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Scientometric indicators are useful to evaluate the relevance of scientific research, to
prepare rankings, and to evaluate and inform research policies. That is why the choice of
appropriate indicators is a matter of primary concern. This article aims to introduce a
framework to decide the appropriate type of indicator for assessing the citation-based
performance of complex innovation systems. The framework is two-fold: First, it brings the
methodology to decide when the use of standard average based indicators is granted, and
when scale-invariant indicators are mandatory. Second, it provides the procedures to build
scale-invariant indicators to assess the relative impact of complex innovation systems. The
framework is validated empirically through the evaluation of the relative impact of the
Chilean science system in 2017. The result suggests that the Chilean science system has
characteristics of a complex innovation system such as the distribution of citations fits to a
power law with an exponential cutoff −2.77 ± 0.09 and a power-law correlation between
the size of the system and its impact 1.29 ± 0.11. Furthermore, the framework shows to be
efficient to compare fields of vastly different sizes.

Keywords: citation impact analysis, complex innovation system, national science systems, power-law, scale-
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INTRODUCTION

A major feature of frequency distributions of complex innovation systems productivity is their
extreme skewness (Glänzel and Nacke, 1988; Braun et al., 1990). Generally, the research system’s
output such as the number of articles it publishes, the number of patents it registers, or the number of
citations it receives, follow approximately a power-law with scaling exponent α≤ 3.0 (Lotka, 1926; de
Solla-Price, 1965; Naranan, 1970; Coile, 1977; Egghe and Rousseau, 1986; Pao, 1986; Glänzel and
Nacke, 1988; Naranan, 1989; Narin, 1994; OluicVukovic, 1997; Seglen, 1997; Egghe, 2005; van Raan,
2006; Milojevic, 2010; Bornmann, 2013; Brookes, 2016; Bornmann and Leydesdorff, 2017). These
distributions have long tails with exponents in the range between 2 < α≤ 3 which is the distinctive
characteristic of a complex system (Katz, 1999; Katz, 2005; Katz, 2016b; Dorogovtsev and Mendes,
2000; Newman, 2005; Clauset et al., 2009; Castellani and Rajaram, 2016; Rajaram and Castellani,
2016). This quality is the first handicap to overcome when evaluating a system’s research
performance using citation-based indicators (de Bellis, 2009; van Raan, 2014a; Katz, 2005; Katz,
1999; Katz, 2016b). As Braun et al. (1990) pointed out, “several attempts have been made to find a
suitable method for treating the tail.” It is because a small number of subjects of the population form
the tail of the distribution. They do not form a group large enough for any kind of statistical analysis.
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The abovementioned handicap comes from the fact that
distributions that approximately follow a power-law with
exponent in the range 2 < α≤ 3 have infinite variance
(Naranan, 1971; Newman, 2005). It means that they do not
belong to the dominion of attraction of Gaussian distributions;
hence, the central limit theorem does not apply (Katz and Ronda-
Pupo, 2019), and population averages are not appropriate to
describe them (Newman, 2011). Likewise, when α≤ 2, both the
mean and the standard deviation are infinite. Katz (2016a)
recommended that in these circumstances, the use of scale-
invariant indicators will yield equitable indicators.

For any given system, a scale-invariant probability distribution
is frequently associated with the system is ruled by self-
organization and preferential attachment mechanisms or
stated otherwise, that a cumulative advantage process is
involved in its behavior (Katz, 2016b; Katz, 2016a). The
exponent, also referred to as the scaling factor, of the output
of a research system indicates an emergent property of the system,
and it can be useful to prepare scale-invariant indicators to
characterize it. The determination of the scaling exponent of
such distributions is useful that it provides helpful information
for decision-making processes with research evaluation purposes.
Concretely, it determines when the mean and the standard
variation characterize the population correctly, and when it
cannot (Katz, 2016b). For example, when the distribution is a
power-law with exponents α> 3.0. In this situation, one can use
the standard indicators based on averages (Katz, 1999).

A second challenge to overcome when building or selecting
indicators to assess the research performance of a research
system, is the size dependency of citation-based measures (van
Raan, 2008; van Raan, 2013; de Bellis, 2009). Regarding this,
Martin (2011) posed the provoking question: “How can one come
up with an appropriate ‘scale’ to assess and measure the impacts
of very different magnitudes?” By way of illustration, how can the
scientific community of China be compared with, for example, a
country from Latin America? The use of population-based
averages, such as citations per article, can produce misleading
conclusions because of size-dependent bias. The scaling bias
associated with these measures can be eliminated by using a
normalization constant assessed through a scaling correlation
between citations and articles to more accurately inform policy
makers (Katz and Ronda-Pupo, 2019).

Scale-independent indicators are recursive. Any smaller
system (field/subfield) contained within the more extensive
complex system (domain) will have scale-invariant emergent
properties, too (Katz, 2016b). The scale-invariant indicators
are useful to compare without bias the research performance
of scientific communities of vastly different dimensions, thereby
allowing the performance of a small science system to be
compared to the performance of a big-sized country or even
to the world science system.

Scale invariance is mathematically defined as follows: if p(x)
represents a distribution, then p(x)

p(bx) � g(b) for any b (Newman,
2005). It can be understood as follows: If the scale or unit by
which x is measured increases by a factor b, then the form of the
distribution p(x) stays unaffected, except for a general
multiplicative constant (Katz and Ronda-Pupo, 2019). Besides

power-law functions, namely those of the form p(x) � kxα, no
other mathematical function is scale-invariant.

This study aims to present a framework to assess the citation-
based impact of research systems that are characterized by right-
skewed distributions that could be described by power-law. The
framework uses a two-fold methodology by using the properties
of the distributions and the correlation parameters of size and
impact of a given research system to decide on what type of
indicator, namely scale-independent or average-based, is the
appropriate one to be used. The results of such a methodology
will lead to results that are unbiased in their formulation,
presentation, and research policy information. Furthermore,
the values obtained could be useful to compare the
performance of the research system under analysis to local,
national, regional, or world performances and also to prepare
citation-based rankings. All these observations bring us to the
following research questions:

How to build unbiased bibliometric indicators to accurately
assess the citation-based performance of complex innovation
systems?
Is it possible to compare accurately the research performance
among complex innovation systems of vastly different sizes?

BACKGROUND

Research evaluation is essentially important to research decision-
making processes in research units at all levels, ranging from
small research groups to universities and countries (Andras,
2011). The development of a comprehensive and valid
research evaluation measure is a crucial precondition for
assessing the performance of individual faculty members in
academic institutions for promotion and reward purposes
(Kirkpatrick and Locke, 1992). Research evaluation
encompasses two main distinct groups of stakeholders: first,
the government, as the primary research funder, and second,
universities, which do the actual research (Johnston and Reeves,
2017).

The assessment of scientific performance within a research
system has traditionally been applied through measurements of
the number of documents published in peer review journals, for
example, those included in the WoS or/and Scopus, by an author
affiliated to an institution, a country, a field or a domain and
subsequently, the number of citations these articles receive (Pan
and Fortunato, 2014). Garfield (2014) persuasively stated,
“Citations have become the currency of scholarship.” This idea
is substantiated by international research evaluation associations
quantifying research quality by using citation-based indicators.

Despite the general acceptance of the use of citation-based
indicators for research evaluation purposes, the construction of
unbiased measures to accurately assess the performance of a
research system is an ongoing challenge. The skewness of citation
distributions and the size dependence of citations are among the
most challenging issues to accurately build and use unbiased
bibliometric indicators to evaluate the performance of a research
system (Seglen, 1992; van Raan, 2014b). Attempts to overcome
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these issues have led to even more complicated and burdensome
mechanisms for assessing research performance (Martin, 2011). As
Lepori et al. (2011) points out: “Predicting the future performance
of research systems has become a difficult assignment which
cannot be attended by only financial indicators.”

The scientometric models that are aimed at assessing the
impact that articles have on the research community
traditionally are built on the number of citations those articles
attract. Furthermore, models and indicators reflecting scientific
influence on science itself can be classified into two groups
namely, 1) traditional models and indicators based on primary
publication and citation counts or averages and rankings based
on these indicators–an in-depth discussion on these indicators

can be found in Waltman (2017) and for its limitations see van
Raan (2014a), or 2) models and indicators built on the
assumption of the skewed nature of citations counts–for a
theoretical and methodological discussions see (Katz, 2005). A
unified model that considers both approaches is lacking in the
literature. Specifically, it is crucial to have a framework that
accurately indicates when to use one or the other of the two
approaches mentioned to guarantee that the results are unbiased.
A correct choice will ensure that resulting evaluations and policy
formulations are not biased.

The framework proposed in this contribution is illustrated by
an evaluation of the relative impact of a small science system’s
scientific production, namely, Chile in 2017.

FIGURE 1 | Flowchart of the framework to assess the citation performance of complex innovation systems.
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MATERIALS AND METHODS

The methodology used is two-fold; first, to decide what type of
indicators should be used, and second, to assess the relative
impact of a domain/field/subfield.

Figure 1 shows the flowchart of the framework. The procedure
consists of three main steps with associated tasks depending on
specific situations. Each of the steps is explained below.

First Step: Retrieving and Preparing the
Data for Quantitative Analysis
The Data Retrieval Strategy
The aim of this step is to retrieve and organize the data for
quantitative analysis. The data for the study consist of articles and
reviews published by researchers from Chile in the fields of the
domains such as Applied Sciences, Economics and Social
Sciences, Health Sciences, and Natural Sciences included in the
Clarivate Analytics Web of Science™ Core Collection.

Assigning Articles to a Unique Field
This step aims to assign each article to a unique domain/field/
subfield. The classification of scientific information into an
appropriate subject fields is one of the essential preconditions of
valid scientometric studies (Haddow, 2015). van Leeuwen andCalero
Medina (2012) suggest that the cataloging of publications in the
citation indexes with a more in-depth taxonomy scheme would help
the assessment of research performance. Herranz and Ruiz-Castillo
(2012) stated that about 42%of the documents published inClarivate
Analytics are assigned to between two and up to a maximum of six
subfields. This setting generates a drawback in research evaluation
using the number of citations. The Science Metrix journal
classification ontology overcomes this limitation (Archambault
et al., 2015). The Science Metrix journal classification ontology is
available under a common creative license. Furthermore, many
proficient bibliometricians participated in its formulation. The
specific journals are consigned to a unique, mutually exclusive
domain/field/subfield using a hybrid procedure conjoining

algorithmic techniques and expert judgment (Ronda-Pupo and
Katz, 2017). Table 1 presents the research fields studied.

Second Step: Analyzing the Citation
Distribution
This step aims to analyze the distribution of citation counts of the
publications of the complex innovation system under analysis.
Since innovation systems are dynamic and evolve with time, the
evolution of a distribution may have to be taken into consideration
when determining which functional form is the best fit (Katz 2016).
Many computer programs have been created to analyze heavy tail
distributions, that is, LOTKA (Rousseau and Rousseau, 2003) and
PoweRlaw (Gillespie, 2015; Clauset et al., 2009).

The framework uses Clauset et al. (2009) routine to test the
hypothesis of the power-law distribution. The algorithm
encompasses three tasks. 1) The assessment of the point where
the tail startsxmin, and the scaling factor or the exponent, 2)
Calculate the goodness of fit between the dataset and the fitted
distribution, and 3) Compare the power-law with competing
distributions. If the power-law is not ruled out and the exponent
alpha is inside the range 2 < α≤ 3, the scale-free measures are
required (Katz, 2016a). Conversely, if the distribution has α> 3.0
then, one can use either scale-invariant indicators or based on
population averages. Both types of indicators would bring
unbiased results. The scale-invariant indicators will bring
unbiased indicators to compare systems of vastly different sizes.

Third Step: Preparing the Scale-Invariant
Indicators
This step aims to evaluate the relative impact of the domains
under analysis. It involves the following tasks: finding the scaling
factor of the relationship between size and impact as well as
calculating the expected and the relative impact (Ronda-Pupo,
2019). The estimate of the relative impact involves the following
tasks: 1) calculating the scaling factor of the relationship between
size, and impact, 2) estimating the expected impact, and 3)
computing the relative impact.

Below, we describe each step.

The Scaling Correlation Between Size and Impact
This step aims to establish the standardization constant. It also
looks to find out the exponent of the scaling association between
the impact and size. Scaling correlations can occur when entities
in a scale-invariant distribution are aggregated into natural
groups; for example, when peer-reviewed articles are
aggregated into fields (Katz, 2016). Then, a scaling correlation
between the impact of a field measured using citations and field
size measured using numbers of published articles exists.

The exponent is an extent of the “Matthew Effect,” or the
cumulative advantage of citation impact on the size of the system
(Katz, 2016b; Ronda-Pupo, 2017).

Variables
Size. According to Merriam-Webster (2018) dictionary, size is
defined as “physical magnitude, extent, or bulk: relative or

TABLE 1 | Domains and fields according to Science Metrix journal classification.

Domain Fields

Applied sciences Agriculture, fisheries, and forestry
Built environment and design
Enabling and strategic technologies
Engineering
Information and communication technologies

Health sciences Biomedical research
Clinical medicine
Psychology and cognitive sciences
Public health and health services

Natural sciences Biology
Chemistry
Earth and environmental sciences
Mathematics and statistics
Physics and astronomy

Source: Science Metrix, http://science-metrix.com/en/news/science-metrix-launches-
the-second-public-release-of-its-multilingual-journal-classification.
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proportionate dimensions.” The size (S) of a scientific field can be
measured, for example, by the number of researchers, the
quantity of budget it receives, the number of grants it wins, or
the extent of knowledge it produces, among others (Ronda-Pupo,
2017). Frame and Carpenter (1979) initiated analyzing scientific
sizes using the number of articles published (see Eq. 1):

Si � ∑
j�n

j�1
Pij. (1)

Si is the production of the field i in the journals from Ji�1 to Jn of
the field i. That is, the size is the number of articles available in
the journals of a field (Ronda-Pupo, 2019). For the present
study, the size is the number of articles and reviews published by
Chilean researchers in journals of the fields within the domains
such as Applied Sciences, Health Sciences, and Natural Sciences
in 2017.

Impact. Traditionally, the citation impact is expressed as the
fraction between the citations and articles (Seglen, 1992).
Citation impact � number of citations

number of papers (Van Raan, 2014a). In the
present study, impact (I) is the number of citations to articles
published by Chilean researchers in journals of the fields within
the domains Applied Sciences, Health Sciences, and Natural
Sciences in 2017. Similar to Ronda-Pupo (2019), we used a
three-year fixed citation window to calculate the impact of
each field. The impact of a field Ii is the number of citations
received by the articles of the field i in 2017, 2018, and 2019. This
procedure guarantees that all documents have equal period
probability of getting citations (t3) (see Eq. 2), and prevent
bias caused by citation fluctuations:

Ii � ∑
j�n

j�1
Iij. (2)

The Model
The statistical assumptions to run this analysis are as follows: 1)
the source population is normally distributed, 2) a constant

variance of the dependent variable in the source population,
and 3) the independence of residuals. We use Eq. 3 to establish
the regression parameters:

I � γ Sα. (3)

Here, I stands for impact, S for size, c for a standardization
constant, and α for the exponent. The logarithmic conversion of
Eq. 3 leads to a linear correlation where α, the exponent, is
specified by

log(I) � α log(S) + log(c). (4)

The parameters c and α are calculated using the ordinary least
squares because they produce fitted values with the smallest error
(Leguendre and Leguendre, 2012) and are also asymmetric
(Smith, 2009).

The Predictive Ability of the Model
To evaluate the predictive ability of the model, we used the
predicted residual error sum of squares (PRESS). This statistics is a
quantity of how well the power-law model forecasts new data.
The smaller the PRESS statistics, the better the predictive power
of the model. The PRESS statistics is calculated by summing the
squares of the prediction errors.

Building the Scale-Invariant Indicator
The Expected Impact
This step aims to define the expected impact of the systems under
analysis, according to its size. The assumption is that the number
of citations a research system receives is dependent on its size.
The bigger the system is, the more citations it receives. To
overcome possible bias in the results, we may answer the
question: How many citations are expected the system should
receive according to its size? As an example, to answer this
question, we substitute S, c, and α in Eq. 3 with the values in
Table 2 (see the Results) to get the expected impact, that is, of
Physics and Astronomy field as follows:

Ie � 1.21 (1, 4531.29) ≈ 14, 524.

TABLE 2 | The Chilean science system size and impact, at the field level, in 2017.

Fields Size % of overall size Impact % of overall impact

Agriculture, fisheries, and forestry 489 7 2278 4
Built environment and design 56 1 357 1
Enabling and strategic technologies 435 6 3524 6
Engineering 445 6 3593 6
Information and communication technologies 171 2 924 1
Biomedical research 539 8 3807 6
Clinical medicine 1243 18 18470 30
Psychology and cognitive sciences 166 2 844 1
Public health and health services 168 2 718 1
Biology 599 9 3395 5
Chemistry 363 5 2110 3
Earth and environmental sciences 417 6 3007 5
Mathematics and statistics 312 5 1080 2
Physics and astronomy 1453 21 17997 29
Overall 6,856 100 62,104 100

Source: Clarivate Analytics Web of Science.
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The expected impact ( Ie) of the field Physics and Astronomy,
giving to its size, is 14,524.

The Observed Impact
The observed impact is just the number of citations the articles of
the field received in the slice of time analyzed. In the case of
Chilean research on Physics and Astronomy the observed impact
is 17,997 (see Table 2).

The Relative Impact
This step aims to define the relative impact (RI) of each domain
using the values of the observed and the expected impact. The
relative impact is the proportion of the observed Io and the
expected impact Ie (Eq. 5) suggested by Katz (2016a). The
relative impact is useful to calculate a scale-free indicator
specified by

RI(x, n) � I0
Ie
. (5)

Following the example of the field Physics and Astronomy, the
relative impact is

RI � 17, 997
14, 524

≈ 1.24.

Using the Scale-Invariant Indicator to
Evaluate the Citation Performance
The objective of this phase is to evaluate what the impact of the
domain is according to its size. The interpretation of the results is
as follows:

RI � 1.0.

If the relative impact RI is equal to one, there is not a cumulative
advantage of the system on its size:

RI > 1.0.
If the value of the relative impact is higher than one, the observed
impact is over what is expected. The domain is displaying a
cumulative advantage as its size increases:

RI < 1.0.

Conversely, if the relative impact is less than the unity, the
observed impact is under what it is estimated to be according
to its size. The system is not returning much impact as expected,
giving to its size. The system is displaying a cumulative
disadvantage or negative Matthew Effect as its size increases
(Katz and Cothey, 2006).

If one uses this indicator to prepare ranks and/or to compare
research assessment among systems of dissimilar sizes, the one
with the greater relative impact, RI, will be considered the field
with the highest impact.

The value RI > 1.0 of the field Physics and Astronomy
calculated in the preceding step implies that the observed
impact of this research field is above the expected according
to its size (scientific production). There is a positive return,
cumulative advantage or Mattew Effect of its impact on the
growth of its size. Below, we use the framework to estimate
the citation performance of the Chilean science system
in 2017.

RESULTS

The Citation-Based Performance of the
Chilean Science System in 2017
First Step: The Data
The data for the experiment consists of 6,856 articles and reviews
published by Chilean researchers in the Clarivate Analytics Web
of Science database in 2017 that received 62,104 citations,
considering a fixed three-year citation window. We include
only the documents published in the fields of the domains
such as Applied Sciences, Health Sciences, and Natural
Sciences, using the Science Metrix journal classification schema.

Table 2 presents the size and the impact of each field. Four
fields (39%) accounted for 54% of the overall productivity, and
69% of the overall impact of the Chilean science system.

Second Step: The Analysis of the
Distribution
The exponent of the distribution of the citations is −2.77 ± 0.09
(see Figure 2; Table 3). This is consistent with (Katz, 2016)
suggestion that the scaling exponents for distributions of smaller
populations within the aggregate population may have exponents
≤ 3.0. According to Clauset et al. (2009) procedures, the p-value is

FIGURE 2 | The cumulative distribution function of citations of the
power-law model; x � citations.

TABLE 3 | Results of fitting the power law to the citation distribution.

Dataset xmin α p KS

Citations 2017 21 ± 4.46 −2.77 ± 0.09 0.26 0.02

KS is the Kolmogorov–Smirnov test.
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significant. Next, the power-law distribution will be compared to
alternatives.

Table 4 presents the outcomes of comparing the power-law to
competing distributions. The power-law distribution is ruled out
by the power-law with cutoff −11.96, P � 0.00. This result
confirms Katz (2016) that in the early stages the distribution
may be exponential or lognormal evolving into a power-law with
an exponential cutoff and eventually become a pure power-law.
For this characteristic, indicators based on population averages
are not accurate to characterize or to evaluate the citation
performance of this research system (Braun et al., 1990; van
Raan, 2014a; Katz, 2016a). The use of scale-adjusted indicators
will bring unbiased results.

Third Step: Preparing the Scale-Invariant
Indicators
The Correlation Between Impact and Size
The population normality around the regression line
(Shapiro −Wilk, P � 0.99), the constant variance of the
dependent variable (P � 0.58), and independence of residuals
(Durbin −Watson � 2.16) were tested and met. Figure 3 shows
the exponent for the scaling relationship between impact and size.
The impact grows nonlinearly with the size of the field 21.29 or
2.44 times when the size of a field doubled. The exponent > 1.0
indicates there is a super linear correlation between impact and
size and a cumulative advantage of impact as the size of the
system increases. The correlation is statistically significant

t(1, 13) � 11.66, R2 � 0.91, P � 0.001. The value 0.39 of the
PRESS statistics supports the accurateness of the model.

The Relative Impact
Table 5 shows that the relative impact of the fields Built
Environment and Design, Biomedical Enabling and Strategic
Technologies, Engineering, Information and Communication
Technologies, Clinical Medicine, Earth and Environmental
Sciences, and Physics and Astronomy is above the expected
according to their sizes (RI > 1.00).

Built Environment and Design show the highest relative
impact. The impact of this field shows a high citation-based
performance according to its size. This field is ranked first with an
observed impact about 22 times less than the field ranked second,
Clinical Medicine. This field would be placed in the seventh place
using standard average impact measures. The results suggest that
the use of size independent measures is a correct choice to
evaluate the citation-based performance of scientific fields, and
to compare or prepare rankings of research systems of
pronounced differences in size.

DISCUSSION AND FINAL REMARKS

Chile is placed fourth in Latin America according to its scientific
production in the Web of Science. Katz (2016b) claimed: “The
global research system has the general characteristics of a
complex system,” and then pose the hypothesis if it can be
revealed that a property is scale-invariant at higher levels of
aggregation; then it can be assumed with increased conviction
that it is expected to be scale-invariant at low levels too. The
results support the Katz (2016b) suggestion. The Chilean science
system as a scaled level of the world science system is a complex
innovation system too. It is characterized by scale-invariant
properties such as the following.

The Distribution of Citations Follows a
Power Law With Exponential Cutoff
A power-law with an exponential cutoff (−11.96, P � 0.001) fits
better than the distribution of citations with an exponent
α ≈ − 2.77 ± 0.09. This exponent α< 3.0 is consistent with
Katz (2016b) findings that for some subfields the exponents
became < 3.0 within the first few years of their evolution. The
exponent α< 3.0 denotes that using the scale-free indicators is the
correct choice to assess accurately the citation-based performance
of the system. This result contributes to provide a solution to the
drawback that the skewness of citations distributions pose to

TABLE 4 | Results of the comparison of the power law with alternative distributions.

Dataset p Poisson Lognormal Exponential Stretched
exponential

Power law +
cutoff

Support
for power

lawLR p LR p LR p LR p LR p

Chile 2017 0.26 7.40 0.00 −0.47 0.63 5.91 0.00 5.25 0.00 −11.96 0.00 Power law + cutoff

LR is the log likelihood ratio test. Bold value is the distribution that best fit the data.

FIGURE 3 | Power-law correlation of impact on size.
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research evaluation purposes as it has been systematically
highlighted by van Raan (2014a), Katz (1999), Braun et al.
(1990), Egghe and Rousseau (1986). Furthermore, this result
confirms Katz (2016b) conclusions that the distribution of
impact and the correlation between impact and size at points
in time have scale-invariant properties. This result answers the
first research question posed in the study.

As a practical implication, the result brings the empirical
evidence to the Chilean policy makers to correctly decide the
appropriate quantitative indicators to evaluate the Chilean
innovation system’s citation impact.

The Scaling Correlation Between Size and
Impact
The relationship between impact and size show a scaling relationship
according to a power-law with an exponent 1.29 ± 0.11. Katz
(2016b), Table 6 reports a similar scaling exponent for MAPS.
The scaling exponent is also similar to the one found by van Raan

(2020) for the scaling of the gross urban product for all (kreisfreize)
cities and Kreize in Germany. The parameters of the power-law
correlation are useful to prepare scale-independent indicators
solving the equation Impact � 1.21 Size1.29 for each field. Katz
(2016b) states that this scale-invariant association can be used as
an indication function to determine a scale-independent measure of
how much impact a field is having relative to the average system
impact. This result contributes to accounting for the size dependence
of citation impact, which has been alerted by Katz and Cothey
(2006), Katz (2005), Katz (2000), van Raan (2013), Martin (2011).
Thismeasure is also useful to compare and rank complex innovation
systems of vastly different sizes.

The resulting scaling exponent 1.29 describes the Chilean
innovation system citation network’s self-similar property
composed of its research fields. This exponent is constant
irrespective of the field’s size. This scaling correlation also
suggests that the average scientific impact, which is commonly
used by Chilean research evaluation institutions, is not
normalized for field size. If one divides both sides of the

TABLE 5 | The observed, expected, and relative impact of the Chilean science system.

Fields Size OI EI RI Performance

Agriculture, fisheries, and forestry 489 2278 3564 0.64 <
Built environment and design 56 357 218 1.64 >
Enabling and strategic technologies 435 3524 3065 1.15 >
Engineering 445 3593 3156 1.14 >
Information and communication technologies 171 924 919 1.01 >
Biomedical research 539 3807 4041 0.94 <
Clinical medicine 1243 18470 11876 1.56 >
Psychology and cognitive sciences 166 844 885 0.95 <
Public health and health services 168 718 898 0.80 <
Biology 599 3395 4631 0.73 <
Chemistry 363 2110 2427 0.87 <
Earth and environmental sciences 417 3007 2902 1.04 >
Mathematics and statistics 312 1080 1996 0.54 <
Physics and astronomy 1453 17997 14525 1.24 >

The symbol > indicates that the observed impact is above the expected.
OI, observed impact; EI, expected impact; RI, relative impact.

TABLE 6 | Ranking using diverse scientometric indicators.

Fields Relative impact Citations/productivity Productivity Citations

Built environment and design 1 7 14 14
Clinical medicine 2 1 2 1
Physics and astronomy 3 2 1 2
Enabling and strategic technologies 4 3 7 5
Engineering 5 4 6 4
Earth and environmental sciences 6 5 8 7
Information and communication technologies 7 10 11 11
Psychology and cognitive sciences 8 11 13 12
Biomedical research 9 6 4 3
Chemistry 10 8 9 9
Public health and health services 11 13 12 13
Biology 12 9 3 6
Agriculture, fisheries, and forestry 13 12 5 8
Mathematics and statistics 14 14 10 10

Fields are ranked according to the relative impact.
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scaling correlation by P, field size, the resulting equation has a
scaling exponent much less than if C/P were normalized. It
should be constant for changing size. The results confirm van
Raan (2008) asseveration that citation networks’ scaling
correlation appears to be the rule, not the exception.

Scale-Independent Measures and Policy
Evaluation
The scale-independent measure prepared is useful to evaluate the
research fields’ relative impact. Table 6 shows rankings prepared
using different scientometric indicators. Built Environment and
Design, is placed last in the ranking according to its productivity,
last according to the number of citations, seven according to its
average citations is placed first if the ranking is prepared using the
scale-invariant indicator, namely the relative impact. This result
reaffirms the effectiveness of the scale-free indicators to prepare
rankings, and to compare the performance among fields of vastly
different sizes. It is possible to compare the impact of a research
field, namely Built Environment and Design to another that is
22 times bigger in size, and achieve a better performance. This
result shows the efficacy of the scale-invariant functions used to
create the scale-free model used. These measures ensure that
policy makers get a reliable evidence-based view of the innovation
systems that are the focus of their policies. This result answers the
second research question of the study.

The Chilean science system is a young small research system
whose citation network shows scale-invariant properties. The
result suggests the Chilean policy-making agencies as Agencia
Nacional de Investigación y Desarrollo (ANID) and funding
institutions as Fondo Nacional de Desarrollo Científico y
Tecnológico (FONDECYT) should pay special attention to the
scale-invariant properties of the Chilean innovation system with
research assessment purposes. The use of standard average
evaluation indicators like citations per article would bring
biased results. The formulation or information of public
research policies based on those results will be misleading.
Furthermore, the results suggest that the Chilean research
evaluation policy should use scale-invariant indicators and
enhance a mix of quantitative and qualitative indicators to
bring a more insightful evidence-based research quality

evaluation and avoid the overuse of journals’ impacts on the
research assessment processes.

Future research is advised to perform thorough comparisons
on the effect that field-normalized and scale-adjusted measures
have on the rankings of performance measures from distributions
with scaling exponents ≤ 3.0 or with a mixture of scaling
exponents ≤ 3.0 and> 3.0 as suggested by Katz (2016b).
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