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Differences between physical
therapist ratings, self-ratings, and
posturographic measures when
assessing static balance
exercise intensity
Jamie Ferris1, Jonathan Zwier1, Wendy J. Carender2 and
Kathleen H. Sienko1*
1Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States, 2Michigan
Balance Vestibular Testing and Rehabilitation, Department of Otolaryngology, Michigan Medicine, Ann
Arbor, MI, United States

Introduction: In order for balance therapy to be successful, the training must
occur at the appropriate dosage. However, physical therapist (PT) visual
evaluation, the current standard of care for intensity assessment, is not always
effective during telerehabilitation. Alternative balance exercise intensity
assessment methods have not previously been compared to expert PT
evaluations. The aim of this study was therefore to assess the relationship
between PT participant ratings of standing balance exercise intensity and
balance participant self-ratings or quantitative posturographic measures.
Methods: Ten balance participants with age or vestibular disorder-related balance
concerns completed a total of 450 standing balance exercises (three trials each of
150 exercises) while wearing an inertial measurement unit on their lower back.
They provided per-trial and per-exercise self-ratings of balance intensity on a
scale from 1 (steady) to 5 (loss of balance). Eight PT participants reviewed video
recordings and provided a total of 1,935 per-trial and 645 per-exercise balance
intensity expert ratings.
Results: PT ratings were of good inter-rater reliability and significantly correlated
with exercise difficulty, supporting the use of this intensity scale. Per-trial and per-
exercise PT ratings were significantly correlated with both self-ratings (r = 0.77–
0.79) and kinematic data (r = 0.35–0.74). However, the self-ratings were
significantly lower than the PT ratings (difference of 0.314–0.385). Resulting
predictions from self-ratings or kinematic data agreed with PT ratings
approximately 43.0–52.4% of the time, and agreement was highest for ratings of a 5.
Discussion: These preliminary findings suggested that self-ratings best indicated two
intensity levels (i.e., higher/lower) and sway kinematics were most reliable at intensity
extremes.
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1. Introduction

Balance ability deteriorates with age (1–3), leading to increased fall risk and fall prevalence

in healthy older adults (4). Balance can also be impaired by the presence of sensory or

neurologic disorders such as peripheral sensory loss (5, 6), vestibular disorder (6–8), multiple

sclerosis (9–11), cerebrovascular accident (12), traumatic brain injury (13, 14), and

Parkinson’s disease (15, 16). Low balance confidence and fear of falling are associated with
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increased fall risk (17, 18), anxiety (19–21), depression (19, 20), and

institutionalization (21, 22), and with decreased activity (3, 19, 23),

social participation (23, 24), and quality of life (19, 23).

Balance training, which is traditionally performed in a clinical

setting with the instruction of a physical therapist (PT), can

improve balance ability when it occurs at the appropriate dosage

such that the training is at or near the limits of an individual’s

ability (25–27). Dosage has been described as the combination of

frequency, intensity, time, and type (FITT) where frequency refers

to the regularity of training sessions, intensity refers to “the degree

of challenge to the balance control system relative to the capacity of

the individual to maintain balance” (28), time refers to the duration

of each exercise and of the session, and type refers to the exercise

itself (29–31). While frequency, time, and type are easily quantified

(29, 31), intensity depends on both the difficulty of the exercise and

the balancing ability of the individual, reflecting how challenging an

exercise is for a particular individual at a specific time; it is

therefore more difficult to assess (29–31). Unlike aerobic (e.g.,

percent of maximum heart rate) or resistance (e.g., percent of the

1-repetition maximum) exercise intensity (32), there is no standard

assessment for balance exercise intensity. Most PTs visually observe

the patient, employing their expert assessment to qualitatively

adjust task intensity (33, 34). However, visual expert assessment is

more difficult during increasingly common telerehabilitation or

home-based training during which a PT is not physically present.

Telerehabilitation has grown in popularity as a solution to both

misdistribution of physical therapy services (35, 36) and public

health concerns such as those posed by COVID-19 (37–40).

Access to traditional physical therapy services is increasingly

limited. It is predicted that by 2030, the United States alone will

have a shortage of 140,000 PTs, resulting in the majority of

patients having difficulty accessing necessary physical therapy

services (41–43). Moreover, PTs are less available in low-income

countries (35, 44, 45), where the majority of people with

disabilities live (35). Availability of physical therapy is also lower

in rural settings (35, 36, 44), where chronic conditions amenable

to physical therapy are prevalent (36). In other countries such as

Singapore, PTs are concentrated in acute-care facilities, leading to

lesser availability in post-acute care sites (44).

While telerehabilitation may improve access to care, only 29%

of PTs in a 2022 vestibular rehabilitation study expressed that

telerehabilitation was as effective as in-person care (37); 92% of

PTs in the same study reported that technology limitations

affected their ability to view patients’ bodies remotely. PTs have

also reported that inappropriate lighting and patient positioning

with respect to the camera can negatively affect clinical decision

making (37, 46). Relatedly, patients have reported a lack of

appropriate technology including computers with cameras (39),

making visual assessment impossible in some cases.

In addition to telerehabilitation, home exercise programs may

complement existing affordable physical therapy options available

to patients, which have been limited in their duration. For

example, until recently, public insurance for older adults in the

United States (i.e., Medicare) covered only approximately 14–16

outpatient physical therapy visits [44]. In Singapore, only select

follow-up rehabilitation services can be paid for with compulsory
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medical savings. And in Bangladesh, public funding for physical

therapy is limited (44). As employment rates are lower for people

with disabilities, extended physical therapy care is often

financially inaccessible (35, 44). However, training without a

professional’s guidance has been shown to be less effective than

supervised training (47, 48).

In contexts where visual assessment of balance task intensity is

difficult such as telerehabilitation and home-based training, PTs

may time exercises, employ quantitative posturography, or ask

for patient self-assessments (38). Timing standing balance

exercises may reflect the intensity of a task, but additional

performance aspects such as arm movements or trunk sway may

be of importance, and there may be a ceiling effect if task

duration is limited (e.g., 30 s) (49).

Quantitative posturography, which is possible with inertial

measurement units (IMUs) found in ubiquitous technology such

as smart phones, can measure an individual’s center of mass

during standing balance and may therefore be indicative of task

intensity (50–55). Alsubaie et al. compared kinematic measures

to adults’ self-ratings of intensity using 5 and 10-point scales,

finding correlations of >0.6 in healthy adults and older adults

(53) and >0.5 in adults with vestibular disorders (56) completing

static standing balance exercises (i.e., exercises with the feet in

place and a goal of maintaining quiet posture) (57). However,

the relationships between the kinematic measures and self-ratings

with PT (expert) assessments were not evaluated.

Self-report measures of intensity are analogous to the Borg Rating

of Perceived Exertion for aerobic exercise (58) or the OMNIResistance

Exertion Scale for resistance exercise (59, 60). Espy et al. proposed a

10-point self-rating scale modeled after the Rate of Perceived

Exertion and found that self-ratings of intensity are independent of

heart rate in adults playing Wii games, supporting that the scale

measured intensity beyond solely aerobic exertion (31). Shenoy et al.

examined the same scale in people post-stroke and reported good

test-retest reliability, good-to-excellent correlation with self-ratings

of perceived challenge, and good-to-excellent correlation with

clinical balance test scores (61). Farlie et al. proposed both

13-element and 5-point self-rating scales (28), reporting strong

correlation (r = 0.70) between the scales in older adults completing

standing balance tasks. However, they also reported that the 5-point

scale was of poor person reliability and unable to statistically detect

differences in intensity (62). While these studies suggest that self-

assessments hold promise as measures of balance task intensity, it is

important to understand the relationship between self-report

measures and PT expert assessments as the current standard of care.

Farlie et al. reported a strong correlation (r = 0.70) between self-rater

and PT 5-point ratings of intensity, but they did not further

comment on the differences (62). The relationship between self-

rater and PT assessments of intensity is still poorly understood.

While quantitative posturography and self-assessment have

both shown promise as methods for remote assessment of

balance task intensity, few comparisons have been made to

conventional visual assessment by expert PTs. This study

therefore aimed to further assess the differences between PT

expert assessments of balance intensity and self-assessments and

kinematic measures.
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2. Materials and methods

In this study on balance exercise intensity assessment, PT

participant intensity ratings (i.e., PT ratings) were compared to

balance participant intensity self-ratings (i.e., self-ratings) and

kinematic measures.
2.1. Participants

Two types of participants completed this study: balance

participants with age or vestibular disorder-related balance

concerns and PT participants. Balance participants completed

standing balance exercises while wearing an IMU, and they

provided self-ratings of balance intensity. PT participants

reviewed video recordings of the balance participants and

provided ratings of balance intensity. 450 balance exercise

trials were completed by 10 adult balance participants. Six

older adult balance participants (2 F, 4 M, 69.0 ± 3.6 years)

self-reported to be generally healthy with no muscular or

neurological disorders, and four balance participants (2 F, 2

M, 61.7 ± 25.6 years) self-reported vestibular dysfunction. In

addition, 1,935 intensity ratings were provided by eight PT

participants who specialized in the treatment of balance

disorders (16 ± 10 years of experience). The number of

participants and resulting quantity of data is consistent with

a number of related previously published studies (63–66).

The study was approved by a University of Michigan

Institutional Review Board (HUM00086479), and all

participants gave written informed consent in accordance

with the Helsinki Declaration.
2.2. Intensity rating scales

Both PT and balance participants were provided a 5-point

intensity rating scale [see Table 1; also reported by Bao et al.,

Bao et al., and Kamran et al. (50–52)]. The scale was informed

by a scale developed by Espy et al. (31). Different descriptors

were provided to PT and balance participants with the intent of
TABLE 1 The 1–5 balance intensity scale provided to PT and balance
participants.

Rating Descriptions for
Balance Participants

Descriptions for PT
Participants

1 I feel completely steady Independent with no sway

2 I feel a little unsteady or off-
balance

Supervision with minimal sway

3 I feel somewhat unsteady, or
like I may lose my balance

Close supervision with moderate sway

4 I feel very unsteady, or like I
definitely will lose my balance

Requires physical assistance or positive
stepping strategy after 15 s

5 I lost my balance Unable to maintain position with
assist or step out in the first 15 s of the
exercise
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capturing similar performance aspects while using familiar

terminology.
2.3. Procedures

2.3.1. Completion of balance exercises
Each balance participant completed 15 static standing balance

exercises during which the participant was asked to maintain their

feet in place and maintain a quiet posture. The exercises were

selected from 54 possible options resulting from variations in

surface (firm, foam), stance (feet apart, feet together, partial

heel to toe, heel to toe, single leg stance), visual input (eyes

open, eyes closed), and head movement (none, pitch, yaw) (57).

Six exercises were excluded due to excessive difficulty for the

study population (e.g., combinations of a single leg stance, eyes

closed, and yaw or pitch head movements; combinations of a

single leg stance and a foam surface). The exercises were

selected so that each participant performed exercises spanning

the intensity scale (i.e., from 1 to 5). Three 30-second trials

were completed for each exercise resulting in a total of 45 total

trials per balance participant. Because the active exercise

duration (15 exercises × 3 trials × 30 s = 22 min 30 s) was less

than the optimal duration of a balance training session (31–

45 min), fatigue was expected to be minimal (25).

For the duration of testing, the balance participant wore a

single six-degree-of-freedom IMU (MTx, XSens Inc, Eschende,

Netherlands) on an elastic belt approximately positioned over

the L4/L5 vertebrae level dorsal to the spine. IMU data were

collected at 100 Hz using custom software, and the trunk sway

angles were extracted using XSens’ proprietary sensor fusion

algorithm. Balance participants also wore an overhead harness

positioned to provide no support unless the balance

participant experienced a loss of balance, and they were

provided a handrail for additional safety. They were instructed

to touch the handrail, step out of position, or rely on the

harness only when needed, continuing the trial after use of

these additional supports. After each trial, the balance

participant provided a per-trial self-rating of intensity.

Additionally, after each exercise (i.e., collection of three trials),

the balance participant provided a per-exercise self-rating of

the overall intensity of that exercise.

2.3.2. Evaluation by physical therapist participants
All trials were video recorded from three angles such that the

coronal plane, the sagittal plane, and the plane midway between

the coronal and sagittal plane were visible. PT participants

viewed de-identified videos showing the balance participant from

all three angles of each trial once (see Figure 1) and provided

per-trial intensity ratings via an electronic PDF form.

Additionally, after viewing the videos for all three trials, they

rated the overall intensity for that specific exercise. A PT

participant rated all 45 trials from each balance participant for

whom they were a rater, and each balance participant’s videos

were rated by 3–5 randomly selected PT participants. Trial order

was not randomized so that the assessments could more closely
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FIGURE 1

Layout of the video viewed by the PT participants. The video showed the coronal plane (left), sagittal plane (right), and the plane midway between the
coronal and sagittal plane (center).
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reflect clinical practice in which patients often repeat multiple

repetitions of the same exercises one after the other.

Twenty one per-trial PT ratings were excluded due to missing

data. Consequently, 450 per-trial and 150 per-exercise self-ratings

and 1,935 per-trial and 645 per-exercise PT ratings were analyzed.
FIGURE 2

An overview of the analysis components. After assessing the PT ratings, these

Frontiers in Rehabilitation Sciences 04
2.4. Data analysis

MATLAB (R2021b, Mathworks, Natick, MA) was used to

process and analyze the data according to the plan summarized

in Figure 2. The ordinal rating data were treated as continuous
ratings were then compared to self-ratings or kinematic measures.
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throughout without impact on the statistical results, as is supported

by recent literature (67–71).
2.4.1. Evaluation of physical therapist participant
intensity ratings

Because to our knowledge only one prior study examined

PT ratings and reported limited separation (62), we first

examined inter-rater reliability and the relationship between

ratings and task difficulty. High inter-rater reliability was a

prerequisite for further analysis due to its association with

scale validity, study replicability, and the accuracy of

alternative assessments. Reliability is an indicator of a

scale’s internal structure and as such, is a prerequisite to

the scale’s validity (72, 73). Low inter-rater reliability may

also obfuscate true variation and therefore negatively affect

replicability (74–76). Low inter-rater reliability would also

impose a ceiling on the accuracy of alternative assessment

methods (e.g., self-assessments or kinematic measures)

because the alternative assessment could at best agree with

only the majority PT rating. Similarly, weak correlation

between the PT intensity ratings and task difficulty

would suggest that the ratings scale may not be

capturing intensity and may accidentally be capturing a

different construct.

The effect of increasing exercise difficulty on PT ratings was

evaluated by regressing the ratings against four dimensions of

exercise difficulty: surface (coded 1: firm, 2: foam), stance

(coded 1: feet apart, 2: feet together, 3: partial heel to toe, 4:

heel to toe, 5: single leg), visual input (coded 1: eyes open, 2:

eyes closed), and head movements (coded 1: no movements, 2:

pitch or yaw movements). These dimensions and their relative

difficulties were based on information from Klatt et al. (57).

The regression was performed using a linear mixed model in

which intensity rating was the outcome, one dimension of

exercise difficulty was a fixed effect, and the specific balance

participant and PT participant were random effects (rating =

intercept + dimension of exercise difficulty + balance participant

+ PT participant + error) (53).

Additionally, the inter-rater reliability of the per-trial PT

ratings was evaluated as ICC(2,1) via a linear mixed effects

model that decomposed the variance. Fixed effects included the

intercept and trial number (i.e., 1, 2, or 3), and random effects

included all possible interactions between trial number, exercise,

balance participant, and PT participant. The intraclass

correlation coefficient (ICC) of the PT per-trial ratings was then

calculated by dividing the variance of the subset of random

effects that included the rater by the variance from all sources

(77, 78). The inter-rater reliability of the PT per-exercise ratings

was calculated using the same approach without the inclusion

of random effects associated with trial number (since no trial

number was associated with the exercise as a whole). ICCs less

than 0.5 indicated poor reliability, ICCs between 0.5 to 0.75

indicated moderate reliability, ICCs between 0.75 to 0.9

indicated good reliability, and ICCs greater than 0.9 indicated

excellent reliability (78).
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2.4.2. Comparison of balance participant intensity
self-ratings to physical therapist intensity ratings

The overall strength of the relationship between the per-

exercise PT and self-ratings was quantified by the Spearman

correlation coefficient. The systematic and random differences

between the PT and self-ratings were then assessed by examining

a contingency table of the two rating modes and quantified by

the average and variance of the per-trial rating differences. The

structure of these differences was further explored by using a

paired t-test to compare the sample variances among the three

per-trial PT ratings and the three per-trial self-ratings.

The overall effects of these differences were assessed by

calculating how frequently a PT participant’s rating could be

accurately predicted given the self-rating, i.e., the accuracy when

using self-ratings to predict per-trial and per-exercise PT ratings.

The predictions were made using a linear model of the per-trial

or per-exercise self-ratings.

2.4.3. Comparison of kinematic measures to
physical therapist intensity ratings

Correlations between trunk kinematics and PT ratings were

assessed by first calculating kinematic features and then

conducting correlation tests.

Prior to feature calculation, the IMU angular position data were

filtered using a second order Butterworth filter with a 3 Hz cutoff

frequency (53). Kinematic features were then calculated including:

root mean square (RMS) of the angular position (Phi RMS,

degrees; Phi_Angle2 = AP_Angle2 +ML_Angle2 = Pitch2 + Roll2),

RMS in the anterior-posterior (AP) direction (AP RMS, degrees;

i.e., Pitch), RMS in the medial-lateral (ML) direction (ML RMS,

degrees; i.e., Roll), mean sway velocity (MV, degrees/s), path

length as computed by the sum of the magnitude of the

differences between roll and pitch sway data points (degrees), and

area of a 95th percentile confidence interval elliptical fit to the roll

and pitch sway data (i.e., elliptical area; EA; degrees2) (26, 79).

Smaller RMS and EA values have been associated with better

balance performance (80–83), while reports of the relationship

between MV and balance performance are mixed (81, 83, 84). As

suggested by Alsubaie et al. and Schieppati et al., the logarithm of

each of these kinematic features were also considered (53, 85).

The strength of the relationship between each kinematic feature

and the PT ratings was then evaluated using correlation as

calculated using a linear model with rating as the outcome

variable, kinematic feature as a fixed effect, and balance

participant as a random effect (rating = intercept + feature +

balance participant + error) (53). The marginal correlation was

calculated as (86):

R2 ¼ s2
f

s2
f þ s2

a þ s2
1

(1)

s2
f ¼ var(bx) (2)

Where s2
f is the marginal variance calculated from the

multiplication of the feature coefficient b and the feature x, s2
a
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is the variance of the balance participant random effect, and s2
1 is

the error variance.

The overall effects of these various correlations were assessed

by calculating how frequently a PT participant’s rating could be

accurately predicted given the sway kinematics, i.e., the accuracy

when per-trial or per-exercise PT ratings were predicted using a

linear combination of all kinematic features from the trial or all

three trials, respectively.

Finally, the overall strength of the relationship between sway

kinematic measures and intensity ratings was assessed using the

Spearman correlation between the kinematics-predicted and per-

trial or per-exercise PT ratings.
3. Results

3.1. Evaluation of physical therapist
participant intensity ratings

The per-trial and per-exercise PT ratings were both of good

inter rater reliability (per-trial: ICC = 0.868, per-exercise: ICC =

0.860). Additionally, increases in exercise difficulty were

significantly correlated with increases in per-trial and per-

exercise PT ratings (see Table 2).
3.2. Comparison of balance participant
intensity self-ratings to physical therapist
intensity ratings

The per-exercise self-ratings were significantly correlated with

the PT ratings [r = 0.769, 95% CI = (0.735, 0.799), p≤ 0.001].

As shown in Figure 3, self-ratings agreed with PT ratings most

often for ratings of a 5 (per-trial and per-exercise self-ratings of a 5

agreed with PT ratings 74.8% and 77.5% of the time, respectively).

Self-ratings of a 4 also most often corresponded to a PT rating of a

5 (per-trial: 63.0%, per-exercise: 47.5% for self-ratings of a 4) while

self-ratings of a 3 corresponded to various PT ratings, and self-

ratings of a 2 or 1 most often corresponded to PT ratings

between 1 and 3.

However, the per-trial and per-exercise self-ratings were lower

than the PT ratings [absolute per-trial rating difference: 0.385, per-

exercise: 0.314, 95% CI = (0.048, 0.581), p = 0.021]. Additionally,

the standard deviations of the difference in per-trial or per-

exercise ratings were 0.920 and 0.961 [0.910, 1.015], respectively.
TABLE 2 Linear relationship between per-trial and per-exercise PT ratings
and aspects of exercise difficulty. * denotes significance (p < 0.05).

Exercise
Aspect

Per-Trial Intensity Ratings Per-Exercise Intensity Ratings

Estimate [95% CI] p-Value Estimate [95% CI] p-Value

Surface 0.366 [0.241, 0.492] ≤0.001* 0.354 [0.137, 0.571] ≤0.001*

Stance 0.607 [0.561, 0.653] ≤0.001* 0.606 [0.526, 0.686] ≤0.001*

Visual Input 0.584 [0.455, 0.713] ≤0.001* 0.631 [0.409, 0.853] ≤0.001*

Head
Movements

−0.337 [−0.465, −0.210] ≤0.001* −0.300 [−0.520, −0.081] 0.007*
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Self-ratings exhibited a smaller variance between trials of the

same exercise than the PT ratings did [0.102, 95% CI = (0.049,

0.154), p < 0.001].

As a result, when using self-ratings to linearly predict per-trial

or per-exercise PT ratings, the accuracies were 46.6% and 45.9%,

respectively.
3.3. Comparison of kinematic measures to
physical therapist intensity ratings

The kinematic features were significantly correlated with PT

ratings (see Table 3). When using all kinematic features together

to predict PT ratings, the resulting predictions were significantly

correlated with per-trial or per-exercise PT ratings (per-trial:

r = 0.698, 95% CI = [0.675, 0.721], p≤ 0.001; per-exercise:

r = 0.826, 95% CI = [0.799, 0.850], p≤ 0.001) and agreed with the

PT ratings 43.0% and 52.4% of the time, respectively. As shown

in Figure 4, kinematics-predicted per-exercise ratings agreed with

PT ratings most often for ratings of a 5 (kinematics-predicted

ratings of a 5 agreed with PT ratings 92.7% of the time).

Kinematics-predicted per-exercise ratings of a 4 also most often

corresponded to a PT rating of a 5 (42.0% for kinematics-predicted

ratings of a 4) but also often corresponded to a 4 (39.1% for

kinematics-predicted ratings of a 4). Kinematics-predicted ratings

of a 3 corresponded to various PT ratings, and self-ratings of a 2

or 1 most often corresponded to PT ratings of a 2 or 1.
4. Discussion

4.1. Evaluation of physical therapist
participant intensity ratings

The per-trial and per-exercise PT ratings were of good inter-

rater reliability, supporting that the study results may be

replicable and that it would be possible for the alternative

assessments to accurately predict PT ratings. Higher ratings

were also associated with higher exercise difficulty along three

out of four dimensions (57) when accounting for differing

individual balance participant, suggesting that the ratings do

reflect task intensity. While higher ratings were not associated

with more difficult head movement conditions, this could be

due to the majority of balance participants having no

vestibular dysfunction and consequently being less affected by

head movement. Similarly, Alsubaie et al. and Anson et al.

reported significant associations between balance exercise

difficulty and self-ratings of exercise intensity or postural

stability (5, 53).

However, it is important to note that while the descriptors for

PT ratings 1, 2, and 3 referenced amount of sway, prior research

has reported variable sway results for people with balance

impairments (e.g., sometimes increased sway, sometimes

decreased sway) (87–90). Increased sway may be interpreted as

poorer control over the body’s position while decreased sway

may reflect an adaptive strategy in which people stiffen in order
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FIGURE 3

Contingency tables for the counts of PT ratings and (A) per-trial or (B) per-exercise self-ratings.

FIGURE 4

Contingency tables for the counts of PT ratings and (A) per-trial or (B) per-exercise kinematics-predicted ratings.

TABLE 3 Correlation coefficients between kinematic features and per-trial
PT ratings. RMS denotes root mean square, and MV denotes mean
velocity. * denotes significance (p < 0.05).

Kinematic Feature No Transform Log Transform

R p-Value R p-Value
Phi RMS 0.588 ≤0.001* 0.724 ≤0.001*
AP RMS 0.482 ≤0.001* 0.622 ≤0.001*
ML RMS 0.657 ≤0.001* 0.735 ≤0.001*
Phi MV 0.609 ≤0.001* 0.728 ≤0.001*
AP MV 0.548 ≤0.001* 0.664 ≤0.001*
ML MV 0.618 ≤0.001* 0.739 ≤0.001*
Path Length 0.651 ≤0.001* 0.731 ≤0.001*
Elliptical Area 0.349 ≤0.001* 0.736 ≤0.001*
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to simplify the balance task by reducing the degrees of freedom of

movement (91). As a result, future work may investigate alternative

scale descriptors.
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4.2. Comparison of balance participant
intensity self-ratings to physical therapist
intensity ratings

While the self-ratings were strongly correlated with the PT

ratings, the self-ratings were an imperfect approximation of PT

ratings. As has been described by the Dunning-Kruger effect and

reported in other contexts (92–94), balance participants

overestimated the quality of their performance, self-rating the

exercise as less intense than the ratings provided by the PT

participants. Accounting for this offset may therefore improve

the agreement between PT and self-ratings. However, the

significant standard deviation in the rating difference suggests

that a simple adjustment is inadequate when using self-ratings as

a support to PT assessment. The standard deviation in rating

difference may partially be driven by the lower variation in self-

ratings between the three trials of an exercise compared to the
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PT’s ratings. This may reflect differences in rating strategy such as

the balance participants more heavily considering their

performance of prior trials when rating the current trial. The

variation in rating difference may also be due to differences in

participants’ determinations of what constituted a loss of balance,

imperfect observations of the performance (e.g., a PT participant

not seeing or a balancer participant not noticing movement of

the feet), imperfect recollection of the performance when

providing the rating, or accidental misuse of the scale (e.g.,

selection of a 1 when intending to select a 5). These factors likely

played some role as is reflected in imperfect agreement for

ratings of 4 or 5 and occasional confusion between ratings of 1

and 5 (see Figure 3).

As a result of these differences, predicted PT ratings based on self-

ratings exhibited moderately low accuracy. The common confusion

between ratings of a 4 or a 5 as well as between ratings of a 1 or a 2

and the overall ambiguity for ratings of a 3 might suggest that

balance participants are better able to distinguish between two levels

of balance intensity (e.g., higher-lower). The confusion between

ratings of 1, 2, or 3 may also reflect the aforementioned scale

limitation in which the PT’s descriptors reference sway, which may

indicate either good or poor balance. As a result of these issues, if

using self-ratings to support intensity assessment during telehealth

or other contexts in which traditional PT assessment might be

difficult, self-ratings might be used to suggest higher or lower

intensity but may not suggest more granular levels of intensity.
4.3. Comparison of kinematic measures to
physical therapist intensity ratings

The kinematics-predicted intensity ratings were also imperfect

yet informative approximations of PT ratings, as reflected by strong

correlations, but moderately low prediction accuracies. The

correlations between kinematic features and per-trial PT ratings

were higher in the ML direction than in either AP or Phi

directions, suggesting that, on average, PT participants based their

evaluation of balance intensity more heavily upon movement in the

ML direction. Similar correlation values as well as higher

correlations in the ML direction were also reported by Alsubaie

et al. in two investigations of intensity self-ratings (R between 0.56

and 0.88) (53, 56). The correlation coefficients were slightly higher

when using the logarithm of the kinematic feature compared to the

untransformed values, especially so for EA. Higher correlation

between ratings and the logarithm of a kinematic feature than with

the original measure were also reported by Alsubaie et al. regarding

intensity self-ratings and by Scieppati et al. and Anson et al.

regarding postural stability self-ratings (5, 53, 85).

Agreement between kinematics-predicted intensity ratings and

PT ratings was higher than for self-ratings, resulting in especially

high rates of agreement for kinematics-predicted ratings of a 5. If

using kinematics to support PT assessments during telehealth or

other applications, kinematics may be more heavily considered

during high-intensity exercises with ratings near a 5 or for low-

intensity exercises with ratings of a 1 or 2.
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In this first and necessary study on the differences between

alternative modes of balance intensity assessment, both self-

ratings and sway kinematics were shown to have the potential to

support PT assessment of balance exercise intensity when expert

visual assessment is difficult or limited, with sway kinematics

being more accurate than self-ratings. Intensity assessments

might be used in conjunction with frameworks for exercise

progression such as the one proposed by Klatt et al. so that

balance training can be remotely assessed and progressed over

time (57). However, the results from this study suggest that self-

ratings and conventional trunk kinematic measures cannot fully

replicate or substitute for PT assessments. Based on our findings,

PTs might employ self-ratings and/or sway kinematic measures

to supplement their partial visual assessments during

telerehabilitation or home-based training. If doing so, our

preliminary results suggest that the PT should consider self-

ratings as indications of high versus low intensity rather than five

levels, and kinematic measurements should be more heavily

considered during exercises at intensity extremes (e.g., very high

or very low). Combining self-ratings of intensity with kinematic

measures as well as employing more complex techniques may

also lead to more accurate predictions, as reported by Bao et al.

and Kamran et al. (50, 51). Further exploration of related

machine learning architectures and expanded datasets might

further improve the prediction accuracy.

Limitations of this study included the performance of a subset

of balance exercises (i.e., static standing) and a subset of balance

participants that would benefit from balance training (i.e., older

adults and adults with vestibular disorders). Future work could

include the exploration of alternate scale descriptors without

reference to amount of sway, evaluation of additional balance-

related pathologies and balance exercises, evaluation of the effects

of PT experience level, analysis of full-body kinematics, and the

use of data science methodologies such as machine learning

approaches to capture additional trends in the kinematic data.
5. Summary

This study examined the relationship between PT intensity

ratings, self-assessments, and kinematic measures. Both self-ratings

and trunk kinematic features correlated significantly with PT

ratings of intensity. Based on the findings from this study, self-

ratings may better distinguish between two levels of intensity (i.e.,

higher-lower) than five levels of intensity. Furthermore,

kinematics-predicted intensity ratings at either extreme (i.e., 1:

steady or 5: loss of balance) may be more reliable indicators of

intensity than the other ratings in the evaluated scale. These

findings suggest that self-assessments and kinematic measurements

may support PT intensity assessments during contexts in which

visual assessment is difficult (e.g., during telerehabilitation).
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