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When assessing the importance of materials (or other components) to a given set of 
applications, machine analysis of a very large corpus of scientific abstracts can provide 
an analyst a base of insights to develop further. The use of text analytics reduces the time 
required to conduct an evaluation, while allowing analysts to experiment with a multitude 
of different hypotheses. Because the scope and quantity of metadata analyzed can, and 
should, be large, any divergence from what a human analyst determines and what the 
text analysis shows provides a prompt for the human analyst to reassess any preliminary 
findings. In this work, we have successfully extracted material–application pairs and 
ranked them on their importance. This method provides a novel way to map scientific 
advances in a particular material to the application for which it is used. Approximately 
438,000 titles and abstracts of scientific papers published from 1992 to 2011 were 
used to examine 16 materials. This analysis used coclustering text analysis to associate 
individual materials with specific clean energy applications, evaluate the importance of 
materials to specific applications, and assess their importance to clean energy overall. 
Our analysis reproduced the judgments of experts in assigning material importance to 
applications. The validated methods were then used to map the replacement of one 
material with another material in a specific application (batteries).

Keywords: machine learning classification, science policy, coclustering, text analytics, critical materials, big data

inTrODUcTiOn

Scientific research and technological development are inherently combinatorial practices (Arthur, 
2009). Researchers draw from, and build on, existing work in advancing the state of the art. Increasing 
the ability of researchers to review and understand previous research can stimulate and accelerate 
scientific progress. However, the number of scientific publications grows exponentially every year 
both on the aggregate level and in an individual field (National Science Board, 2016). It is impossible 
for any single researcher or organization to keep up with the vastness of new scientific publications. 
The ability to use text analytics to map the current state of the art to detect progress would enable 
more efficient analyses of data.

The Intelligence Advanced Research Projects Activity recognized the scale problem in 2011, 
creating the research program Foresight and Understanding from Scientific Exposition. Under 
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this program, SRI and other performers processed “the massive,  
multi-discipline, growing, noisy, and multilingual body of 
scientific and patent literature from around the world and 
automatically generated and prioritized technical terms within 
emerging technical areas, nominated those that exhibit technical 
emergence, and provided compelling evidence for the emergence” 
[Intelligence Advanced Research Projects Activity (IARPA), 
2011]. The work presented here applies and extends that platform 
to efficiently identify and describe the past and present evolution 
of research on a given set of materials. This work applies text ana-
lytics to demonstrate how these computational tools can be used 
by analysts to analyze much larger sets of data and develop more 
iterative and adaptive material assessments to better inform and 
shape government and industry research strategy and resource 
allocation.

MaTerials

ground Truth
The Department of Energy (DOE) has a specific interest in criti-
cal materials related to the energy economy. The DOE identifies 
critical materials through analysis of their use (demand) and sup-
ply. The approach balances an analysis of market dynamics (the 
vulnerability of materials to economic, geopolitical, and natural 
supply shocks) with technological analysis (the reliance of certain 
technologies on various materials). The DOE’s R&D agenda is 
directly informed by assessments of material criticality. The DOE, 
the National Research Council, and the European Economic and 
Social Committee have all articulated a need for better measure-
ments of material criticality. However, criticality depends on a 
multitude of different factors, including socioeconomic factors 
(Poulton et  al., 2013). Various organizations across the world 
define resource criticality according to their own independent 
metrics and methodologies, and designations of criticality tend 
to vary dramatically [National Research Council (US), 2008; 
National Research Council (US) and Committee on Assessing 
the Need for a Defense Stockpile, 2008; Erdmann and Graedel, 
2011; European Economic and Social Committee, 2011; Poulton 
et al., 2013; European Commission, 2014; Graedel et al., 2015].

Experts tasked with assessing the role of materials must make 
decisions about what materials to focus on, what applications 
to review, what data sources to consult, and what analyses to 
pursue (Graedel et  al., 2015). The amount of data available to 
assess is vast and far too large for any single analyst or organiza-
tion to address comprehensively. In addition, to the best of our 
knowledge, previous assessments of material criticality have not 
involved a comprehensive review of scientific research on mate-
rial use. [Graedel and colleagues have published extensively using 
raw data on supply and other indicators to measure criticality, 
see Graedel et al. (2012, 2015) and Panousi et al. (2016) and the 
references contained within.] Recent developments in text ana-
lytic computational approaches present a unique opportunity to 
develop new analytic approaches for assessing material criticality 
in a comprehensive, replicable, iterative manner.

The Department of Energy’s 2011 Critical Materials Strategy 
(CMS) Report uses importance to clean energy as one dimension 

of the criticality matrix (see Figure 1) (US Department of Energy, 
2011). In this regard, the DOE report serves as a form of ground 
truth for the validation of our technique, though the DOE report 
considered supply risk as the second dimension to criticality, 
which the analysis described in this paper does not address.

scientific Publications
Data on scientific research articles was obtained from the Web 
of Science (WoS) database available from Thomson Reuters 
(now Clarivate Analytics). WoS contains metadata records. In 
principle, we could have analyzed this entire database; however, 
for budget-related reasons, the document set was limited by a 
topic search of keywords that appear in a document title, abstract, 
author-provided keywords, and WoS-added keywords for the 
following:

•	 The 16 materials listed in the 2011 CMS, or
•	 The 285 unique alloys/composites of the 16 critical materials.

The document set was also limited to articles published 
between 1992 and 2011, the 20-year period leading up the DOE’s 
most recent critical material assessment.

The 16 materials listed in the 2011 CMS include europium, 
terbium, yttrium, dysprosium, neodymium, cerium, tellurium, 
lanthanum, indium, lithium, gallium, praseodymium, nickel, 
manganese, cobalt, and samarium. Excluded from our docu-
ments set was any publication appearing in 80 fields considered 
not likely to cover research in scope (e.g., fields in the social sci-
ences, biological sciences, etc.). We used the 16 materials listed 
above because we were interested in validating a methodology 
against the 2011 CMI Strategy report, and these are the materials 
mentioned therein. The resulting data set consisted of approxi-
mately 438,000 abstracts of scientific papers published from 1992 
to 2011.

MeThODs

Text analytics and coclustering
The principle behind coclustering is the statistical analysis of the 
occurrences of terms in the text. This includes the processing 
of the relationships both between terms and neighboring (or 
nearby) terms, and between terms and the documents in which 
they occur. The approach presented here grouped papers by look-
ing for sets of papers containing similar sets of terms. As detailed 
below, our analytics process meaning beyond simple counts of 
words, and thus, for example, put papers about earthquakes 
and papers about tremors in the same group, but would exclude 
papers in the medical space that discuss hand tremors.

Coclustering is based on an important technique in natural 
language processing which involves the embedding of terms into 
a real vector space; i.e., each word of the language is assigned 
a point in a high-dimensional space. Given a vector representa-
tion for a term, terms can be clustered using standard clustering 
techniques (also known as cluster analysis), such as hierarchical 
agglomeration, principle components analysis, K-means, and 
distribution mixture modeling (Hastie et  al., 2004). This was 
first done in the 1980s under the name latent semantic analysis 
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FigUre 1 | 2011 Critical Materials Importance Analysis matrix, published by experts at the Department of Energy. This matrix served as ground truth for validation.

FigUre 2 | Diagram of the text analytics workflow that this project developed. This work flow was utilized to identify material–application pairs.
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(LSA) (Furnas et al., 1987). In the 1990s, neural networks were 
applied to find embeddings for terms using a technique called 
context vectors (Gallant et al., 1992; Caid et al., 1995). A Bayesian 
analysis of context vectors in the late 1990s provided probabil-
istic interpretation and enabled applying information-theoretic 
techniques (Gallant et al., 1992; Zhu and Rohwer, 1995). We refer 
to this technique as Association Grounded Semantics (AGS). A 

similar Bayesian analysis of LSA resulted in technique referred to 
as probabilistic-LSA (Hofmann, 1999), which was later extended 
to a technique known as Latent Dirichlet Allocation (LDA) (Blei 
et al., 2003). LDA is commonly referred to as “topic modeling” 
and is probably the most widely applied technique for discover-
ing groups of similar terms and similar documents. Much more 
recently, Google directly extended the context vector approach 
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of the early 1990s to derive word embeddings using much greater 
computing power and much larger datasets than had been used in 
the past, resulting in the word2vec product, which is now widely 
known (Mikolov et al., 2013; Bellemare et al., 2015).

The LDA model assumes that documents are collections of 
topics and those topics generate terms, making it difficult to 
apply LDA to terms other than in the contexts of documents. 
Because coclustering treats the document as a context for a term, 
any other context of a term can be substituted in the cocluster-
ing model. For example, contexts may be neighboring terms or 
capital letters or punctuation. This allows us to apply coclustering 
to a much wider variety of feature types than is accommodated 
by LDA. In particular, “distributional clustering” (clustering of 
terms based on their distributions over nearby terms), which 
has been proven to be useful in information extraction (Freitag, 
2004a,b) is captured by coclustering. In future work, we antici-
pate recognizing material names and application references using 
these techniques.

Word embeddings are primarily used to solve the “vocabulary 
problem” in natural language, which is that many ways exist to 
describe the same thing, so that a query for “earthquakes” will 
not necessarily pick up a report on a “tremor” unless some 
generalization can be provided to produce soft matching. The 
embeddings produce exactly such a mapping. Applying the 
information-theoretic approach called AGS led to the develop-
ment of coclustering (Byrnes and Rohwer, 2005), one of the key 
text analytic tools used in this research.

Information-theoretic coclustering is the simultaneous 
estimation of two partitions (a mutually exclusive, collectively 
exhaustive collection of sets) of values of two categorical variable 
(such as “term” and “document”). Each member of the partition 
is referred to as a cluster. Formally, if X ranges over terms x0, x1, 
…, Y ranges over documents y0, y1, …, and Pr(X = x, Y = y) is the 
probability of selecting an occurrence of term x in document y 
given that an arbitrary term occurrence is selected from a docu-
ment corpus, then the mutual information I(X;Y) between X and 
Y is given by

 
I X Y X x Y y

X x Y y
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We seek a partition A  =  {a0, a1, …} over X and a partition 
B = {b0, b1, …} over Y such that I(A;B) is as high as possible. Since 
the information in the A, B co-occurrence matrix is derived from 
the information in the X, Y co-occurrence matrix, maximizing 
I(A;B) is the same as minimizing I(X;Y) − I(A;B), we are com-
pressing the original data (by replacing terms with term clusters 
and documents with document clusters) and minimizing the 
information lost due to compression.

Compound terms were discovered from the data through 
a common technique (Manning and Schutze, 1999) in which 
sequences are considered to be compound terms if the frequency 
of the sequence is significantly greater than that predicted from 
the frequency of the individual terms under the assumption 
that their occurrences are independent. As an example, when 
reading an American newspaper, the term “York” occurs con-
siderably more frequently after the term “New” than it occurs 

in the newspaper overall, leading to the conclusion that “New 
York” should be treated as a single compound term. We formalize 
this as follows. Let Pr(Xi = x0) be the probability that the term 
occurring at an arbitrarily selected position Xi in the corpus is 
the term x0. Then, Pr(Xi = x0, Xi+1 = x1) is the probability of the 
event that x0 is seen immediately followed by x1. If x0 and x1 occur 
independently of each other, then we would predict Pr(Xi = x0, 
Xi+1 = x1) = Pr(Xi = x0)Pr(Xi+1 = x1). To measure the amount that 
the occurrences do seem to depend on each other, we measure 
the ratio
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As this ratio becomes significantly higher than 1, we become 
more confident that the sequence of terms should be treated 
as a single unit. This technique was iterated to provide for the 
construction of longer compound terms, such as “superconduct-
ing quantum interference device magnetometer.” The compound 
terms that either start or end with a word from a fixed list of 
prepositions and determiners (commonly referred to as “stop-
words”) were deleted, in order to avoid having sequences such as 
“of platinum” become terms. This technique removes any reliance 
on domain-specific dictionaries or word lists, other than the list 
of prepositions and determiners.

Coclustering algorithms (detailed above) produce clusters of 
similar terms based on the titles and abstracts in which they 
appear, while grouping similar documents based on the terms 
they contain: thus, the name cocluster. In this project, a docu-
ment is defined as a combined title and abstract. The process 
can be thought of as analogous to solving two equations with 
two unknowns. The process partitions the data into a set of 
collectively exhaustive document and term clusters resulting in 
term clusters that are maximally predictive of document clusters 
and document clusters that are maximally predictive of term 
clusters.

Coclustering results can be portrayed as an M  ×  N matrix 
of term clusters (defined by the terms they contain) and docu-
ment clusters (defined by the documents they contain). Terms 
that appear frequently in similar sets of documents are grouped 
together, while documents that mention similar terms are 
grouped together. Each term will appear in one, and only one, 
term cluster, while each document will appear in one, and only 
one, document cluster. When deciding on how many clusters to 
start with (term or document, i.e., M and N) there is a tradeoff 
between breadth and depth. The goal is to differentiate between 
sub-topics while including a reasonable range of technical discus-
sion within a single topic. The balance between breadth and depth 
is reflected in the number of clusters that are created. Partitioning 
into a larger number of clusters would result in more narrowly 
defined initial clusters, but might mischaracterize topics that 
span multiple clusters. On the other hand, partitioning into fewer 
clusters would capture broader topics. Researchers interested in a 
more fine-grained understanding of materials use, e.g., interested 
in isolating a set of documents focused on a narrower scientific or 
technological topic, would need to sub-cluster these initial broad 
clusters in later analyses.
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Terms in term clusters, and titles and abstracts (i.e., document 
data) from document clusters reveal the content of each cluster. 
This information provides the basis for identifying what each 
term cluster “is about” and for selecting term clusters for further 
scrutiny. Term clusters of interest were filtered using a glossary, 
in this case, terms pertaining to common applications of the 16 
critical materials. This list of terms was manually created through 
a brief literature review of common applications associated with 
the materials in question.

Each term cluster was correlated with each of the 437,978 
scientific abstracts in our corpus, and the degree of similarity was 
determined between each term cluster and each abstract through 
an assessment of their mutual information. As discussed, the term 
clusters and document clusters described above were selected so 
as to maximize the mutual information between terms. In order 
to find document abstracts most strongly associated with a given 
term cluster, we want to choose those abstracts which were most 
predictive of the term cluster. These are the abstracts that contain 
the words in the cluster, but especially the words in the cluster that 
are rare in the corpus in general. We formalize this by defining 
the association of a term cluster t and document abstract d as the 
value of the (t,d)-term of the mutual information formula.

To formalize this, we consider uniformly randomly selecting 
an arbitrary term occurrence from the entire document set, and 
we write Pr(T = t, D = d) for the probability that the term was a 
member of cluster t and that the occurrence was in document d. 
We adopt the maximum likelihood estimate for this probability:

 
Pr ,

,
T t D d

n t d
N

= =( ) = ( )
 

where n(t,d) is the number of occurrences of terms from term 
cluster t in document abstract d and N is the total of number of 
term occurrences in all documents: N = ∑t,d n(t,d).

We define the association between t and d by the score:

 
Assoc t d T t D d
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T t D d

, Pr , log
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Given this score, document abstracts can be arranged from 
most associated to least associated with a given term cluster. This 
was done for all 437,978 abstracts in our corpus and all term 
clusters. This methodology allowed the identification of those 
abstracts most closely associated with each term cluster.

Not all disperse term clusters were easy to interpret. As with 
the construction of an appropriate filtering glossary, deciding 
on the appropriate number of sub-clusters can be subjective. In 
general, the more diffuse a term cluster appears to be in its subject 
matter, the more it should be sub-clustered as a means to separate 
its diverse topic matter. Even imprecise sub-clustering is effective 
in narrowing the focus of these clusters. Once we determined the 
number of sub-clusters to generate, sub-clustering of terms was 
done in the same general manner as the original coclustering: the 
same coclustering algorithms were applied only to the terms in the 
initial cluster, but it is instructed not to discover any new abstract 
clusters. Rather, the set of terms in a cluster are grouped into the 
pre-specified number of bins according to similarity in the already 
existing groups of documents in which the terms appear.

resUlTs

Workflow
This research resulted in the creation of the following workflow, 
detailed in (Figure 2). The workflow was developed to assess the 
material–application pairing matrices, and illustrates how text 
analytics can be used to aid in assessment of material importance 
to specific application areas, identify pairings of materials and 
applications, and augment a human expert’s ability to monitor the 
use and importance of materials.

The final data set acquired and ingested into the Copernicus 
platform contained 437,978 documents. We extracted 83,059 
terms from titles and abstracts, including compound (multi-
part) terms such as “chloroplatinic acid” and “alluvial platinum.” 
Initial clustering of terms showed some term clusters were 
very precise, others were less focused. Multiple clustering 
sizes were experimented with to find an optimal size, which 
was 400 document clusters and 400 term clusters to start, 
creating a 400 × 400 matrix of document and term clusters. By 
manually analyzing the terms in each term cluster, we identi-
fied which clusters focused narrowly on areas most relevant 
to our study, namely those that use materials in clean energy 
applications. The term cluster in Figure  3 below, for example, 
focused around lithium-ion batteries, as indicated by the repre-
sentative term list and an analysis of the most closely associated  
papers.

Analysis relies on our ability to extract meaningful statistics 
about the dataset from term clusters, which can be poorly 
defined, as seen in the example term cluster in Figure 4. When 
term clusters are poorly defined, we have limited ability to 
interpret the statistics we extract. There are multiple ways to 
differentiate term clusters. Principal among these was the divi-
sion between term clusters that cover basic scientific research 
versus those that focused on specific technological applications. 
In addition, because this project used the 2011 DOE CMS as 
a validation source, a differentiation between clean energy and 
non-clean energy relevance was also necessary, especially when 
the same material discoveries were used in both a clean energy 
and non-clean energy context. More broadly, if a researcher 
is interested in a specific application area, a division between 
that application area and others can be used as the means for 
differentiation.

As discussed in the Section “Methods” for this project, we 
manually determined the number of necessary sub-clusters. For 
example, one of the glossary terms we used was “bulbs.” A term 
cluster was identified as the bulb cluster. Once it was examined 
closely, however, it was clear it contained material about both plant 
bulbs as well as light bulbs, as shown in Figure 5. Accordingly, 
it was clear that this cluster should be split (sub-clustered) into 
two clusters. After sub-clustering, the term cluster split into two 
clearly defined clusters.

The process of sub-clustering expanded the list of initial 
42 application term clusters into a total of 134 relevant term 
clusters for analysis. Clusters were considered “relevant” based 
on the weights that were assigned to them. For this project, we 
developed a methodology for weighting clusters to replicate the 
ground truth of the 2011 DOE CMS.
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FigUre 3 | The coclustering algorithm produced term clusters. This is an example of a narrowly focused cluster.
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Weighting
One of the principal questions addressed by the 2011 DOE 
CMS was the importance of specific materials to clean energy 
applications. The DOE ranked the 16 materials based on their 
importance to clean energy, and their supply risk, as detailed in 
Figure 1. We developed a methodology to replicate the y-axis of 
this figure (material importance to clean energy) by combining 
the data on material distribution over clusters with an assessment 
of the clean energy importance of each cluster. To assess the clean 
energy importance of each of these clusters, we developed a clean 
energy importance weighting. A set of key words was constructed 
manually and searched the top 500 associated abstracts of each 
term cluster for these key words. Constructing this glossary is 
a crucial step that allows researchers to define their key words 
of interest. Document abstracts were analyzed for mentions of 
any clean energy field per cluster, and the number of different 
clean energy fields mentioned across the cluster. The clean energy 
weighting considers the extent and depth of impact within a 
cluster, and is equal to:

 
Total of AbstractsMentioningAnyCleanEnergy Field

of Different
#

# CCleanEnergy FieldsMentionedAcross theCluster
.
 

This weighting essentially captures the number of abstracts per 
clean energy field. The goal of the weighting is to discount clusters 

that mention a number of different clean energy fields, but do 
not discuss these clean energy fields in a substantial or significant 
manner. Materials that were mentioned frequently in clusters 
with high clean energy weights can be thought of as “important” 
to clean energy. The importance of each material to clean energy 
was determined by counting the number of document mentions 
in clean energy important clusters (i.e., clusters above some cutoff 
of minimum clean energy weight).

Material-to-clean-energy field application pairings were 
derived from term clusters. Recall that for each term cluster, the 
number of abstracts mentioning any of the 16 materials were 
determined as well as the number of abstracts mentioning any 
of 33 clean energy field keywords. In the importance analysis 
previously discussed, mentions of 33 clean energy fields were 
aggregated together to establish the clean energy weighting 
system. For each clean energy field, all term clusters were 
ranked based on a normalized count of document mentions 
of that field.

From this ranking, the “top” three term clusters were identi-
fied for a specific field for review. Then, the terms and keywords 
were manually reviewed to ensure that term clusters were actu-
ally relevant and the occasional false positives (term clusters 
that score high based on keyword counts but are not in fact 
relevant based on human content analysis) were discarded. This 
manual review, while requiring human intervention, is done 
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FigUre 4 | The coclustering algorithm produced term clusters. This is an example of an unfocused cluster that spans basic science research and non-clean energy 
research.

FigUre 5 | Unfocused clusters were then sub-clustered to produce more useable and focused clusters, as shown in this figure. A blub term cluster was split. The 
sub-clustering algorithms produced two new clusters, as shown above. The new smaller clusters were more focused than the larger cluster.
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FigUre 6 | The number of documents in the 134 relevant clusters that contained a specific element varied from under 1,000 to over 12,000, as shown above.
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on a significantly narrowed set of documents, and thus does 
not represent a major bottleneck in the process. Having linked 
clusters to a specific clean energy field, material importance 
to each field was evaluated by examining the distribution of 
material mentions across associated documents. The number 
of mentions divided by the average mentions across all 134 
relevant term clusters was used to account for keywords or 
phrases that were mentioned at a high frequency. In the photo-
voltaics case, these normalized number of mentions dropped 
significantly after the first three term clusters. The first three 
term clusters were manually reviewed to ensure that they were 
relevant.

extracting statistics
Statistics related to material importance and material–application 
pairings were extracted from this final set of 134 relevant term 
clusters. For the purpose of this project, the top 500 abstracts 
from each of the 134 final clusters were analyzed, for a resulting 
49,573 abstracts. Each of these 500 abstracts were automatically 
searched for mentions of the 16 materials1 identified in the DOE 
strategy report, providing a count and distribution of material 
counts across the final set of granular term clusters that will serve 
as the basis for a subsequent manual analysis. An alternative to 
coclustering is hierarchical clustering in which terms are joined 
with their nearest matches only, and then each cluster is joined 
with its nearest match only, etc. Such an approach makes sub-
clustering trivial by reducing it to undoing the merges that gener-
ated a given cluster. We opted against this structure because in 
past experience hierarchical clusters have generated qualitatively 
inferior clusterings of terms.

Figure 6 displays the count of how many times each mate-
rial was mentioned in the 49,573 abstracts that had the highest 
mutual information with the final 134 relevant term clusters 
(the 500 abstracts with the most mutual information with each 
of the 134 relevant term clusters). Material mentions were 
counted in the papers most closely associated with each term. 

1 These counts included any compounds or alloys associated with those minerals.

This revealed what materials were most strongly associated with 
which terms. Thus, the methodology provides a way to analyze 
the distribution of materials over different topics—setting the 
foundation for material importance and material–application 
pair analysis.

Validation of Method
To compare the results with the CMS, we need to weight for clean 
energy, as described above. Multiple clean energy cutoffs were 
reviewed with and ultimately a cutoff of 26 was employed. The 
cutoff of 26 corresponds to the beginning of the step up in the 
distribution presented in Figure  7. Thus, term clusters with a 
clean energy weight of less than 26 were excluded.

Material mentions over the top 500 abstracts associated with 
the 19 “clean energy” term clusters were aggregated together, 
yielding a measure of overall importance to clean energy, as seen 
in Figure 8. This measure of overall importance counted the num-
ber of times each material was mentioned in the top 500 abstracts 
associated with the 19 term clusters that are highly important to 
clean energy, treating those term clusters as one set. The top and 
the bottom of our determination of importance matched the top 
and bottom of the DOE’s list. However, there was some variation 
in the middle. Such variation, in the case of real-world analysis, 
would provide analyst prompts regarding where to consider more 
study, and whether some aspects of a materials clean energy use 
and importance.

Material–Application Pairings
SRI utilized the term and document clusters to develop a matrix of 
material–application pairs to compare the ground truth. This was 
compared to the DOE 2011 CMS matrix that mapped materials to 
specific clean energy technologies (see Figure 9). The prevalence 
of different materials to a given clean energy field was considered, 
as defined and described above.

Figure  10 displays three term clusters, as illustration of the 
results and filtering step. The term cluster labeled 388 discussed 
the economic implications of photovoltaic technologies, and so 
was discarded after manual review. The other two clusters can 
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FigUre 7 | To determine the importance rankings for clean energy, clusters were weighted using a weight reflecting their relevance to clean energy, as shown here. 
Weights were determined using a “clean energy” glossary, manually created by the analysts. When applied, the revised plant “bulb” cluster has a low clean energy 
weight, while the revised LED “bulb” has a high clean energy weight.

FigUre 8 | The importance rankings as determined by SRI methodology. 
Red denotes more important, while green denotes less important. Results 
from the clustering algorithms matched the expert-produce high and low 
importance rankings.
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photovoltaics (see Table  1). Similarly, the results for magnets 
mirrored the DOE’s results (see Table 2).

Topic Replacement
One potential application of text analytics is the ability to examine 
trends in material use both within and between term and docu-
ment clusters to measure how technology may be changing or 
“trending” within specific application areas. Work on detection 
of technology emergence has focused on keyword occurrence, 
sometimes within in the context of an existing taxonomy (Eusebi 
and Silberglitt, 2014). SRI’s method produces both the terms and 
applications from the corpus. Manual evaluation determined that 
the term cluster labeled 361 mentioned nickel–metal hydride and 
other battery technologies, specifically in the context of electric 
vehicles. In 2008, document counts for lithium surpassed docu-
ment counts for nickel in term cluster 361 (see Figure 11). The 
graph shown that around 2008, nickel–metal hydride battery tech-
nology for electric vehicles had reached a point of relative maturity. 
Lithium-ion batteries for use in electric vehicles, however, were a 
less mature technology, and research shifted to focus on advancing 
this immature technology. While we cannot draw any conclusions 
about the actual usage of these technologies from these data, 
the case study demonstrates the potential of text analytics to be 
used to analyze trends over time and identify how materials and 
technologies may replace one another. We have also seen this in 
dye-sensitized solar cells in a previous project (Randazzese, 2016).

DiscUssiOn

The results presented show the application of a text analytics 
method to extract meaningful information for use to evaluate 
the progress of research and development. This tool automates 
away a large amount of manual labor; however, human interven-
tion is still necessary. Human experts are required to define the 
parameters of evaluation. Fundamentally, this methodology is 
not designed to replace human analysis or input nor is it intended 

be used to measure the distribution of material mentions across 
the associated abstracts of the top term clusters, an indicator of 
material importance to that specific application.

Each material was scored based on a normalized number of 
mentions across abstracts associated with each of the term clusters 
of analysis. In this case, the results from our methodology mir-
ror the results from the DOE’s report exactly: indium, gallium, 
and tellurium are considered the most important materials to 
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FigUre 9 | Material–application pairing matrix from the U.S. Department of Energy Critical Materials Strategy Report, December 2011. These classifications were 
used to validate the results from the clustering algorithms.
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to act independently. Instead, it is a tool that researchers can use 
to more effectively and efficiently analyze their entire domain of 
research, while also reaching into tangential domains that contain 
relevant concepts, components, and ideas. Researchers can utilize 

this methodology to perform objective, replicable, and adaptable 
reviews of the relative importance of individual components 
to work toward an understanding of how different pieces fit 
together. This methodology can be applied to help researchers 

FigUre 10 | Three term clusters as an illustration of results and filtering step. Analysis of the terms and associated abstracts from the “top” three photovoltaic term 
clusters reveal that two are relevant while one is not.
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Table 1 | Materials/application pairing matrix comparing the results from our 
methodology with the Department of Energy (DOE)’s CM strategy report for the 
photovoltaic technology and coatings component.

sri clusters: 26, 424, 476
Terms: photovoltaics, photocurent, 

tandem solar cells, cdte solar 
cells; cise, cigse, culns; charge 

compensation, doping
cluster-field importance: 0.993

2011 DOe cM 
report

Photovoltaic films

Material coatings

Indium 4.58 •

Gallium 2.51 •

Tellurium 1.98 •

Dysprosium 0.33

Praseodymium 0.80

Neodymium 0.59

Lanthanum 0.78

Cobalt 0.59

Manganese 0.69

Nickel 0.51

Lithium 0.55

Cerium 0.79

Terbium 0.44

Europium 0.68

Yttrium 0.72

The numerical scores for each material represent normalized number of document 
mentions. SRI results matched expert results (right column).

Table 2 | Materials/application pairing matrix comparing the results from our 
methodology with the Department of Energy (DOE)’s CM strategy report for wind 
turbines and vehicle technologies, and magnet component.

sri clusters: 501
Terms: effective magnetic 

moment, magnet, 
paramagnetism

cluster-field importance: 0.992

2011 DOe cM report

Wind turbines|vehicles

Material Magnets

Indium 0.31

Gallium 0.28

Tellurium 0.00

Dysprosium 5.89

Praseodymium 2.13 •

Neodymium 4.54

Lanthanum 0.80 •

Cobalt 1.85

Manganese 0.91 •

Nickel 0.68

Lithium 0.45

Cerium 1.10

Terbium 1.57

Europium 0.95

Yttrium 0.90

The numerical scores for each material represent normalized number of document 
mentions. SRI results matched expert results (right column).

and inventors better understand how specific components or 
materials are involved in a given technology or research stream, 
thereby increasing their potential to create new inventions or 
discover new scientific findings.

The specific manual construction of the glossary is a crucial 
step in this methodology. The choice of screening terms will 
have an obvious impact on what clusters are chosen for analysis. 
The glossary must be assembled with the end goal in mind. 
Alternatively, one could use a more limited glossary if the domain 
of interest was narrow and known. Instead of screening in and 
out various term clusters, one could keep all clusters and use 
weightings to rate relevance of clusters. In this case, we created 
our glossary by selecting keywords from a broad list of material 
applications (both clean energy relevant and not) to ensure that 
we did not artificially restrict our results early in the process. 
This selection was done purely manually based on our analysts’ 
background knowledge of applications of critical materials. This 
screening identified 42 application term clusters of interest, about 
10% of all term clusters.

Future Work
Obvious extensions to this work include text analysis of additional 
document corpora, more analysis of trends over time, and more 
sophisticated use of text analytics; for example, to include natural 
language processing approaches. We did preliminary clustering 
of patent data that suggested a path forward similar to what we 
did for papers. New types of insight, for example on the influence 
of external conditions on materials research, might be obtained 
from looking at non-technical corpora such as news articles.

The workflow developed for this project allows a subject 
matter analyst to leverage state-of-the-art text analytic tools 
without requiring those tools to produce perfect output 
(which is significant, because the state of the art in text analy-
sis produces enormous amounts of noise when applied in any 
practical setting). We are able to reduce the overall manual 
effort required to understand the content of large volumes of 
scientific reporting, at the cost of shifting some of that effort 
to tasks dealing with the text analytic tools. For a targeted 
investigation such as ours, analysts will always select the target 
and shape the investigation.

We used term clustering primarily as a way for analysts to 
collect “concepts” from text, but of course there are many ways to 
carve up the concept space. In our workflow, analysts were able 
to specify sets of terms that should be further specified, but an 
improved interface to these tools would allow a user to suggest 
a split and see resulting changes immediately as opposed to the 
semi-manual process we currently have in which the data analyst 
invokes a standalone process to subdivide individual clusters. This 
was applied, for example, to distinguish the two different senses 
of the term “bulb,” for lighting and as a type of plant. Polysemy of 
this type is common in natural language and experimental tech-
niques existing for automatically identifying and resolving this 
polysemy (Freitag, 2004a,b; Freitag et  al., 2005). Incorporating 
these techniques into our workflow and extending them where 
possible would reduce the effort by the analyst by providing 
superior semantic distinctions with each round of clustering. It 
is possible that the alternative clustering technique LDA, referred 

http://www.frontiersin.org/Research_Metrics_and_Analytics/
http://www.frontiersin.org
http://www.frontiersin.org/Research_Metrics_and_Analytics/archive


12

Kalathil et al. Text Analytics and Material–Application Pairs

Frontiers in Research Metrics and Analytics | www.frontiersin.org January 2018 | Volume 2 | Article 15

to in the background section, would contribute to this problem 
in complementary ways to the coclustering approach, as it allows 
for terms to be members of multiple topics rather than requiring 
each term to be in a single cluster. In addition, metrics such as 
entropy or information gain can be used to attempt to automati-
cally recognize clusters most likely to need to be split, although we 
expect that such metrics will not be sufficient to replace human 
judgment.

Set expansion techniques (Xu and Croft, 1996; Wang and 
Cohen, 2009) have been developed for finding a set of terms 
which are related to a given set of terms in the same way that 
those terms are related to each other. For example, the word 
“Achilles” is related to many words in Greek mythology, the word 
“Alabama” is related to US state names and famous Alabamans, 
and the word “Queen Mary” is related to historical political 
figures. When taken together, however, the main thing that these 
terms have in common is that they are all ship names, and set 
expansion techniques find such hidden connections and then 
find additional terms sharing the relationship. Applying such 
techniques to keyword lists for target technologies would reduce 
the burden on the analyst to come up with comprehensive and 
specific keyword lists for targeting concepts.

FigUre 11 | 4-year moving averages for lithium and nickel document counts in term cluster 361. These results from SRI algorithms show decreasing activity in 
battery research using nickel hydrides by 2008 while lithium research increased for battery applications.
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