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Prevention of the growth of harmful microorganisms in food products is an

important requirement for ensuring food safety and quality. Mathematical

models to predict the quantitative changes in microbial populations in food

to the variations of environmental conditions are useful tools in this regard.

While equations for microbial inactivation have typically been formulated based

on polynomial functions, empirical choice of the model order and terms not

only results in over- or underfitting, but also makes it difficult to identify key

factors governing the target variable. To address this issue, we present a data-

driven modeling pipeline that enables 1) automatic discovery of model

equations through parsimonious selection of relevant terms from a pre-built

library and 2) subsequent evaluation of the impacts of individual terms on the

model output. Through case studies using literature data, we evaluated the

effectiveness of our pipeline in predicting the D-value (i.e., the time taken to

reduce microbial population to 10% of the initial level) as a function of multiple

factors including temperature, pH, water activity, NaCl content, and phosphate

level. In doing this, we determined basic functional forms of input and output

variables based on their pre-known relationships, e.g., by accounting for the

Arrhenius dependence of D-value on temperature. Incorporation of such

theoretical knowledge into the pipeline improved model accuracy. Using the

Akaike information criterion, we optimally determined hyperparameters that

control a trade-off between model accuracy and sparsity. We found the

literature models benchmarked in this study to be over- or under-

determined and consequently proposed better structured and more

accurate equations. The subsequent global sensitivity analysis allowed us to

evaluate the context-dependent impacts of key factors on the D-value. The

pipeline presented in this work is readily applicable to many other related non-

linear systems without being limited to microbial inactivation datasets.
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1 Introduction

Food is vulnerable to contamination by pathogens and

spoilers. Pathogens in contaminated food induce foodborne

diseases, while spoilers deteriorate the quality of food by

changing the biochemical properties of food materials (Lianou

et al., 2016). The invasion of those harmful microorganisms can

take place anytime throughout the lifecycle of food including

production, processing, distribution, storing, and preservation

(Lianou et al., 2016). Treatment of food with extreme conditions

is known to render microbes inert, which is however not an ideal

solution due to adverse effects on texture, taste, and flavor,

denaturation of nutrients (e.g., vitamin A), as well as excessive

energy demand (Amit et al., 2017). As complete removal of

pathogens and spoilers from food is often infeasible as such, their

suppression to a safe low level by refining treatment methods and

conditions is essential for ensuring food safety and quality.

Therefore, determination of optimal conditions to control the

growth of harmful microorganisms requires meeting multiple

objectives that are often contradictory (Madoumier et al., 2019).

While many alternative microbial inactivation technologies with

temperate processing conditions have emerged, such as high-

pressure processing (Podolak et al., 2020), pulsed light

inactivation (Artíguez et al., 2011), and various non-thermal

methods (Mañas and Pagán, 2005), accurate evaluation of the

relative influences of the associated process factors remains

challenging due to the lack of a tractable and generalizable

approach to analyze the process mechanics.

Mathematical models are indispensable tools for predicting

and optimizing microbial inactivation processes in food.

Accurate modeling of microbial growth or inactivation is a

difficult task due its complex dependence on numerous

internal (such as water activity, pH, composition, and

preservatives) and external food conditions (e.g., temperature

and humidity) (Akkermans et al., 2020). Appropriate

consideration of the functional relationships between

microbial populations and such intrinsic and extrinsic

parameters is critical for model performance. Microbial

inactivation models are often built on fitted polynomial

equations, while other forms such as Arrhenius or square root

relationships have also been considered (Whiting, 1995; Ross and

Dalgaard, 2003). Typical modeling efforts using the polynomial

equations have focused on determining optimal parameter values

(i.e., coefficients of pre-chosen terms) through data fit. However,

this approach cannot ensure robust development of microbial

inactivation models because inadequate representation of

equations can lead to poor performance in data fit and

prediction due to intrinsic structural error that cannot be

compensated through parameter estimation (Kaplan, 2002).

Moreover, empirical determination of governing terms often

lacks expandability with increasing number of process

variables, necessitating a more systematic, rational approach.

Sparse Identification of Nonlinear Dynamics (SINDy)

(Brunton et al., 2016) is a promising approach that enables

automatic discovery of model equations without having to

assume model structure a priori, making it distinct from

typical approaches that focus on estimating optimal values of

the parameters through data fit in a pre-defined function. SINDy

allows the use of a library of input variables (that potentially

affect the output variables of interest) to identify the model

structure by linear combinations of the terms in the library.

Following the Occam’s razor principle postulating that the

simplest explanation generally tends to be the correct

representation (Blumer et al., 1987; Song et al., 2013), SINDy

promotes parsimony in model identification based on a minimal

subset of terms.

In this work, we present a data-driven modeling pipeline

utilizing SINDy for robust development of microbial inactivation

models for application in food safety and quality. While the

original goal of SINDy is to identify sparse models of nonlinear

dynamical systems, we apply it to non-dynamical systems

through appropriate reformulation (see Methods). For

demonstration, we considered case studies of modeling the

change in D-values—the time taken for a 90% reduction in

microbial population—under the variations of multiple factors

including temperature, pH, water activity, NaCl content, and

phosphate level. Built on SINDy, our modeling pipeline has three

major additional features: 1) Incorporation of theoretical

knowledge on the relationships between basic input and

output variables, e.g., by accounting for the temperature

dependence of D-value following the Arrhenius equation; 2)

rational determination of hyperparameters (such as the

polynomial order and sparsity-controlling parameter) based

on information-theoretic metric for an optimal balance

between model accuracy and sparsity, and 3) integration with

global sensitivity analysis to evaluate the effects of key factors on

model outputs. Our analysis showed that the benchmark models

in the literature considered in this work are mostly over- or

underfitted. Using our approach, therefore, we were able to

propose better structured models with improved accuracy and

less complexity.

2 Materials and methods

Identification of model structure (i.e., functional forms of

the relationship between input and output variables) is

challenging as there are many possible solutions to

formulate a specific model from a given dataset. In this

section, we describe how systematic identification of model

equations and key variables/terms governing microbial

inactivation can be enabled by an advanced data-driven

approach called SINDy (Brunton et al., 2016) in

conjunction with global sensitivity analysis, respectively.
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2.1 Essence of sparse identification of
nonlinear dynamics

The original motivation of SINDy is to discover governing

equations for nonlinear dynamical systems, which is

reconfigured here to apply to non-dynamical systems as

follows:

y � f(x), (1)

where x is the vector of state variables, and f denotes the

nonlinear relationship between the input (x) and output

variables (y). SINDy approximates f by a weighted linear

combination of nonlinear terms, e.g., for the ith output

variable:

yi � fi(x) ≈ ∑
k

θk(x) ξk,i, (2)

where θk(x) and ξk,i denote the kth term and its weight,

respectively. The above equations can be represented in a

more succinct form as matrices, i.e.,

Y � Θ(X)Ξ, (3)
where X � [x1 x2/xm], Y � [y1 y2/yn], Θ(X) is a library of

candidate functions of X and the matrix of weights

Ξ � [ξ1 ξ2/ξm]. In SINDy, the library Θ(X) is built by

polynomial expansion of input variables X,

i.e., Θ(X) � [1XX2/Xd/] where Xd denotes a matrix with

column vectors of all possible dthdegree monomials in the state

variable x.

SINDy seeks a parsimonious model composed with

minimal number of terms as possible without

compromising model accuracy. Sparse regression methods

such as Sequentially Thresholded Least Squares (STLS) and

Least Absolute Shrinkage and Selection Operator (LASSO)

are useful algorithms that can be used in SINDy for this

purpose (Brunton et al., 2016). In this work, we employ STLS

where Ξ in Eq. 3 retains the coefficients (weights)

greater than the prescribed parameter λ (otherwise, zero

weights are assigned), such that only the terms in the

library with significant influence on the outputs are

included in the final model structure. Here, λ is known as

sparsity-promoting knob because the model sparsity

increases with higher values of λ, while model accuracy

may decrease.

2.2 Application of SINDy to microbial
inactivation modeling

We use SINDy to formulate microbial inactivation as

functions of various process variables including

temperature (T), pH, water activity (aw), NaCl content

(CN), and phosphate level (CP), which are all known to

significantly influence microbial growth rate (Juneja et al.,

1995; Cerf et al., 1996). We employ D-value (i.e., the time for

microbial population to shrink to 10% of initial level) as a

standard measure for microbial inactivation, which is taken as

our target variable to predict in applying SINDy. With a single

target variable chosen, Eq. 3 is reduced to the following

equation, i.e.,

y � Θ(X)ξ. (4)

While SINDy offers flexibility to pick any nonlinear terms

for input and output variables, we determine the inclusion of

their specific functional forms following the known

mechanistic knowledge and characteristics of the system.

Therefore, we used a vector of logD as y (instead of a

vector of D) and determined X to be [1/T, pH, aw , CN, CP]

(i.e., the use of 1/T, instead of T). The rationale for our choice

of functional forms of output and input variables are detailed

in Section 3.1.

2.3 Tuning model sparsity and accuracy
based on an information-theoretic
criterion

We tune the order of combination of primitive process

variables and the sparsity index, λ, in stages. We first

determine the maximum order of combination with λ � 0

(which will result in a non-parsimonious model), beyond

which there are no significant improvements to model

accuracy. Subsequently, by retaining the maximum

polynomial order, we employ the maximum λ that does

not significantly compromise the model accuracy. To

facilitate determining optimal polynomial order and λ

values for a balanced compromise between model accuracy

and sparsity, we use an information-theoretic metric, Akaike

Information Criterion (AIC) (Akaike, 1998). Specifically, we

use the second-order information criterion that includes a

correction term to alleviate the bias that may arise if the

number of model parameters is large relative to the sample

datapoints (Burnham and Anderson, 2002):

AIC � n ln(MSE) + 2K + 2K(K + 1)
n − K − 1

, (5)

where MSE denotes mean squared error, n is the number of

sample datapoints, K is the number of model parameters and

the third term on the RHS corrects the bias where it tends to

zero when n≫K. Generally, a model with the least AIC score

is ideal as AIC penalizes the model based on the relative

balance between error and complexity (K). The formulation

above is often denoted as AICc in the literature. The

methodical implementation of the general guidelines to

develop microbial inactivation models is demonstrated in

Section 3.2.
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2.4 Density-based global sensitivity
analysis

We perform sensitivity analyses on our models as an

alternative to arduous assessment of the relative effects of the

process variables on microbial inactivation directly from highly

distributed experimental data. As the models are linear

combinations of nonlinear terms and the datasets used in this

work span over a wide parameter space, the possibility of model

forming stiff parameter dependency is high. Therefore, we

employ a density-based global sensitivity analysis approach

called PAWN (Pianosi and Wagener, 2015), instead of local

sensitivity approach. Based on this approach, absolute deviation

is calculated between an unconditional cumulative density

function of model output, F(y), where all input variables in

the model are randomly sampled simultaneously over the whole

parameter space, and conditional cumulative density functions,

F(y| �Xi,k), which are constructed by randomly sampling all but a

single model variable of interest fixed at the kth nominal value,

Xi � �Xi,k. The sensitivity index for i-th model variable, Si, is

characterized as the maximum value across the distribution of

absolute deviations collected for a range of k nominal values:

Si � max
�Xi,k

[KS( �Xi,k)]; KS( �Xi,k) � max
y

∣∣∣∣F(y) − F(y∣∣∣∣ �Xi,k)
∣∣∣∣.
(6)

Here, KS is the Kolmogorov—Smirnov statistic, y is the

model-estimated D-values and the variable Xi is the ith element

of X � {T, pH, aw, CN, CP}.

2.5 Experimental datasets

The experimental datasets used for microbial inactivation

modeling in this work are collated in Table 1. We chose datasets

that are predominantly distinct in terms of microorganisms,

media, process variables, and parameter space to demonstrate

the tractability of our knowledge-informed data-driven pipeline

for model development. We also found that the structure of the

literature models developed from these datasets was under- or

over-determined, rather than optimally determined.

Consequently, the datasets and benchmark models we chose

serve as an ideal testbed for evaluating the robustness of our

approach.

2.6 Computational implementation

Numerical codes were developed using MATLAB® R2021a
by adapting the prototype codes of SINDy provided in Brunton

and Kutz (2019) and PAWN global sensitivity analysis given in

Pianosi and Wagener (2015) and Pianosi et al. (2015).

3 Results

3.1 Development of a knowledge-
informed data-driven modeling pipeline

Our data-driven modeling approach combines SINDy and

global sensitivity analysis to identify model equations and key

factors that govern microbial inactivation in food. As a main

feature, users can define any functional forms of input variables

(T, pH, aw, CN, CP), i.e., gT(T), gpH(pH), gaw(aw), gCN(CN),
gCP(CP), and output variables (i.e., gD(D)). As explained below,

we set gD(D) � logD (instead of D) and determined gT(T) �
1/T based on the Arrhenius equation, while using first-order

terms for the other input variables, i.e., gpH(pH) � pH,

gaw(aw) � aw, gCN(CN) � CN, and gCP(CP) � CP.

Subsequently, a library of input terms is generated through

polynomial combinations of those basic input variables

provided from the user. SINDy, then, identifies a sparse

model by choosing a minimum number of input terms

(included in the library) that is required to represent the

output variable with an acceptable accuracy (cf. Section 2.1).

The resulting equations derived by SINDy takes the form of a

TABLE 1 Experimental datasets used in this study.

Data source Microorganism Media Process variables

Temperature,
T (°C)

pH Water
activity, aw

NaCl content,
CN (%)

Phosphate
level,
CP (%)

Cerf et al. (1996) Escherichia coli n.aa 52.05–63.10 3.0–9.0 0.928–0.995 n.a n.a

Juneja et al. (1995) Clostridium
botulinum

Turkey 70.00–90.00 5.0–7.0 n.a 0–3 0–2

Villa-Rojas et al.
(2013)

Salmonella enteritidis Almond
kernels

56.00–80.00 n.a 0.601–0.946 n.a n.a

an.a.—not available.
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linear combination of nonlinear terms, and therefore, explicitly

show the impacts of environmental variables on D-values. The

impact of individual primitive input variables (not the combined

terms) can be identified through PAWN global sensitivity

analysis. The two complementary tools together identify key

model equations and factors that govern D-value for a given

pathogen or spoiler. The modeling workflow is illustrated in

Figure 1. We term our approach knowledge-based data-driven

modeling as we incorporate known insights of system

characteristics (such as Arrhenius equation) as a key

component to determine basic form of input and output

variables as described in detail below.

The development of data-driven microbial inactivation

model can be facilitated by known characteristics of the

system. While first-order representation is a typical choice for

input and output variables, it is possible to improve model

performance by a more appropriate choice of their functional

forms. For this purpose, we leverage mechanistic microbial

growth models (Whiting, 1995) to inform our choice of

functional forms for microbial inactivation dynamics as follows:

dN

dt
� −k(p)N, (7)

whereN is population density and k(> 0) is the deactivation rate

constant, which is given as a function of a vector of

environmental variables (p). If we maintain environmental

variables constant over time, we can get the solution in an

analytical form, i.e.,

N � N0 exp(−k(p)t). (8)

By definition, the population density is N � 0.1N0 when

t � D, i.e.,

0.1N0 � N0 exp(−k(p)D). (9)

Therefore, D-value is simply:

D � −ln(0.1)
k(p) . (10)

Subsequently, applying logarithm to the equation above

yields:

logD � C − log[k(p)], (11)

where C is a constant. Given that many prior Arrhenius-based

models produce reasonable fit to growth data by relating the

growth rate to various environmental variables as ln k �
f(1/T, pH, aw,/) (Whiting, 1995; Ross and Dalgaard, 2003),

we similarly re-write Eq. 11 as:

logD � C + f(1
T
, pH, aw, CN, CP). (12)

Consequently, the functional forms of output variable and

input variables provided for SINDy implementations are y �
logD and X � [1/T, pH, aw ,CN,CP] in Θ(X), respectively, in
reference to the generalized form in Eq. 4.

3.2 Optimization of model complexity:
Setting polynomial order and model
sparsity

To substantiate our choice of functional forms for input and

output variables in the preceding section, we compare the model

performance per our approach (orange lines in Figure 2) against

another base case with non-logarithmic D-values and non-

reciprocal temperature and other process variables (blue lines

in Figure 2). Here, complete non-parsimonious models are used

to ensure fair comparison of the models without the influence of

sparse regression. Our approach consistently performed better in

FIGURE 1
Flowchart depicting our knowledge-informed data-driven model development pipeline. The weights assigned to the columns of experimental
input variables curated to the functional forms of candidate terms in the library instruct the choice of terms to be included in the final model structure
through Sequentially Thresholded Least Squares (STLS) regression (more details in main texts).
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terms of MSE calculated based on logarithmic D-values for both

cases across different datasets and orders of polynomial

combinations of input variables. For all the results that follow

henceforth, our choice of the functional forms (i.e., orange lines

in Figure 2) are adopted.

With logD chosen as the target variable, we identify the

optimal model structure that balances both accuracy and

sparsity. We first determine the order of polynomial

combination without accounting for model sparsity (i.e., with

λ � 0) and subsequently choose the appropriate value of λ (now

to promote sparsity). This two-step process is demonstrated

through the case study of the dataset from Cerf et al. (1996)

(Figures 3, 4). In doing this, we used three major criteria

including AIC values, MSE, and the number of terms. The

analysis based on the first criterion suggested us to choose the

third order polynomial combination (Figure 3A) and λ � 0

(Figure 3B) where the AIC scores are minimal. In contrast,

determination of the order of polynomial combination is not

clear based on MSE because it keeps decreasing as the order

increases (Figure 4A), highlighting the utility of information-

theoretic criterion. While the third-order model with λ � 0 may

be a desirable choice from a rigorous statistical point of view, we

found that the increase of MSE is not significant up to λ � 1.36

(Figure 4B) where the number of terms can be further reduced

from 20 to 17 (Figure 4C). MSE was significantly increased when

λ> 1.36 without significantly reducing the number of terms,

leading us to choose the third-order model with λ � 1.36.

We also applied this stepwise model construction

approach to the datasets from Juneja et al. (1995)

(Supplementary Figures S1, S2) and Villa-Rojas et al.

(2013) (Supplementary Figures S3, S4). The analysis for the

dataset from Juneja et al. (1995) showed that AIC values have

FIGURE 2
Comparison of model performance between different choices of functional forms for input and output variables using datasets from: (A) Cerf
et al. (1996), (B) Juneja et al. (1995), and (C) Villa-Rojas et al. (2013). The blue line represents a model with D (chosen as the target variable) and
T ,pH, aw , CN, CP (chosen as input variables), whereas the orange line is our choice of functional forms by taking log D as the target variable and
1/T ,pH, aw , CN, CP as input variables. The non-parsimonious models (λ � 0) were developed for increasing orders of polynomial combinations
of input variables producing monomial terms with various degrees.

FIGURE 3
Stepwise tuning ofmodel accuracy and sparsity through the comparison of information-theoreticmetric (AIC) by first (A) fixing the order of polynomial
combinations of input variables for non-parsimonious model (λ � 0), followed by (B) setting the sparsity index, λ, that balances the model accuracy and
desired sparsity. Vertical dashed lines indicate the chosenmodel settings. Here, themodel tuning for dataset fromCerf et al. (1996) is shown as an example.
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two local minima at the polynomial orders 2 and 4

(Supplementary Figure S1A). Through further checking

with MSE and the number of terms, we chose the second-

order model for better interpretability. After determining the

polynomial order, we subsequently determined the optimal

value of λ to be 0.24 (Supplementary Figure S1B). The changes

of MSE and the number of terms as polynomial orders and λ

values support our choice (Supplementary Figure S2). Lastly,

the analysis of the dataset from Villa-Rojas et al. (2013)

suggested the first-order model (Supplementary Figures S3,

S4), which is because any further increase of model complexity

would result in severe overfitting due to limited data points

(n � 16). In this case, we have not further reduced model

complexity by fine tuning λ. The final model was therefore a

simple equation with two input variables (T and aw).

3.3 Data-driven identification of governing
equations for enhanced accuracy and
expandability

Following the guidelines outlined in the preceding and

Methods sections, we developed models for all experimental

datasets considered in this work. The resulting model

equations are summarized in Table 2. The individual models

consist of varying number and degree of monomial terms as

identified through our data-driven model development pipeline

which are optimal to represent the output variable within the

parameter space of the respective datasets. The identification of

the optimal terms (especially higher-order terms) would not be

possible with the previous approaches that rely on empirical

choices of equation terms. The issues of model overfitting and

FIGURE 4
Depiction of our stepwise model tuning approach that minimizes model overfitting through the optimization of (A) the order of polynomial
combinations of input variables for non-parsimonious model (λ � 0), and (B/C) the sparsity index, λ. Vertical dashed lines indicate the chosen model
settings. Here, the model tuning for dataset from Cerf et al. (1996) is shown as an example.

TABLE 2 Governing model equations identified by leveraging our knowledge-informed data-driven modeling pipeline.

Data source Model equations identified
from our pipeline

Cerf et al. (1996) logD � −305.14 + 442.49aw + 50.61pH + 7.16 × 1031/T + 334.52a2w − 108.52awpH − 4.4985 × 104aw/T...
+155.43pH/T + 8.49 × 1051/T2 − 528.54a3w + 52.47a2wpH + 4.85 × 104a2w/T + 472.09awpH/T...
−1.54 × 106aw/T

2 − 1.42pH2/T − 1.70 × 104pH/T2 + 1.50 × 1071/T3
(13)

Juneja et al. (1995) logD � −24.94 + 3.43 × 1031/T + 0.93pH − 30.06CN − 350.45CP − 1.10 × 1051/T2 − 64.03pH/T...
+585.46CN/T + 1.09 × 104CP/T + 2.12pHCN + 24.55pHCP + 144.32C2

N + 186.41CNCP ...
+2.79 × 103C2

P

(14)

Villa-Rojas et al. (2013) logD � −6.70 − 4.57aw + 672.691/T (15)
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uncertainties are also minimized with our stepwise approach in

model design.

We compare the performance of our models with existing

models from the literature in Figure 5. Our models consistently

perform better than the literature models across all datasets,

particularly for the dataset from Juneja et al. (1995) that has

considered additional process variables, i.e., CN and CP. It is

certainly possible that CN and CP have significant interaction

effects with other process variables and are critical to characterize

microbial inactivation dynamics, which explains the enhanced

accuracy that accompanies their inclusion in the model.

Quantitative information of the models is tabulated in

Table 3. In all cases, our models perform adequately with

reasonable error measures, i.e., MSE ≤O(10−2) and low AIC

scores. In two of the cases (models for datasets from Juneja et al.

(1995) and Villa-Rojas et al. (2013)), our models gained more

than ten-fold increase in accuracy with fewer number of

functional terms in the model structures as compared to the

literature models. Moreover, we demonstrate the opportunity to

further enhance the model accuracy over two-folds for dataset

from Cerf et al. (1996) by considering a more complex model

equation (greater number of functional terms) without the risk of

overfitting as shown by the lower AIC score as compared to the

literature model. By carefully adopting the stepwise model tuning

scheme as described in Section 3.2, we were able to optimally tune

the models to achieve better accuracy while minimizing the

chances of overfitting as compared to existing literature models.

3.4 Integration of data-driven approach
and sensitivity analysis for determining key
governing process variables and model
terms

While our model governing equations offer good

representations of experimental data, the individual effects of

process variables remain elusive. In addition to data-driven

modeling, we leverage global sensitivity analysis (Pianosi and

Wagener, 2015) using the model-derived governing equations to

identify key governing process variables and possibly divulge the

interactions between them. Here, the sensitivities are evaluated

for the entire parameter space encompassed by the respective

datasets (Table 1). Our results demonstrate highly disparate

sensitivity measures for the process variables across datasets as

shown in Figure 6, positing that the relative effects of the process

variables may be highly environment dependent. For example, T

exhibited high sensitivity in the model for data from Cerf et al.

(1996) but registered lower sensitivity than other process

variables in the model for data from Juneja et al. (1995),

although T is often viewed as the primary process variable in

most microbial inactivation experiments. Conversely, aw

FIGURE 5
Comparison of the performance of our knowledge-informed
data-driven models (left panels) against literature models (right
panels) across different datasets: (A) Cerf et al. (1996), (B) Juneja et
al. (1995), and (C) Villa-Rojas et al. (2013).

TABLE 3 Quantitative performance measures of models.

Data source Maximum
order
of terms

Sparsity
index,
λ

Number of terms Mean squared error AIC

This
work

Literature
model

This
work

Literature
model

This
work

Literature
model

Cerf et al. (1996) 3 1.36 17 5 0.006 0.014 −448.85 −392.24

Juneja et al. (1995) 2 0.24 14 15 0.004 0.071 −193.46 −65.96

Villa-Rojas et al.
(2013)

1 0 3 8 0.06 0.559 −36.96 27.26
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consistently displayed relatively lower sensitivity measures than

other process variables across the models. While condition-

specificity is one of the plausible explanations for contrasting

sensitivity measures, it should also be noted that the global

sensitivity analysis strictly represents the individual influence

of process variables on output and are indifferent to interactions

effects between process variables. Therefore, there may be

instances where the sensitivity measures of the individual

process variables are insignificant, whilst considerable

interactions effects with other process variables exist. For

instance, T and pH registered low sensitivity in the model for

data from Juneja et al. (1995) with statistically insignificant

influence on the output variable (Figure 6), but the variables

were repeatedly included in numerous terms in the governing

equation identified through our knowledge-informed data driven

approach (Table 2). This is expected given that SINDy retains the

most influential terms irrespective of individual or interaction

effects necessary for representation of output data.

FIGURE 6
Distribution of global sensitivities of process variables on output variable, i.e., logD, examined using models derived from different datasets: (A)
Cerf et al. (1996), (B) Juneja et al. (1995), and (C) Villa-Rojas et al. (2013). The symbol * marks the model variables with significant influence on the
output based on 95% confidence interval (p<0.05).

FIGURE 7
Comparison of model performance with iterative removal of terms from the model equations generated from different datasets: (A) Cerf et al.
(1996), (B) Juneja et al. (1995), and (C) Villa-Rojas et al. (2013). MSEs are recalculated after refitting themodel with the removal of each term, whereby
a large increase in MSEs indicates that the respective terms are highly critical to represent the output data. The MSEs of the original complete model
are denoted by the horizontal dashed lines (cf. MSEs in Table 3).
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To resolve this issue, we implement the combined use of

data-driven approach and global sensitivity analysis that enables

elucidation of the factors influencing the process dynamics from

the contexts of governing equations, key process variables and

critical model monomial terms. To this effect, we iteratively

removed each term in the governing equations, and subsequently

refitted the models with newMSEs as shown in Figure 7, whereby

considerable increase in MSE (as compared to the original

complete model, represented by horizontal dashed lines)

indicates that the respective terms are essential to represent

the output variable. In the model for data from Cerf et al.

(1996), removal of terms containing pH and aw results in

considerable increase in MSEs though the variables had

relatively insignificant influences on the output in global

sensitivity analysis. Clearly, pH and aw significantly influence

the effects of T on microbial inactivation through strong

interaction effects, but the reverse is not necessarily true. The

finding here is reinforced by the outcome from SINDy, where the

terms with pH and aw were unequivocally retained in the

governing equations despite diminished main effects

(individual effects), as the variables are still relevant to

represent the output through their influence on T. Therefore,

users can, hypothetically, fix the pH and aw at arbitrary optimal

levels and tune only T as an alternative reduced-order

experimental optimization.

Conversely, in the model for data from Juneja et al. (1995),

removal of terms with CN and CP does not significantly increase

the MSE despite their elevated global sensitivity. Therefore, the

effects of CN and CP on microbial inactivation are possibly

dependent on other process variables but they do not impose

similar magnitudes of influence in return. Nevertheless, SINDy

has retained the terms with CN and CP as their substantial

individual effects are critical to represent the output when other

process variables are invariant. For this system, a stepwise

process optimization will work best where T and pH is

independently tuned first followed by the optimization of CN

andCP. Lastly, the model for data fromVilla-Rojas et al. (2013) is

fairly simple where both involved process variables possibly

impose equivalent individual and interaction effects. While the

global sensitivity analysis and reassessment of MSEs with

iterative removal of terms offer additional insights that can

aid process optimizations, we do not recommend the users to

influence the model selection through these insights as they are

model-derived contextual outcomes, and thus, the model should

be thoroughly optimized beforehand, through the iterative

feedback loop (Figure 1) as desired.

4 Discussion

Conventional modeling approaches that empirically

ascertain model structures and parameter functional forms are

forceful approximations as there exists an overwhelmingly large

number of possible solutions. Using a systematic data-driven

model development pipeline guided by knowledge-informed

choices of parameter functional forms and methodical tuning

of model sparsity and accuracy, we developed microbial

inactivation models that outperformed existing models from

the literature. Our approach not only ensures identifying the

most plausible model structure by leveraging on domain

knowledge of the system, but also elucidates the factors

affecting the process dynamics through the combined use of

global sensitivity analysis.

The sound choice of functional forms for input and output

target variables as informed by mechanistic formulation (e.g.,

Arrhenius equation in this work) can be integral in optimizing

model structure and performance. The inclusion of the reciprocal

functional form for temperature is fitting as it resembles the

inverse relationship between logarithmic rate and temperature in

linear Arrhenius equation. We could not make such

consideration for other variables in the absence of any literary

basis or improvements to model fits with reciprocal terms. The

choice of logarithmic output variable is also apt for several

reasons: 1) Logarithmic D-values form linear relationships

with temperature and other process variables that may assume

the classical power-law form, which is realized through the linear

combinations of monomial terms of various degrees through

SINDy, and 2) training themodel on logarithmicD-values ensure

that the resulting model is sensitive and operates optimally in the

small D-value regions which are especially critical for microbial

inactivation dynamics. Although even empirical formulation

may bear structural similarity to our models to a degree, we

highlight that our choice of final terms to represent the output

variable is guided by systematic sparse identification as described

in Section 2.

The use of information-theoretic criterion such as AIC

guided us to determine optimal levels of model complexity,

while the literature models were inappropriately structured.

Therefore, our approach allowed us to propose more accurate

models with fewer number of terms as demonstrated through the

cases with Juneja et al. (1995) and Villa-Rojas et al. (2013) in

Table 3. In contrast, in the case of underfitted models such as the

one from Cerf et al. (1996), we showed how to further reduce the

error by adding extra terms. The inclusion of higher-order terms

(polynomial combinations of individual process variables) in the

model is critical to account for mixed effects between the process

variables. For example, a lower temperature is generally observed

to increase the effects of pH but the effects on water activity are

contradictory in the literature (Villa-Rojas et al., 2013). Despite

potential importance, those mixed effects have been overlooked

in microbial inactivation studies except the well-known

interaction between temperature and pH. Even in the case of

accounting for combinatorial effects of multiple process

variables, determination of their functional forms remains

largely elusive. In contrast, our pipeline evaluates interaction

effects through the higher-order terms, which are subsequently
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compared with individual effects through global sensitivity

analysis to divulge complex associations between the process

variables. Our approach is particularly useful to handle systems

with many process variables as all possible interactions are

simultaneously handled in the library matrix, which otherwise

would be inefficient in conventional approaches. As highlighted

here and above, therefore, our approach complements SINDy by

providing additional guidance towards selection of basic

functional forms for input and output variables and

determination of the optimal level of model complexity,

ensuring the robust performance across different cases.

While our knowledge-informed data-driven modeling

pipeline worked well for all the datasets considered in this

work, user may further tweak the model design to their

desired complexity, sparsity, and accuracy through the

feedback loop in Figure 1. For example, one may employ a

larger λ while retaining the order of polynomial combination to

produce a sparser model at the expense of model accuracy.

Conversely, a lower order of polynomial combinations with a

more lenient λ setting is also a viable alternative. While higher-

order complex models may enhance the accuracy, their inherent

complexity impacts the elucidation and interpretability of the

system dynamics. Hence, sparse lower-order models are often

desired for most applications.

Beyond achieving enhanced performance of data fit compared to

existingmodels, our approach provides a systematic and generalizable

pipeline for high-throughput development of microbial growth and

inactivation models applicable to various types of datasets. This

capability should prove useful for food manufacturers and

researchers to assess the efficacy of their existing food production

stratagem and to identify new necessary conditions for effective

microbial inactivation in a yet unexamined food. Further, our

approach also serves as a future basis to model new microbial

inactivation processing technologies that steer away from

conventional processing conditions to more intricate parameters

such as pressure, light pulses and degree of exposure, and various

non-thermal variables (Mañas and Pagán, 2005; Artíguez et al., 2011;

Podolak et al., 2020).Moreover, our approach can be readily extended

to develop primary (dynamic) inactivation models when appropriate

and adequate time-series microbial inactivation data becomes

available to render the model reasonably identifiable. Lastly, the

combined use of data-driven modeling and global sensitivity

analysis in the pipeline is also useful for rational model-based

optimization of operating conditions and design of control

systems, not only for microbial inactivation processes but any

non-linear systems for a wide range of applications.
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