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The convergence of 5G wireless networks and edge computing enables new

edge-native applications that are simultaneously bandwidth-hungry, latency-

sensitive, and compute-intensive. Examples include deeply immersive

augmented reality, wearable cognitive assistance, privacy-preserving video

analytics, edge-triggered serendipity, and autonomous swarms of

featherweight drones. Such edge-native applications require network-aware

and load-aware orchestration of resources across the cloud (Tier-1), cloudlets

(Tier-2), and device (Tier-3). This paper describes the architecture of Sinfonia,

an open-source system for such cross-tier orchestration. Key attributes of

Sinfonia include:

• support for multiple vendor-specific Tier-1 roots of orchestration, providing

end-to-end runtime control that spans technical and non-technical criteria;

• use of third-party Kubernetes clusters as cloudlets, with unified treatment of

telco-managed, hyperconverged, and just-in-time variants of cloudlets;

• masking of orchestration complexity from applications, thus lowering the

barrier to creation of new edge-native applications.

We describe an initial release of Sinfonia (https://github.com/cmusatyalab/

sinfonia), and share our thoughts on evolving it in the future.
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1 Introduction

The roots of Edge Computing reach back over a decade (Satyanarayanan et al., 2009).

It was motivated by the observation that the consolidation of cloud computing has

negative consequences. Consolidation lengthens network round-trip times (RTT) from

mobile users and increases cumulative ingress bandwidth demand from Internet of

Things (IoT) devices. These negative consequences stifle the emergence of new real-time,

sensor-rich applications such as deeply-immersive augmented reality (AR) and streaming

video analytics. Edge computing creates the 3-tier architecture (Satyanarayanan, 2017;

Satyanarayanan et al., 2019) shown in Figure 1. The network proximity of Tier-2 to Tier-3,
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and the cloud-like computing resources available at Tier-2,

together enable new edge-native applications that are

simultaneously bandwidth-hungry, latency-sensitive, and

compute-intensive. By enabling offloading of compute-

intensive operations at very low latency to Tier-2, edge

computing helps Tier-3 to overcome stringent design

constraints such as weight, size, battery life, and heat

dissipation. It also improves bandwidth scalability by avoiding

excessive bandwidth demand anywhere in the system.

Sinfonia is an open source system that enables an app

launched on a Tier-3 device to find and dynamically associate

with its software back-end on a Tier-2 cloudlet. This association

is transient, and it may involve dynamic provisioning and

launching of the back-end software on the chosen cloudlet.

The association is typically stable for periods ranging from a

fewminutes to a few hours, and may be broken for many reasons:

e.g., the app is terminated, the device moves by a large distance,

the cloudlet becomes overloaded, etc. Sinfonia can then be used

to find a new cloudlet. It can also be proactively invoked to

prepare for a seamless handoff across cloudlets.

2 Problem statement

The discovery and association problem addressed by Sinfonia

is framed by Figure 2. Myriad Tier-3 devices such as drones,

video cameras, and wearable or hand-held devices are widely

dispersed at planet scale. These are typically owned and self-

managed by individuals or corporate entities. A large number of

cloudlets, deployed by various service providers using diverse

FIGURE 1
Three-tier system architecture (adapted from (Satyanarayanan et al., 2019)).

FIGURE 2
Associating devices (Tier-3) with cloudlets (Tier-2).
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business models, are also widely dispersed. For simplicity,

Sinfonia assumes that every cloudlet is a Kubernetes cluster.

In contrast to serverless functions, such as those supported by

AWS GreenGrass (https://aws.amazon.com/greengrass/),

Sinfonia is meant for settings where the back-end may involve

non-trivial state. The debate between stateless and stateful

implementations of distributed systems is an old one, going

back over 30 years (Ousterhout, 1991). In Sinfonia, the one-

time cost of cloudlet discovery and provisioning is amortized

over many operations that are performed during the lifetime of

the association. The cloudlet discovery problem can be simply

stated as follows:

For an app launched on a Tier-3 device, which is the optimal

cloudlet for offloading operations in the near future?

This simple question has a complex answer because

“optimal” is a slippery term. First, it is important to

distinguish between network proximity and physical proximity.

As Figure 1 indicates, edge computing requires network

proximity (i.e., low latency and high bandwidth) between

Tier-3 and Tier-2. Physical proximity is neither necessary nor

sufficient to ensure network proximity. At the speed of light in

fiber, 1 ms translates to 200 km of physical distance. With a 5G

first hop below 5 ms one-way, an end-to-end RTT below 15 ms

can be achieved with a cloudlet that is physically quite far away.

This is low enough for deeply immersive AR. In fact, this

physically distant cloudlet may be a better choice than a

nearby cloudlet with a heavily-loaded ingress network. That

said, it is typically the case that more distant cloudlets are

reached over more network hops. Each network hop is a

potential bottleneck, and adds some queueing delay. Hence,

there is a weak correlation between physical and network

proximity.

Second, network proximity alone cannot ensure choice of an

optimal cloudlet. What matters is total end-to-end offloading

performance. In AR jargon, this is referred to as motion-to-

photon latency (MTPL). It is a metric consisting of both

transmission and processing components, and is measured at

a Tier-3 device by benchmarks such as OpenRTiST (George et al.,

2020). In this benchmark, MTPL consists of (a) pre-processing

and encoding of a video frame captured at a Tier-3 device; (b)

uplink transmission of the frame from Tier-3 to Tier-2, including

any delays due to contention on a shared wireless network; (c)

processing at Tier-2, including queuing delays and cache/TLB

interference on shared cloudlet resources such as CPUs, GPUs

and memory; (d) downlink transmission of the transformed

video frame, including possible network contention delay; (e)

decoding and rendering at the Tier-3 device. Items (a) and (e) are

fixed for a given Tier-3 device. Network proximity only affects

items (b) and (d); it does not impact item (c). The relative

importance of (c) vs. (b)+(d) depends on how much processing

needs to be done, vs. the amount of data that needs to be

transferred. This is clearly application-dependent. In some

cases (e.g., recognition of all faces in an image), it is also

highly data dependent; in other cases (e.g., inference for scene

classification by a deep neural network (DNN)), it is not. The

available hardware resources at Tier-2 also matter. For certain

algorithms (e.g., DNN inferencing), a GPU makes a huge

difference; for others (e.g., a Viola-Jones face detector (Viola

and Jones, 2001)), a GPU is irrelevant. In summary, MTPL is a

very complex dynamic metric with no simple mapping to static

metrics of processing or networking. This can lead to counter-

intuitive outcomes. As an example, for DNN inferencing on the

Android device at the bottom extreme left of Figure 2, Cloudlet-2

rather than the more powerful and closer Cloudlet-1 may be the

better choice at the moment because Cloudlet-1’s GPU is heavily

overloaded. However, for a different app that does not use a GPU,

Cloudlet-1 may indeed be the better choice.

Third, non-technical factors may influence the definition of

“optimal.” For example, app creator A may have a business

relationship with cloudlet provider B. As a result, it may be more

profitable for A to offload its app to a cloudlet from B rather than

to one from C or D. As long as B’s cloudlet can provide an

adequate QoE for A’s user (e.g., meet the acceptable MTPL

bound for the app), technical optimality of the alternative

cloudlets is irrelevant. In general, non-technical factors may

span a wide range of business, legal and societal

considerations. Consider, for example, the futuristic scenario

presented in Figure 3. In this scenario, Ron sees no reduction

in QoE but the AR gamers suffer poorer QoE. This resource

allocation policy is the moral equivalent of reserved parking

spaces for the disabled in everyday life. It is an example of

differentiated QoE across users. More generally, the ability to

offer differentiated QoE enables new business models. Higher-

paying customers can be offered a better definition of “optimal

cloudlet” than lower-paying customers.

3 Solution requirements

Based on the discussion in Section 2, as well as current trends

in edge and cloud computing, we list below the requirements of a

good cloudlet discovery mechanism.

First and foremost, such a mechanismmust allow end-to-end

control. Edge-native applications are diverse, complex, and

stateful, with behavior and resource needs that defy simple

characterization. New releases of an app may change its

behavior and resource needs. Attempting to characterize such

complexity in declarative form is unlikely to be successful. The

logic to choose from available options is best expressed as code

provided by the app developer. Sinfonia should center the

discovery process around the invocation of such app-

specific code.

Second, emerging edge computing trends should be

leveraged. Clusters based on Kubernetes orchestration are
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emerging as a de facto standard for cloudlets. While alternatives

such as OpenStack are available, there is value in focusing an

initial implementation on a single underlying abstraction. In the

Kubernetes ecosystem, the Prometheus resource monitoring

subsystem (https://github.com/prometheus-operator/kube-

prometheus) has gained traction. Monitoring by Sinfonia for

within-cloudlet orchestration should leverage Prometheus, if

possible.

Third, a diversity of Tier-2 business models is emerging, with

no clear winners yet in terms of specific models or companies.

This may continue for a number of years, before there is clarity in

this space. Major Tier-1 players themselves embrace this diversity

regarding Tier-2. AWS Wavelength (https://aws.amazon.com/

wavelength/), for example, extends Tier-1 abstractions to Tier-2

sites that are physically operated by telco entities such as

Vodafone and Verizon (Vodafone Press Release, 2021; Ashraf,

2022). In contrast, AWS Snowball Edge (https://docs.aws.

amazon.com/snowball/index.html) and Microsoft Azure Stack

Hub (https://azure.microsoft.com/en-us/products/azure-stack/

hub/) are physically located on customer premises. Sinfonia

should embrace this diversity of deployment models, and

minimally constrain current and future business models in the

open-source space. In particular, it should enable participation

by any entity that wishes to stand up a Tier-2 presence, even if it

has no Tier-1 or Tier-3 presence. Exactly how their business

models might work remains an open question. Blockchain-based

micropayment solutions may play a role here. To accelerate the

roll-out of edge computing and thereby catalyze the creation of

new edge-native applications, Sinfonia should aim to simplify

participation by any Tier-2 entity. It should support the case of a

Tier-3 device owner installing a standalone cloudlet on her

private wireless network, and seamlessly enabling its discovery

as the optimal cloudlet. Canonical’s “Ubuntu Orange Box” was

an early example of such a hyperconverged cloudlet (Vaughan-

Nichols, 2014). Although this product is now discontinued, we

posit that similar just-in-time cloudlets will be widely used in the

future (Section 4.4).

Finally, independent of Sinfonia, many proprietary

ecosystems for edge computing are emerging. Examples

include AlefEdge (https://www.wearealef.com/), Equinix

(https://www.equinix.com/), Nodeweaver (https://

nodeweaver.eu/), and StackPath (https://www.stackpath.

com/). These walled gardens fragment the edge ecosystem.

At the same time, their presence benefits edge computing as a

whole. Especially in the early days of edge computing, when

coverage by major players is poor, it is valuable to have many

service providers with different coverage areas and service

niches. For the largest market and easiest deployability,

edge-native applications should be usable with any of

these walled gardens. Unfortunately, this complicates the

apps, making their initial release and maintenance harder.

Sinfonia has the opportunity to simplify life for the app

developer. By subsuming the complexity of these diverse

walled gardens and providing a single unified interface,

Sinfonia can lower the barrier to entry of new edge-native

applications. This is analogous to printer drivers in an

operating system that allow diverse printers, each with its

unique proprietary technology, to coexist; a document can be

easily printed on any of them. If a developer writes code

using the Sinfonia API, the resulting app should be able to

use any supported walled garden with no code modifications.

In this situation, Sinfonia can treat the entire orchestration

process of the walled garden as a black box. It need only act as

an authorized agent of the app.

FIGURE 3
An everyday AR scenario from 2030.
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4 Sinfonia design and implementation

Befitting its role as a cross-tier mechanism, Sinfonia has

code components that reside at Tier-1, Tier-2 and Tier-3. We

refer to these as ST-1, ST-2 and ST-3 respectively. The

workflow begins when an app at Tier-3 is launched, and

requests ST-3 on its device for a backend on a cloudlet. ST-

3 returns a short list of plausible targets, much like hostname

lookup in DNS. We interpret “short” to mean “3 or less; ” in

many cases, it may just be one. Each target is a VPN endpoint

to access the private IP address space where the backend is

deploying. Sinfonia views all choices in the short list as “good

enough” to meet the app’s stated requirements.

The narrowing of the short list to one element may be done in

many ways. A simple-minded app may always pick the first

element. A slightly more sophisticated app may randomize its

choice, with the goal of load balancing. An app that is very

particular about the end-to-end properties of offloading can

conduct runtime measurements (e.g., pings, test data transfers,

and test operations) on each target and use that information to

make the final choice. Providing this level of flexibility provides

true end-to-end control. It recognizes the fact that cross-tier

orchestration at Internet scale is necessarily best-effort rather

than truly optimal. The constraints of latency and scalability

induce uncertainty in ST-1’s knowledge of current system-wide

conditions. In addition, current or past conditions may not be

indicative of future conditions. Thus, Sinfonia’s decision making

is inherently fraught with uncertainty. In the face of this

uncertainty, the next three sections describe how Sinfonia

components work together to generate a short list of targets.

Figure 4 illustrates the steps involved in this workflow.

4.1 Workflow at Tier-3

Linux and Android implementations of ST-3 are provided.

The Sinfonia workflow begins when an app on a Tier-3 device

invokes the deploy_backend operation on that device’s ST-3

(Figure 4A). This operation could equally well be named

find_cloudlet, because it returns a short list of “optimal”

cloudlets with already-launched backends that are ready for use

by this app. We focus on the discovery aspect in this section,

deferring to Section 6 the discussion of alternative ways of

provisioning the chosen cloudlets with the exact backend

needed by this app.

An input parameter provided by the app to the

deploy_backend call is the URL of the ST-1 to use as the

root of orchestration. The developer of the app embeds this URL

FIGURE 4
Cross-tier workflow of cloudlet discovery and association.
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in its source code. There is thus true end-to-end control of the

orchestration process—it is the app developer who has ultimate

control over which code will be used for the orchestration

process. We expect that each major software vendor (e.g.,

Electronic Arts, Microsoft, Adobe, Meta, etc.) will have its

own ST-1 at Tier-1. However, the mechanism is open-ended

and flexible enough to support cross-organization sharing of a

single ST-1, if that is desired. This may be a future business

opportunity for Internet registrars such as NameCheap and

GoDaddy.

Also provided by the app in the deploy_backend call is a

UUID that uniquely identifies this specific version of the app. ST-

3 forwards the app’s request to ST-1 after adding device-specific

details such as its current geo-location, its current networking

environment (e.g., IP address), and device hardware attributes.

Thus, ST-1 receives all the contextual Tier-3 knowledge needed

for making a good decision (Figure 4B). Section 4.2 describes

how ST-1 obtains the Tier-2 knowledge needed. The output

returned by ST-1 to ST-3 is a short list of public IP addresses of

cloudlets. ST-3 uses theWireguard VPNmechanism (Donenfeld,

2017) to bind a private network to a target cloudlet (Figure 4C),

and associates the VPN with the application. The application can

perform any runtime performance tests it desires. It can then try

another target until it finds the optimal one. From that point

onwards, the app directs offloading requests to the chosen

backend (Figure 4D). The unused backends, if any, are

asynchronously garbage collected.

4.2 Workflow at Tier-1

There is considerable flexibility in how ST-1 is implemented.

For simplicity, our description here assumes a monolithic

implementation in the cloud, using well-known techniques for

scale-out, fault-tolerance and high availability. We expect that

many hyperscalers will provide such implementations as part of

their standard cloud services. Not discussed here is a possible

implementation of ST-1 as a collection of software-defined

networking (SDN) applications that are located on the

northbound interface of SDN controllers to benefit from a

graph-based workflow of a Tier-2 topology. Such an SDN-

based implementation would allow ST-1 to estimate network

proximity from live measurements rather than relying on the

geolocation of ST-3 and the weak correlation between physical

and network proximity.

To handle incoming cloudlet discovery requests, ST-1

maintains a large data structure called “CloudletTable”

(Figure 5). As its name implies, this is a two-dimensional

array in which each row corresponds to a cloudlet known to

ST-1 and identified by a UUID. The columns correspond to

attributes of that cloudlet. Some of these attributes may be static.

Examples include owner/operator of the cloudlet, its hostname or

public IP address, its public key, its hardware configuration

(including acceleration hardware such as GPUs), and (usually)

its geolocation. In the case of a cloudlet on a moving platform

(e.g., truck, ship or aircraft), the geolocation will be a dynamic

rather than static attribute. Other examples of dynamic attributes

include current load, utilization of CPU cores and GPUs,

memory utilization, and ingress and egress bandwidth

utilization. Software resources (e.g., presence or absence of a

large ML model) may also be viewed as attributes; in a system

that caches such state, these would be dynamic rather than static

attributes.

We expect the actual algorithm that produces a short list of

cloudlets from CloudletTable to be a topic of intense

experimentation and empirical exploration. The literature is

full of theoretical results on optimal node selection for

offloading in a distributed system. Few of these algorithms

have real-world relevance. To simplify experimentation and

easy customization of this algorithm in live deployments, it is

invoked as an upcall from ST-1 to external code. The rest of ST-1

views this algorithm as a black box; all that matters is that it

produce a short list of cloudlets that would be good offloading

sites for the app that initiated this request. Parameters of the

upcall include the CloudletTable, as well as the app and device

information provided by ST-3. The default selection algorithm

provided by Sinfonia uses CPU/GPU utilization and ingress/

egress bandwidth as the primary variables of interest. We expect

this default algorithm to evolve significantly in the light of actual

usage experience with new edge-native applications.

Given the importance of CloudletTable, maintaining it

becomes one of the primary responsibilities of ST-1. This

maintenance is based on a push model: i.e., ST-1 relies on ST-

2s to announce the availability of their cloudlets for service, and

to periodically provide dynamic attributes of the cloudlets. These

periodic updates effectively serve as keepalives. If ST-1 does not

hear from an ST-2 for longer than a pre-determined timeout

period, it assumes that the cloudlet is no longer available and

deletes that row from CloudletTable. When ST-1 hears from a

new cloudlet (possibly one that was dropped earlier because of a

timeout), it extends CloudletTable with this new entry. This

onboarding of a brand new cloudlet may involve additional steps

to insure integrity and security, as discussed in Section 4.3.

4.3 Workflow at Tier-2

After a cold start of ST-1, its CloudletTable is empty. The

filling of this table occurs incrementally, as ST-2s contact this ST-

1 and each indicates that it is able and willing to serve as a

cloudlet. An ST-1 is free to accept or decline the services of an ST-

2. Conversely, an ST-2 is free to concurrently offer its services to

many ST-1s. It is not obligated to offer its services to any specific

ST-1. The relationship between an ST-1 and an ST-2 thus

resembles a free market. We expect that all ST-1s will be

widely known (e.g., possibly listed in a global web page), but
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cloudlets may be more regional in ownership, management, and

coverage.

If an ST-1 welcomes an ST-2, it creates an entry in its

CloudletTable for that cloudlet and fills its static attributes. It

also fills initial values of the cloudlet’s dynamic attributes.

Relevant billing-related initialization is also performed at this

point. This is the point at which mutual trust is established. The

procedure for establishing mutual trust may evolve as Sinfonia is

developed, and may include use of mechanisms such as signed

certificates and trusted enclaves. The level of trust that an ST-1

has in a cloudlet may be a static attribute in its CloudletTable

entry for that cloudlet.

This dynamic, decentralized, and bottom-up binding of

cloudlets to roots of orchestration draws inspiration from the

early evolution of the WorldWideWeb. A critical catalyst to that

explosive early growth was the fact that anyone, anywhere could

set up a web server and publish pages on it. No centralized

permission or authorization was necessary. In like vein, we wish

to enable any entrepreneurial entity to easily set up a cloudlet if it

sees a business opportunity. The push model of cloudlets

marketing their services to ST-1s is consistent with this vision.

Various ST-1s may or may not choose to do business with a

specific cloudlet. Such policy decisions are best left to each ST-1,

and do not have to be centralized.

We believe that Sinfonia’s approach will scale well. We expect

relatively few ST-1s worldwide, perhaps on the order of 102–103.

This figure is consistent with the published estimate of roughly

105 independent software vendors (ISVs) in existence worldwide

today. A few are large ISVs (e.g., Microsoft, Adobe, Amazon,

Meta, Apple, Electronic Arts, etc.) that may each run their own

ST-1. But many more are very small, and are likely to outsource

their ST-1s to shared registrars. Since we are only in the early

stages of edge computing rollout, it is hard to predict how many

cloudlets there will be worldwide. Our current best guess is that

there will eventually be on the order of 105–106 cloudlets

worldwide. Since the inhabited area of the earth is estimated

to be about 25 × 106 square miles, this suggests a coverage area

between 25 and 250 square miles per cloudlet. This estimate may

be easily off by an order of magnitude, since there may be

competing cloudlets covering the same area and their

distribution will almost certainly be clumpy rather than

uniform. In spite of this uncertainty, the estimate of 105–106

cloudlets seems reasonable from two other viewpoints. First,

there are on the order of 104 cities worldwide, and we expect at

least a few cloudlets per city eventually. Second, there are

estimated to be 6 × 109 smartphones worldwide today. If 10%

are used as Tier-3 devices for edge-native applications, a fan-in of

102 devices per cloudlet is plausible.

After initial registration, an ST-2 is expected to periodically

send ST-1 a keepalive with current values of dynamic attributes.

The frequency of these keepalives is negotiated at registration. As

mentioned earlier, if an ST-1 does not hear from a registered ST-2

beyond some timeout period, it deletes that ST-2 from its

CloudletTable.

4.4 Just-in-time cloudlets

We envision many use cases in which a cloudlet is set up

for temporary use at a work site. Examples include military

settings, disaster recovery settings, outdoor construction sites,

and drone operations for infrastructure maintenance. In this

case, the owner of Tier-3 devices (e.g., drones) is also

providing the cloudlet to be used by them. Sinfonia

supports such just-in-time (JIT) cloudlets by having them

configured to be on the same private wireless network as the

Tier-3 devices. Using a Zeroconf discovery protocol analogous

to Bonjour, ST-3s on these devices can discover the JIT

cloudlet. This discovered JIT cloudlet can be added by an

ST-3 to the short list returned by ST-1, most likely as the very

first element of the list. Simple apps that just use the first entry

in the list will always select the JIT cloudlet. More

sophisticated apps can treat it as just one candidate in their

final selection process. It is also possible to configure ST-3 so

that it completely avoids contacting ST-1 if a JIT cloudlet is

discovered. This leads to a form of static scoping: a JIT

cloudlet is deemed to always be a better choice than any

infrastructure cloudlet.

FIGURE 5
Conceptual view of CloudletTable at ST-1.
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From the viewpoint of an app, use of a JIT cloudlet is

identical to its use of any other cloudlet. No configuration or

software changes to the app are necessary. It may be helpful in

some use cases that the JIT cloudlet is in the same trust

domain as the Tier-3 device. Especially during the early

evolution of edge computing, when coverage by service

providers is patchy and limited, the ability to easily setup a

JIT cloudlet will be a valuable enabler for edge-native

applications. For example, a JIT cloudlet in the home may

enable an elderly person to use an assistive AR app on a

wearable device. That elderly person can benefit from the app

long before 5G coverage or telco-provided edge computing

appears in his or her neighborhood.

5 Related work

The 3-Tier model of computing was only introduced in 2019

(Satyanarayanan et al., 2019), and the specific problem of cross-

tier orchestration inspired by it is even more recent. We are not

aware of any system prior to Sinfonia framing this problem along

the lines described in this paper, and describing a system

architecture to address it. Specifically, we are not aware of any

prior orchestration system that specifically embodies these novel

attributes of Sinfonia:

• Support for multiple vendor-specific Tier-1 roots of

orchestration, providing end-to-end runtime control that

spans technical and non-technical criteria.

• Use of third-party Kubernetes clusters as cloudlets, with

unified treatment of telco-managed, hyperconverged, and

just-in-time variants of cloudlets.

• Masking of orchestration complexity from applications,

thus lowering the barrier to creation of new edge-native

applications.

While Sinfonia frames and solves a new problem, it builds

upon 30 years of prior work. The penalty imposed by mobility on

hardware devices due to weight, size, thermal, and energy

constraints was first pointed out in 1993 (Satyanarayanan,

1993). The specific innovation of overcoming this penalty by

remote execution on a server was first demonstrated in 1997 by

the Odyssey system (Noble et al., 1997). An important aspect of

that work was adaptive selection of the optimal execution site

(local, remote or split) based on runtime factors such as current

network bandwidth. Flinn and Satyanarayanan (1999)

broadened this concept from a narrow focus on bandwidth to

also include energy. Abstracting and generalizing from these

efforts, the concept of “cyber foraging” was introduced in 2001

(Satyanarayanan, 2001). That work intoduced the metaphor of

mobile devices foraging for resources to overcome the mobility

penalty. Today, we use the term “offloading” instead of “cyber

foraging”:

Cyber foraging, construed as “living off the land”, may be an

effective way to deal with this problem. The idea is to

dynamically augment the computing resources of a

wireless mobile computer by exploiting wired hardware

infrastructure.

Building on this foundational work, the period from

2001 to 2008 saw vigorous research activity. A detailed

account of these efforts is provided in the excellent survey

by Flinn (2012). The theme of cyber foraging was expanded

by Balan et al. (2002). Addressing the data access

requirements of remote execution for a highly mobile user

were investigated in the context of fluid replication and

waystations (Noble et al., 1999; Cox and Noble, 2001; Kim

et al., 2002). Dynamic tradeoffs in energy and performance

through self-tuned remote execution were investigated by

Flinn et al. (2001); Flinn et al. (2002). Balan et al. showed

how execution plans that combine local and remote

execution steps could be statically identified in a

declarative form called tactics, and then dynamically

selected at runtime to optimize some desired

performance-energy tradeoff. Narayanan et al. showed

how history-based prediction of resource consumption by

mobile applications could be combined with runtime

resource monitoring in a dynamic solver to select an

optimal execution strategy (Narayanan and

Satyanarayanan, 2003). Goyal and Carter (2004), Su et al.

(Ya-Yunn and Flinn, 2005), Ok et al. (2007) and Kristensen

(2008) described different approaches to implementing

infrastructure for cyber foraging. On the question of how

difficult it is to manually partition legacy applications into

local and remote components, Balan et al. showed that the

declarative approach of tactics can simplify matters

considerably (Balan et al., 2007). The emergence of cloud

computing in 2006 introduced the abstraction that

eventually became Tier-1 in the 2019 taxonomy. Remote

execution from Tier-3 to Tier-1 now became possible. MAUI

(Cuervo et al., 2010) in 2010, Odessa (Ra et al., 2011) and

CloneCloud (Chun et al., 2011) in 2011, and COMET

(Gordon et al., 2012) in 2012 are examples of work that

explored Tier-3 offload to Tier-1 using programming

language and virtual machine support.

Complementing this large body of experimental work

have been many theoretical investigations into optimal

selection of remote execution sites. Different conditions

of network bandwidth, server load, client capabilities and

other resource constraints have been explored. These efforts

have exploded in the past 5 years, since the emergence of

edge computing (Satyanarayanan, 2017). There has been

little experimental validation of this work; typically,

simulation has been used to confirm theoretical insights.

Examples of this genre of work include Pang et al. (2017), He

et al. (2018), Chen et al. (2019), Cheng et al. (2019), and Liu
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et al. (2021). Sinfonia can be viewed as a platform that will

enable experimental validation of these theoretical

investigations.

6 The road ahead

At the time of writing this document, an initial version of

Sinfonia has been released on GitHub. This is a bare-bones

implementation, sufficient for the workflow described here

but without many optimizations that we envision adding

later. The goal of this release is to “fail early” — i.e., to help us

gain hands-on experience with the cross-tier orchestration

approach of Sinfonia, and to expose flaws in our thinking as

soon as possible. Some of the key assumptions and

mechanisms that we hope to validate through hands-on

usage include:

• the value of end-to-end control and multiple roots of

orchestration.

• the value of making the cloudlet selection algorithm a field-

replaceable external module.

• the ease with which new cloudlets can be added, and the

practical issues involved in sustaining a market-oriented

approach to Tier-2.

• the simplification provided by Sinfonia to developers of

new edge-native applications, and the QoE that it helps

them achieve.

• the ability to integrate multiple walled gardens into

Sinfonia, and the unique opportunities and challenges of

using diverse types of cloudlets.

• implementation of cloudlet selection algorithms published

in the literature, and experimental validation of their

claims to optimality.

Evolution beyond the bare-bones implementation will

depend on our learnings from hands-on usage, as well as the

broader evolution of the ecosystem for edge-native applications.

We see a number of long-term research thrusts and development

initiatives arising from this work. We list these below in no

particular order, mainly as placeholders to capture these thoughts

for the future.

6.1 Provisioning

Section 4.1 is silent on the exact details of how

provisioning of the backend for a specific app occurs on a

chosen cloudlet. In practice, there are many approaches that

could work well. Only usage experience will tell which of

these approaches strikes the optimal balance between

reliability, speed, flexibility and ubiquity. The simplest

approach is static provisioning, in which the presence of

the precise backend for an application is one of the cloudlet’s

static attributes. A slightly more general approach is for

provisioning details to be part of the app-specific knowledge

possessed by ST-1, and for these details to be conveyed to the

ST-2s of the chosen cloudlets. The latter may fetch the

relevant bits if they are not already present. This cache

state would be a dynamic attribute of the cloudlet. The

most general approach is Just-in-Time Provisioning as

described by Ha et al. (2013). In this approach, the app

provides (by value) a bag of bits called an overlay that can be

applied to a base image to rapidly synthesize a bit-exact

backend at runtime. It pushes the end-to-end aspect of

Sinfonia to its extreme, and may have particular value for

a JIT cloudlet that has no connectivity to the Internet. Such a

disconnected JIT cloudlet may have been discovered via a

Zeroconf protocol.

6.2 Privacy

Implicit in the offloading of processing from Tier-3 to

Tier-2 is a widening of the privacy perimeter of data

captured at a device. Since Tier-1 (via ST-1) only

participates in the control plane of offloading and not in

its data plane, the privacy perimeter does not expand to

Tier-1; it only expands to Tier-2. But even this limited off-

device expansion of the privacy perimeter may be

unsettling for some users, or illegal in some

jurisdictions. One possible solution is to carefully

choose the cloudlets permissible for sensitive

applications, by using the static attributes of

CloudletTable. A different approach is to use the

concept of denaturing (Simoens et al., 2013; Davies

et al., 2016; Wang et al., 2017), in which real-time

policy-guided transformation of raw data is performed

to preserve privacy. For example, the wearable devices

of the gamers in the scenario of Figure 3 could black out

all human faces before transmitting video to their

cloudlets. ASIC hardware for face detection is cheap and

fast enough for this today. By doing this, bystanders in the

coffee shop are not exposed by the gamers to Tier-2.

Unfortunately, this approach does not help Ron in

Figure 3, because he needs help to recognize the faces of

people who greet him. Fortunately, there is empirical

evidence that this is indeed an acceptable tradeoff in the

context of assistive technologies. Siewiorek et al. (2012),

for example, report that “people will trade privacy for

enhanced capability and the ability to maintain

independence.” The bottom line is that privacy is a huge

and sensitive topic in the context of edge-native

applications, and will need careful thought and attention

to be paid to the policies and mechanisms that are

developed.
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6.3 Micropayments and trust

The “free market” relationship between Tier-1 and Tier-2

sketched in Section 4.3 suggests many opportunities for

developing blockchain-based micropayment business models

for edge offload. In the networking world, companies like

Helium ((https://www.helium.com/)) have pioneered such

business models. However, safeguarding the integrity of

offloading is a challenging problem. Freedom and open-

endedness bring with them questions of trust. How does an

ST-1 gain confidence that a particular cloudlet has adequate

integrity to return as a possible target? How does it guard against

Byzantine cloudlets? One approach could possibly be for ST-1 to

conduct attestation-based validation of a target cloudlet before it

returns control to ST-3. Mechanisms such as secure enclaves

become especially valuable in this context. The problem is even

more challenging if a JIT cloudlet with no Internet connectivity is

discovered via a Zeroconf protocol. ST-3 is then on its own; there

is no ST-1 to help. Such situations may prevail in disaster

recovery and military settings. Clearly, there are many

research questions to be addressed in this space before the

vision of a safe micropayment-based ecosystem for offloading

becomes viable.

6.4 Network protocols for edge offload

The application-level protocols between Tier-3 and

Tier-2 represent a unique opportunity. Today’s

application protocols have been developed for the

Internet, where worst-case bandwidth may be low and

latency high. However, the whole point of edge

computing is to ensure network proximity. New edge-

native applications thus have an opportunity to rethink

from first principles how the assumptions of low latency

and high bandwidth can benefit the protocols that they use

for offloading.

In closing, the convergence of 5G wireless networks and

edge computing enables many new edge-native applications

that are simultaneously bandwidth-hungry, latency-

sensitive, and compute-intensive. Such applications

require network-aware and load-aware orchestration of

resources across tiers. We have created Sinfonia, an open-

source system for such cross-tier orchestration. This paper

has described its driving vision, high-level assumptions and

initial implementation. Sinfonia opens the door to many

opportunities for experimental research and business

innovation.
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