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The formation, inheritance, and removal of DNA methylation in the genome of
mammalian cells is directly regulated by two families of enzymes–DNA
methyltransferases (DNMTs) and Ten-Eleven Translocation proteins (TETs).
DNMTs generate and maintain the inheritance of 5-methylcytosine (5mC),
which is the substrate targeted by the TET enzymes for conversion to 5-
hydroxymethylcytosine (5hmC) and its downstream oxidized derivatives. The
activity of DNMT and TET is dependent on the availability of micronutrients and
metabolite co-factors, including essential vitamins, amino acids, and trace
metals, highlighting how DNA methylation levels can be directly enhanced,
suppressed, or remodeled via metabolic and nutritional perturbations.
Dynamic changes in DNA methylation are required during embryonic
development, lineage specification, and maintenance of somatic cell function
that can be fine-tuned based on the influence of essential micronutrients. As we
age, DNA methylation and hydroxymethylation levels drift in patterning, leading
to epigenetic dysregulation and genomic instability that underlies the formation
and progression of multiple diseases including cancer. Understanding how DNA
methylation can be regulated by micronutrients will have important implications
for the maintenance of normal tissue function upon aging, and in the prevention
and treatment of diseases for improved health and lifespan.
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Introduction

DNA methylation in the form of 5-methylcytosine (5mC) can be found in ~80% of
CpGs in the genome and is primarily enriched in heterochromatin, working in positive
feedback with silencing histone marks to maintain lineage identity (Lister et al., 2009). 5mC
is conventionally known as a repressive epigenetic mark, controlling gene expression and
chromatin organization to influence cellular development and differentiation (Guo et al.,
2014). During development and in response to environmental stimuli, many 5mC marks
are dynamic, including at shores of CpG islands, promoters, enhancers, and across gene
bodies of differentially expressed genes (Deaton and Bird, 2011; Nguyen et al., 2022). DNA
methyltransferases (DNMTs) catalyze the transfer of a methyl group to the 5’ position of
cytosine residues to regulate de novo 5mC formation (DNMT3A and DNMT3B)
independently of the cell cycle, or during DNA replication to ensure faithful DNA
methylation inheritance (DNMT1) (Okano et al., 1999; Pradhan et al., 1999).

The Ten-eleven translocation (TET1-3) enzymes are considered to have an opposing
role to the DNMTs due to their ability to oxidize 5mC to generate 5-hydroxymethylcytosine
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(5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC)
(Tahiliani et al., 2009; Ito et al., 2010; He et al., 2011). TET
proteins belong to a superfamily of dioxygenases that utilize Fe2+

and α-ketoglutarate (αKG) as essential cofactors (Lorsbach et al.,
2003) [reviewed in (Lu et al., 2015a; Rasmussen and Helin, 2016;Wu
and Zhang, 2017; Lio et al., 2020)]. The oxidized methylcytosines
generated by TETs can be stable modifications in the genome or
transient modifications that promote active or passive DNA
demethylation (Tahiliani et al., 2009; Zhang et al., 2010;
Bachman et al., 2014). DNMT1 preferentially recognizes hemi-
methylated DNA to establish inheritance of methylation at
palindromic CpG dinucleotides upon DNA replication
(Bashtrykov et al., 2012) however, the inability of DNMT1 to
recognize 5hmC causes a passive, cell-cycle dependent loss of
DNA methylation (Otani et al., 2013). Unlike 5hmC that does
not interfere with RNA or DNA polymerase extension, the
iterative oxidation products 5fC and 5caC can slow RNA
elongation (Wang L. et al., 2015), cause DNA polymerase
pausing (Shibutani et al., 2014), and mimic a T:G mismatch
leading to active removal and replacement with an unmethylated
cytosine via base excision repair (BER) independently of DNA
replication (Cortellino et al., 2011; He et al., 2011).

Essential micronutrients can directly or indirectly influence
DNMT and/or TET activity that in turn impact DNA
methylation levels (Figure 1). B vitamins can be regarded as pro-
methylating micronutrients given their role in one-carbon

metabolism that generates both nucleotides for DNA synthesis
and the transfer of methyl groups required for the maintenance
of DNA methylation (Tong et al., 2009; Lyon et al., 2020). The
methyl group used in the formation of 5mC by DNMTs is derived
from the coordinated effort of B2, B6, B9, B12, and the essential
amino acid methionine. Together, these micronutrients regulate the
folate and methionine cycles of one-carbon metabolism to generate
S-adenosylmethionine (SAM), the sole methyl donor used by all
methyltransferases to methylate proteins, RNA and DNA. TET
catalytic activity is also dependent on metabolites and
micronutrients whose abundance can be directly regulated by
dietary supplementation. More recently it has been shown that
vitamin C can act as a direct cofactor of TET enzymes to
enhance 5hmC formation (Cimmino et al., 2017; Cimmino et al.,
2018) by reducing ferric iron (Fe3+) to ferrous iron (Fe2+).
Alterations in iron homeostasis may influence TET activity, as
shown in the brain, liver, gut, lymphocytes, and cord blood cells
(Jiang et al., 2021; Barks et al., 2022; Gao et al., 2022; Taeubert et al.,
2022) and additional micronutrients, such as vitamin A, D, and E,
have also been implicated as direct or indirect regulators of DNA
methylation (Doig et al., 2013; Hore et al., 2016; Remely et al., 2017).
Given that aberrant DNA methylation profiles are associated with
aging (Sedivy et al., 2008; Salameh et al., 2020; He et al., 2021;
Wilkinson et al., 2021; Lu et al., 2023) and that loss of function
mutations in DNMT and TET enzymes are a hallmark of cancer
(Delhommeau et al., 2009; Figueroa et al., 2010a; Li et al., 2011;

FIGURE 1
Role of micronutrients on DNA (hydroxy) methylation. One-carbon metabolism is comprised of the folate and methionine cycles that coordinate
both nucleotide synthesis and the generation of S-adenosylmethionine (SAM), the sole methyl donor used by DNA methyltransferases to generate 5-
methylcytosine (5mC) in the genome. Folate (vitamin B9) is converted to dihydrofolate (DHF) then to tetrahydrofolate (THF) by dihydrofolate reductase
(DHFR). Serine hydroxymethyltransferase (SHMT) utilizes vitamin B6 as a cofactor to generate the metabolite 5,10-methyleneTHF, which can then
be reduced by methylenetetrahydrofolate reductase (MTHFR) into 5-methyltetrahydrofolate (5-mTHF) using B2 as a cofactor. In conjunction with the
methionine cycle, vitamin B12 is a cofactor for methionine synthase (MS), which uses 5-mTHF to transfer a methyl group to homocysteine (Hcy) in the
recycling of methionine. Methionine, when converted to S-adenosylmethionine (SAM), provides DNAmethyltransferases (DNMTs) with themethyl group
needed to generate 5mC. Ten-Eleven Translocation (TET) enzymes hydroxylate 5mC to form 5hmC, 5fC, and/or 5caC using Fe2+ and α-ketoglutarate
(αKG) as cofactors. Vitamin C (VitC) enhances TET function by recycling ferric (Fe3+) to ferrous (Fe2+) iron, while αKG is supplied by the tricarboxylic acid
(TCA) cycle. Vitamin A (VitA) can directly upregulate TET gene expression via retinoid receptor (RAR/RXR) signaling. Vitamin D (VitD) acts as a ligand for the
vitamin D receptor (VDR), which can also form a heterodimer with RXR, and both VitD or vitamin E (VitE) treatment have been shown to inhibit DNMT
expression to influence DNA methylation maintenance. Figure created with BioRender.com.
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Buscarlet et al., 2017; Ostrander et al., 2020), understanding the
connection between DNA methylation maintenance and
micronutrient availability may uncover liabilities associated with
diseases upon aging (Patel et al., 2023) and reveal novel metabolic
interventions that can be implemented to retain faithful DNA
methylation patterns and function for disease prevention
and longevity.

Micronutrient regulation of 5-
methylcytosine formation and
maintenance (pro-methylating
micronutrients)

The role of several B vitamins in the direct regulation of one-
carbon metabolism places these essential micronutrients as DNA
methylation guardians of the epigenome. One-carbon metabolism is
comprised of the folate and methionine cycles that coordinate both
pyrimidine synthesis and the generation of S-adenosylmethionine
(SAM), the sole methyl donor used by DNA methyltransferases to
generate 5mC in the genome. The coordinated regulation of
nucleotide synthesis and methylation by one-carbon metabolism
ensures that DNA replication is coupled with DNA methylation
inheritance (Ducker and Rabinowitz, 2017). A connection between
the folate cycle and DNAmethylation maintenance has been known
for decades. Nutritional vitamin B9 or B12 deficiencies during
gestation or polymorphisms in folate cycle enzymes of pregnant
women are associated with neural tube defects (NTDs) (Smithells
et al., 1976; Prevention of neural tube defects, 1991; Crider et al.,
2011). The process of neurulation in embryos requires increased
global methylation to promote neural tube fusion (Greene et al.,
2011), and NTDs potentially form due to the lack of silencing of
Notch1 and Sox2 (Alata Jimenez and Strobl-Mazzulla, 2022). Loss of
serine hydroxymethyltransferase 1 (SHMT1) activity, which utilizes
B6 as a cofactor, can impair neural tube closure (Beaudin et al., 2011;
Beaudin et al., 2012). Moreover, polymorphisms that decrease the
activity of methylenetetrahydrofolate reductase (MTHFR)
(Prevention of neural tube defects, 1991), which depends on
B2 as a cofactor, or methionine synthase (MS) that utilizes
B12 as a cofactor (Tong et al., 2009; Guéant et al., 2020), and
methionine synthase reductase that regenerates methylated
B12 levels from its oxidized form have all been associated with
NTDs (Botto and Yang, 2000; Imbard et al., 2013). One-carbon
metabolism inhibitors such as the anti-folate methotrexate (MTX)
that blocks the activity of dihydrofolate reductase (DHFR) promotes
DNA hypomethylation in embryonic tissues and leads to NTDs
(Greene et al., 2011; Wang X. et al., 2015). DNA methylation
generated by DNMTs is required for closure of the neural tube,
therefore as per one-carbon metabolic enzyme gene polymorphisms
and B vitamin deficiencies, disruption of DNA methylation caused
by Dnmt3b knockout, and DNMT or methylation cycle inhibitors
also result in NTDs (Okano et al., 1999; Afman et al., 2005; Dunlevy
et al., 2006).

The role of B vitamins in DNA methylation maintenance in
other diseases and cell types have also been described. Clinical
studies have shown that lower B9 intake leads to DNA
hypomethylation in colonic tissue (Pufulete et al., 2003) and an
increased risk of colorectal cancer (CRC) (Kim, 2007). A B9-

deficient diet in post-menopausal women also causes DNA
hypomethylation in lymphocytes (Jacob et al., 1998). Low dose
therapy with MTX used in the treatment of rheumatoid arthritis
demethylates the FOXP3 locus in developing regulatory T cells,
resulting in their enhanced differentiation and suppression of
inflammation (Cribbs et al., 2015; Rossetti et al., 2015).
Furthermore, higher global DNA methylation in leukocytes is
associated with decreased responsiveness to MTX in rheumatoid
arthritis patients (Gosselt et al., 2019), indicating the importance of
MTX’s hypomethylating activity.

Elevated levels of B9 or B12 supplementation are positively
correlated with increased DNA methylation through increased
methyl-donor availability. Combined B9 and
B12 supplementation leads to increased DNA methylation in
leukocytes (Kok DE. et al., 2015; Kok DEG. et al., 2015), and
B12 supplementation alone increases DNA methylation in
disease-free children (Yadav et al., 2018) and mouse models of
depression and meningitis (de Queiroz et al., 2020; Trautmann et al.,
2020). Supplementation with B9 increases sperm DNA methylation
levels in a mouse model of the MTHFR polymorphism, and
supplementation with B2 has also been shown to increase DNA
methylation in peripheral leukocytes of healthy individuals or
cardiovascular disease patients with an MTHFR polymorphism
(Amenyah et al., 2020; Amenyah et al., 2021). Amongst the
healthy population, there have been no reports of toxicity for
excess B vitamin consumption; however, given that one-carbon
metabolism promotes DNA methylation, caution may be
warranted for high B vitamin supplementation in disease states
driven by DNA hypermethylation phenotypes (Ehrlich, 2019).

Hydroxymethylation formation and
DNA methylation removal via
micronutrient mediated activation of
the TET enzymes (pro-
hydroxymethylation micronutrients)

Epigenetic plasticity, including the ability to remodel DNA
methylation patterns in the genome, is integral to maintaining
stem cell potency, lineage specification, and gene regulation in
response to changes in the environment. The TET enzymes
(TET1-3) are the only known mammalian DNA demethylases
that can trigger the passive or active removal of 5mC in the
genome (Tahiliani et al., 2009; Ito et al., 2010; He et al., 2011).
TET1 is most highly expressed in embryonic stem cells, primordial
germ cells, and neural tissues, whereas TET2 and TET3 are most
highly expressed in stem, progenitor, and other differentiated adult
cell populations (Lu et al., 2015a; Rasmussen and Helin, 2016; Wu
and Zhang, 2017; Lio et al., 2020).While the TET enzymes all exhibit
a conserved core C-terminal catalytic domain, they diverge in their
N-terminal structure, in which TET2 lacks the CXXC DNA-binding
motif found in TET1 and TET3 and therefore relies on protein-
binding partners for its recruitment to chromatin (Ko et al., 2013;
Rampal et al., 2014). TET activity is primarily associated with gene
activation, given the enrichment of 5hmC within enhancers and
gene bodies of actively expressed genes (Ficz et al., 2011; Rasmussen
and Helin, 2016). The role of TET activity is perceived to oppose the
gene silencing role of DNMTs; however, 5mC is an essential
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requirement for the generation of 5hmC and the iterative oxidized
products 5fC and 5caC, thus DNA methylation and
hydroxymethylation, as mediated by DNMTs and TETs, must
work together to form and remove cytosine methylation in the
DNA (Zhang et al., 2016; Gu et al., 2018; Lopez-Moyado et al., 2019;
Chao et al., 2022). In addition to the 5mC DNA substrate, TET
enzymes require Fe2+ and αKG as obligatory cofactors for their
catalytic activity (Tahiliani et al., 2009). Perturbations in Fe2+

homeostasis can influence TET activity, where iron sufficiency is
associated with increased TET activity and maintenance of 5hmC
formation in cord blood, hepatocytes, enterocytes, and splenocytes
(Jiang et al., 2021; Taeubert et al., 2022) whereas deficiencies in iron
lead to reduced activity in the cerebellum of rats evidenced by
decreased 5hmC levels and neurodevelopmental defects (Barks et al.,
2022). However, in settings of excess iron and iron overloading, in
which homeostatic responses may block cellular uptake of redox
active iron (Conrad et al., 1963), TET enzymatic activity can also
become impaired and promote pathogenic T cell expansion and
systemic lupus erythematosus pathogenesis (Gao et al., 2022). These
findings suggest that at a physiological level, the role of iron
homeostasis and the balance between iron stores or redox active
labile iron on TET activity requires further clarification.

Based on its role as a cofactor of αKG-dependent dioxygenases
(αKGDDs), vitamin C was tested as an enhancer of TET activity.
Acting as a targeted antioxidant, vitamin C can directly bind the
C-terminal catalytic domain of Tet enzymes, promoting the
reduction and recycling of Fe3+ to Fe2+ (Yin et al., 2013;
Cimmino et al., 2017). Vitamin C has been shown to increase
the levels of 5hmC, 5fC, and 5caC anywhere from 4 to 20-fold in
a variety of contexts, including ESCs, fibroblasts and leukemia cells,
within as little as 24 h (Wang et al., 2011; Minor et al., 2013; Yin
et al., 2013; Cimmino et al., 2017; Mingay et al., 2018; Brabson et al.,
2021). Increased 5hmC formation and DNA demethylation upon
vitamin C treatment leads to improved reprogramming efficiency
during iPSC formation, and enhanced pluripotency of ESC cultures
(Hore et al., 2016) by reducing methylation normally gained at CpG
islands (CGIs) of pluripotency genes during blastocyst to epiblast
transition (Blaschke et al., 2013; Hu et al., 2014). Tissue specific
studies of vitamin C treatment in lung, breast, bladder, and kidney
cultures have also reported similar increases in 5hmC generation
and DNA demethylation (Ge et al., 2018; Sant et al., 2018).

Interestingly, an algal homolog of the TET enzymes uses vitamin
C directly instead of αKG as the primary cofactor for the generation
of glucosyl-methylation marks in the genome to regulate
photosynthesis (Xue et al., 2019). Vitamin C is a structural
homolog of αKG, but unlike this TCA cycle intermediate, is an
essential micronutrient for humans and therefore imparts a
dependence for enhancing TET activity in the context of
nutritional availability (Myllyla et al., 1978; Majamaa et al., 1986;
Yin et al., 2013). One requirement for increased TET activity may be
in the regulation of immune responses. In regulatory T (Treg) cells,
vitamin C promotes DNA demethylation of a Foxp3 enhancer,
promoting Treg differentiation and immunosuppressive function
akin to the role of low-dose MTX in rheumatoid arthritis patients
(Yue et al., 2021; Suga et al., 2023). Vitamin C also drives oxidized
methylcytosine formation and DNA demethylation within the three
enhancers of the Prdm1 locus that are silenced in naive B cells but
require activation for plasma cell differentiation (Qi et al., 2020). The

effect of vitamin C on lymphocyte differentiation, including Tregs
and plasma cells, has been shown to be both Tet2 and
Tet3 dependent, which are the most highly expressed of the three
TET enzymes in hematopoietic cells (An et al., 2015; Brabson et al.,
2023). Furthermore, vitamin C increases Th1-type chemokines and
PD-L1 gene expression in a TET2-dependent manner resulting in
enhanced sensitivity to anti-PD-1/PD-L1 therapy (Xu et al., 2019).

Deficiencies in vitamin C mimic loss-of-function mutations in
TET2, which is the most frequently mutated of the TET enzymes in
cancer and primarily in blood cell malignancy causing impaired
DNA de-methylation. Aberrant DNA hypermethylation and/or
vitamin C deficiency have both been reported in patients with
hematological malignancies (Figueroa et al., 2010a; Figueroa
et al., 2010b). Oral supplementation with vitamin C can raise
plasma levels in patients with hematological malignancies,
leading to an overall increase in the 5hmC/5mC ratio in
circulating white blood cells (Gillberg et al., 2019) and a
reduction in the proportion of hypermethylated loci caused by
TET2 mutation (Taira et al., 2023). Normalization of low vitamin
C serum levels via supplementation in murine models also leads to a
restoration of 5hmC formation in hematopoietic cells that
suppresses Tet2-deficient leukemia progression (Agathocleous
et al., 2017). These studies provide proof of principle that
altering vitamin C supplementation can have a powerful
influence on the blood cell DNA methylome.

Recent studies have also implicated vitamin A as a regulator of
TET activity and DNA demethylation. Vitamin A comprises
multiple active metabolites termed retinoids that play an essential
role in growth, development, and differentiation (Gudas, 2013). The
active form of vitamin A, retinoic acid (RA), binds to retinoic acid
and retinoid X receptors (RAR/RXR) in the nucleus that, in
association with other transcriptional coactivators, localize to
retinoic acid responsive elements (RAREs) in target genes to
activate gene expression (Gudas, 2013; Hore et al., 2016; Coyle
et al., 2018). Thymidine DNA glycosylase (TDG) promotes DNA
demethylation by forming a complex with acetylated TET2 (Zhang
et al., 2017), and RAR/RXR activation upon RA-signaling has been
shown to recruit the histone acetyltransferase CBP, TET proteins,
and TDG to trigger oxidized methylcytosine formation and DNA
demethylation via BER at target gene loci (Leger et al., 2014; Hassan
et al., 2017; Hassan et al., 2020). RA-signaling in this manner can
initiate TET2-dependent DNA demethylation at the Hic1 locus,
which is often hypermethylated in human cancers, such as colon,
breast, and brain cancer (Hassan et al., 2020). RA-signaling in breast
cancer cells also induces a RARB-TET2 complex, targeted to the
promoters of genes involved in cellular differentiation, such asmiR-
200c (Wu et al., 2017). Defective RARB/TET2 signaling by loss of
TET2 and/or deficient miR-200c expression is correlated with RA-
resistant breast cancer cell growth and aggressiveness (Wu et al.,
2017). RA treatment of human embryonic carcinoma stem cells has
also described a TET2-dependent 5mC to 5hmC conversion in the
HOXA gene cluster (Bocker et al., 2012). These studies collectively
show that RAR, CBP, TET, and TDG enzymes play an
interconnected role in the initiation of gene expression in
response to RA-signaling. TET expression can also be directly
up-regulated by RA-signaling, and alone or in combination with
vitamin C, enhances 5hmC formation in ESCs (Hore et al., 2016). A
conserved RARE identified in the first intron of the TET2 locus
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suggests that expression could be mediated via direct RAR binding
(Hore et al., 2016). Thus, the ability to directly enhance TET
expression and increase the catalytic rate of TET activity via
combined treatment with vitamin A and vitamin C suggests that
these micronutrients work together to activate gene expression via
increased methylcytosine oxidation.

Indirect micronutrient regulation of
DNA methylation

Other essential micronutrients have been reported to play an
indirect role in the maintenance of DNA methylation via
modulation of chromatin states and the regulation of DNA
methyltransferase expression. Similar to RAR, the vitamin D
receptor (VDR) forms a heterodimer with RXR at vitamin D
responsive elements (VDREs) in the DNA (Doig et al., 2013;
Krstic et al., 2022; Mirza et al., 2022). The active form of vitamin
D, calcitriol [1,25(OH)2D3], when bound to VDR-RXR, triggers the
recruitment of co-activators, including steroid receptor and p300/
CBP (Fetahu et al., 2014). However, in the absence of its ligand,
VDR-RXR is bound by co-repressors such as NCOR1 and SMRT
that maintain repressive histone modifications at target loci (Doig
et al., 2013; Fetahu et al., 2014). Vitamin D signaling may promote

DNA hypomethylation via the downregulated expression of
DNMT1 and DNMT3B (Jiao et al., 2019; Lai et al., 2020) in this
matter. Likewise, vitamin E can influence the expression of DNMT1;
both a decreased expression in liver cells and an increased level in
colon cells have been reported (Remely et al., 2017; Zappe et al.,
2018). Prostate cancer models treated with vitamin E exhibit
decreased DNMT protein expression and reduced CpG
methylation at target loci of genes involved in cellular redox
homeostasis such as the Nrf2 promoter (Huang et al., 2012a). As
oxidative stress is often correlated with increased global levels of
5mC (Garcia-Guede et al., 2020; Goncalves et al., 2021), it is possible
that vitamin E can reduce DNA methylation indirectly due to its
antioxidant activity (Ryan et al., 2010; Zappe et al., 2018).

Discussion and future directions

The balance of essential micronutrient intake and bioavailability
has the potential to significantly alter DNA methylation and
hydroxymethylation levels in the body (Figure 2). Research using
datasets comprising thousands of samples to track alterations in
DNA methylation associated with cellular development,
differentiation, aging, and disease progression has led to the
identification of DNA methylation biomarkers and epigenetic

FIGURE 2
Influence of essential dietary micronutrients on DNA methylation or hydroxymethylation and biological outcome. Summary of biological effects of
known micronutrient regulators of DNA methylation and hydroxymethylation. Vitamin A, typically sourced from foods such as carrots, leafy greens, and
fish, is essential for development and reproduction, and stimulates TET activity leading to increased 5hmC formation andDNA demethylation. The various
B vitamins play a coordinated role in energy production and one-carbon metabolism, are enriched in animal-derived foods, and higher intake can
increase SAM production that facilitates DNMT activity and 5mC formation. Vitamin C, a major cellular antioxidant enriched in fruits and vegetables, acts
as a cofactor for TET enzymes, driving 5hmC formation and DNA demethylation. Vitamin D is sourced from exposure to sunlight and is enriched in dairy
products, whereas vitamin E, sourced from oils and nuts, protects against oxidative stress. Both Vitamin D and E have been shown to inhibit DNMT
expression, although the effect on global methylation and hydroxymethylation varies based on cellular context and themechanism remains unclear. Iron,
a tracemetal found in legumes, lean meat, and shellfish, is a direct cofactor for TET enzymes and increased supplementation facilitates 5hmC formation.
*Studies that quantified micronutrient influence on 5hmC, 5fC, and 5caC levels. Figure created with BioRender.com.
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clocks that accurately estimate chronological age (Hannum et al.,
2013; Horvath, 2013; Horvath and Raj, 2018), healthspan and
lifespan (Levine et al., 2018; Lu et al., 2019; Lu et al., 2022), or
the pace of aging (Belsky et al., 2022) in both humans and animal
models. These same DNA methylation signatures are also being
used to investigate the impact of lifestyle factors such as diet and
nutritional status on disease risk and aging (Quach et al., 2017; Lu
et al., 2019; Fitzgerald et al., 2021) that may reveal potential
therapeutic interventions to slow aging phenotypes and age-
related diseases, including cancer. Plant-based, Mediterranean,
and methylation-supportive diets can rejuvenate DNA
methylation aging signatures, decreasing chronological age
predictions by 1–10 years in as little as 8 weeks of intervention
(Gensous et al., 2020; Dwaraka et al., 2023; Fitzgerald et al., 2023).
One study (Dwaraka et al., 2023) using blood samples from paired
twins reported that a vegan diet compared to an omnivorous diet led
to a significant decrease in overall epigenetic age acceleration
measured using multiple DNA methylation biomarkers (Levine
et al., 2018; Lu et al., 2019; Belsky et al., 2022; Lu et al., 2022)
that correlated with fewer hypermethylated loci in the vegan diet,
consistent with the notion that vegan diets contribute to a reduced
intake and lower serum levels of B12 (Gilsing et al., 2010; Niklewicz
et al., 2023) and methionine (McCarty et al., 2009; Sanderson et al.,
2019; Allen and Locasale, 2021), two of the major regulators of
methyl-donor (SAM) levels. However, no controlled studies have
attempted to address how supplementation with specific
micronutrients associates with epigenetic clocks and DNA
methylation biomarkers of aging or disease.

An important caveat to consider when interpreting
micronutrient influences on DNA methylation status using
existing biomarkers is that the gold standard for measuring
global DNA methylation in research and clinical diagnostics has
historically relied on CpG hybridization array platforms using
bisulfite-treated DNA. Unmethylated cytosines, 5fC, and 5caC,
are converted to uracil upon bisulfite treatment, while both 5mC
and 5hmC remain protected and measured as cytosine, rendering
their contribution to DNA methylation signatures indistinguishable
(Huang et al., 2010). DNA immunoprecipitation and base-
resolution mapping of 5hmC, 5fC and 5caC in the mammalian
genome have shown that most reside in a CpG context, enriched
within gene bodies, low density CpG regions (CpG island shores),
and at distal regulatory elements such as enhancers, where 5mC and
5hmC can be present in nearly equal representation (Williams et al.,

2011; Wu et al., 2011; Huang et al., 2012b; Yu et al., 2012; Lu et al.,
2015b; Xia et al., 2015). While the contribution of 5hmC, or the rarer
modifications 5fC and 5caC, to the major DNA methylation
biomarkers currently remains unknown, recent advances in base
resolution mapping using alternate chemical and enzymatic
conversion strategies (Huang et al., 2010; Booth et al., 2013;
Schutsky et al., 2018) [reviewed in (Berney and McGouran,
2018)] should allow the contribution of nutritional interventions
and micronutrient levels on DNMT vs. TET-mediated DNA
methylation maintenance, epigenetic clocks, and other predictive
disease biomarkers to be determined.
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