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In today’s era of information explosion, extracting entities and their relations in large-
scale, unstructured collections of text to better represent knowledge has emerged as a 
daunting challenge in biomedical text mining. To respond to the demand to automatically 
extract scientific knowledge with higher precision, the public knowledge discovery tool 
PKDE4J (Song et al., 2015) was proposed as a flexible text-mining tool. In this study, 
we propose an extended version of PKDE4J to represent scientific knowledge for liter-
ature-based knowledge discovery. Specifically, we assess the performance of PKDE4J 
in terms of three extraction tasks: entity, relation, and event detection. We also suggest 
applications of PKDE4J along three lines: (1) knowledge search, (2) knowledge linking, 
and (3) knowledge inference. We first describe the updated features of PKDE4J and 
report on tests of its performance. With additional options in the processes of named 
entity extraction, verb expansion, and event detection, we expect that the enhanced 
PKDE4J can be utilized for literature-based knowledge discovery.

Keywords: text mining, named entity recognition, relation extraction, scientific knowledge discovery tool, 
scientific knowledge representation

inTrODUcTiOn

Owing to the deluge of data in today’s digital world, mining useful information from large-scale, 
unstructured collections of text is a challenging task. The demand to discover knowledge from large 
amounts of data has been steadily growing over the years. Knowledge extraction requires at least 
two techniques, named entity recognition (NER) and relation extraction (RE). Identifying entities 
represented in text and the relations among them is a fundamental process of knowledge extraction. 
Using this process, the extracted knowledge can be utilized in a knowledge network or various 
systems. The US National Academy of Sciences claimed in a 2011 report that a biomedical knowl-
edge network based on biological data and knowledge is essential for precision medicine (National 
Research Council, 2011). For knowledge extraction, Song et al. (2015) proposed PKDE4J, the Public 
Knowledge Discovery Engine for Java. The goal of PKDE4J is to extract biomedical knowledge 
from unstructured texts for literature-based knowledge discovery. This is a daunting goal requiring 
long-term research and development. In our previous study, we introduced PKDE4J as a knowledge 
extraction system (Song et al., 2015). In this paper, as a first step, we extend PKDE4J to make it flex-
ible as possible, such that it can be applied to various knowledge extraction tasks. In the second step, 
knowledge identification, we focus on how PKDE4J can be used to represent scientific knowledge.
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Several data mining-based approaches to represent biological 
knowledge have been proposed. Bio2RDF is a mash-up system 
that can be used to integrate knowledge from multiple bioinfor-
matics databases (Belleau et al., 2008). Bell et al. (2011) integrated 
bio-entities and their relations into an existing database. A feature 
of this approach is that it utilizes structured data. However, in this 
paper, we introduce an extended version of PKDE4J based on text 
mining for users in the biomedical domain to transition from the 
micro-level of knowledge entities to macro-topical level by apply-
ing it to unstructured data. Swanson’s ABC model (Swanson, 
1986) helped unveil knowledge discovery in terms of construct-
ing a knowledge network and discovering new knowledge.

Prior to knowledge discovery with techniques from text min-
ing, a knowledge extraction stage is needed. A biological entity 
is tagged according to its type, such as gene, disease, cell, and 
tissue. In PKDE4J, we extended the NER process so that it can 
be conducted in several modes, such as dictionary-based and 
machine learning-based methods combined with ontology. The 
RE process follows to determine the relations among the entities. 
This process is performed by using a set of predefined rules.

In past studies, NER has been used to extract entities and 
their types from text (Hanisch et  al., 2005; Yang et  al., 2008; 
Munkhdalai et al., 2015; Tang et al., 2015; Leaman and Lu, 2016). 
In the biomedical field, types usually include gene, disease, and 
chemicals.

A dictionary-based or a lexicon-based approach is widely used 
in biomedicine. It matches terms from prepared dictionaries to 
a given text. Despite its simplicity and high accuracy, there are 
two major problems in the dictionary-based approach. The first 
is its possible omission of new terminology not included in the 
dictionary, and the second problem is a matching problem of 
variants and synonyms in the dictionary. Several studies (Yang 
et al., 2008; Munkhdalai et al., 2015) have attempted to combine 
various dictionaries to solve these problems.

The rule-based approach observes general features of an 
entity in text and extracts entities based on heuristically acquired 
rules. These features include parts-of-speech tags, dependencies, 
and grammatical features. ProMiner (Hanisch et al., 2005) used 
contextual rules to achieve an accuracy of 92.9%. However, the 
relevant study also identified the risk of overfitting of the pro-
posed rules.

For machine learning-based approaches, conditional random 
fields (CRFs), support vector machines (SVMs), and Markov 
models are widely used. Deep learning-based techniques are also 
being researched. Munkhdalai et al. (2015) proposed BANNER-
CHEMDNER that uses semi-supervised learning to extract 
chemical entities. It recorded an F-measure score of 85.68% on 
the testing set Chemical Entity Mention. Tang et al. (2015) and Li 
et al. (2015) used CRFs with a system based on MapReduce and 
Hadoop to process big data. Although many studies have used 
CRFs to calculate the probability of the occurrence of a certain 
word as a biomedical/chemical entity, Tang et al. (2015) proposed 
an SSVM-based system (F-score: 85.05%) that outperforms 
CRF-based systems. Leaman and Lu (2016) used a semi-Markov, 
structured linear classifier that works well, especially with diseases 
(NCBI Disease corpus, F-score: 0.829) and chemicals (BioCreative 
5 CDR corpus, F-score: 0.914). Recently, to process large amounts 

of bio-literature data, machine learning-based approaches have 
often been combined with parallel and distributed systems (Li 
et al., 2015; Tang et al., 2015).

Determining the relations among entities is also a fundamen-
tal task in discovering knowledge from biomedical text. Although 
early studies (Jelier et al., 2005) focused on extracting binary rela-
tions by using the co-occurrence approach, techniques for the 
extraction of complex relationships among biomedical entities 
have received a considerable amount of research interest because 
complicated and accurate relationships among entities in text can 
be extracted as knowledge. Extracting these complex relations 
involves processing using pattern and rule matching (Fundel 
et  al., 2006) or, recently, machine learning-based techniques 
(Bunescu et al., 2005).

In pattern and rule matching, predefined rules based on a 
dependency tree and a relation trigger word are used to identify 
relations between entities, whereas several techniques, including 
SVM, Markov models, and RNN, are used in machine learning 
approaches. In past studies, RE for specific types of biomedical 
entity have been studied widely. Protein–protein interactions 
(PPIs) have been the subject of extensive focus (Thomas et al., 
2011, Li et al., 2015). Li et al. (2015) described miRTex designed 
for microRNA-gene RE, and it achieved an F-score of 88%. 
Others like Bravo et al. (2015) focused on the relation between 
gene and disease.

It is challenging to find integrated systems for all types of 
biomedical entities. It requires sophisticated techniques and 
expertise that can be applied to various entity types. To overcome 
this limitation, Yimam et  al. (2016) proposed an interactive 
machine learning (iML) approach to improve biomedical knowl-
edge extraction. Holzinger (2016) defined iML as an algorithm 
that can optimize training data through interactions between a 
computer and a human. Although iML may help expedite the 
discovery process, we focus here on only systems for biomedical 
knowledge discovery.

An integrated system requires comprehensive techniques, 
and research on this has not been extensive thus far, despite its 
potential for knowledge extraction. As PKDE4J is an integrated 
system, multiple types of entities and relations can be extracted 
from various types of data sources using it.

In addition to NER and RE, event detection has gained 
attention for accurate knowledge extraction in recent years. 
Event detection refers to the task of extracting descriptions of 
the actions of and relations among one or more entities from the 
biomedical literature (Björne et al., 2010). In the expanded ver-
sion of PKDE4J, we enhance the likelihood of extracting accurate 
relations by adding an event detection module.

The functions of PKDE4J can be applied to practical problems, 
such as knowledge search, knowledge network construction, and 
knowledge inference. For knowledge search, a system integrating 
PKDE4J with PubMed articles provides annotated articles. As 
such, users can perform more effective searches using annotated 
papers. Moreover, using PKDE4J, large amounts of knowledge 
constructed from various resources can be transformed into 
a network. Applying Swanson’s ABC model to the extracted 
knowledge, new knowledge that has not been found before can 
be inferred.
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FigUre 1 | Overall architecture of the new version of PKDE4J.
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In this paper, we compare the extended PKDE4J with other 
well-known algorithms on various types of entity extraction, RE, 
and event detection. We also provide a detailed description of 
how the results are extracted by PKDE4J. To highlight its util-
ity, we introduce examples of how it can be used for knowledge 
annotation, search, linking, and inference.

MaTerials anD MeThODs

The system has been upgraded since the original version of 
PKDE4J was published in 2015. In this section, we introduce 
the updated version. The overall architecture of the system is 
illustrated in Figure 1. The three major modules are (1) named 
entity extraction, (2) RE, and (3) event detection.

named entity extraction
The original PKDE4J version extracts biological entities based 
on a dictionary. To make the NER module more flexible, we 
propose three options for entity extraction in addition to the 

dictionary: (1) the Unified Medical Language System (UMLS) 
combined with the dictionary, (2) machine learning, and (3) 
the UMLS combined with machine learning. By adding these 
options, it is expected that the updated system will exhibit better 
performance and flexibility.

For the dictionary-based approach, we updated the previous 
version of PKDE4J dictionaries by integrating data from the 
open biomedical open database GoPubMed. GoPubMed is a 
search engine for biomedical literature designed to structure a 
large number of articles from the MEDLINE database (Doms 
and Schroeder, 2005). It allows users to query and explore 
PubMed results with controlled vocabulary, such as Gene 
Ontology (GO) and Medical Subject Headings (MeSH). GO 
aims to unify the representations of gene and gene products 
into structured vocabularies. Starting with three databases for 
organisms—FlyBase, the Saccharomyces Genome Database, and 
the Mouse Genome Informatics Project—GO has grown by 
integrating 35 major gene/protein repositories (Ashburner et al., 
2000). Similarly, MeSH is the National Library of Medicine’s 
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FigUre 2 | The definition of biomedical verbs.

TaBle 1 | Queries used to gather data from GOPubMed.

“Humans[mesh] Cells[mesh],”
“Humans[mesh] all[protein],”
“Humans[mesh] Organisms[mesh],”
“Humans[mesh] Metabolism[mesh],”
“Humans[mesh] Diseases[mesh],”
“Humans[mesh] \“Body Regions\”[mesh],”
“Humans[mesh] biological_process[go],”
“Humans[mesh] Tissues[mesh],”
“Humans[mesh] \“Chemicals and Drugs\”[mesh]”
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controlled vocabulary thesaurus used to index biomedical 
publications such as the PubMed database. To add GoPubMed 
data to various types of PKDE4J dictionaries, we retrieved 
articles with queries presented in Table 1. For each article, the 
tagged GO terms and MeSH terms were collected. Collected 
terms that did not represent the dictionary type were filtered by 
certain criteria. For example, general terms like “homo sapiens” 
repeatedly appeared in several queries, and thus were deleted 
from the list.

In addition to MeSH and GO, KEGG Disease as disease 
dictionary and Drugbank data as drug dictionary were added 
to the dictionaries for PKDE4J. KEGG Disease is a collection of 
disease vocabularies. It provides various information concern-
ing diseases on perturbed molecular networks. Approximately, 
2,000 items of disease information were added. Drugbank 
contains biochemical and pharmacological information about 
drugs and their targets (Wishart et al., 2006). More than 400 
drugs and their 1,200 metabolites were added to the drug 
dictionary.

We also propose a combination of the dictionary with the 
UMLS-based approach, which first recognizes biological entities 
in text using the dictionary-based approach and then maps to 
UMLS terms matching the extracted entities. Many existing 
NER systems (Rindflesch et  al., 2000; Aronson, 2001; Jimeno 
et al., 2008) that are lexicon based largely depend on knowledge 
sources such as GO (Doms and Schroeder, 2005) and the UMLS 
(Bodenreider, 2004). Specifically, the UMLS is a collection of 
multiple controlled vocabularies (e.g., NCBI and MeSH) in the 
biomedical domain developed by the US National Library of 
Medicine. It consists of over 3 million concepts, each of which 
is assigned to at least one of 134 semantic types from the UMLS 
Semantic Network, such as gene, genome, and cell. Accordingly, 
the integration of the UMLS into dictionary-based entity extrac-
tion can enhance the interoperability of our system and help uti-
lize additional information concerning entities. It also allows for 
further analysis, such as the measurement of similarity among the 
extracted biological entities based on the corresponding semantic 
types in the Semantic Network.

Similarly, we integrated the UMLS into the machine learn-
ing-based approach. To this end, the machine learning-based 
entity recognizers included Abner (Settles, 2005), CheNER 
(Usié et  al., 2013), and LingPipe (Baldwin and Carpenter, 
2003). The model was chosen according to the characteristics 
of the experiment to be conducted. For instance, if mutation 
was the entity type for entity extraction, we could choose 
MutationFinder (Caporaso et al., 2007). After model selection, 

the NER process was performed using the selected model and 
the extracted entities were mapped to UMLS terms. Abner is 
a tagger for biological entities (e.g., protein, cell line, DNA, 
and RNA) in text and provides two models trained on the 
standard NLPBA (Kim et al., 2003) and BioCreative (Yeh et al., 
2004) corpora. Using these models, two biological entities, 
gene and cell, extracted from the text are tagged and mapped 
into terms in the UMLS. Moreover, a named entity recognizer 
that performs a similar function to Abner is CheNER (Usié 
et al., 2013). It recognizes chemical compounds in biomedical 
text. The CheNER model trained on the corpora provided by 
Kolářik and Klinger (Klinger et al., 2008; Kolárik et al., 2008) 
was used to tag the drug names mentioned in text.

relation extraction
The core module of RE is similar to that of PKDE4J (2015). With 
17 strategies, PKDE4J extracts relations between entities, where 
PKDE4J’s RE module focuses on the presence of verbs. Using 
verbs as the core of RE, we can extract more precise relations. 
Therefore, in the new version of PKDE4J, we expand the range of 
verbs in the RE module.

Expansion of Biomedical Verb List: Biomedical Verbs
The number of verbs used in the previous version of PKDE4J was 
398. This means that only 398 relation types could be extracted, 
and the remaining relations were identified as “none” or “jux-
taposed.” Therefore, a new verb list should be constructed and 
applied to PKDE4J to overcome this limitation.

In this study, we define biomedical verbs as verbs describing 
the relation between biological entities used in the biomedical 
field. Verbs in a general field and in the biomedical field are 
included if they represent a relation between entities. Therefore, 
as shown in Figure 2, some verbs from general and specialized 
verbs used in biomedicine can be used as biomedical verbs.

To construct biomedical verbs, we used the 2014 version of 
PubMed articles. We collected a total of 14,447,667 records of 
articles with the title and abstract of each. We then modified 
PKDE4J to extract verbs from sentences containing two enti-
ties. To use the dictionary-based approach for PKDE4J, we 
constructed dictionaries shown in Table  2. Dictionaries for 
each entity included KEGG, HMDB, GO, Entrez Gene, MeSH, 
DrugBank, Tiger, and GDSC.

http://www.frontiersin.org/Research_Metrics_and_Analytics/
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TaBle 2 | Dictionaries used to construct biomedical verbs.

entity type Dictionary # of unique 
name

entity type Dictionary # of unique 
name

Cell KEGG (Kanehisa and Goto, 2000) 1,559 Body part KEGG (Kanehisa and Goto, 2000) 564
Cellular component HMDB (Wishart et al., 2012) 672 Disease MeSH, KEGG (Kanehisa and Goto, 2000) 73,345
Molecular function Gene ontology (GO) (Ashburner et al., 2000) 14,857 Drug DrugBank (Knox et al., 2011) 30,703
Biological process GO (Ashburner et al., 2000) 43,391 Tissue Tiger, GDSC (Liu et al., 2008; Yang et al., 2013) 76
Gene/protein Entrez gene (Maglott et al., 2011) 104,872 Metabolite HMDB (Wishart et al., 2012) 297,256

MeSH, medical subject heading.

FigUre 3 | Outline of method for biomedical verb construction.
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Verb extraction using PKDE4J involves several processes. 
Figure 3 shows outline of method for biomedical verb construc-
tion. Each PubMed record consists of a title and abstract, and 
abstract was separated by sentence. The separated sentences 
were tokenized into words that were used to extract entities by 
mapping with the dictionaries. If more than two entities were 
extracted in a sentence, the related terms between them were 
extracted. If a certain term had a dependency relation satisfying 
a set of rules, with two entities on a dependency tree provided 
by the Stanford Core NLP (Manning et al., 2014), the term was 
extracted as a candidate biomedical verb. Through this process, 
a total of 72,844 candidate terms were extracted.

The candidate terms included verbs that could not explain 
biological interaction between entities, and spelling errors 
or incomprehensible terms. Thus, to retain only biomedical 
verbs, two additional filtering tasks were performed. First, to 

remove terms that were not verbs. WordNet (Miller, 1995) and 
Wiktionary (https://www.wiktionary.org/) were used. WordNet 
is a dictionary database that provides meaning, part of speech, 
and thesaurus information for each word. Until recently, vari-
ous studies using WordNet had been used as an ontology for 
text analytics (Goikoetxea et  al., 2016). Wiktionary is a Web 
dictionary that aims to create a multilingual dictionary as 
a Wiki project. At least one study recently used Wiktionary 
(Zesch et  al., 2008). We filtered candidate terms using two 
reliable dictionaries. After this process, 8,855 verbs remained. 
The second filtering process involved the selection of verb rep-
resenting meaningful relations through a manual process. In 
this process, a Ph.D. student in the Department of Library and 
Information Science and a doctor in biology conducted manual 
filtering. Verbs representing the relationship between entities 
were extracted. In the case of transitive verbs, the relationship 

http://www.frontiersin.org/Research_Metrics_and_Analytics/
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FigUre 4 | Architecture of event detection function.

TaBle 3 | Top 10 biomedical verbs by frequency.

rel. type Verb nominalization Freq. rel. type Verb nominalization Freq.

Consists of Have Having 2,960,104 Disrupt Inhibit Inhibiting 1,443,204

Uses Use Using 2,744,217 Isa Be Being 1,327,238

Associate with Associate Associating/association 2,034,881 Indicate Find Finding 1,305,364

Affects Increase Increasing/increment 1,880,464 Disrupt Reduce Reducing/reduction 1,168,892

Causes Induce Inducing 1,461,874 Contains Include Including 1,114,958
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between subject and object was indicated. For other words, 
the verbs were directly related to two entities. However, if the 
extracted transitive verbs did not provide any meaning, we 
deleted these verbs, such as “investigate,” “survey,” and “study.” 
Moreover, intransitive verbs indicating relationships between 
entities with preposition were added. In case of a discrepancy 
between the opinions of experts, a decision was made through 
consultation. After all the filtering processes, 4,558 verbs were 
obtained in a final list.

To construct a verb dictionary, two tasks needed to be 
performed. The 4,558 verbs were grouped into similar types 
depending on their meanings. If a number of verbs were 
classified as belonging to a similar type, the relations derived 
from them could represent relatively small numbers of relation 
types. In this study, verbs were classified using the semantic 
relation of UMLS consisting of hierarchical relations, and were 
divided into 54 categories, where the six largest categories 
were “ISA,” “physically_related_to,” “conceptually_related_to,” 
“functionally_related_to,” “temporally_related_to,” and 
“spatially_related_to.” To classify the verbs more accurately, 
manual classification process was carried out. After the clas-
sification process, the nominalized forms of the verbs were 
added. Specifically, a relation between entities was not identified 
by only verbs. For example, in the sentence “Binding A and B,” 
the relation between A and B was identified through “binding.” 
A nominalized form and a gerund can be frequently used to 

identify relations. Therefore, it should include not only the verb 
form, but also the nominalized form and gerund. This process 
was also performed manually.

Finally, we constructed a list of 4,558 verbs including the 
semantic relations from UMLS, as well as the nominalized form 
and gerund of each. Table 3 shows an example of a list of con-
structed biomedical verbs. The entire verb list can be downloaded 
from the following URL: http://informatics.yonsei.ac.kr/tsmm/
data/Biomedical_Verb_List.xlsx.

event Detection
By considering contextual information in the NER process, we 
added an event trigger detection module to the original PKDE4J 
process as shown in Figure 4.

Event detection refers to the task of extracting descriptions 
of actions and relations from one or more entities from the 
biomedical literature (Björne et  al., 2010). Events can function 
as participants in other events, thus allowing for the construc-
tion of complex conceptual networks. Events include complex 
interactions among biological entities, and are highly reliant on 
context (Miwa et al., 2012). They are usually composed of triggers 
that are described as words or phrases indicating the occurrence 
of certain events, such as “inhibition” and “expression” (Rahul 
et al., 2017). Figure 5 shows an example of events detected from 
sentences. Thus, event trigger identification is essential to extract 
interactions among biological entities in a more precise manner. 

http://www.frontiersin.org/Research_Metrics_and_Analytics/
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FigUre 5 | An example of event detection in a sentence.

FigUre 6 | An example of rule generation.
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To this end, we developed a model to recognize trigger words in 
text and added it to our system.

For event detection, we developed a Stanford Core NLP-based 
model using token-based features (lemmatization, POS tagging, 
and phrases) and dependency trees. The model was trained on the 
GENIA Event Extraction corpus (Kim et al., 2012) by selecting 
653 trigger words belonging to four event types—gene expression, 
negative regulation, positive regulation, and regulation—and 
4,132 event sets. To create rules, we applied the k-shortest path 
algorithm to the dependency trees. Each path from a given entity 
to a trigger word can be a rule, and the frequency and percentage 
of its occurrence were analyzed. In a given corpus, the ranking of 
the generated rules is based on the distance between a trigger word 
and an entity, and its frequency and percentage of occurrence. 
Figure 6 shows an example of rule generation. The event trigger 
detection module was added following entity extraction because 
events can be extracted after recognizing biological entities.

eValUaTiOn

named entity extraction
To validate the updated version of the NER module of PKDE4J, 
we compared the performance of the original version with that of 
the updated versions in terms of F-score by mapping the extracted 
entities to biological entities in the PubMed papers collected from 

GOPubMed. On average, the updated version achieved a preci-
sion of 99.9%, a recall rate of 86.6%, and an F-score of 92.8% for 
each biomedical entity as shown in Figure 7.

When combining the UMLS with dictionary-based NER, we 
measured the F-score for 10 types of biomedical entity types. 
In Figure 8, for each entity type, the system yielded a precision 
of 98.1% of, a recall rate of 67.7%, and an F-score of 78.9% on 
average. The module combining the UMLS for entity extraction 
exhibited high precision and relatively low recall, as it assisted 
the natural language process by mapping the extracted entities to 
semantic entity types.

For machine learning-based NER, we exploited three preva-
lent models—Abner, LingPipe, and CheNER—with PKDE4J. 
The models were trained to recognize particular entity types 
as mentioned in the methodology section. Abner is a tool for 
cells and genes, and the entity type that can be identified by the 
CheNER model is limited to drugs. Therefore, we conducted an 
evaluation of each model with a limited number of entity types 
(gene, cell, and drug). As shown in Figure 9, the evaluation shows 
that when wrapping the Abner model with PKDE4J, in case of 
cells, the F-score of the model was 13% (P: 26%, R: 9%) and for 
genes was 31% (P: 30%, R: 33%). The CheNER model yielded an 
F-score of 4.8% (P: 17.3%, R: 2.8%). These results indicate that 
the machine learning-based approach requires a high-quality 
training model that represents the entire population, where an 
out-of-the-box train model for Abner and CheNER yields poor 
performance.

When combining the UMLS with the machine learning-based 
system, we applied Abner and LingPipe model to PKDE4J for 
genes and cells. In this case, LingPipe was limited to tagging gene 
type. Integrating Abner and LingPipe into PKDE4J yielded low 
precision and recall. This can be attributed to the use of the out-
of-the-box training model.

relation extraction
Comparison between Biomedical Verb List and 
Predication in SemRep and UMLS
The entity relations extracted using the biomedical verb list 
were compared with the entity relations’ set constructed using 
SemMed (Rindflesch et  al., 2011) and the UMLS to confirm 
the agreement rate. SemMed is a database that stores a triple 
“subject–predicate–object” extracted by SemRep (Rindflesch 
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and Fiszman, 2003) from Medline. It provided triples extracted 
from 165,670,113 sentences rom approximately 26 million 
PubMed abstracts. Both the subject and object were biomedical 
entities, and a CUI of the UMLS was assigned to them. The 
predicate type was provided by SemRep, and represented 61 
predicate types including positive and negative distinctions. 
In this study, the biomedical verb list was classified using the 
semantic relation of the UMLS. We collected semantic relations 
through the UMLS using the CUI of each entity provided by 
SemMed, and the matching rate was computed based on it. 
A total of 4,406,360 sentences from approximately 20 million 
containing a relation verb provided by SemMed were randomly 
selected. We checked the agreement rate by comparing SemMed 
predicates with the results of applying the biomedical verb list 
to the same sentences. Table 4 shows the correspondence ratio 
between the relation “subject entity–object entity” extracted 

using PKDE4J based on the biomedical verbs and the relations 
provided by SemMed.

The “subject entity–object entity” matching rate was calcu-
lated by matching the subject and object entities, in the context 
of relations extracted through PKDE4J, to entities provided 
by SemRep. Approximately 33% matched. We discarded enti-
ties with relation type is “none” or “juxtaposed.” The former 
indicated that the relation between the relevant entities was 
likely to be positioned close to them, where a verb was located 
in proximity. The relation type “juxtapose” meant that two enti-
ties cooccurred without being connected to each other via a 
meaningful verb. In addition to filtering by these two criteria, 
a reason for the low match rate is the preprocessing of entities 
in PKDE4J. Because entities were preprocessed, a significant 
number of entity pairs extracted by PKDE4J did not match with 
those extracted by SemRep.
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FigUre 9 | F-scores of the machine learning and the Unified Medical Language System (UMLS)-combined machine learning-connected systems.
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TaBle 5 | Five corpora for evaluation of relation extraction module.

relation type corpus

Protein–protein interaction AIMed, BioInfer, HPRD50, IEPA
Gene–disease association GAD
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The agreement rate of triples was approximately 8.4%, which 
was relatively low. This is for the following reasons: First, Semantic 
Relation in UMLS determines the predefined semantic relation 
based on the CUI. This means that although other expressions 
appeared in a sentence, semantic relation was always the same 
if the CUIs were the same. Therefore, even if the same verb was 
used in several sentences, the semantic relation of the sentence 
varied depending on the CUI of the two entities. Moreover, it 
was also difficult to clearly classify the verb according to semantic 
relations. For example, the verb “effect” can be classified into vari-
ous semantic relations such as “interacts_with,” “affects,” “causes,” 
“associate_with,” “result_of,” and “derive_from.” Because of the 
difficulty of precise classification, the concordance rate of the 
predicate decreased.

Although the concordance rate was low, it was useful in two 
respects. First, as mentioned above, if the result was extracted 
using the UMLS semantic type, the semantic relation was deter-
mined depending on the CUI of the extracted entity. However, 
if a biomedical verb was used, it had the advantage whereby the 
relation could be extracted through information provided in the 
sentence. As the information in the sentence had been used, it 
was possible to extract a relation more suitable for the context. 
Second, even if two entities did not have a semantic relation, 
it was possible to find an entity relation using information in a 
sentence in PKDE4J. SemRep or UMLS only extract entity rela-
tions with a semantic relation even if entity relations appear in the 
sentence structure. On the contrary, if biomedical verbs are used 
in RE, more relations can be extracted.

Experiments on Entity-Entity RE
To measure the performance of the RE component of PKDE4J 
(PKDE4J-RE), we used five corpora with different characteristics 
and relation types as shown in Table 5. AIMed is among best-
known corpora for PPIs (Bunescu et al., 2005). It contains 225 
MEDLINE abstracts, and contains 1,955 sentences pertaining to 
proteins found in humans. The corpus was curated manually, and 
had 177 abstracts with PPI and 48 without. BioInfer and GAD 
are general RE corpora consisting of more than two entity types. 
Of the relation-type tags available in these corpora, we used only 
relation tagging for PPI. The BioInfer corpus is known for repre-
senting relationships among proteins, genes, and RNA (Pyysalo 
et al., 2007). It contains 1,100 sentences from PubMed abstracts, 
and the sentences contain annotations concerning entity, entity 
relationship, and dependency. A total of 2,662 relationship 
appeared in 840 sentences and the remainder had no relations. 
GAD (Becker et al., 2004) is a corpus that was semi-automatically 
annotated with three type relations: drug–disease, target–disease, 
and gene–disease relationships. The corpus had 5,329 sentences 
containing 2,800 true interactions and 2,529 false associations. 
The former consisted of 1,833 positive interactions and 967 
negative ones. HPRD50 was created as a corpus for RelEx based 
on a subset of the Human Protein Reference Database (HPRD) 
(Fundel et  al., 2006). The corpus contained (1) direct physical 
interactions, (2) regulatory relations, and (3) modifications 
(e.g., phosphorylation), which were manually annotated by two 
domain experts. It contained 145 sentences with a list of 433 PPI. 
IEPA, the Interaction Extraction Performance Assessment, is a 
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TaBle 8 | Performance results of seven algorithms for cases involving two 
predicates.

Model agent or theme

regulate (525) associate (377)

Lexicon based 61.87 52.09

PAS based 60.48 51.48

Path 60.13 51.29

Head pair 60.72 50.43

Trans/Intrans 60.01 51.40

PKDE4J-EVENT 63.32 52.05

Adapted from “PASBio: predicate-argument structures for event extraction in molecular 
biology.” by Wattarujeekrit et al. (2004).

TaBle 7 | An example of the results of semantic parsing for event detection 
(Zhou and He, 2011).

Sentence We concluded that CTCF expression and activity were controlled 
at transcriptional and posttranscriptional levels

Parse results SS + protein (CTCF)
SS + protein + gene expression (expression)
SS + protein + gene expression + regulation (controlled levels)

Events E1 gene expression: expression; theme: CTCF
E2 regulation: controlled levels; theme: E1
E3 regulation: controlled levels; theme: CTCF

TaBle 6 | Comparative assessment of relation extraction (RE) module.

Model aiMed Bioinfer hPrD50 iePa gaD

Co-occurrence  
(Pyysalo et al., 2007)

0.29 0.23 0.55 0.58 0.38

RelEx (Pyysalo et al., 2007) 0.44 0.41 0.69 0.67 N/A

Bui et al. (2011) 0.51 0.59 0.72 0.73 N/A

PPInterFinder (Raja et al., 2013) 0.57 N/A 0.52 N/A N/A

Support vector machine  
(Song et al., 2014)

0.47 0.83 0.54 0.74 0.76

RE component of PKDE4J 0.74 0.83 0.79 0.81 0.84

Adapted from “Grounded feature selection for biomedical RE by the combinative 
approach,” by Song et al. (2014).
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corpus for PPIs consisting of 303 abstracts, with 486 sentences 
and 817 relations (Ding et al., 2002).

To evaluate RE performance, we compared the PKDE4J-RE 
with five approaches—SVM (Song et  al., 2014), co-occurrence 
(Pyysalo et al., 2008), RelEx (Pyysalo et al., 2007), PPInterFinder 
(Raja et al., 2013), and Bui et al.’s (Bui et al., 2011) algorithm—
based on results for these methods from our previous study (Song 
et al., 2014). The performance of each model was measured in 
terms of the F-score. SVM and co-occurrence are the two best-
known approaches to RE. Other advanced algorithms could 
have been considered as well, such as CRFs, which recorded an 
F-score of 0.852 on 27,000 abstract from ISI in a study by Tang 
et  al. (2015), or deep learning, which achieved an F-score of 
0.613 in the SemEval-2010 Task 8 dataset in a study of Nguyen 
and Grishman (2015). However, our study intended to compare 
commonly used techniques for RE. PKDE4J-RE yielded the best 
performance.

RelEx is a RE technique that uses dependency trees and simple 
rules applied to these trees. PPInterFinder is specifically designed 
to extract PPIs by identifying relation keywords using a parser 
with Tregex and a relation keyword dictionary for 11 specific 
patterns based on the syntactic nature of PPI pairs. Bui et  al.’s 
approach is tuned to PPI extraction based on dependency trees 
and SVM. Most of these approaches have already been evaluated 
using AIMed, BioInfer, HPRD50, and IEPA. As shown in Table 6, 
in the experiments, PKDE4J-RE outperformed the other five RE 
techniques over all corpora.

event Detection
Effective event detection requires in-depth analysis of sentence 
structure, and can benefit in particular from the use of semantic 

processing or deep parsing techniques that analyze both the 
syntactic and semantic structures of texts. Event detection is a 
daunting challenge, and is more complex and difficult than RE. 
We extended PKDE4J for event detection based on dependency 
trees and 17 rules applied to them. For example, in a dependency 
tree, if the dependency relation between a governor and a depen-
dent contained a preposition property, such as “prep-at” + a noun 
phrase, the dependency relation was tagged as an event. Table 7 
shows a sample sentence and the results of event detection based 
on the aforementioned rules.

Experiments for Event Detection
To test the event detection performance of PKDE4J (PKDE4J-
EVENT), we used the PASBIO corpus. It consists of 30 biomedi-
cine-related predicates (Wattarujeekrit et al., 2004), and was built 
using predicate–argument structures from unstructured texts in 
the biomedical literature. The predicates available in PASBIO 
were from sentences mostly from Medline and the Embo, 
PNAS, NAR, and JV journals. We compared PKDE4J-EVENT 
with the Wattarujeekrit et al.’s approach to PASBIO. The results 
are shown in Table 8. The lexicon-based model consisted of six 
features: surface word, lemma form, head word of noun phrase, 
parts of speech, orthographic features, and phrase chunks. The 
PAS-based model consisted of features from the lexicon-based 
model as well as the predicate surface form, predicate lemma, 
voice, and surface syntactic role to represent the semantic roles 
of the arguments. The path model included features related to a 
syntactic path from the subject argument to the related predi-
cate, and from the related predicate to the object argument. The 
head pair model included features of the PAS-based model and 
those representing a pair of subject and object heads. The trans/
intrans model contained features of the PAS-based model and 
supplementary features indicating whether a predicate had been 
used in the transitive or intransitive sense. As shown in Table 8, 
PKDE4J-EVENT outperformed the other five models on the 
predicate “regulate” but achieved the second-best performance 
on “associate,” where the lexicon-based model achieved the best 
performance. This was a surprising result, in that of models with 
the most sophisticated feature sets, the simplest one achieved 
the best performance in case of two predicates. As PKDE4J is 
intended for entity and RE, the performance of PKDE4J-EVENT 
was acceptable.
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aPPlicaTiOns

The results of the evaluation show that PKDE4J is a useful and 
effective text-mining tool for NER, RE, and event extraction. As 
the results of these extraction tasks were sources for biomedical 
scientific knowledge representation, the results can be applied 
to knowledge discovery tasks such as literature-based discovery, 
hypothesis generation, and semantic annotation. In this section, 
we describe ongoing efforts to extend PKDE4J to knowledge 
discovery.

Knowledge search
PKDE4J can be applied to knowledge search. Figures  10 and 
11 show screenshots of its application that is publicly available 
at http://informatics.yonsei.ac.kr:8080/ner-re. PKDE4J can be 

embedded into any search engine to render the search results 
more meaningful for users. For example, if users enter queries, 
the system searches and returns the matching PubMed records 
with the NER results. On the results’ page, the extracted entities 
and relation types recognized by PKDE4J are highlighted, and the 
list of their relation types is also provided.

The results’ page consists of an annotated abstract and an 
annotated relation list. The relation list contains the types 
of relations between entities. The annotated abstract shows 
entities and relations extracted from the abstract that are 
highlighted in different colors by entity type, as shown in 
Figure  10. Moreover, the system provides a list of extracted 
relations of each entity and its relation type as well as a pie 
graph showing the ratio of the extracted types of entity rela-
tions (Figure 11).
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FigUre 11 | Example of the results’ page of search engine: an annotated relation list and a pie chart to show the ratio of annotated relation types.

Knowledge linking
Another application of PKDE4J is knowledge linking. 
Biomedical data are available from various types of data 
sources, including research articles, clinical data, and 

health-care-related social media. Thus, extracting entities and 
relations from these heterogeneous data sources requires that 
they be connected to one another for knowledge discovery. 
These entities and their relations can be organized and linked 
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in the form of a multi-layer network as shown in Figure  12. 
With the constructed network, the links among entities within 
the same layer as well as with those from different layers can be 
analyzed. If the network is used for new hypothesis generation, 
it can provide more sophisticated and integrated hypotheses. 
Moreover, the multi-layer graph can be efficiently managed 
using a graph database such as Neo4J (Webber, 2012).

Knowledge inference
After searching and linking entities and their relations, we can 
infer knowledge as the next step of knowledge representation. 
The application of PKDE4J to knowledge inference can help 
us discover new relations or patterns based on the constructed 
knowledge networks. With the constructed network, PKDE4J 

FigUre 13 | Search result page of the hypothesis generator system.

FigUre 12 | Conceptual architecture of multi-layer analysis of knowledge 
network.

can be applied to generate new plausible hypotheses for knowl-
edge inference (Baek et  al., 2017), as proposed by Baek et  al. 
(2017) for literature-based discovery. This application is acces-
sible at http://informatics.yonsei.ac.kr:8080/hypothsis_genera-
tor/index.html.

Users can search by using multiple query terms (e.g., “vacu-
olation”), and the system returns the matching PubMed results, 
including the PubMed ID, abstract, and PubMed link to the 
article as shown in Figure 13. Moreover, the search terms that 
users enter into the system are highlighted in the results. After 
browsing the results list, users can select the PubMed records to 
be included to generate new hypotheses.

When users click the “generate paths” button at the top 
right-hand corner of the results’ page, after choosing the number 
of abstracts, the results are displayed in the path analysis page 
as illustrated in Figure  14. In the path results’ page, entities 
extracted from the selected articles are listed on the left and the 
search bar on the right. Using the list of entities, users can gener-
ate paths by selecting two entities of interest. Based on Swanson’s 
ABC model, users enter two entities (A and C terms) to generate 
plausible hypotheses, including none, one or multiple C-terms 
between A and C. Moreover, these generated paths are ranked by 
a semantic relatedness score. If there are connected paths between 
the extracted entities, they are displayed in order by relatedness 
score. For instance, if the resulting path is “Vacuolation-
(CAUSES)- > Amphotericin B,” this can be interpreted as “vacu-
olation” and “amphotericin B” are linked via a path that implies 
a causality relation.

As demonstrated by the above three applications for 
representing scientific knowledge, PKDE4J serves a basis for 
effective and automatic knowledge discovery. It is not limited 
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to knowledge extraction either, and can be adapted to other 
types of knowledge representation, such as the augmentation 
of ontology.

cOnclUsiOn

Compared with the original PKDE4J, the upgraded version of 
PKDE4J was shown in this study to be a flexible system for knowl-
edge representation. For named entity extraction, the following 
three options were added to it: (1) a dictionary with the UMLS, 
(2) machine learning, and (3) machine learning with the UMLS. 
For RE, verb expansion was added for more accurate detection of 
relations. For more precise extraction, the event trigger extrac-
tion module was attached to PKDE4J as part of the RE process 
based on the contextual information of sentences. The improved 
PKDE4J was verified to be effective compared with the original 
version as well as commonly used extraction techniques.

We also proposed applications of PKDE4J for knowledge 
representation. First, it enables knowledge search. By building a 
Web search system, PKDE4J helps users search for the extracted 
entities and their relations. Second, PKDE4J can be used to con-
nect the extracted entities via a multi-layered network. Linking 

FigUre 14 | The results’ page for the generated paths.

knowledge that connects parts of our knowledge can suggest new 
and plausible knowledge paths. Third, PKDE4J can be applied 
to knowledge inference. With the constructed knowledge net-
work, PKDE4J can generate promising candidates’ hypotheses. 
Although we described only three applications of PKDE4J, other 
interesting and meaningful applications in biology as well as 
other domains could be developed.

aUThOr cOnTriBUTiOns

MS (first and corresponding author) made substantial contribu-
tions to conception and design, and evaluation and application. 
He also gave final approval to the version to be submitted as well 
as revised versions. MK, KK, YK, and SJ participated in drafting 
the article and revising it.

FUnDing

This work was supported by the Bio-Synergy Research Project 
(NRF-2013M3A9C4078138) of the Ministry of Science, ICT, and 
Future Planning through the National Research Foundation.

reFerences

Aronson, A. R. (2001). “Effective mapping of biomedical text to the UMLS 
metathesaurus: the metamap program,” in Proceedings of the AMIA Symposium 
(Washington, DC: American Medical Informatics Association), 17.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). 
Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25. doi:10.1038/75556 

Baek, S. H., Lee, D., Kim, M., Lee, J. H., and Song, M. (2017). Enriching plausible 
new hypothesis generation in PubMed. PLoS ONE 12:e0180539. doi:10.1371/
journal.pone.0180539 

Baldwin, B., and Carpenter, B. (2003). LingPipe. Available from World Wide Web: 
http://alias-i.com/lingpipe/

Becker, K. G., Barnes, K. C., Bright, T. J., and Wang, S. A. (2004). The genetic 
association database. Nat. Genet. 36, 431–432. doi:10.1038/ng0504-431 

Bell, L., Chowdhary, R., Liu, J. S., Niu, X., and Zhang, J. (2011). Integrated bio-en-
tity network: a system for biological knowledge discovery. PLoS ONE 6:e21474. 
doi:10.1371/journal.pone.0021474 

Belleau, F., Nolin, M. A., Tourigny, N., Rigault, P., and Morissette, J. (2008). Bio2RDF: 
towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 
 41, 706–716. doi:10.1016/j.jbi.2008.03.004 

http://www.frontiersin.org/Research_Metrics_and_Analytics/
http://www.frontiersin.org
http://www.frontiersin.org/Research_Metrics_and_Analytics/archive
https://doi.org/10.1038/75556
https://doi.org/10.1371/journal.pone.0180539
https://doi.org/10.1371/journal.pone.0180539
http://alias-i.com/lingpipe/
https://doi.org/10.1038/ng0504-431
https://doi.org/10.1371/journal.pone.0021474
https://doi.org/10.1016/j.jbi.2008.03.004


15

Song et al. PKDE4J

Frontiers in Research Metrics and Analytics | www.frontiersin.org February 2018 | Volume 3 | Article 7

Björne, J., Ginter, F., Pyysalo, S., Tsujii, J. I., and Salakoski, T. (2010). Complex 
event extraction at PubMed scale. Bioinformatics 26, i382–i390. doi:10.1093/
bioinformatics/btq180 

Bodenreider, O. (2004). The unified medical language system (UMLS): integrat-
ing biomedical terminology. Nucleic Acids Res. 32(Suppl._1), D267–D270. 
doi:10.1093/nar/gkh061 

Bravo, À, Piñero, J., Queralt-Rosinach, N., Rautschka, M., and Furlong, L. I. 
(2015). Extraction of relations between genes and diseases from text and large-
scale data analysis: implications for translational research. BMC Bioinformatics 
16:55. doi:10.1186/s12859-015-0472-9 

Bui, Q. C., Katrenko, S., and Sloot, P. M. (2011). A hybrid approach to extract 
protein–protein interactions. Bioinformatics 27, 259–265. doi:10.1093/
bioinformatics/btq620 

Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M., Mooney, R. J., Ramani, A. K., 
et al. (2005). Comparative experiments on learning information extractors for 
proteins and their interactions. Artif. Intell. Med. 33, 139–155. doi:10.1016/j.
artmed.2004.07.016 

Caporaso, J. G., Baumgartner, W. A. Jr., Randolph, D. A., Cohen, K. B., and Hunter, L.  
(2007). MutationFinder: a high-performance system for extracting point mutation 
mentions from text. Bioinformatics 23, 1862–1865. doi:10.1093/bioinformatics/ 
btm235 

Ding, J., Berleant, D., Nettleton, D., and Wurtele, E. (2002). “Mining MEDLINE: 
abstracts, sentences, or phrases?,” in Pacific Symposium on Biocomputing Vol. 7, 
(Kauai, HI), 326–337. 

Doms, A., and Schroeder, M. (2005). GoPubMed: exploring PubMed with the gene 
ontology. Nucleic Acids Res. 33(Suppl._2), W783–W786. doi:10.1093/nar/gki470 

Fundel, K., Küffner, R., and Zimmer, R. (2006). RelEx—relation extraction 
using dependency parse trees. Bioinformatics 23, 365–371. doi:10.1093/
bioinformatics/btl616 

Goikoetxea, J., Agirre, E., and Soroa, A. (2016). “Single or multiple? Combining 
word representations independently learned from text and WordNet,” in 
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, (Phoenix, 
AZ: AAAI Press), 2608–2614.

Hanisch, D., Fundel, K., Mevissen, H. T., Zimmer, R., and Fluck, J. (2005). 
ProMiner: rule-based protein and gene entity recognition. BMC Bioinformatics 
6:S14. doi:10.1186/1471-2105-6-14 

Holzinger, A. (2016). Interactive machine learning for health informatics: when 
do we need the human-in-the-loop? Brain Inform. 3, 119–131. doi:10.1007/
s40708-016-0042-6 

Jelier, R., Jenster, G., Dorssers, L. C., van der Eijk, C. C., van Mulligen, E. M., Mons, B.,  
et  al. (2005). Co-occurrence based meta-analysis of scientific texts: retrie-
ving biological relationships between genes. Bioinformatics 21, 2049–2058. 
doi:10.1093/bioinformatics/bti268 

Jimeno, A., Jimenez-Ruiz, E., Lee, V., Gaudan, S., Berlanga, R., and Rebholz-
Schuhmann, D. (2008). Assessment of disease named entity recognition 
on a corpus of annotated sentences. BMC Bioinformatics 9(Suppl. 3):S3. 
doi:10.1186/1471-2105-9-S3-S3 

Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and 
genomes. Nucleic Acids Res. 28, 27–30. doi:10.1093/nar/28.1.27

Kim, J. D., Ohta, T., Tateisi, Y., and Tsujii, J. I. (2003). GENIA corpus—a seman-
tically annotated corpus for bio-textmining. Bioinformatics 19(Suppl._1), 
i180–i182. doi:10.1093/bioinformatics/btg1023 

Kim, J. D., Nguyen, N., Wang, Y., Tsujii, J. I., Takagi, T., and Yonezawa, A. (2012). 
The Genia event and protein coreference tasks of the BioNLP shared task 2011. 
BMC Bioinformatics 13(Suppl. 11):s1. doi:10.1186/1471-2105-13-S11-S1

Klinger, R., Kolářik, C., Fluck, J., Hofmann-Apitius, M., and Friedrich, C. M. 
(2008). Detection of IUPAC and IUPAC-like chemical names. Bioinformatics 
24, i268–i276. doi:10.1093/bioinformatics/btn181 

Kolárik, C., Klinger, R., Friedrich, C., Hofmann-Apitius, M., and Fluck, J.  
(2008). “Chemical names: terminological resources and corpora annotation,” 
in Workshop on Building and Evaluating Resources for Biomedical Text Mining 
(6th Edition of the Language Resources and Evaluation Conference) (Marrakech, 
Morocco), 51–58.

Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., and Frolkis, A., et al. (2011). DrugBank 
3.0: a comprehensive resource for ‘OMICS’ research on drugs Nucleic Acids 
Res. 39(Suppl. 1) D1035–D1041. doi:10.1093/nar/gkq1126

Leaman, R., and Lu, Z. (2016). TaggerOne: joint named entity recognition and 
normalization with semi-Markov models. Bioinformatics 32, 2839–2846. 
doi:10.1093/bioinformatics/btw343 

Li, G., Ross, K. E., Arighi, C. N., Peng, Y., Wu, C. H., and Vijay-Shanker, K. (2015). 
miRTex: a text mining system for miRNA-gene relation extraction. PLoS 
Comput. Biol. 11:e1004391. doi:10.1371/journal.pcbi.1004391 

Liu, X., Yu, X., Zack, D. J., Zhu, H., and Qian, J. (2008). TiGER: a database for tis-
sue-specific gene expression and regulation. TiGER: a database for tissue-specific 
gene expression and regulation, 9, 271.

Maglott, D., Ostell, J., Pruitt, K. D., and Tatusova, T. (2011). Entrez gene: 
gene-centered information at NCBI. Nucleic Acids Res. 39(Suppl. 1):D52–D57. 
doi:10.1093/nar/gkq1237

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and McClosky, D.  
(2014). “The Stanford coreNLP natural language processing toolkit,” in 
Proceedings of the 52nd Annual Meeting of the Association for Computational 
Linguistics (Baltimore, Maryland: Association for Computational Linguistics), 
55–60.

Miller, G. A. (1995). WordNet: a lexical database for English. Commun. ACM 38, 
39–41. doi:10.1145/219717.219748 

Miwa, M., Thompson, P., and Ananiadou, S. (2012). Boosting automatic event 
extraction from the literature using domain adaptation and coreference resolu-
tion. Bioinformatics 28, 1759–1765. doi:10.1093/bioinformatics/bts237 

Munkhdalai, T., Li, M., Batsuren, K., Park, H. A., Choi, N. H., and Ryu, K. H. 
(2015). Incorporating domain knowledge in chemical and biomedical named 
entity recognition with word representations. J. Cheminform. 7, S9. doi:10.1186/ 
1758-2946-7-S1-S9 

National Research Council. (2011). Toward Precision Medicine: Building a 
Knowledge Network for Biomedical Research and a New Taxonomy of Disease. 
Washington, DC: National Academies Press.

Nguyen, T. H., and Grishman, R. (2015). “Relation extraction: perspective from 
convolutional neural networks,” in Proceedings of the 1st Workshop on Vector 
Space Modeling for Natural Language Processing (Denver, Colorado: Association 
for Computational Linguistics), 39–48.

Pyysalo, S., Airola, A., Heimonen, J., Björne, J., Ginter, F., and Salakoski, T. 
(2008). Comparative analysis of five protein-protein interaction corpora. BMC 
Bioinformatics 9:S6. doi:10.1186/1471-2105-9-S3-S6 

Pyysalo, S., Ginter, F., Heimonen, J., Björne, J., Boberg, J., Järvinen, J., et al. (2007). 
BioInfer: a corpus for information extraction in the biomedical domain. BMC 
Bioinformatics 8:50. doi:10.1186/1471-2105-8-50 

Rahul, P. V., Sahu, S. K., and Anand, A. (2017). Biomedical Event Trigger 
Identification Using Bidirectional Recurrent Neural Network Based Models  
Vancouver, Canada: Association for Computational Linguistics, 316–321.

Raja, K., Subramani, S., and Natarajan, J. (2013). PPInterFinder—a mining tool 
for extracting causal relations on human proteins from literature. Database 
(Oxford) 2013, bas052. doi:10.1093/database/bas052 

Rindflesch, T. C., and Fiszman, M. (2003). The interaction of domain knowledge 
and linguistic structure in natural language processing: interpreting hypernymic 
propositions in biomedical text. J. Biomed. Inform. 36, 462–477. doi:10.1016/j.
jbi.2003.11.003 

Rindflesch, T. C., Kilicoglu, H., Fiszman, M., Rosemblat, G., and Shin, D. (2011). 
Semantic MEDLINE: an advanced information management application for 
biomedicine. Inf. Serv. Use 31, 15–21. doi:10.3233/ISU-2011-0627 

Rindflesch, T. C., Tanabe, L., Weinstein, J. N., and Hunter, L. (2000). “EDGAR: 
extraction of drugs, genes and relations from the biomedical literature,” in 
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 
(Honolulu, Hawaii: NIH Public Access), 517.

Settles, B. (2005). ABNER: an open source tool for automatically tagging genes, pro-
teins and other entity names in text. Bioinformatics 21, 3191–3192. doi:10.1093/ 
bioinformatics/bti475 

Song, M., Kim, W. C., Lee, D., Heo, G. E., and Kang, K. Y. (2015). PKDE4J: entity 
and relation extraction for public knowledge discovery. J. Biomed. Inform. 57, 
320–332. doi:10.1016/j.jbi.2015.08.008 

Song, S. J., Heo, G. E., Kim, H. J., Jung, H. J., Kim, Y. H., and Song, M. (2014). 
“Grounded feature selection for biomedical relation extraction by the combina-
tive approach,” in Proceedings of the ACM 8th International Workshop on Data 
and Text Mining in Bioinformatics (Shanghai, China: ACM), 29–32.

Swanson, D. R. (1986). Fish oil, Raynaud’s syndrome, and undiscovered public 
knowledge. Perspect. Biol. Med. 30, 7–18. doi:10.1353/pbm.1986.0087 

Tang, B., Feng, Y., Wang, X., Wu, Y., Zhang, Y., Jiang, M., et al. (2015). A com-
parison of conditional random fields and structured support vector machines 
for chemical entity recognition in biomedical literature. J. Cheminform. 7, S8. 
doi:10.1186/1758-2946-7-S1-S8 

http://www.frontiersin.org/Research_Metrics_and_Analytics/
http://www.frontiersin.org
http://www.frontiersin.org/Research_Metrics_and_Analytics/archive
https://doi.org/10.1093/bioinformatics/btq180
https://doi.org/10.1093/bioinformatics/btq180
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1186/s12859-015-0472-9
https://doi.org/10.1093/bioinformatics/btq620
https://doi.org/10.1093/bioinformatics/btq620
https://doi.org/10.1016/j.artmed.2004.07.016
https://doi.org/10.1016/j.artmed.2004.07.016
https://doi.org/10.1093/bioinformatics/
btm235
https://doi.org/10.1093/bioinformatics/
btm235
https://doi.org/10.1093/nar/gki470
https://doi.org/10.1093/bioinformatics/btl616
https://doi.org/10.1093/bioinformatics/btl616
https://doi.org/10.1186/1471-2105-6-14
https://doi.org/10.1007/s40708-016-0042-6
https://doi.org/10.1007/s40708-016-0042-6
https://doi.org/10.1093/bioinformatics/bti268
https://doi.org/10.1186/1471-2105-9-S3-S3
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1186/1471-2105-13-S11-S1
https://doi.org/10.1093/bioinformatics/btn181
https://doi.org/10.1093/nar/gkq1126
https://doi.org/10.1093/bioinformatics/btw343
https://doi.org/10.1371/journal.pcbi.1004391
https://doi.org/10.1093/nar/gkq1237
https://doi.org/10.1145/219717.219748
https://doi.org/10.1093/bioinformatics/bts237
https://doi.org/10.1186/
1758-2946-7-S1-S9
https://doi.org/10.1186/
1758-2946-7-S1-S9
https://doi.org/10.1186/1471-2105-9-S3-S6
https://doi.org/10.1186/1471-2105-8-50
https://doi.org/10.1093/database/bas052
https://doi.org/10.1016/j.jbi.2003.11.003
https://doi.org/10.1016/j.jbi.2003.11.003
https://doi.org/10.3233/ISU-2011-0627
https://doi.org/10.1093/
bioinformatics/bti475
https://doi.org/10.1093/
bioinformatics/bti475
https://doi.org/10.1016/j.jbi.2015.08.008
https://doi.org/10.1353/pbm.1986.0087
https://doi.org/10.1186/1758-2946-7-S1-S8


16

Song et al. PKDE4J

Frontiers in Research Metrics and Analytics | www.frontiersin.org February 2018 | Volume 3 | Article 7

Thomas, P., Solt, I., Klinger, R., and Leser, U. (2012). “Learning protein protein 
interaction extraction using distant supervision,” in Proceedings of Robust 
Unsupervised and Semi-Supervised Methods in Natural Language Processing 
(Workshop at International Conference Recent Advances in Natural Language 
Processing), (Hissar, Bulgaria: INCOMA Ltd).

Usié, A., Alves, R., Solsona, F., Vázquez, M., and Valencia, A. (2013). CheNER: 
chemical named entity recognizer. Bioinformatics 30, 1039–1040. doi:10.1093/
bioinformatics/btt639 

Wattarujeekrit, T., Shah, P. K., and Collier, N. (2004). PASBio: predicate-argument 
structures for event extraction in molecular biology. BMC Bioinformatics 5:155. 
doi:10.1186/1471-2105-5-155 

Webber, J. (2012). “A programmatic introduction to neo4j,” in Proceedings of the 
3rd annual conference on Systems, programming, and applications: software for 
humanity (Tucson, Arizona: ACM), 217–218.

Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., 
et al. (2006). DrugBank: a comprehensive resource for in silico drug discovery 
and exploration. Nucleic. Acids Res. 34(Suppl_1), D668–D672. doi:10.1093/nar/
gkj067 

Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2012). 
HMDB 3.0 – the human metabolome database in 2013. Nucleic Acids Res 41, 
D801–D807.

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., et al. 
(2013). Genomics of drug sensitivity in cancer (GDSC): a resource for thera-
peutic biomarker discovery in cancer cells. Nucleic Acids Res 41, D955–D961. 
doi:10.1093/nar/gks1111

Yang, Z., Lin, H., and Li, Y. (2008). Exploiting the performance of dictionary-based 
bio-entity name recognition in biomedical literature. Comput. Biol. Chem. 32, 
287–291. doi:10.1016/j.compbiolchem.2008.03.008 

Yeh, A., Morgan, A., Colosimo, M., and Hirschman, L. (2005). BioCreAtIvE 
task 1A: gene mention finding evaluation in BMC Bioinformatics, 6:S2. 
doi:10.1186/1471-2105-6-2

Yimam, S. M., Biemann, C., Majnaric, L., Šabanović, Š, and Holzinger, A. (2016). 
An adaptive annotation approach for biomedical entity and relation recogni-
tion. Brain Inform. 3, 157–168. doi:10.1007/s40708-016-0036-4 

Zesch, T., Müller, C., and Gurevych, I. (2008). “Using wiktionary for computing 
semantic relatedness,” in Proceedings of the 23rd National Conference on 
Artificial Intelligence, Vol. 2, (Chicago, IL: AAAI Press), 861–866.

Zhou, D., and He, Y. (2011). Biomedical events extraction using the hidden vector state 
model [Table]. Artif. Intell. Med. 53, 205–213. doi:10.1016/j.artmed.2011.08.002 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Song, Kim, Kang, Kim and Jeon. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License  
(CC BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Research_Metrics_and_Analytics/
http://www.frontiersin.org
http://www.frontiersin.org/Research_Metrics_and_Analytics/archive
https://doi.org/10.1093/bioinformatics/btt639
https://doi.org/10.1093/bioinformatics/btt639
https://doi.org/10.1186/1471-2105-5-155
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1016/j.compbiolchem.2008.03.008
https://doi.org/10.1186/1471-2105-6-2
https://doi.org/10.1007/s40708-016-0036-4
https://doi.org/10.1016/j.artmed.2011.08.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Application of Public Knowledge Discovery Tool (PKDE4J) to Represent Biomedical Scientific Knowledge
	Introduction
	Materials and Methods
	Named Entity Extraction
	Relation Extraction
	Expansion of Biomedical Verb List: Biomedical Verbs

	Event Detection

	Evaluation
	Named Entity Extraction
	Relation Extraction
	Comparison between Biomedical Verb List and Predication in SemRep and UMLS
	Experiments on Entity-Entity RE

	Event Detection
	Experiments for Event Detection


	Applications
	Knowledge Search
	Knowledge Linking
	Knowledge Inference

	Conclusion
	Author Contributions
	Funding
	References


