Kingdom, 2Alana AI, Edinburgh,

United Kingdom

In spontaneous conversation, speakers seldom have a full plan of what they are

going to say in advance: they need to conceptualise and plan incrementally as

they articulate each word in turn. This often leads to long pauses mid-utterance.

Listeners either wait out the pause, o�er a possible completion, or respond

with an incremental clarification request (iCR), intended to recover the rest

of the truncated turn. The ability to generate iCRs in response to pauses is

therefore important in building natural and robust everyday voice assistants

(EVA) such as Amazon Alexa. This becomes crucial with people with dementia

(PwDs) as a target user group since they are known to pause longer and more

frequently, with current state-of-the-art EVAs interrupting them prematurely,

leading to frustration and breakdown of the interaction. In this article, we first

use two existing corpora of truncated utterances to establish the generation of

clarification requests as an e�ective strategy for recovering from interruptions.

We then proceed to report on, analyse, and release SLUICE-CR: a new corpus

of 3,000 crowdsourced, human-produced iCRs, the first of its kind. We use

this corpus to probe the incremental processing capability of a number of

state-of-the-art large languagemodels (LLMs) by evaluating (1) the quality of the

model’s generated iCRs in response to incomplete questions and (2) the ability

of the said LLMs to respond correctly after the users response to the generated

iCR. For (1), our experiments show that the ability to generate contextually

appropriate iCRs only emerges at larger LLM sizes and only when prompted with

example iCRs from our corpus. For (2), our results are in line with (1), that is,

that larger LLMs interpret incremental clarificational exchanges more e�ectively.

Overall, our results indicate that autoregressive language models (LMs) are, in

principle, able to both understand and generate language incrementally and

that LLMs can be configured to handle speech phenomena more commonly

produced by PwDs, mitigating frustration with today’s EVAs by improving their

accessibility.
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1 Introduction

Over 1 billion people in the world are living with some form of disability (WHO, 2011;

Domingo, 2012; Vieira et al., 2022), and everyday voice assistants (EVAs) have the potential

to improve people’s lives (Pradhan et al., 2018; Shalini et al., 2019; Masina et al., 2020).

Household open-domain voice assistants are very convenient: we can set timers when our

hands are oily from cooking or turn up our music from the comfort of a warm blanket on
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the couch. These functions are not just convenient for people

living with certain disabilities, but they are also critical for mental

wellness. For example, while visiting a respite care home called

Leuchie House (Diamond, 2022), one resident with multiple

sclerosis explained how the disease’s progression slowly eroded

away their independence (Addlesee, 2023). An Amazon Alexa

device enabled this person to turn off their bedroom light to sleep

without asking for a carer’s help. This action is one that most of us

do every night without a second thought, yet they told us that this

was the first time they had regained any personal autonomy since

their diagnosis (Addlesee, 2023). Stories like this motivate charities

to promote the use of voice assistants (Fyfe, 2019; DailyCaring,

2020; McClusky, 2021; PlaylistForLife, 2021), as they can have

a genuine positive impact on people’s quality of life (Domingo,

2012; Rudzionis et al., 2012; Busatlic et al., 2017). The system’s

creators are getting health insurance portability and accountability

act (HIPAA) compliance for further application in the health care

domain (Bowers, 2019; Jiang, 2019), more early-stage dialogue

researchers are collaborating with other disciplines to apply their

work to health care applications (Addlesee, 2022b), and features are

released specifically targeting vulnerable user groups (RiseIQ, 2018;

DBSC, 2020).

1.1 Voice assistant accessibility

Voice assistant accessibility is therefore critical to ensure future

systems are designed with the end user’s interaction patterns and

needs in mind (Ballati et al., 2018; Brewer et al., 2018; Addlesee,

2023). Industry voice assistants are created for the mass market

(Masina et al., 2020), and today they are found in our homes, our

cars, and many of our pockets (Ballati et al., 2018). They are trained

on vast data sets to learn how to interact with the ‘average user’,

but speech production is nuanced, and not everyone perceives the

world in the same way (Masina et al., 2020, 2021; Addlesee, 2023).

For example, certain user groups—often those who can benefit

the most from voice assistants—speak more disfluently than the

average user (Addlesee et al., 2019; Masina et al., 2020; Ehghaghi

et al., 2022).

People with anxiety speak at a faster rate and pause for shorter

durations than healthy controls (Pope et al., 1970), whereas people

with depression or post-traumatic stress disorder (PTSD) speak

more slowly and are more silent (Pope et al., 1970; Marmar

et al., 2019). People with motor disabilities often present speech

impairment as a comorbidity (Duffy, 2012; Masina et al., 2021),

causing spoken interaction accessibility problems (Pradhan et al.,

2018). People with stammers are misunderstood by EVAs (Clark

et al., 2020), as are people who struggle with pronunciation [e.g.,

caused by hearing loss at an early age (Pimperton and Kennedy,

2012; da Silva et al., 2022)]. This leads to frustration, causing a

complete abandonment of voice technologies by entire groups of

people (Chen et al., 2021). The list continues. Non-standard speech

can be caused by conditions that affect the muscles we use to

produce speech, like muscular dystrophy (Jamal et al., 2017), and

people with certain conditions like motor neurone disease slowly

lose the ability to speak entirely.

Progress toward more accessible EVAs is abundant, but many

issues persist. Communication techniques can be leveraged from

psychology to help people with depression (González and Young,

2020) or help older adults feel less lonely when embodied by

a robot companion (Lee et al., 2006). Simple robots can be

perceived as demeaning (Sharkey and Wood, 2014), however, and

more complex ones elicit unnatural conversations that frustrate

the user (Nakano et al., 2007; Jiang et al., 2013; Panfili et al.,

2021). Minimally verbal children with autism learn to use novel

vocabulary after long-term EVAuse (Kasari et al., 2014), and similar

work effectively used interactive social robots for autism therapy

(Cabibihan et al., 2013; Pennisi et al., 2016), but no research focused

on improving the system’s speech processing and understanding.

Research notes that people with partial hearing loss really struggle

to follow a conversation in a noisy environment (like a public

space), so screens have been successfully used to live transcribe

the ongoing conversation (Lukkarila et al., 2017; Virkkunen et al.,

2019), improving their feeling of inclusion, and systems have

been created using sign language (Mande et al., 2021; Yin et al.,

2021; Glasser et al., 2022; Inan et al., 2022). Prototype EVAs

have been developed for people with speech impairments (Hawley

et al., 2007, 2012; Derboven et al., 2014; Jamal et al., 2017), but

Google is currently pioneering this front with three projects. Project

Euphonia1 and Project Relate2 are Google’s initiatives to help

people with non-standard speech be better understood, and Project

Understood3 is Google’s programme to better understand people

with Down syndrome. Google has even opened the Accessibility

Discovery Centre to collaborate with academics, communities,

and charitable/non-profit organisations to “remove barriers to

accessibility” (Bleakley, 2022). Finally, people who lose their voice

entirely can use synthesised voices. Companies like Cereproc4

that synthesise characterful, engaging, and emotional voices with

varying accents could help people choose a voice that they feel

truly represents their ‘self ’ (Payne et al., 2021; Addlesee, 2023).

Voice cloning is also possible, opening up the use of voice-banking

technology to people at risk of losing their voice. People capture

hours of their speech to enable cloning at a later date if needed. One

of these SpeakUnique5, can even reconstruct a person’s original

voice if it has partially deteriorated since their diagnosis.

1.2 Language technologies for people with
dementia

This article focuses on adapting EVAs to be more accessible for

people with dementia (PwDs). Dementia is the leading cause of

death in the United Kingdom, but there is no treatment to prevent,

cure, or stop its progression (Alzheimer’s Research UK, 2022).

It impacts memory, attention, problem-solving skills, decision-

making, speech production (Slegers et al., 2018; Masina et al., 2020),

and more (Rudzicz et al., 2015; Association, 2019; Li et al., 2020).

Onset and progression of cognitive impairment typically correlates

with a person’s age, but certain conditions (e.g., early-onset

1 https://sites.research.google/euphonia/about/

2 https://sites.research.google/relate/

3 https://projectunderstood.ca/

4 https://www.cereproc.com/

5 https://www.speakunique.co.uk/
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dementia) can be caused by strokes or head trauma (O’Connor

et al., 2023).

Early research has shown that audio-based assistants can

improve PwDs autonomy, mood, and recollection of memories

(Orpwood et al., 2005, 2010; Peeters et al., 2016; Wolters et al.,

2016) while alleviating some pressure from caregivers. A system,

called COACH, was created to assist PwDs when washing their

hands by reminding the user using verbal prompts if they forgot

any handwashing steps (Mihailidis et al., 2008; Bharucha et al.,

2009; König et al., 2017). Later work supports this point further,

as caregivers have reported that they found it helpful when a

prototype EVA assisted PwDs with repetitive routine tasks and

answered questions multiple times (e.g., patiently reciting the

weather forecast 15 times in a row; Wolters et al., 2016; Hoy,

2018; Volochtchuk et al., 2023). Research tends to focus on the

reduction of pressure on the caregivers, but this is typically due

to a wonderful increase in PwDs’ daily independence (Brewer

et al., 2018). For example, an Alexa “skill” was developed to assist

PwDs with their meals, helping them with recipes to ensure they

consume a healthy diet to slow the progression of their dementia (Li

et al., 2020). Dementia-specific Alexa skills are commonly proposed

within research, as they provide an inexpensive home-based tool

with simple voice interaction (Carroll et al., 2017; Kobayashi et al.,

2019; Liang et al., 2022). Other possible solutions require technical

knowledge or fine motor skills, like touchscreen interfaces, which

cause PwDs to withdraw from using a system altogether (Peeters

et al., 2016).

As illustrated, there is an abundance of work to create EVAs

that have dementia-friendly features and show that they can be

used to benefit both PwDs and their caregivers. This work is both

important and commendable, but a gap remains, as they all use off-

the-shelf speech processing. Voice assistant training programs are

even developed and tested to help people learn how to use EVAs

through practice with clinicians (O’Connor et al., 2023). As an

alternative, the underlying issues could be tackled. Current voice

assistant (VAs) are not naturally interactive and require people to

adapt their speech to the EVA (e.g., producing clean utterances

devoid of natural speech phenomena, like filled pauses or self-

corrections; Porcheron et al., 2018; O’Connor et al., 2023). EVA

components should instead be adapted to people’s speech.

1.3 Adapting EVAs for PwDs

Spoken language unfolds over time. People process each token

as it is uttered, maintaining a partial representation of what

has been said (Marslen-Wilson, 1973; Madureira and Schlangen,

2020a; Kahardipraja et al., 2021). That is, people understand and

generate language incrementally, on a word-by-word basis (see

Ferreira, 1996; Crocker et al., 2000; Kempson et al., 2016 among

many others). This real-time processing capacity leads to many

characteristic conversational phenomena such as split utterances

(Purver et al., 2009; Poesio and Rieses, 2010), self-repairs (Schegloff

et al., 1977), and mid-utterance backchannels (Heldner et al., 2013;

Howes and Eshghi, 2021) or, as is our focus here, pauses or

hesitations followed by mid-sentence clarification requests (CRs)

from the interlocutor (see Figure 2).

We all pause mid-sentence during our everyday conversations

while actively trying to plan what we are going to say next or

conjure the word we have forgotten (Levelt, 1989). These pauses are

so pronounced that in human interaction, mid-utterance pauses are

longer on average than gaps between turns (Brady, 1968; Edlund

and Heldner, 2005; Ten Bosch et al., 2005; Skantze, 2021). When

interacting with voice assistants, however, this short silence often

triggers end-of-turn detection—interrupting and frustrating the

user (Nakano et al., 2007; Jiang et al., 2013; Panfili et al., 2021; Liang

et al., 2022). For example, consider the interaction between a user

and an EVA in Figure 1A. PwDs produce more frequent and more

pronounced pauses, fillers (e.g., umm and emm), restarts, and other

disfluencies when speaking (Davis and Maclagan, 2009; Rudzicz

et al., 2015; Boschi et al., 2017; Slegers et al., 2018; Liang et al., 2022),

and these linguistic phenomena have even been used to accurately

detect dementia from just a person’s speech (Coulston et al., 2007;

Weiner et al., 2017; Luz et al., 2020; Rohanian et al., 2020; Liang

et al., 2022; Kurtz et al., 2023). Yet today’s EVAs are not designed to

process or “understand” them (Addlesee et al., 2020).

Throughout this article, we focus on incremental surface CRs

(henceforth iCRs; Healey et al., 2011; Howes and Eshghi, 2021):

those that (1) occur mid-sentence; (2) are constructed as a split

utterance (Purver et al., 2009), that is, a continuation or completion

of the truncated sentence; and (3) are intended to elicit how

the speaker would have gone on to complete their partial turn

[see Figures 2A–C, which does not satisfy (2)]. Psycholinguistic

evidence shows that people often respond to interrupted sentences

with iCRs (Howes et al., 2011, 2012); see Figure 1B for example

iCRs from Howes et al. (2012) that attempt to predict what the

speaker might have intended to say; see also Figure 2A for a Reprise

CR, Figure 2B for a Sluice CR, and Figure 2C for a predictive CR—

this iCR taxonomy is ours and is defined in Section 3.1. Importantly

for us here, generating syntactically appropriate and coherent iCRs

requires a model to track the syntax and semantics of a sentence

as it unfolds (because of criteria 1 and 2) and thereby provides

an effective lens or probe into the incrementality of language

processing in dialogue models, including large language models

(LLMs).

CRs are a complex phenomenon in their own right: they

are fundamentally multi-modal (Benotti and Blackburn, 2021)

and highly context-dependent, taking on different surface forms

with different readings and pragmatic functions (Purver, 2004;

Purver and Ginzburg, 2004; Rodríguez and Schlangen, 2004;

Ginzburg, 2012). Importantly, CRs can occur on different levels of

communication on Clark (1996) and Allwood (2000) joint action

ladder, and thereby correspond to different levels of failure in

communication: surface CRs occur when something is misheard

and are intended to clarify what was said, referential CRs are

intended to clarify the referent of a referring expression (see,

e.g., Chiyah-Garcia et al., 2023), and instruction CRs (Benotti

and Blackburn, 2017; Madureira and Schlangen, 2023) are more

pragmatic and pertain to the clarification of task-level information.

But while the crucial role of generating and responding to CRs

in dialogue systems has long been recognised (San-Segundo et al.,

2001; Rodríguez and Schlangen, 2004; Rieser and Moore, 2005;

Rieser and Lemon, 2006), CRs still remain an understudied

phenomenon (Benotti and Blackburn, 2021), especially in the

context of recent advances in LLMs.
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FIGURE 1

(A) An interruption caused by a pause (real interaction with an everyday voice assistant [EVA]); (B) Example incremental surface clarification requests

(natural human–human data) from Howes et al. (2012).

FIGURE 2

Example mid-sentence clarification requests from SLUICE-CR (see

Section 3.1). (A) a Reprise CR, (B) a Sluice CR, (C) a Predictive CR,

and (D) Sentential CRs.

1.4 Article outline

In this article, we make several contributions with the ultimate

goal of improving the robustness, naturalness, and usability of

EVAs and, in particular, their accessibility for PwDs. Specifically,

(1) in Section 2, we establish that using CRs is a useful strategy

for interruption recovery. We use two existing corpora to show

this, one in the question answering (QA) domain containing 21,000

interrupted questions and the other to recover sentences more

generally containing almost 85,000 utterances paired with their

underspecified, sub-sentential meaning representations (Addlesee

and Damonte, 2023a,b). (2) In Section (3), we use the QA corpus

fromAddlesee and Damonte (2023a) to collect, analyse, and release

SLUICE-CR: a corpus of 3,000 natural human iCRs in response

to incomplete questions, the first of its kind. We use SLUICE-

CR to probe several LLMs’ ability to understand partial questions

and evaluate the quality of the generated iCRs in response to the

partial questions under different prompting conditions, namely

with and without exposing the model to SLUICE-CR. (3) In Section

4, we use SLUICE-CR again to evaluate how well LLMs process

clarification exchanges, showing that by tying all the previously

discussed work together, we can implement a dialogue system that

is more accessible for PwDs.

2 Interruption recovery pipelines

We want to explore whether it is possible to create effective

interruption recovery pipelines (henceforth IRPs) and, if so, how

effective they are. In the context of EVAs, an interruption occurs

when a request, a question, or, more generally, a sentence is

uttered only partially. If the missing information is important

in understanding the request, then this effectively constitutes a

miscommunication that the system needs to recover from. An IRP

is a strategy for recovering from this. There are two broad strategies

that we implement and evaluate using a combination of different

models: (a) the first IRP is that of prediction, whereby a (language)

model predicts the rest of the truncated sentence; this completed

sentence is then parsed or processed in some way, and the system

responds as if the user had originally uttered the full sentence; and

(b) the second IRP is interactive and is that of posing a CR that gives

the user a further opportunity to provide the rest of the truncated,

partial sentence (see Figures 1, 2 for examples of such CRs).

In this section, we first justify our choices of semantic

formalism for representing partial sub-sentential meaning. We

then go on to describe our methods for generating the SPARQL

for Learning and Understanding Interrupted Customer Enquiries

(SLUICE) corpus (Section 2.2): a corpus of 21000 partial,

truncated questions paired with their (sub-sentential) meaning

representations in resource description framework (RDF) (Lassila

et al., 1998; Manola et al., 2004; Addlesee and Eshghi, 2021). In

Section 2.2.2, we go on to describe the creation of the Interrupted

AMR corpus, where we automatically generate a corpus of

truncated sentences more generally, paired with their partial

semantic representations in an abstract meaning representation

(AMR; Banarescu et al., 2013). The rest of the section is dedicated

to using these corpora to evaluate different IRPs that broadly

correspond to (a) and (b). Even though this section does not deal

with the task of generating CRs or evaluating them—for this, see

Section 3—we draw the interim conclusion that (b), the interactive

IRP, is a more effective strategy for recovering from interrupted

turns.

2.1 Formalisms for representing
sub-sentential semantics

In order to evaluate IRPs, we must generate corpora of

interrupted utterances paired with some meaning representation

language (MRL) of the utterance. This MRL enables us to explore

how well interrupted sentences are recovered when compared

to the parse of the full original sentence. We must carefully

consider our choice of MRL for this task. It must be able to

handle incrementality, allowing partial, sub-sentential meanings to

be established over time, and conjunction, enabling the semantic
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representation of both the disrupted utterance and follow-up

completion to be consolidated into the representation of the full

sentence. The chosen MRL must also be transparent, allowing us

to investigate what is and, importantly, is not being recovered

successfully (Damonte et al., 2017).

Here we use two formalisms that satisfy the previously

mentioned desiderata6: the graph-based AMR (Banarescu et al.,

2013), shown in Figure 3, and RDF (Lassila et al., 1998; Manola

et al., 2004), sometimes used as a semantic-parsing MRL (Batouche

et al., 2014; Tran and Nguyen, 2020) to describe knowledge graphs

with triple statements (e.g., “Tuvalu”, “part of”, “Polynesia”).

Previous work on incremental AMR parsing has exploited its

underspecification and conjunction properties (Damonte et al.,

2017) that we require, and work already exists exploiting these

properties in RDF for incremental semantic parsing (Addlesee

and Eshghi, 2021). Both AMR and RDF are transparent by

design (Banarescu et al., 2013) and have been successfully used

for downstream reasoning (Nenov et al., 2015; Lim et al., 2020;

Kapanipathi et al., 2021). Finally, they have both been used to

pretrain LLMs. Enabling state-of-the-art (SotA) semantic parsing

and text generation (Tran and Nguyen, 2020; Bevilacqua et al.,

2021; Bai et al., 2022) without sacrificing transparency.

In order to determine whether our recovery pipelines benefit

the user, we want to measure their ability to parse disrupted

sentences generally (we use AMR for this) and their impact on

downstream tasks. For this, we choose QA—exploring whether

our recovery pipelines can ultimately answer the user’s question.

Unfortunately, corpora that contain text/RDF pairs do not contain

questions (Gardent et al., 2017; Agarwal et al., 2020; Tran and

Nguyen, 2020) and are therefore not fit for our domain. SPARQL

(Pérez et al., 2006, 2009) is the standard RDF query language,

similar to SQL, and is consequently more suited to representing

questions. As SPARQL clauses directly contain RDF statements,

our required underspecification and conjunction properties are

preserved. Some target knowledge base (KB) is necessary, however,

so questions cannot be represented if their constituents are not

present in the KBs ontology. For example, when asked, “What

is the CBI expansion rate of Kingstown?” there must be some

RDF property to represent “CBI expansion rate” in the target KBs

ontology. To measure how effective an IRP is, we must be able to

determine whether the question is ultimately answered correctly.

Using SPARQL over a target KB, we can easily return questions’

answers.

Both Wikidata and DBpedia (Auer et al., 2007) are the central

open-domain KBs updated live today, and both are used to

create knowledge base question answering (KBQA) corpora (Azmy

et al., 2018; Dubey et al., 2019; Cao et al., 2022; Perevalov et al.,

2022). DBpedia is updated automatically by live extraction from

Wikipedia (Morsey et al., 2012; Lehmann et al., 2015), whereas

Wikidata is collaboratively edited by its community (Vrandečić and

Krötzsch, 2014). In fact, Wikipedia now incorporates content from

Wikidata on almost every page in every language (Erxleben et al.,

2014). This can only be achieved by administering a cohesive and

6 There are others, see especially, type theory with records (TTR; Cooper,

2005; Purver et al., 2011; Eshghi et al., 2012).

controlled ontology. We therefore selected Wikidata as our target

KB (Addlesee and Damonte, 2023a).

Successful IRPs must first parse a disrupted sentence. The

underspecified graph should not just identify that information is

missing but, critically, where that missing information belongs in

the graph structure. From cognitive science, we know that CRs are

used to communicate and deal with misunderstandings on the fly

by eliciting a completion from the interlocutor (Healey et al., 2018).

Our pipeline must therefore also correctly parse this completion

and then conjoin the two graphs into its full form—ideally the

correct representation of the full sentence or question.

2.2 Generating corpora

For the reasons established earlier, we are going to generate

two corpora to evaluate IRPs: the first using SPARQL to measure

the drop in QA performance when a person with dementia forgets

a word at the end of their sentence (Addlesee and Damonte,

2023a) and the second using AMR, interrupting sentences (not

just questions) to evaluate graph similarity metrics, not just

performance on a downstream task (Addlesee and Damonte,

2023b).

2.2.1 SLUICE: a corpus of interrupted questions
The questions in both LC-QuAD 2.0 (Dubey et al., 2019) and

QALD-9-plus (Perevalov et al., 2022) are complete questions that

can be answered directly and are paired with their corresponding

SPARQL queries targeting Wikidata. In order to investigate

recovery strategies when a voice assistant interrupts a user’s

question, we must artificially ‘chop’ these complete questions.

We considered splitting the questions at random but found

that mid-utterance pauses usually precede named entities due to

word-finding problems (Croisile et al., 1996; Seifart et al., 2018;

Slegers et al., 2018). Apple used this linguistic observation to

improve its entity recognition on user data in English and French

(Dendukuri et al., 2021). We therefore decided to use named

entity recognition (NER) to identify questions that end with named

entities, ‘chopping’ the question where the user is most likely to

pause. This location also ensures that a full semantic recovery is

possible. Pauses before named entities earlier in the question would

be un-recoverable, for example, “EVA, in”.

Wikidata entities are linked to their human readable labels

in various languages, including English. If spaCy NER (Honnibal

et al., 2020) identified a question ending with a named entity,

we compared the NER-tagged text with the English label of each

Wikidata entity in the corresponding SPARQL query. When the

NER-tagged text and entity label matched7, they were ‘chopped’

accordingly. In a similar process used to handle incomplete

instructions in robotics (Chen et al., 2020), we took advantage of

underspecification in SPARQL to indicate incompleteness with a

7 If the strings had a similarity ratio above 0.7, using Levenshtein distance,

they were considered a match. We tweaked this similarity ratio by manually

checking the quality of the additional questions generated with lower values

(Addlesee and Damonte, 2023a).
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FIGURE 3

A colour-coded diagram of text/AMR alignment (Cabot et al., 2022). The sentence is at the top, the AMR graph is on the left, and the linearised text

representation of the graph is on the right. The word “quench” in green is represented by the green nodes and edges. AMR, abstract meaning

representation.

variable (we used “?unknown”).With all this inmind, our chopping

method was as follows: remove the NER-tagged text from the

question and replace the corresponding entity with an “?unknown”

SPARQL variable. We hereafter refer to this as chopping method

simple (CM-Simple) to distinguish it from others that were less

performant in Addlesee and Damonte (2023a).

LC-QuAD 2.0 has been paraphrased—which we can use to

double the number of questions with gold SPARQL queries. For

example, the original question, “What was the population of

Somalia in 2009?” was paraphrased to “As of 2009, how many

people lived in Somalia?” and both have the exact same meaning

representation. We can therefore chop this question twice, one

underspecifying the time constraint (“What was the population of

Somalia in”) and the other underspecifying the location (“As of

2009, how many people lived in”). There were some additional

queries that could be ‘chopped’ relatively easily, but that did not

end with named entities. These were questions that ended with

filter constraints. For example, “What German dog breed contains

the word Weimaraner in its name?” and “What is the art form

that begins with the letter s?” When questions fit this structure,

we underspecified the filter in both the question and the SPARQL

query. We repeated the preceding steps to interrupt questions

found in QALD-9-plus.

With the preceding complete, we present SLUICE. SLUICE

contains 21,000 artificially interrupted questions with their

underspecified SPARQL queries8.

2.2.2 Generating an interrupted AMR corpus
Each word in a sentence carries specific meaning, which is

then represented by nodes and/or edges in an AMR graph. We

must therefore ensure that when we disrupt words in the text, it is

the semantic meaning of those exact words that we underspecify

in the graph. For this, we have re-implemented a recent SotA

AMR alignment model (Drozdov et al., 2022). In Figure 3, we

show a coloured diagram of a text/AMR alignment to illustrate our

8 For reproducibility and future research, SLUICE and a guide on how to

expand our approach to other corpora with di�erent KBs and graph MRLs

can be found here: https://github.com/AddleseeHQ/SLUICE.

disruption approach. If we chose to disrupt the word “invented”

in this example, the alignment model would identify which edges

and nodes need to be underspecified in the AMR (dark blue edge

and node in Figure 3). Following a similar approach to the SLUICE

generation earlier, we take advantage of underspecification in

AMR to represent the missing information with a ‘NOTKNOWN’

argument. If this argument is present in our model’s semantic

parse, information must be missing due to disruption in the spoken

utterance, and an IRP is required.

We disrupted sentences in the original AMR 3.0 corpus

(LDC2020T02; Knight et al., 2021). This resulted in a corpus

containing 76,168 train, 4,155 development, and 4,451 test

instances9.

2.3 Establishing baselines for interruption
recovery

We need to establish suitable KBQA and AMR-parsing

baselines. These will enable us to compare our IRPs against a SotA

upper bound. That is, a perfect IRP should be able to perform

exactly as well as the SotA given the full utterance as input.

2.3.1 KBQA baseline
It has been shown that enabling the use of pointer networks

(Vinyals et al., 2015) to “copy” entity and relation mentions is

crucial to achieve SotA KBQA performance (Roy and Anand,

2022). To follow suit, we trained our model to output SPARQL

queries containing pointers when given a text question. Inspired

by an architecture designed for task-oriented semantic parsing

(Rongali et al., 2020), we trained an attentive seq2seq model

(Bahdanau et al., 2014) with a pretrained RoBERTa encoder (Liu

et al., 2019), and transformer decoder (Vaswani et al., 2017). Our

model was trained with Adam (Kingma and Ba, 2014) on a P3 AWS

machine (Addlesee and Damonte, 2023a). The pointers output by

our semantic parser must be resolved into their corresponding

9 Our AMR disruption code and example dialogues can be found at https://

github.com/amazon-science/disrupt-amr.
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FIGURE 4

caption=SPARQL query using Blazegraph’s full text indexing to search for entities labelled “Paris” in English with a minimum score of 0.7—ranked by

score and site links (the number of links pointing to entities Wikipedia page). This returns the correct Wikidata entity identifier for the city Paris: Q90.

FIGURE 5

The knowledge base question answering upper bound baseline

when asked, “Who was the father of Queen Elizabeth II?”

Wikidata IDs, requiring entity linking. We utilised features of the

RDF triplestore in which Wikidata is contained for entity linking.

Wikidata’s query service runs on Blazegraph10, which supports a

full text indexing (FTI) and search facility powered by Apache

Solr11. We used this to build an FTI across the entirety of Wikidata,

enabling configurable matching on tokenized RDF literals (strings,

numbers, and dates) with the “bds” vocabulary. When multiple

entities match with the exact same score, we rank the results by

sitelinks – the number of links on the entity’s Wikipedia page. An

example can be seen in Figure 4. Once the entity linker has fully

resolved the SPARQL query, it can be used to query Wikidata for

an answer. This system is illustrated in Figure 5.

2.3.2 AMR-parsing baseline
Two AMR-parsing models are currently the non-ensemble

SotA: AMRBART (Bai et al., 2022) and ATP (Chen et al., 2022).

These are closely followed by SPRING (Bevilacqua et al., 2021), the

10 https://github.com/blazegraph/database

11 https://solr.apache.org/

FIGURE 6

An ideal interaction with a user.

SotA without using additional training data. In fact, ATP actually

uses the SPRING model but outperforms it by 1% by training it

on auxiliary tasks. AMRBART could not be retrained on modified

AMR corpora due to issues open in their GitHub repository, we

therefore re-implemented the SPRING system as our AMR parsing

baseline on a P3 AWS machine (Addlesee and Damonte, 2023b).

The SPRING model relies on the BART-Large (Lewis et al., 2020)

pretrained LLM, further fine-tuned on linearised AMR graphs with

the RAdam optimiser (Liu et al., 2020). The novel linearisation

algorithm was then used by both AMRBART and ATP. We must

note that the SPRING AMR-parsing model that we use as our

baseline has no relation to the H2020 SPRING project, which funds

the work in this article.

2.4 Creating IRPs

When users pause mid-utterance and are interrupted by the

EVA as a result, interruption recovery is required. All IRPs are built

to avoid forcing the user to repeat their entire utterance again. To

illustrate our desired interaction with the user, a simple example

from SLUICE is shown in Figure 6.

2.4.1 KBQA recovery pipelines
We started building an interactive IRP to support interactions

like the one found in Figure 6 by retraining our top-performing

baseline on SLUICE, expecting the model to output a SPARQL

query that not only identifies the variable that represents the
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FIGURE 7

The interrupted question recovery pipeline when asked “Who was

the father of”. The response generation elicits the question

completion from the user, which is conjoined with the parser’s

underspecified SPARQL query with the Blazegraph full text index

linker.

answer to the user’s question but also the variable that represents

what knowledge is underspecified and still required to answer

the question. The pointers were then resolved into their Wikidata

identifiers using the FTI linker shown in Figure 4 (Addlesee and

Damonte, 2023a). This resolved SPARQL query will not return

the correct answer, due to the “?unknown” variable, so we elicit a

follow-up response from the user (see Section 3). In Figure 7 we

depict the IRP for clarity.

Considering the example “When is the next solar”, it is clear

that predicting the completion of a question could improve a voice

assistant’s user experience (Purver et al., 2003; Howes et al., 2012).

We therefore evaluated two T5 language models (Raffel et al., 2020)

against our partial understanding pipelines as a comparison (Kale

and Rastogi, 2020; Clive et al., 2021;Marselino Andreas et al., 2022).

It is possible to fine-tune T5 with domain-specific examples and

with new task contexts. For example, you can send text to T5 with

the “translate English to German” context, “summarize” context, or

“answer” context when the text is a question. We found a T5-base

model fine-tuned on a QA corpus (Romero, 2021) that could be

easily utilised through Hugging Face (Wolf et al., 2019). This model

was fine-tuned on SQuAD v1.1 (Rajpurkar et al., 2016), a machine

comprehension corpus containing over 100,000 question/answer

pairs posed by crowdworkers on Wikipedia articles. We passed

every question in SLUICEs test set through this model for

completion prediction with the “question” context. Additionally,

TABLE 1 Comparison of the original question completions, and our T5

model fine-tuned on SLUICE.

Ex Interrupted
question

Original T5
SLUICE

1 Franz Waxman

won what award at

the 23rd

Academy

Awards

Academy

Awards

2 In what area does

the Rideau Canal

join

the Ottawa

River

the Ottawa

River

3 Who wrote Harry Potter The Great

Gatsby

4 Who was the father

of

Queen

Elizabeth II

Sigmund

Freud

5 Who created the

comic

Captain

America

X-Men

EVA, everyday voice assistant.

using SLUICEs training set and a new task context “complete

the question”, we fine-tuned our own T5-base model specifically

tailored to completing interrupted questions. Five examples were

selected, and you can see this models predictions in Table 1. The

T5 model fine-tuned on SQuAD v1.1 predicted that examples 2

and 5 (in Table 1) were already complete and predicted “the book”

and “the girl” for examples 3 and 4, respectively, and rewrote

example 1—providing no additional information. It is clear that our

T5 model fine-tuned on SLUICE generates realistic context-aware

completions (e.g., predicts a comic in example 5). Although the

predictions make sense, they are still just guesses and are therefore

incorrect.

2.4.2 AMR recovery pipeline
We again hypothesise that predicting the misunderstood word

may frustrate the user further when interacting with a voice

assistant, but we deemed it was important to include this human-

interaction approach for completeness. We fine-tuned a T5 model

(Raffel et al., 2020) on our corpora, as it is particularly good at text

generation (Andreas et al., 2021; Ribeiro et al., 2021).

We evaluated the following pipelines against the upper bound

(UB):

• UB: the SPRING model trained on the original AMR 3.0

corpus, given only full sentences in the disruption corpus. IRPs

aim to match this UB.

• Interactive All: The disrupted sentence and completion turn

both parsed by one model trained on the new disrupted AMR

corpus and full original sentences. The two representations

are then conjoined at the point identified by the parser with

a ‘NOTKNOWN’.

• Interactive Split: The disrupted sentence is parsed by a

specialist model trained only on disrupted sentences. The

completion turn is parsed by a second specialist model only

trained on completion turns. The two representations are

then conjoined at the point identified by the parser with a

‘NOTKNOWN’.
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TABLE 2 Final evaluation results on the SLUICE test set.

Pipeline Answer Answer delta

Top-performing Baseline

(given full questions)

46.40 –

Interactive (requiring iCRS) 45.63 0.77

Prediction (T5 SQuAD) 11.30 35.10

Prediction (T5 SLUICE) 15.45 30.95

Answer: % of questions answered correctly, and Answer Delta: the difference between the % of

questions answered by the state-of-the-art upper bound baseline (given the full question) and

the interruption recovery pipelines. iCRs, incremental correction request. Bold values in result

tables are the top-performing results in their respective column (e.g., the highest accuracy, or

lowest error rate).

• Interactive Naive: The disrupted sentence and the

completion turn are both parsed by the original SPRING

model, and the two representations are conjoined at the

root node.

• Prediction: The disrupted sentence is completed with

a prediction from a T5 model fine-tuned on the new

corpus. This sentence is then parsed by the original

SPRING model.

2.5 Recovery pipeline results

IRPs are not expected to outperform the SotA baselines given

the full original sentences. In fact, a perfect IRP should perform

the same as the baselines. The performance of the baselines, given

uninterrupted sentences, is considered the UB. We, therefore,

report each task’s standard metrics (Answer % for KBQA and

Smatch for AMR parsing, detailed later), in addition to the “delta”

of that metric. This delta compares the UB performance to the

performance of an IRP, with a perfect IRP achieving a delta of zero.

2.5.1 QA IRP results
First turning to QA using SPARQL and Wikidata, we explore

whether our IRPs can preserve system performance, even when

the user pauses in the middle of their question unexpectedly.

The results can be found in Table 2. When a users question is

interrupted by a voice assistant, their ultimate goal is to have

their question answered. We therefore consider the percentage of

questions answered correctly as the central metric to decide which

approach maximises the benefit to the user.

The two T5 prediction models perform poorly compared to

the interactive approach, with the model fine-tuned on SLUICE

outperforming the SQuAD v1.1 model. From a manual inspection,

this poor performance is caused by arbitrary guesses (e.g.,

completing “Who wrote”).

The interactive pipeline is the best of our IRPs—answering only

0.77% fewer questions correctly than the baseline given complete

questions. To emphasise this remarkable result, the parser within

the interactive pipeline must generate a valid SPARQL query

identifying not only the answer variable but also the “?unknown”

variable representing what the model does not yet know. The

correct answer is only provided if the parser accurately identifies

TABLE 3 Evaluation of interruption recovery pipelines.

Pipeline Smatch Smatch delta

Upper Bound (UB) 84.7 –

Interactive: All 82.8 1.9

Interactive: split 83.1 1.6

Interactive: Naive 78.5 6.2

Prediction 78.6 6.1

The “Smatch Delta” is the difference between the pipelines Smatch score and its respective

upper bound, ‘UB’, score. The ideal delta would be 0, as that would indicate that the

recovery pipeline successfully recovered all sentences. Bold values in result tables are the

top-performing results in their respective column (e.g., the highest accuracy, or lowest error

rate).

where this unknown variable is located within the query structure,

attaches it to the right property, and the linker returns the exact

Wikidata ID. In contrast, the baseline is provided all information

as input.

It can be concluded that the interactive IRP can successfully

preserve the performance of a system’s downstream task, in

this case KBQA, through interaction. To enable this interaction,

effective context-aware iCRs must be generated (see Section 3). But

first, we must determine if interactive IRPs work beyond the KBQA

context with sentences more generally.

2.5.2 ARM-parsing IRP results
Let us next examine the AMR results, exploring general

sentence disruption recovery in Table 3. Following all previous

AMR literature, we use Smatch (Cai and Knight, 2013) as the

evaluation metric to measure the semantic overlap between the

predicted and gold AMR graphs (graph similarity f-score). The

IRPs perform remarkably well. Looking at only the Smatch Loss,

the “Split” pipeline performed the best, only losing 1.6% graph

similarity f-score. The “All” pipeline loses only 1.9%, and the

‘Prediction’ and ‘Naive’ pipelines perform much worse, losing

over 6% Smatch each. The two best pipelines would require the

generation of incremental CRs to be implemented, once again

highlighting their effectiveness.

Using more fine-grained metrics to evaluate AMR semantic

parser performance (Damonte et al., 2017), we find that the

interactive IRPs outperformed their respective Prediction and

Naive pipelines at parsing negation, named entities, and unlabelled

graph structure. The Prediction pipeline performed poorly at

parsing negation and named entities due to incorrect predictions.

Predictions were typically sensible completions, but as expected,

these predictions were often arbitrary guesses due to ambiguity. To

illustrate this point, consider completing the sentence: “She drove

to”.

The Naive pipeline was particularly bad at generating a sensible

graph structure, with an 8% precision drop when comparing

unlabelled graph structures. While this result itself is unsurprising,

as the Naive pipeline involves arbitrary conjunction at the root

node, it highlights the impressive performance of the All and Split

pipelines. The two pipelines reliant on iCRs were able to correctly

identify where the missing information belonged in the semantic

graph structure.
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2.6 CRs enable interruption recovery

In this section, we presented various IRPs based on human

recovery strategies and evaluated these against a SotA-level

baselines given fully completed questions and sentences more

generally. These incomplete turns cannot currently be handled

by today’s voice assistants without full repetition of the entire

utterance. This is not a natural interaction, frustrates users, and

severely impacts the accessibility of voice assistants for PwDs (see

Section 1.2). We found that predicting question completions would

likely frustrate the user further, often resorting to arbitrary guesses.

In contrast, we found that parsing what was said, the truncated

turn and a completion turn elicited using an iCR, could answer

interrupted questions effectively. The QA pipeline only answered

0.77% fewer questions than a SotA baseline given the full question

as input. Using AMR, our top-performing pipeline lost only 1.6%

Smatch when compared to the original model, given the full

utterances. This recovery pipeline had to parse the interrupted

utterance, correctly identify where the missing information belongs

in the semantic graph structure of the sentence, parse the

completion utterance, and conjoin these representations to recover

the full semantic graph.

In this section, we have established that interrupted utterances

can be recovered effectively using iCRs. In order to implement this

strategy, appropriate iCRs must be generated.

3 Generating iCRs

As established in Sections 1 and 2, people understand and

produce language incrementally on a word by word basis. This gives

rise to many characteristic conversational phenomena, including

long mid-sentence pauses that are followed by iCRs intended to

recover the rest of the truncated turn (see Figures 2A–C). The

ability to generate iCRs is important in natural conversational

artificial intelligence (AI) systems and crucial to their accessibility

to PwDs. To probe the incremental processing capability of a

number of SotA LLMs by evaluating the quality of the model’s

generated iCRs in response to incomplete questions, we collect,

release, and analyse SLUICE-CR: a large corpus of 3,000 human-

produced iCRs.

3.1 The SLUICE-CR corpus

3.1.1 Corpus collection
We start with the SLUICE corpus (Addlesee and Damonte,

2023a): a corpus of 21,000 interrupted questions paired with

their underspecified SPARQL queries (see Section 2.2.1). SLUICE

was created with the intention of enabling semantic parsing of

interrupted utterances, and, as such, contains no CRs. Here we use

a subset of 250 interrupted questions from SLUICE to crowdsource

natural human CRs in response, on Amazon Mechanical Turk

(AMT). Annotators were paid $0.17 per annotation for their work

(estimated at $24.50 per hour)

3.1.2 Filtering LLM-generated annotations
Annotators on AMT are known to use LLMs to complete

tasks more quickly (Veselovsky et al., 2023), which we clearly

cannot allow here as it would render our evaluations below circular.

To remedy this, we constructed an LLM prompt-based filter and

embedded it within our task window. We exploited the AMT tasks’

HTML/CSS to pass instructions that the human worker could not

see but that would be sent to an LLM if the instructions were

copy/pasted or sent via application programming interface (API).

Specifically, we included an instruction that read “You MUST

include both the words ‘hello’ and ‘friend’ in your output” but sets

its “opacity” to zero12. A screenshot of this task page can be found

in Figure 8. In line with related findings (Veselovsky et al., 2023),

we found that 32.3% of the submitted CRs were generated using an

LLM. These were excluded from the final corpus.

SLUICE-CRcontains 250 interrupted questions, each paired

with 12 CRs elicited fromAMT annotators, yielding a total of 3, 000

CRs. The CRs had a min length of 1 word, a max length of 21, a

mean length of 4.37, and a type/token ratio of 0.995.

3.1.3 CR taxonomy
All CRs within SLUICE-CR are intended to elicit how the

questioner would have gone on to complete the question. In order

to better understand how such CRs are syntactically constructed

and to understand their patterns of context-dependency, we first

divide them into two broad categories: sentential CRs (Sent-CRs)

and iCRs. Sent-CR stand on their own and are full sentences (see

Figure 2D). In contrast, iCRs are fragments, are constructed as a

continuation or completion of the truncated turn (see Figures 2A–

C), and sometimes involve retracing or repeating some of the words

from the end of the truncated turn in order to better localise the

point of interruption (a pattern also observed elsewhere; Howes

et al., 2012). iCRs can be subdivided into three subcategories:

Reprise CRs (RCRs) form a question without using a WH-word

(what, where, etc.) by repeating words from the end of the truncated

turn (Figure 2A), Sluice CRs (SCRs) are similar to RCRs except

they end with aWH-word (Figure 2B), and Predictive CRs (PCRs)

form a yes/no question by making an explicit guess at how the

speaker would have completed their turn together with a question

intonation (Figure 2C).

All CRs in SLUICE-CRwere annotated automatically with the

previously described CR categories. We used GPT-4 to filter out all

Sent-CR by asking it whether each CR was a complete sentence.

We took the remaining to be iCRs. We then used simple scripts

to determine whether the CR ended in a WH-word preceded by a

verbatim repetition of the last few words of the truncated question,

thus giving us all SCRs, or if it only repeated the last few words

without a final WH-words, thus giving us all RCRs. Most of what

remains are PCRs, but precise figures required manual annotation.

Table 4 shows the distribution of different CR types in our corpus.

An example of an iCR that should count as an SCR but falls

in the “Other” category is when the CR paraphrases the end of

the truncated question instead of a verbatim repetition, as in, for

12 Wewill release and link our task’s HTML/CSS so that anyone can use this

method for their work.
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FIGURE 8

A preview of the window each crowd-worker saw when completing our corpus generation. You can see there is a small empty gap in the

instructions. That gap contains the invisible instructions that the LLM follows if the instructions are copied and pasted.

TABLE 4 Distribution of CR Types in SLUICE-CR.

CR type Sent-
CR

RCR SCR Other

# 1,056 114 1,227 603

% 35.2 3.8 40.9 20.1

CR, clarification request; Sent-CR, sentential clarification request; RCR, reprise clarification

request; SCR, sluice clarification request.

example, “Q: whose research was undertaken in . . . iCR: takes place

where?” Our scripts for automatic annotation of these categories

therefore have perfect precision but not perfect recall. Arguably,

this does not affect the interpretation of our evaluation results

below: we will results; we therefore leave this for future work.

3.2 Generating iCRs: LLM evaluation

Unlike recurrent models such as recurrent neural network

(RNNs) and long short-term memory (LSTMs), transformer-based

encoder–decoder architectures are not properly incremental in

the sense that they are bidirectional and process token sequences

as a whole rather than one by one. They can, however, be run

under a so-called restart incremental interface (Madureira and

Schlangen, 2020b; Rohanian and Hough, 2021), where input is

reprocessed from the beginning with every new token. Even

then, these models exhibit poor incremental performance with

unstable output compared to, for example, LSTMs (Madureira

and Schlangen, 2020b). Interesting recent work has explored using

linear transformers (Katharopoulos et al., 2020) with recurrent

memory to properly incrementalise LMs (Kahardipraja et al., 2023).

Curiously, none of this work evaluates autoregressive, decoder-only

model architectures (GPT; Radford et al., 2018 and thereafter)

trained with a next token prediction objective, which most, if not

all, modern LLMs are built upon. Unlike bidirectional models, these

models must learn to encode latent representations of both the

syntax and the semantics of an unfolding (partial) sentence. With

that in mind, we want to determine how well today’s LLMs can

construct effective iCRs in response to a partial question and use

this as a proxy for evaluating the LLMs’ incremental processing

capabilities.

In what follows, we use the SLUICE-CR corpus to evaluate

a number of different instruction-tuned LLMs, some proprietary

and some open. These are Falcon-40b-instruct (Almazrouei et al.,

2023), GPT-4, Llama-2-7b-chat, Llama-2-13b-chat, Llama-2-70b-

chat (Touvron et al., 2023), Vicuna-13b-v1.1, and Vicuna-13b-

v1.5 (Chiang et al., 2023). In addition, we evaluate them under

three different prompting conditions: Basic prompt simply sends

the partial question to the LLM with no additional context. The

Annotation prompt contains the exact instructions that were

given to the AMT annotators, which contained nine iCRs in total

across three truncated questions (3 iCRs per question). Finally,

the Reasoning prompt provides in addition, a “reason” why the

example iCR was a suitable response. For example, the iCR “Sorry,

of who?” was paired with the reason “You apologise for not hearing

everything, and then ask “of who?” as the answer must be the father

of a human”. This was found to be the best prompt style in related

work (Fu et al., 2022; Addlesee et al., 2023)13.

13 All prompts used in this article can be found here: https://github.com/

AddleseeHQ/interruption-recovery.
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TABLE 5 Results: match between LLM-generated CRs and gold human

CRs.

Model Prompt WER BLEU ROUGE-L

Falcon-40b-instruct Basic 3.08 3.17 24.41

Annotation 8.46 3.29 16.32

Reasoning 1.00 0.00 0.21

GPT-4 Basic 3.06 1.48 22.42

Annotation 0.22 49.43 82.58

Reasoning 0.18 49.62 83.95

Llama2-7b-chat Basic 6.31 1.48 16.63

Annotation 6.38 4.53 15.70

Reasoning 6.71 2.45 13.55

Llama2-13b-chat Basic 10.00 2.03 15.72

Annotation 7.52 4.98 16.64

Reasoning 12.26 2.15 11.72

Llama2-70b-chat Basic 11.05 1.47 14.54

Annotation 0.90 21.10 51.90

Reasoning 1.14 24.25 60.52

Vicuna-13b-v1.1 Basic 20.95 1.35 14.51

Annotation 13.84 7.43 23.46

Reasoning 59.71 1.76 14.71

Vicuna-13b-v1.5 Basic 5.27 1.94 19.37

Annotation 1.13 18.14 48.39

Reasoning 1.09 21.39 49.77

LLM, large language model; CR, clarification request; WER, word error rate; BLEU, bilingual

evaluation understudy; ROUGE-L, recall-oriented understudy for gisting evaluation. Bold

values in result tables are the top-performing results in their respective column (e.g., the

highest accuracy, or lowest error rate).

3.2.1 Metrics
We use three of the standard word overlap metrics from

the natural language generation (NLG) literature: word error

rate (WER), bilingual evaluation understudy (BLEU), and recall-

oriented understudy for gisting evaluation (ROUGE-L). But to

capture the variation in the CRs we observed in SLUICE-CR (recall

that we have 12 gold CRs per partial question), and to be fair to the

models, these metrics are computed as the best score against all the

12 gold CRs for each partial question in SLUICE-CR.

While the standard NLG metrics give us a general idea of how

the models are performing, they are inadequate for a more fine-

grained evaluation specific to CR generation. For example, consider

the gold iCR “Sorry, the population of where?” in response to

the partial question “In 2009, what was the population of”. The

WER would be exactly the same given the predictions “Apologies,

the population where?” and “Sorry, the population when?” even

though the latter prediction is incorrect and non-sensical. In fact,

the response “I didn’t quite catch all of that, where?” would perform

poorly on all of these metrics, even though it is a perfectly valid CR

in this case. To mitigate this issue, we have devised the following

new metrics.

3.2.2 CR-specific metrics
As illustrated in the previous examples, the WH-word is

critical when generating CRs. To capture this, we calculate (1)

sluice percentage (SP): measuring the percentage of generated CRs

that contain a sluice (i.e., a WH-word such as who, what, when,

etc.). This does not, however, measure whether the specific WH-

word generated is appropriate (e.g., when vs. where in the earlier

example). We therefore also calculate (2) sluice match accuracy

(SMA): measuring the percentage of model-generated CRs with a

WH-word that is an exact match to at least one of the WH-words

in the 12 human CRs for each partial question. For example, if the

human CRs only contain theWH-word,what (e.g., given “Did FDR

ever receive . . . ”), then the total number of matches is incremented

if the CR contains the word “what”. In the zipcode example given in

Section 3.1, the generated CR would be correct if it contained what,

where, or who. SMA thereby preserves semantic-type ambiguity of

the material missing from the partial question.

So far, none of the discussed metrics captures the type of

the CR generated by the models. We therefore use precisely the

same annotation scripts we used to categorise gold human CRs

in Table 4 on the model outputs. Crucially, this includes the

distinction between iCRs and Sent-CRs, thus providing a measure

of the incremental generation and understanding capabilities of the

models.

3.3 Results and discussion

3.3.1 Standard evaluation
In Table 5, we first report the standard NLG metrics. As

expected, GPT-4 outperforms the other models in every metric. Of

the more open LLMs, Llama-70b-chat, and Vicuna-13b-v1.5 both

perform remarkably well compared to the others. Interestingly,

Vicuna-13b-v1.5 is based on Llama-2-13b, created by fine-tuning

Llama-2 on 70k user-shared chatGPT conversations (Chiang et al.,

2023). If we look at the ‘reasoning’ prompt scores between the two

models, Vicuna’s improvement is exceptional. WER drops from

12.26% to just 1.09%, BLEU increases from 2.15 to 21.39, and

ROUGE-L rockets from just 11.72 to 49.77. From these metrics

alone, it is clear that GPT-4 is outstanding if data privacy is not

a concern. In sensitive settings without hardware limitations (like

health care, finance, or internal business use), Llama-2-70b-chat is

best. If hardware is limited, the smaller Vicuna-13b-v1.5 is the most

suitable.

3.3.2 CR-specific evaluation
Table 6 is broadly consistent with the standard metrics reported

in Table 5: GPT-4, Llama-70-b-chat, and Vicuna-13b-v1.5 were

the leading models in generating appropriate CRs when given

only a few examples from SLUICE-CR in the Annotation and

Reasoning prompt conditions. The smaller models struggled

because their outputs simply repeated the content of their prompt.

The larger models that performed poorly generated long passages

on the topic of the given incomplete question rather than

generating an CR.

On the question of incremental processing, all the models

generate Sent-CRs in thebasic prompt condition. GPT-4 reduced

this to 0.8% when given the “reasoning” prompt. Of the gold

human CRs, 35.5% were sentential, so GPT-4 does rely on iCRs

very heavily. Falcon does too, not because it generated good iCRs

but because the output was mostly non-sensical.
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TABLE 6 Results.

Model Prompt
style

SMA EM SP Sent-CR RCR SCR Other

Falcon-40b-instruct Basic 0.6 0.0 13.2 90.4 0.0 0.0 9.6

Annotation 6.9 0.0 79.6 90.8 0.4 0.8 8.0

Reasoning 0.0 0.0 0.0 0.8 3.6 0.0 95.6

GPT-4 Basic 11.7 0.0 26.0 91.2 0.0 0.0 8.8

Annotation 98.4 54.4 100 6.8 1.2 79.6 12.4

Reasoning 97.6 59.2 100 0.8 1.2 86.0 12.0

Llama-2-7b-chat Basic 5.0 0.0 34.0 98.4 0.0 0.0 1.6

Annotation 0.0 0.0 100 100 0.0 0.0 0.0

Reasoning 0.0 0.0 100 100 0.0 0.0 0.0

Llama-2-13b-chat Basic 3.3 0.0 41.6 91.6 0.4 0.0 8.0

Annotation 0.0 0.0 81.2 100 0.0 0.0 0.0

Reasoning 2.0 0.0 100 99.2 0.0 0.0 0.8

Llama-2-70b-chat Basic 2.6 0.0 52.8 99.6 0.0 0.0 0.4

Annotation 91.6 3.2 85.6 69.2 7.6 8.4 14.8

Reasoning 86.0 5.2 87.2 51.6 20.0 12.0 16.4

Vicuna-13b-v1.1 Basic 0.0 0.0 48.0 89.2 0.0 0.0 10.8

Annotation 11.0 0.0 59.6 71.6 0.8 3.6 24.0

Reasoning 4.9 0.0 82.4 91.6 0.0 0.0 8.4

Vicuna-13b-v1.5 Basic 11.7 0.0 57.2 98.4 0.0 0.0 1.6

Annotation 83.9 6.0 50.8 73.2 0.0 20.4 6.4

Reasoning 87.0 10.4 62.8 66.4 2.4 20.0 11.2

SMA, Sluice Match Accuracy; EM, Exact Match; SP, Sluice Percentage; Sent-CR, sentential clarification request; RCR, reprise clarification request; SCR, sluice clarification request. Bold values

in result tables are the top-performing results in their respective column (e.g., the highest accuracy, or lowest error rate).

Of the models that learned to generate iCRs, GPT-4 and

Vicuna-13b-v1.5 both relied more on SCRs, with 86% of

GPT-4’s outputs falling into this category when given the

“reasoning” prompt. Llama-70b-chat generated more RCRs, opting

to commonly forego the sluice entirely.

3.4 LLMs can learn to generate iCRs

In this section, we observe that the ability of LLMs to generate

iCRs emerges only at larger sizes and only when prompted with iCR

examples. Importantly, we have found that incremental language

processing is inherent to the autoregressive models we evaluated. In

practice, GPT-4 is outstanding if data privacy is not a concern. In

privacy-sensitive settings without hardware limitations, Llama-2-

70b-chat is best. If hardware is limited, the smaller Vicuna-13b-v1.5

is the most suitable.

4 Responding to incremental
clarificational exchanges

So far in this article, we have shown that CRs are a useful

strategy to recover interrupted sentences when someone pauses

mid-utterance, and we have shown that LLMs are able to generate

effective iCRs. We have not yet, however, explored whether these

LLMs can process clarification exchanges, that is, how well they

respond after the user has responded to the generated iCR.

Using our corpus from Section 3, SLUICE-CR, we therefore

established a final experiment to determine whether LLMs

can adequately interpret interactive clarificational exchanges as

successfully as they can interpret full sentences. To assess this, we

compare (1) each model’s response to the complete question and

(2) each model’s response after the clarificational exchange, that is,

after the user has responded to the model-generated iCR, providing

the completion. If the model was able to effectively interpret the

clarificational subdialogue, we would expect the responses in (1)

and (2) to be the same or very similar. We should note here that

this evaluation technique abstracts from any notion of factuality

or faithfulness: it does not matter if the model’s response to the

complete question or indeed after the clarificational exchange is not

factual; what matters for this evaluation is that the responses are the

same or similar in (1) and (2).

SLUICE-CRcontains interrupted questions alongside their

original full form. As noted, we want to measure how similar

the LLM’s responses are in (1) and (2). Using the best three

LLMs in our experiments in Section 3.2, we passed either the

full question or a dialogue including three turns: the interrupted
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TABLE 7 Overlap scores for full question answers and partial question

answers.

Model EM ROUGE-
L

BERT Partial
ratio

GPT-4 49.6 73.2 94.8 85.6

Llama-2-70b-chat 22.0 54.2 90.9 75.8

Vicuna-13b-v1.5 22.0 58.8 92.8 80.1

EM, exact match; ROUGE-L, recall-oriented understudy for gisting evaluation; BERT,

bidirectional encoder representations from transformers. Bold values in result tables are the

top-performing results in their respective column (e.g., the highest accuracy, or lowest error

rate).

question, the clarification generated by the LLM being evaluated,

and the completion turn in SLUICE-CR (the response to themodel-

generated iCR). We then compared these using both word overlap

and semantic similarity metrics. EM, exact match; ROUGE-L,

BERT, bidirectional encoder representations from transformers.

4.1 Results and discussion

The results can be found in Table 7. The first of our metrics,

exact match (EM), simply reports the percentage of the responses

that exactly match each other.We can see that GPT-4 outperformed

the other two models by a large margin here, suggesting that

it can interpret clarification exchanges more accurately than the

others. This is a rather strict metric, punishing the model if it

responds in a slightly different way. ROUGE-Lmeasures the longest

common subsequence given the two responses, providing a little

more flexibility than EM. For example, when an answer only differs

by one synonymous word like “foreign transaction fee” and “foreign

exchange fee”. Again, GPT-4 performed the best by a large margin,

but Vicuna-13b-v1.5 outperformed Llama-70b-chat in this case.

Both EM and ROUGE-L are based on n-gram overlap and

thus do not capture semantic similarity. That is, “USA” and “The

United States of America” score poorly on both of these metrics,

even though the answers are both the same entity. We used BERT

score to capture the semantic similarity of the given answers.

The performance difference is not as apparent using this metric,

but again GPT-4 performed the best, followed by Vicuna. Finally,

from observation, it was apparent that answers were commonly

subsequences of the other. For example, “a Belgian” and “A person

from Belgium is called a Belgian”. We therefore measured the

partial ratio between the two outputs. This is 1 in this example, as

one output is an exact subsequence of the other14. GPT-4 was again

the best, but it was closely followed by Vicuna. The performance

of Vicuna-13b-v1.5 is truly remarkable when compared to Llama-

70b-chat here. As mentioned before, this version of Vicuna is

based upon Llama-2-13b as its foundation. The 70,000 user-shared

chatGPT conversations that it is fine-tuned on (Chiang et al., 2023)

enable it to effectively process clarificational exchanges better than

the much larger Llama-2-70b-chat model.

14 https://github.com/seatgeek/thefuzz

5 Conclusion and future work

For PwDs, voice assistants provide more use than just simple

convenience (Addlesee, 2023). In ongoing work, participants have

used voice assistants to re-awaken their love for music, set

reminders to take medication or walk their dogs, get help with

their crosswords, and even find new recipes to help get involved

with family meal times (Addlesee, 2022a). Currently, when PwDs

pause mid-sentence due to word-finding problems, voice assistants

mistake the pause as the end of the user’s turn. The system

then interrupts, resulting in the user having to repeat their entire

utterance again.

In this article, we have established that CRs are an effective

recovery strategy when this interruption occurs. Using our new

corpus SLUICE-CR, containing 3,000 natural human CRs, we

probed several LLMs to evaluate their ability to parse interrupted

questions. We found that when larger LLMs were exposed to

SLUICE-CR, they were able to generate appropriate context-

dependent CRs. Finally, we combined all this work to show

that GPT-4, Llama-2-70b-chat, and Vicuna-13b-v1.5 can interpret

clarification exchanges as if they were simply one uninterrupted

turn.

As established in Section 1, EVAs can improve PwDs’ autonomy

and well-being (Brewer et al., 2018; Volochtchuk et al., 2023), so

voice assistant accessibility is crucial. There is an abundance of

previous literature creating EVAs with dementia-friendly features

(see Section 1.2), but they all use off-the-shelf speech processing.

Instead of teaching people to adapt their speech to EVAs (O’Connor

et al., 2023), EVAs should be adapted to understand natural speech

phenomena. We address one such phenomena in this article, long

mid-utterance pauses, but many others remain, and similar work

should extend to other user groups (Addlesee, 2023). We plan

to continue advancing EVA accessibility research and encourage

other researchers to adapt speech processing for the vast array of

user groups that will truly benefit from future EVA accessibility

advances.

The work in this article has one major limitation: it is not

practically useful in isolation. It must, therefore, be implemented

within a full EVA to improve EVA accessibility. In order to

determine whether this work improves accessibility in practice,

a user study must be carried out. Our work has recently been

integrated with an EVA designed for use in a hospital memory

clinic waiting room (Addlesee et al., 2024). The memory clinic

patients often visit the hospital with a companion, so multiparty

challenges also arise (Traum, 2004). A video of this integrated

system is available15. In future work, this system will be deployed

in the hospital memory clinic with real patients. This user study

is exciting but requires a significant amount of time to assess

the ethical considerations and actually deploy the system. We are

releasing all corpora to enable future work on these critical tasks.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

15 https://www.youtube.com/watch?v=xMCpcsLhN_I
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accession number(s) can be found in the article/supplementary

material.

Ethics statement

Working on accessibility cannot be done without user studies

and discourse with the specific user group. We are working to

carry out end-to-end user studies with PwD to ensure that the

systems we describe in this article really do benefit this user group.

Throughout this article, it is clear that GPT-4 performs remarkably

well. Unfortunately, there is no way to use GPT-4 without sending

data to OpenAI’s servers. As our planned deployment is in a

hospital, we cannot do this due to data privacy concerns. Even if

participants were instructed carefully, it is impossible to ensure they

would not reveal personally identifiable information—this problem

is exacerbated in a memory clinic setting (Addlesee and Albert,

2020). For this reason, we will use an LLM that we can deploy

on-premise.

LLMs can generate inaccurate responses, and even if we use

guardrails and hallucination reduction techniques, it is not possible

to reduce this risk to zero. Hospital staff researchers run the

experiments, so they can correct our system if it ever produces

a hospital-related hallucination. No personal information, like

patient appointment schedules, will be given to the system in order

to avoid causing confusion.

In a real deployment, prompt poisoning could be an issue.

Through dialogue, a bad actor can manipulate the system to output

incorrect responses through dialogue. This is not possible in our

setup, as we reset the system between participants (the patients are

also unlikely to be bad actors). If deployed, speaker diarization and

dialogue history deletion can mitigate this risk, but it is critical to

highlight that LLMs can be manipulated.

Running a data collection or user study with PwD is

challenging. Participant consent is more complex, the study’s

location must be carefully considered, data security is critical, and

more (Addlesee and Albert, 2020). As mentioned in Section 5,

we have integrated the work in this article with an EVA designed

for a hospital memory clinic. This work is part of the European

Union’s H2020 SPRING project (see Funding statement), and is

a collaboration between eight international research institutions.

One of these groups is a research team within the hospital memory

clinic, who are subject to rigorous ethical review, and are experts at

working with memory clinic patients.
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