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Crucitti D, Pérez Míguez C, Díaz Arias JÁ,
Fernandez Prada DB and Mosquera Orgueira A
(2024) De novo drug design through artificial
intelligence: an introduction.
Front. Hematol. 3:1305741.
doi: 10.3389/frhem.2024.1305741

COPYRIGHT

© 2024 Crucitti, Pérez Míguez, Díaz Arias,
Fernandez Prada and Mosquera Orgueira. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 25 January 2024

DOI 10.3389/frhem.2024.1305741
De novo drug design through
artificial intelligence:
an introduction
Davide Crucitti 1,2*, Carlos Pérez Míguez1,
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Developing new drugs is a complex and formidable challenge, intensified by

rapidly evolving global health needs. De novo drug design is a promising strategy

to accelerate and refine this process. The recent introduction of Generative

Artificial Intelligence (AI) algorithms has brought new attention to the field and

catalyzed a paradigm shift, allowing rapid and semi-automatic design and

optimization of drug-like molecules. This review explores the impact of de

novo drug design, highlighting both traditional methodologies and the recently

introduced generative algorithms, as well as the promising development of

Active Learning (AL). It places special emphasis on their application in

oncological drug development, where the need for novel therapeutic agents is

urgent. The potential integration of these AI technologies with established

computational and experimental methods heralds a new era in the rapid

development of innovative drugs. Despite the promising developments and

notable successes, these technologies are not without limitations, which

require careful consideration and further advancement. This review, intended

for professionals across related disciplines, provides a comprehensive

introduction to AI-driven de novo drug design of small organic molecules. It

aims to offer a clear understanding of the current state and future prospects of

these innovative techniques in drug discovery.
KEYWORDS
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Introduction

Modern medicine’s progress is tightly linked to drug design innovations. Developing

new drugs is critical for global health, but the process is costly and time-consuming, often

taking several years and costing over a billion dollars (1, 2). Improvements in the drug

design phase can greatly reduce these expenses and make it more accessible.
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Traditionally, drug design was mainly experimental. However,

in the 1990s, computational techniques like de novo molecular

design began to emerge (2, 3). De novo design is a set of

computational methods that can be used to design a compound

without using a previously known one as a starting point. This

approach aims to automate the creation of new chemical structures

tailored to specific molecular characteristics. It leverages knowledge

from existing, effective molecules to design novel ones with unique

structural features. In drug design, de novo methods focus

on generating molecules with unique drug-like qualities,

differentiating them from current treatments. This approach

presents a multifaceted challenge as it seeks to design molecules

that satisfy various pharmaceutical criteria, including biological

activity, target selectivity, and optimal ADMET (Absorption,

Distribution, Metabolism, Excretion, and Toxicity) profiles.

Despite their innovative nature, these methods faced challenges

such as the difficulty of synthesizing the molecules they proposed

and the need for specialized computational skills, limiting their

broad application in the field of drug discovery (4).

A significant change occurred in 2017 with the introduction of

generative AI in de novo design (5, 6). This breakthrough revitalized

interest in the field and inspired solutions to previous limitations.

These AI algorithms, utilizing vast data on bioactivity, toxicity, and

protein structures, have streamlined the process of identifying and

refining drug candidates. The emergence of various models, each

employing distinct AI architectures, has led to a rapid proliferation

of innovative methods. This expansion has significantly enhanced

the role of these technologies in the realm of drug discovery (7, 8).

Pharmaceutical companies are now integrating these algorithms

into their drug design processes, often in collaboration with AI

firms (9). Drugs developed using these methods, like DSP-1181,

EXS21546, and DSP-0038, have reached clinical trials (10),

demonstrating the effectiveness of generative algorithms in

producing viable therapeutic agents. While these compounds

primarily target well-researched biological targets and do not

innovate structural or binding properties, they validate the utility

of generative algorithms in producing effective therapeutic agents.

Generative drug design has demonstrated its maturity and

effectiveness. These methods stand to substantially change the
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pharmaceutical industry, even without considering additional

advancements. They enable the rapid generation of alternative

treatments once a new drug target is discovered, thereby

significantly enhancing their role in both drug discovery and

development. They also automate aspects of drug optimization,

streamlining the development process.

Despite the rapid progress of these methods, it’s vital to

critically assess their limitations. Most of their validation is based

on computational benchmarks, which may not fully address real-

world challenges (11). Integrating these algorithms into the design-

make-test-analyze (DMTA) cycle is essential for a comprehensive

efficacy assessment. This integration not only validates their

effectiveness but also identifies areas for improvement, fostering

wider adoption and refined performance.

This review introduces various de novo algorithms and their

role in drug discovery, aimed at professionals in related fields. It

covers the advantages and challenges of AI in drug discovery,

detailing how these technologies integrate with existing processes.

Topics include computational strategies for molecule selection,

experimental validation of compounds’ efficacy, and limitations

like synthetic feasibility and chemical space exploration Figure 1.

Evaluation metrics for these algorithms are also discussed. It also

discusses limitations such as synthetic feasibility and chemical space

exploration, as well as metrics to evaluate algorithms. Finally, the

review includes case studies highlighting the impact of these

technologies in real-world drug development, specifically in

oncology and hematology.
Drug development campaigns

Drug development is a complex, iterative, and multi-stage

process that aims to convert a biological hypothesis into a

clinically effective drug (4, 12). This iterative phase utilizes a

feedback-oriented approach. It begins with designing molecules

based on existing data, followed by computational analysis for

selection and ranking. The chosen candidates are then

synthesized and tested experimentally, including evaluations on

isolated targets, cell cultures, and animal models.
FIGURE 1

Drug design process.
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Phases of drug discovery

Target identification and validation
The early stage of drug discovery involves identifying and

validating biological targets that can be influenced by potential

drugs to change disease progression. These targets vary, including

proteins, mutated genes, specific nucleic acid sequences, or

components of pathogens (13). Validation is crucial to confirm

the therapeutic relevance of these targets. To this end, an array of

molecular techniques are used for gene and protein-level

verification, while cell-based assays further substantiate the

biological significance of the targets in a more complex

environment. The introduction of AI in this phase has accelerated

the processing of large datasets, speeding up target validation.

Hit discovery
After validating drug targets, the subsequent phase in drug

discovery is identifying “hits,” molecules that affect the activity of

the target. This phase emphasizes exploring a diverse range of

molecular structures, as some may show initial activity but prove

challenging to optimize. High-throughput screening (HTS) has

been a traditional method, testing vast compound libraries against

the target. However, HTS is costly and inefficient, often screening

over 50,000 compounds with low hit rates and high costs per

compound (4). The rise of de novo drug design offers a more

efficient alternative for hit identification, reducing the reliance on

extensive experimental validation. These AI algorithms utilize

existing biomedical data to optimize the experimental design and

more precisely explore the vast chemical space, which contains an

estimated 1033 to 1063 drug-like molecules (14). A notable

limitation of conventional algorithms is their tendency to explore

wide chemical regions without considering the synthesizability of

proposed molecules.

Hit-to-lead
After identifying potential drug molecules, the next stage in

drug discovery is transforming these “hits” into “lead” compounds,

aiming to improve their effectiveness, specificity, and overall

suitability as drugs. The main strategy involves altering the core

structure, or scaffold, of the molecule and adjusting its substituents.

This approach provides insights into how specific changes affect

interactions with the target and synthesizing a series of molecules

with a common scaffold is easier than a set of entirely

diverse compounds.
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AI has become a valuable tool in this phase. AI algorithms do

more than just analyze the effects of different changes; they actively

suggest modifications to enhance the potential of lead candidates.

AI can incrementally improve a known hit molecule or, based on its

training, generate entirely new molecules likely to be effective in the

same category.

Lead optimization
The final stage involves refining lead compounds to ensure their

effectiveness, safety, and compliance with clinical standards. This

stage requires meticulous structural modifications, aiming to

prepare drug candidates for clinical trials. AI significantly aids

this process by forecasting a drug’s behavior and proposing

structural changes, thus accelerating the development of

promising candidates.

Refining drug candidates is a collaborative effort combining a

chemist’s expertise, laboratory testing, computational modeling,

and AI insights. The ability of AI to predict key aspects, such as a

the interaction of a drug with its target and its physical and chemical

properties, is particularly valuable. De novo AI provides chemists

with structural modification suggestions, facilitating exploration

and expediting the optimization process. Consequently, AI

enables chemists to work more effectively, accelerating the

journey towards viable drug candidates.
Drug design strategies

The landscape of drug discovery is a complex and dynamic field

that necessitates strategies for identifying and optimizing molecules.

Ranging from the broad exploration of chemical space to nuanced

structural modifications, these strategies present unique advantages

and challenges. These are exemplified in Figure 2. This section

outlines key strategies commonly used in the field.

Chemical space sampling
Chemical space sampling involves selecting a diverse subset of

molecules from a vast array, using computational tools to maximize

discovery potential while balancing the synthesizability of these

molecules (4, 15–19).

Scaffold hopping
Scaffold hopping is used in hit-to-lead and optimization phases

to find novel lead molecules by modifying the core structure of a
B C D EA

FIGURE 2

Drug design strategies. (A) — Scaffold hopping, (B) — Scaffold decoration, (C) — Fragment Linking, (D) — Fragment Merging, (E) — Fragment Growing.
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molecules, the scaffold, while maintaining similar activity. This

strategy has evolved with AI, enabling the generation of

alternative scaffolds and suggesting optimal substituents for target

interactions (20–23). Although this process results in structurally

distinct compounds, their binding mechanisms to the target

typically remain similar, positioning scaffold hopping more as an

optimization step than an exploratory one.

Scaffold decoration
In scaffold decoration, functional groups are added to the

scaffold to enhance interaction with the target, thereby improving

efficacy or selectivity. This approach is pivotal in the later stages of

drug development, allowing for the fine-tuning of molecular

properties and evaluating the influence of each substituent over

the activity (24, 25).
Fragment based design strategies
Distinct from other methods, this approach begins with small

molecules, named fragments, which have shown target-binding

affinity (26–29). These fragments are then elaborated upon using

various techniques. Fragment Linking involves joining two or more

fragments that interact with different sites on the target to create a

single molecule with improved binding affinity. Fragment Merging

combines overlapping fragments into a unified molecular structure.

Lastly, Fragment Growing expands the fragment by adding parts to

enhance its binding affinity to the target.
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De novo design methods

The fusion of AI with computational chemistry has led to the

development of de novo design methods, which have found

applications in areas ranging from drug discovery to materials

science (30). These innovative techniques are focused on synthesizing

a variety of new, diverse, and efficient chemical compounds. In contrast

to traditional AI applications that mainly predict molecular properties

or interactions with biological targets, these new methods are centered

on the creation of novel molecules. Their objective is to explore and

map extensive areas of the chemical space, going beyond the confines

of existing drug-like molecule databases.

De novomolecular design primarily employs two strategies. The

first, “Holistic Generation,” involves creating an entire molecule

from scratch, which is particularly useful for initial discovery phases

and for exploring chemical spaces broadly. The second strategy,

“Iterative Generation,” builds molecules in a step-by-step manner,

which is more suited for refining molecules or tailoring them for

specific purposes. A selection of de novo design methodologies

which have been developed over time can be found in Table 1.
Molecular representations and encodings

Molecules, being tangible entities that cannot be directly

manipulated through computations, need methods to represent

their properties and characteristics. These range from quantum
TABLE 1 A list of relevant de novo methodologies which have been developed over time.

Model Year
Molecular
Representation Mode

Chemical
Space Domain

Applicable
Strategies

GALILEO (31) 2023 2D Graph Iterative addition Synthon Hit Discovery, Hit to Lead Scaffold hopping,
Scaffold decoration

RJT-RL (32) 2022 2D Graph Iterative addition Trained Hit to lead,
Lead optimization

Scaffold hopping,
Scaffold decoration

MolPal (33) 2021 Fingerprints Active Learning Predefined Set Hit Discovery Chemical Space Sampling

STONED (34) 2021 SELFIES Random Mutation Valence Rules Hit discovery,
Lead optimization

Scaffold decoration

CReM (35) 2020 SMILES Iterative addition Matched
Molecular Pairs

Hit to Lead,
Lead optimization

Scaffold hopping,
Scaffold decoration

DeLinker (36) 2020 3D Graph Fragment linking Trained Scaffold Hopping Fragment based

GENTRL (37) 2019 2D/3D Graph Latent
Space Exploration

Trained Hit discovery,
Lead optimization

Chemical Space Sampling

JT-VAE (38) 2018 2D Graph Iterative addition Trained Hit Discovery, Hit to Lead Scaffold decoration,
Scaffold hopping

CoG (39) 2004 2D Graph Iterative addition Fragment Space Hit Discovery,
Lead optimization

Scaffold decoration,
Scaffold hopping

SYNOPSIS
(40, 41)

2003 2D Graph Iterative addition Synthon Hit Discovery,
Lead optimization

Scaffold decoration,
Scaffold hopping
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mechanics-based electron distribution models to basic chemical

formulas. The representations are communicated through various

encodings, such as the structural formula, which visually outlines

molecular topologies. Encodings for molecular structure generation

are typically view atoms as indivisible units connected by

covalent bonds.

String-based encodings like the Wiswesser Line Notation (42)

and SMILES (43) represent molecular topology of organic

molecules through character sequences. However, limitations in

SMILES led to the development of DeepSMILES (44), ensuring

syntactic correctness, and SELFIES (45), ensuring both syntactical

validity and chemical space adherence.

Graph-based encodings depict molecules as nodes (atoms)

linked by edges (bonds) (46), with 2D versions showing

connections and 3D versions adding spatial information. While

3D encodings offer more detail, they also add complexity in

algorithm training.

Feature-based encodings use molecular descriptors (47) or

fingerprints (48) to detail molecules based on properties or

experimental data, useful for comparison and property prediction

but less effective for structure creation.

AI can define encodings by converting molecular structures into

a continuous numerical space, which can be decoded back (8).

Trained on extensive molecular datasets, they capture essential

features and allow for the exploration of new molecular

structures. Challenges in learning encodings include accurately

representing chemical space and ensuring relevance to drug

development, as molecules close in latent space might have

divergent biological and chemical properties.
Overview of available databases

Access to extensive data is crucial to train algorithms. Key to

this is the availability of public databases. Prominent among these

are ChEMBL (49), PubChem (50), BindingDB (51), and DrugBank

(52), which offer essential bioactivity data for drug discovery.

ChemSpider (53) aggregates information on molecular properties

and available compounds. CompTox (54) is a resource for toxicity

and environmental hazards. GDB17 (55) lists organic compounds

up to 17 atoms, while QM9 (56) provides a subset with quantum

mechanically determined molecular conformations. ZINC (57)

catalogs commercially available compounds, and Enamine’s REAL

database lists synthesizable molecules.

The Protein Data Bank (PDB) (58) provides structural details of

proteins and nucleic acids, crucial for understanding molecular

interactions. Uniprot (59) offers protein sequences and functional

annotations, which help target selection and validation. The

Therapeutic Target Database (TTD) (60) focuses on well-studied

therapeutic targets.
Trained generative techniques

The field of de novo drug design has been significantly advanced

by generative algorithms, each offering unique advantages and
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applications. A training dataset of molecular structures is essential

for these techniques. These use a set of known molecules to train a

generative algorithm which is then used to generate novel molecular

structures. Key AI methods are summarized below, with a detailed

discussion available in the comprehensive review by Martinelli (7).
• Recurrent Neural Networks (RNNs): Predominant in

generative drug design, RNNs excel in generating new

molecular structures by identifying patterns in training

data. Notable developments include the first model by

Olivecrona et al. (61) and subsequent advancements like

DrugEx (62, 63), which emphasizes multi-objective

optimization, including toxicity considerations.

• Latent Space Exploration: Latent space exploration

methodologies are another common generative drug

design technique. Among these, VAEs have garnered

considerable attention, and were the first architecture

specifically applied to drug generation in 2017 (5).

Subsequent studies have reinforced their utility and

applicability (7, 8). VAEs function through a dual neural

network architecture, comprised of an encoder that maps

molecular structures into a latent space, and a decoder that

reverses this transformation. Models have been designed to

accommodate both 2D and 3D molecular representations

(64). The PASITHEA model introduced “deep dreaming”

to molecular design (65). This approach employs a deep

neural network, trained to predict specific molecular

properties. By reversing the network and inputting

desired property values, one can generate molecules

optimized for those properties, an improvement over the

more abstract latent space of VAEs.

• Generative Adversarial Networks (GANs): This architecture

involves two competing neural networks: a generator and a

discriminator. The generator’s primary objective is to create

molecular structures that the discriminator cannot

distinguish from genuine molecules. The first example in

generative drug design was ORGANIC (66) and other ones

were rapidly developed, such as ATNC (67) and MolGAN

(68) which improved the rate of valid molecules generated.

These methodologies have been applied especially in the field

of molecular optimization (69–71).

• Transformer-based Models: Drawing inspiration from

natural language models like BERT, transformers view

molecules as sequences of tokens. These models typically

employ a string based molecular representation. A notable

example is ChemBERTa (72). Transformers have also

shown utility in suggesting structural modifications

during the optimization phases of drug design (73, 74).
Rule-based techniques

Rule-based techniques, formulated before trained generative

algorithms, provide a structured approach to exploring the

chemical space. Combinatorial chemistry principles are used to
frontiersin.org
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construct a well-defined chemical space and a set of traversal rules

for these techniques. Combinatorial chemistry involves the creation

of molecules by combining molecular substructures or atoms based

on human-defined rules. These methodologies differ according to

the rules employed in the combinatorial process and the exploratory

algorithms used to select molecules to analyze from these

potentially extensive sets.

The chemical space can be defined in several ways:
Fron
1. Valence Rules: This approach focuses on combinations of

atoms adhering to valence rules. An example is GDB-17

(55), which lists all organic molecules with up to 17 atoms

of C, N, O, and S.

2. Fragment Spaces: Techniques like BRICS (75) and RECAP

(76) employ sets of small molecular fragments that are

linked together through a set of manually defined rules.

3. Synthon Method: Proposed in 2007 (77), it uses generalized

reactions on available reagents to enumerate synthetically

accessible molecules. Notable methodologies include

DOGS (78), Synth-On (79) , and pre-compiled

commercial libraries (80, 81).

4. Definition of Substituents: This method involves defining a

set of substituents that will be applied to a molecular scaffold,

similar to traditional scaffold decoration approaches.

5. Matched Molecular Pairs Analysis: First proposed in 2005

(82), it utilizes a catalog of structural transformations

known to enhance molecular properties. It is useful in

lead optimization (35, 83) and enhancing ADMET

properties (84, 85).
The main strategies employed to explore the defined chemical

space can be grouped in two categories:
1. Random Generation/Mutation: This approach often uses

molecular string representations to either create entirely

new molecules or iteratively change existing ones. An

example is the STONED algorithm (34).

2. Evolutionary Molecular Modification: These methods

begin with a molecule and applies atomic or fragment

modifications using evolutionary algorithms. It is

particularly effective for scaffold hopping or decoration.

Examples include GB-GA (86) and EvoMol (87) which use

valence rules. CoG (39) uses fragment spaces, while

SYNOPSIS (40, 41) and GALILEO (31) are based on

synthon spaces.
Active learning

Active Learning (AL) is a novel introduction to the field of de

Novo Drug Design for the exploration of chemical space. AL

operates on the principle that models can achieve higher accuracy

with fewer data by intelligently selecting their training samples.

Central to AL is the concept of uncertainty. AL addresses epistemic

uncertainty, related to the lack of knowledge in certain areas of the
tiers in Hematology 06
modeled space by the model (88). For instance, an unfamiliar

molecular structure can increase uncertainty in predictions due to

insufficient knowledge in that area. AL reduces uncertainty by

adding new data to the training set.

AL has traditionally been used to improve model predictions,

but is now also used to explore the chemical space. It identifies and

investigates molecules linked with high uncertainty, assumed to be

those presenting less-explored molecular structures. By doing so,

AL enables more efficient exploration with fewer experiments.

These approaches employ AI techniques like Bayesian machine

learning algorithms and Ensemble learning to estimate uncertainty.

The process follows an iterative process, it identifies molecules with

high uncertainty, tests them and adds the results to the training set.

This results in the refinement of the model and the expansion of the

training set, which is effectively the set of screened compounds.

Predictions from the model are generally discarded, as the method

is primarily used to explore and not predict. Unlike the methods

previously outlined, this methodology is purely explorative and

does not generate novel structures, the structures for this

exploration can come from different sources, such as databases,

combinatorial chemistry, or generative algorithms. Strategies that

include molecules predicted to have desirable properties can be used

to combine the exploration and optimization steps. In fact, it has

been shown that purely exploratory approaches effectively explore

the chemical space but do not identify many active compounds

(89). A schematic representation of the process using AL is

exemplified in Figure 3.

However, AL requires regular generation of new data, making it

more suited for virtual rather than experimental screening. While

these strategies do not improve the accuracy of the prediction, they

optimize the quantity of tested compounds; making it possible to

screen larger libraries. Despite this, it has been applied in the

context of automated experimental testing (90).

The application of AL to drug discovery has been explored since

the early 2000s, but most of these studies were retrospective in

nature (91). The focus has only recently shifted towards identifying

and evaluating specific AL techniques that could be effectively

integrated into the drug discovery process (33), but it is still an

emerging field with slow and limited adoption (7, 89). Three

experimental high-throughput screening results datasets were

used to demonstrate the potential of AL, showing a sixfold

increase in Enrichment Factor over traditional virtual screening

methods (89).
Virtual screening

Virtual screening is a key technique in drug design used to

assess and prioritize molecular candidates. It uses principles from

chemistry, statistics, and empirical data to predict how molecules

will behave in terms of activity, toxicity, and suitability as drugs.

Since it’s expensive and complex to synthesize and test every

molecule created by AI, virtual screening is essential. It helps focus

on the most promising molecules, making drug discovery more

efficient. These methods also estimate molecular properties for
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machine learning training when experimental data is scarce.

However, they can’t replace actual laboratory tests. When

generative algorithms are trained exclusively on computed data,

their performance is governed by the accuracy of the underlying

theoretical models. It is advisable to use experimental data to train

algorithms and to use computational techniques to filter and

prioritize whenever feasible.

In the early stages of drug discovery, virtual screening is crucial

for identifying diverse and unique molecules rather than just

focusing on similar, high-affinity compounds.
Rule-based filtering

Rule-based filters serve as rapid evaluation systems to categorize

molecules based on predetermined criteria related to properties like

bioactivity or synthetic feasibility. These systems typically use two-

dimensional molecular structures to pinpoint promising candidates

and weed out potential “false positives”—molecules that initially

appear viable but fail in later testing stages. Tools like Lipinski’s

Rule of 5 (92) assess oral bioavailability, while the QED metric (93)

estimates therapeutic potential. Structural filters, such as PAINS

(94) and BRENK (95), identify molecules that could interfere with

bioassays or prove unsuitable as lead candidates. Additionally,

instruments like the Synthetic Accessibility Score (96) and

automated retrosynthetic analysis (97–99) aid in eliminating

hard-to-synthesize molecules. However, it’s important to

recognize that while these methods are broadly useful, they are

primarily tailored for known drugs and targets. This specialization

can limit their applicability in assessing novel structures (100).
Frontiers in Hematology 07
Ligand-based virtual screening

Ligand-based virtual screening, employed in drug discovery

when a target’s structure is unknown, it is computationally simple

and identifies ligands with similar binding characteristics. Its

effectiveness hinges on the availability of known ligands

interacting with the target, a limitation when such data is scarce.

In de novo design, focusing on structurally similar compounds is

less preferred and as such these methodologies are often

not appropriate.

Key techniques in this approach include Quantitative Structure-

Activity Relationship (QSAR), which correlates molecular structure

with biological activity, aiding in predicting the behavior of new

molecules in terms of activity and toxicity (62, 101, 102).

Pharmacophore Modeling identifies essential molecular features for

biological activity, using known ligands to create models for finding

new molecules with similar characteristics (31, 103, 104). Structural

Similarity assesses the resemblance between molecules, facilitating the

discovery of new compounds similar to active ones, or exploring

diverse molecular structures for further study (17, 48, 105).
Structure-based virtual screening

Structure-based virtual screening is a technique in drug discovery

that uses the 3D structures of both the drug molecule and its target. It

can use either experimentally determined structures or accurate

computational models of the target, made through methods like

homology modeling or AI tools like AlphaFold (106, 107). This

approach can be useful even without data on binding ligands.
FIGURE 3

Iterative selection process through active learning.
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Molecular Docking is commonly used in structure-based virtual

screening to predict binding modes (108). This knowledge aids in

evaluating the interaction’s quality and provides comparative

insights based on other known ligands (109–111). Molecular

simulations, typically conducted through Molecular Dynamics or

Monte Carlo techniques, aim to predict the structural,

thermodynamic, and kinetic attributes of the molecule-target

interaction (112). These simulations can be computationally

demanding, making them most effective when focused on a

refined list of candidates. One common application is the

estimation of the Free Energy of binding through methods like

Alchemical Free Energy, Thermodynamic integration or Free

Energy Perturbation (113).
Experimental assays in
drug development

Drug development involves several experimental assays to test a

drug’s effectiveness, selectivity, and safety. These tests, essential at

every stage of development, fall into three main categories:

biochemical, biophysical, and cell-based (114, 115).

Biochemical Assays: Used early in drug development, these tests

measure how a drug interacts with its target at a molecular level by

measuring its effects on function, often using indicators like

fluorescent signals. Common types include FRET and

ALPHAscreen. They are cost-effective and suitable for large-scale

screening, but need follow-up tests for confirmation.

Biophysical Assays: These assays focus on the direct physical

interaction between a drug and its target rather than functional

outcomes. Techniques like X-ray crystallography and NMR are

used here. They are more resource-intensive but provide detailed

information about the interaction, helping to refine drug

candidates (115).

Cell-Based Assays: Conducted throughout drug development,

these tests assess a drug’s effect within living cells. They are crucial

for understanding a drug’s overall impact, including its ability to

enter cells and potential side effects. Techniques like cell viability

and reporter gene assays are commonly used.

After these laboratory assays, promising drug candidates are

then tested in animal models to further assess their efficacy and

safety before moving on to human clinical trials.
Evaluating generative models

Evaluating the efficacy of generative models is essential to select

the most suitable model for distinct tasks and to pave the way for

innovations that outpace current constraints. A variety of metrics

have been devised to serve this purpose.

Assessing how thoroughly a generative model explores the

chemical space is central to its evaluation, with various metrics

offering different perspectives on this crucial aspect. The Internal

Diversity Metric gauges the structural diversity within generated

compound collections, whereas the concept of richness focuses on

counting the number of unique compounds produced (116). The
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Fréchet ChemNet Distance (117) provides numerical insights into

the alignment of generated molecules with a target distribution,

serving as an indicator of potential biases. Complementing these is

the Coverage Score (118), which quantifies the model’s ability to

sample molecules from larger datasets. The #Circles Metric (119)

takes a more comprehensive approach by examining the overlap in

structural diversity between two chemical sets and assessing the

impact of introducing new molecules to the sampling range. For a

more detailed exploration of these and other methodologies, the

work by Xie et al. (119) serves as a valuable resource.

Beyond metrics, benchmarking suites like GuacaMol (116) and

MOSES (120) provide holistic evaluations by employing a range of

these metrics across different tasks, which include both sampling of

the chemical space and fine-tuning of specific physicochemical

properties. Ciepliński et al. (121, 122) have developed a

framework that evaluates models based on their effectiveness in

molecular docking simulations with protein targets, going beyond

simple physicochemical assessments which are often insufficient

when optimizing a drug structure. This approach has revealed

limitations in current models, including the generation of

improbable molecules and a tendency to underperform compared

to the top molecules in public databases. Gao and Coley (97) have

introduced an approach to assess the real-world synthesizability of

generated molecular structures employing retrosynthetic

analysis tools.
Experimentally validated approaches

In 2018, Merk et al. (123) set a landmark by using Generative AI

to design and then synthesize and experimentally validate inhibitors

for the nuclear receptors RXRa/b/g and PPARa/g/d. They utilized a
deep RNN, trained on a vast dataset of over 540,000 SMILES of

bioactive compounds. This was fine-tuned using 25 fatty acid

mimetics known for their agonistic activity. The system generated

1,000 molecular structures, with 93% being chemically valid and

90% being unique. Out of 49 computationally high-scoring

compounds, five were synthesized, and four demonstrated

promising bioactivities. However, these novel molecules

resembled the training set compounds, highlighting the need for

further innovation in the generation of diverse structures.

DDR1, a kinase implicated in cancer and Inflammatory bowel

disease, is a promising therapeutic target. Zhavoronkov et al. (37)

demonstrated the power of deep learning in a ‘hit-to-lead’

optimization campaign, identifying a DDR1 inhibitor in 46 days.

By leveraging an existing DDR1 inhibitory molecular scaffold, they

generated 30,000 structures adjusting the substituent groups of this

scaffold to enhance its pharmacological efficacy which were then

computationally screened. From this, six were synthesized based on

their synthetic feasibility and target profile. Two showcased potent

inhibitory and pharmacokinetic properties.

In 2022, Xiaoqin et al. (24) also utilized deep learning to design

selective inhibitors for DDR1 using a generative scaffold decorator.

Refining a scaffold active against FGFR but also interacting with

DDR1, they generated over 19,000 molecular structures. After
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filtering and computational simulations two compounds were

synthesized. Both demonstrated significant anti-inflammatory

activity in animal tests, with one emerging as the most selective

DDR1 inhibitor to date. These studies underscore the potential of

generative AI in accelerating ‘hit-to-lead’ drug discovery campaigns.
Applications in oncology and hematology

The application of de novo techniques in oncological drug design

has primarily focused on kinase targets, largely due to the extensive

research and abundant data availability (124). As AI methodologies

advance, there’s a growing expectation that these tools will be applied to

lesser-studied targets. While these studies have yielded successful

results, the molecules generated do not show significant structural or

binding mode differences compared to known ligands. Consequently,

de novo techniques have shown more success in drug optimization

rather than in the discovery of entirely novel hits.

In 2021, Yu et al. (22) undertook a scaffold hopping campaign

to identify novel structures for JAK1 inhibition. To enhance this

process, they used a neural network with Graph-Based Variational

Autoencoders, training the model on scaffolds derived from drug-

like compounds and fine-tuning it with the structure and bioactivity

of known kinase inhibitors. The objective was to hop through

different scaffolds while retaining similar side chains, as these two

were encoded separately into the model. With a known JAK1

inhibitor as the starting scaffold, they generated 30,000 molecular

structures. These underwent a screening process considering

physicochemical properties, structural alerts, and their alignment

with established inhibitors. A QSAR model and molecular docking

were used to prioritize 25 molecules. 7 of these were synthesized, all

of which demonstrated JAK1 inhibitory potential in experimental

trials. While the inhibitory activity of the identified molecules is

significant, they did not conduct kinase screening tests to assess

selectivity, and in consequence it is difficult to appreciate the real

value of the compounds.

In 2022, Jang et al. focused on FLT3 (125), a critical kinase in

hematopoiesis. When mutated in acute myeloid leukemia (AML), it

is often associated with adverse outcomes. Their approach involved

enhancing the FLT3 selectivity of a previously active molecule

against breast cancer cells, which was predicted to interact with

FLT3. A deep learning generative model was trained on drug-like

SMILES structures and fine-tuned with known FLT3 binders. The

model generated over 10,000 structures. These were filtered, and the

resulting molecules were ranked based on their binding affinities

derived from Alchemical Free Energy calculations. The most

promising compound was synthesized and tested in cellular

cultures and on the protein. It showed affinity for the mutated

FLT3 variant and inhibited FLT3-mutated AML cell proliferation.

The study, however, has limitations: it leaned heavily on molecular

docking simulations without experimental assays for kinase

selectivity, and did not test on healthy cell lines, leaving potential

toxicity unexplored. Additionally, the molecules produced strongly

resembled known FLT3 inhibitors, questioning the novelty of

molecules designed through this approach. The findings are

promising, but comprehensive experimental validation is required.
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In their 2023 study, Zhu et al. engaged in a ‘hit-to-lead’

campaign targeting SIK2 (25). They utilized a proprietary AI

system, with an existing inhibitor as the reference, to produce

molecules with varied substituents. Each molecule, out of the

5,000 candidates, was docked onto the protein structure modelled

by AlphaFold and evaluated on structural and protein interaction

criteria. They were then grouped into 56 clusters based on structural

similarities and hydrogen bond interactions. From each cluster, two

molecules were synthesized and underwent in vitro and in vivo

testing. One molecule stood out for its potent inhibitory activity and

ideal ADMET properties.
Discussion

In this article, we have explored a range of Artificial Intelligence

(AI) methodologies applied in drug design. Currently, the field is

evolving, with these methodologies primarily applied in

experimental settings. To date, the results, while promising in

accelerating and standardizing drug optimization for known

targets, have not substantially led to the creation of novel de novo

structures with distinct inhibition patterns from existing inhibitors.

The aspiration to simplify and automate drug design for new targets

or novel targeting patterns remains largely unfulfilled. Despite the

rapid development of these methodologies, there is still a significant

journey ahead before we can identify a set of methodologies robust

enough to be widely adopted as standard practices. This journey will

necessitate extensive experimental validation of both current and

future techniques. The initial positive results, however, do suggest a

potential for broader adoption in the future. Trained generative

algorithms have notably altered the landscape of de novo drug

design. Initially received with skepticism, focusing more on

theoretical potential than practical application, these techniques

have gradually gained recognition. This is particularly evident with

some AI-designed drugs progressing to clinical trials. Yet, their

success has largely been confined to well-characterized protein

targets, indicating a notable limitation in their ability to explore

new or under-researched biological targets.
Challenges and limitations

While the potential of AI to drive de novo molecular design is

significant, this field faces several challenges. AI methodologies have

proven successful in targeting well-studied proteins, yet

advancements in the design of molecules significantly different

from known ligands remain limited. Available methods typically

optimize molecules within established chemical spaces, raising

questions about their applicability to genuine de novo drug

design. The challenge is determining whether the current

methodologies need refinement, or if the approach itself is

unsuitable for this type of problem.

A key area of focus has been trained generative algorithms,

which have brought new life to de novo drug design. Their ability to

explore chemical spaces beyond their training set structures is still a

concern (122). Efforts are ongoing to expand the range of molecular
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structures these algorithms can explore (7, 126). Yet, it remains

challenging to assess their effectiveness in spanning chemical space.

There are metrics for comparing molecule sets, but no methodology

currently enables the enumeration of the chemical space accessible

to generative algorithms. Such a methodology would be crucial for

comparing the diversity and breadth of chemical spaces generated

by these algorithms with those from combinatorial chemistry and

existing chemical databases.

Data availability is also a challenge for trained generative

algorithms. The bias towards well-explored molecular structures

and targets in currently available datasets can limit their ability to

generate diverse and innovative molecular designs for new

targets (11).

Another significant limitation is the uncertainty regarding the

quantity of molecules that need to be sampled from these

algorithms to find a promising hit. These algorithms are expected

to guide experimental design, but there are no comprehensive

benchmarks of their effectiveness. Their limited application in

large-scale hit discovery programs makes it difficult to assess their

suitability for extensive de novo drug discovery and the resources

needed. These methods have the potential to streamline the hit

discovery process and reduce the number of necessary tests.

However, this efficiency must be balanced against the higher

synthetic efforts required for molecules generated through these

algorithms, as opposed to those identified via high-throughput

screening from commercial compound libraries. While

advancements in synthesizability have been made, the necessity

for custom synthesis will always persist. It is important to determine

the extent to which these algorithms can reduce testing needs.

Virtual screening can play a significant role in filtering compounds.

This process predominantly depends on structure-based methods,

as ligand-based methods are less effective outside well-characterized

chemical spaces. The drawback of this reliance is the increased

demand for computational resources, which exceeds that of

traditional virtual screening methods. This raises questions about

the circumstances under which these novel AI methodologies may

offer advantages over established techniques. Determining the right

balance between computational effort and the efficiency of hit

discovery remains a challenge.

The synthesizability of molecules generated by AI algorithms

remains a challenging issue (4, 7, 97, 124). Despite this, significant

progress has been made towards addressing this problem. New

algorithms that can generate molecules more amenable to synthesis

and improved methods for evaluating synthesizability, are expected

to mitigate this limitation in the near future.

Rule-based systems offer an advantage over trained

generative techniques in that they do not require training data

and allow the enumeration of the explorable chemical space.

Despite their longstanding presence, these systems have been

primarily used to optimize hits or leads, with limited application

in full de novo design. The success of these methods depends on

the formulation of effective rules for generation. These rules must

not only ensure synthesizability, but also ensure the creation of a

diverse chemical spaces. Recent progress in this area involves

generating synthon spaces from a set of generic reactions,

potentially leading to more easily synthesizable molecules. The
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limited availability of publicly available reactions sets poses

limitations, and it is unclear how much these methods improve

synthesizability over other approaches.

Active Learning (AL) shows promise in optimizing virtual

screenings, but integrating experimental data with computational

results is a problem yet to be resolved. A methodology allowing such

integration would enable a more targeted search process.

Another focus area is multi-objective optimization, which is

crucial for developing effective and safe drugs. The ligands that bind

effectively to the target must also have desirable physicochemical

properties, selectivity, and an acceptable ADMET profile. Advances

are being made in this field, using multi-objective optimization

techniques from other disciplines, raising hopes for a solution in the

near future.

Finally, the widespread application of these methodologies is

hampered by their limited diffusion and ease of use. De novo

design requires an integrated approach combining computational

science, chemistry, and biology. Many models lack this

interdisciplinary aspect and are therefore computationally

sophisticated but less practical from a chemical or biological

standpoint. This gap restricts their utility, especially for

experimental chemists who require user-friendly tools. There are

some commercial software with intuitive interfaces, but their use

is still limited by the need for extensive computational knowledge

and high costs (127, 128).
Future directions

Methodologies for de novo drug design utilizing AI have been

developed, yet their application in large-scale campaigns remains

limited. The effectiveness of these methods compared to traditional

approaches is still an open question. Therefore, a critical

development area involves devising metrics to compare these AI

methodologies against conventional methods and using de novo

design in larger drug development campaigns.

Advancements in broadening the chemical space accessible to

trained generative algorithms are being done (126). Future progress

will be key in assessing whether these algorithms can create novel

molecules distinct from their training data. This will clarify if such

limitations are inherent to these methods or if they can be surpassed

for more innovative molecular design. The capability of these

algorithms to generate novel structures will significantly indicate

their flexibility and influence in drug discovery.

Active Learning (AL) emerges as a potent tool in AI-based de

novo drug design. Primarily used in compound screening, AL’s

potential extends to optimizing identified hits—an area ripe for

exploration. These methods could potentially replace evolutionary

algorithms in rule-based systems, emphasizing the generation of

unique or underexplored molecules. Currently, ensemble methods

dominate AL, but integrating Bayesian models, renowned for their

efficacy (88), could significantly enhance the exploration of

chemical spaces.

Transitioning to the next phase of development, hybrid systems

that merge exploratory and trained methodologies present a

promising path for comprehensive chemical space exploration.
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Rule-based systems efficiently probe molecular structures akin to

identified hits. In contrast, trained generative algorithms have

proven effective in refining structures within explored chemical

spaces. A cohesive de novo drug generation pipeline might first

employ AL for rapid hit discovery, followed by Rule-Based systems

for initial optimization. Subsequently, trained generative algorithms

could refine these hits further, offering a layered approach

composed of broad initial scans followed by focused lead tuning.

This integrated strategy could substantially advance de novo drug

design capabilities.

Furthermore, retrosynthetic analysis tools are advancing,

particularly in addressing synthesizability challenges. Improvements

in these tools may lessen the emphasis on generating only synthetically

feasible molecules, paving the way for more creative and expansive

molecular design.
Conclusion

Artificial Intelligence (AI) holds potential to significantly

impact de novo drug design, yet it’s important to approach its

current state and future prospects with a balanced view. The

challenges outlined in this review are critical, and addressing

them is key to harnessing AI’s full potential in this field. While

we anticipate improvements in the efficiency and effectiveness of

drug development through AI, it’s important to recognize that these

advancements will be gradual and contingent upon overcoming

significant hurdles.

AI methodologies have introduced noteworthy changes in drug

design, including improvements in algorithmic efficiency and the

exploration of new chemical spaces. However, it’s crucial to note

that these advancements are still in their nascent stages. The

transformative impact of AI on drug design is promising, but it is

not without its complexities and limitations.

Our discussion has covered a range of AI methodologies,

exploring their integration into the drug discovery process and

highlighting both their strengths and weaknesses. We have

provided examples of AI applications in drug design, demonstrating

the rapid development in this area. However, it’s evident that most AI

algorithms have found more success in optimizing molecular

structures than in groundbreaking de novo design.

Looking to the future, the role of AI in drug design appears

promising, but its trajectory is not without uncertainty. Developments
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in algorithmic sophistication and application breadth are anticipated,

yet they will likely face challenges in surpassing the current

limitations. As the field evolves, it is hoped that AI will not only

supplement but also enhance traditional drug design methodologies.

However, this evolution will require a careful and considered

approach, ensuring that new technologies are robust, reliable, and

truly beneficial in the quest for novel therapeutic solutions.
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least be able to design molecules that dock well: A new benchmark. J Chem Inf Model
(2023) 63(11):3238–47. doi: 10.1021/acs.jcim.2c01355

123. Merk D, Friedrich L, Grisoni F, Schneider G. De novo design of bioactive small
molecules by artificial intelligence. Mol. Inf (2018) 37:1700153. doi: 10.1002/
minf.201700153

124. Stanley M, Segler M. Fake it until you make it? Generative de novo design and
virtual screening of synthesizable molecules. Curr Opin Struct Biol (2023) 82:102658.
doi: 10.1016/j.sbi.2023.102658

125. Jang SH, Sivakumar D, Mudedla SK, Choi J, Lee S, Jeon M, et al. PCW-A1001,
AI-assisted de novo design approach to design a selective inhibitor for FLT-3(D835Y)
in acute myeloid leukemia. Front Mol Biosci (2022) 9:1072028. doi: 10.3389/
fmolb.2022.1072028

126. Lee S, Jo J, Hwang SJ. Exploring chemical space with score-based out-of-
distribution generation. [preprint]. (2022). doi: 10.48550/arXiv.2206.07632

127. Ivanenkov YA, Polykovskiy D, Bezrukov D, Zagribelnyy B, Aladinskiy V,
Kamya P, et al. Chemistry42: an AI-driven platform for molecular design and
optimization. J Chem Inf Model (2023) 63:695–701. doi: 10.1021/acs.jcim.2c01191

128. Bleicher LS, Van Daelen T, Honeycutt JD, Hassan M, Chandrasekhar J, Shirley W,
et al. Enhanced utility of AI/MLmethods during lead optimization by inclusion of 3D ligand
information. Front. Drug Discov (2022) 2:1074797. doi: 10.3389/fddsv.2022.1074797
frontiersin.org

https://doi.org/10.1021/acs.jctc.2c00114
https://doi.org/10.1016/j.drudis.2020.07.024
https://doi.org/10.1038/nrd.2016.123
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acs.jcim.8b00234
https://doi.org/10.1021/acs.jcim.2c00258
https://doi.org/10.48550/arXiv.2112.12542
https://doi.org/10.3389/fphar.2020.565644
http://arxiv.org/abs/2006.16955
https://doi.org/10.1021/acs.jcim.2c01355
https://doi.org/10.1002/minf.201700153
https://doi.org/10.1002/minf.201700153
https://doi.org/10.1016/j.sbi.2023.102658
https://doi.org/10.3389/fmolb.2022.1072028
https://doi.org/10.3389/fmolb.2022.1072028
https://doi.org/10.48550/arXiv.2206.07632
https://doi.org/10.1021/acs.jcim.2c01191
https://doi.org/10.3389/fddsv.2022.1074797
https://doi.org/10.3389/frhem.2024.1305741
https://www.frontiersin.org/journals/hematology
https://www.frontiersin.org

	De novo drug design through artificial intelligence: an introduction
	Introduction
	Drug development campaigns
	Phases of drug discovery
	Target identification and validation
	Hit discovery
	Hit-to-lead
	Lead optimization

	Drug design strategies
	Chemical space sampling
	Scaffold hopping
	Scaffold decoration
	Fragment based design strategies


	De novo design methods
	Molecular representations and encodings
	Overview of available databases
	Trained generative techniques
	Rule-based techniques
	Active learning

	Virtual screening
	Rule-based filtering
	Ligand-based virtual screening
	Structure-based virtual screening

	Experimental assays in drug development
	Evaluating generative models
	Experimentally validated approaches
	Applications in oncology and hematology

	Discussion
	Challenges and limitations
	Future directions

	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


