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Our work analyzes the artificial intelligence and machine learning (AI/ML) research

portfolios of six large research funding organizations from the United States [National

Institutes of Health (NIH) and National Science Foundation (NSF)]; Europe [European

Commission (EC) and European Research Council (ERC)]; China [National Natural

Science Foundation of China (NNSFC)]; and Japan [Japan Society for the Promotion of

Science (JSPS)]. The data for this analysis is based on 127,000 research clusters (RCs)

that are derived from 1.4 billion citation links between 104.8 million documents from four

databases (Dimensions, Microsoft Academic Graph, Web of Science, and the Chinese

National Knowledge Infrastructure). Of these RCs, 600 large clusters are associated

with AI/ML topics, and 161 of these AI/ML RCs are expected to experience extreme

growth between May 2020 and May 2023. Funding acknowledgments (in the corpus

of the 104.9 million documents) are used to characterize the overall AI/ML research

portfolios of each organization. NNSFC is the largest funder of AI/ML research and

disproportionately funds computer vision. The EC, RC, and JSPS focus more efforts

on natural language processing and robotics. The NSF and ERC are more focused on

fundamental advancement of AI/ML rather than on applications. They are more likely to

participate in the RCs that are expected to have extreme growth. NIH funds the largest

relative share of general AI/ML research papers (meaning in areas other than computer

vision, natural language processing, and robotics). We briefly describe how insights such

as these could be applied to portfolio management decision-making.

Keywords: research analysis, research portfolio analysis, forecasting, artificial intelligence,machine learning, map

of science, research funding agencies

1. INTRODUCTION

The research funding portfolios of large, government-sponsored organizations provide insight into
the competitive research landscape and the corresponding research opportunities (or threats) that
are being addressed in preparation for the future. In this study, we offer examples of these portfolios
in order to highlight important details about each organization’s funding portfolio.

Forecasting is a potentially helpful part of this process even if it does not guarantee success
on its own (Gerstner, 1972). Forecasting is a process that leaders, experts, and analysts employ to
estimate the probability of future events, relative states, or trends based on past and present data.
Ideally, forecasts are data-driven and clearly described with a well-defined unit of analysis, time
frame, occurrence probability or confidence interval, and, if possible, relevant conditional factors.
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Assumptions, opinions, and informal “gut instincts” from subject
matter experts and non-experts alike can substitute for well-
defined forecasts when they are absent, which may reduce the
utility and accountability of these judgments (Tetlock, 2017).

The unit of analysis used in this study is called a research
cluster (RC) and consists of a group of articles that have been
linked by their citations. RCs are based on the principles laid
out by Kuhn (1970). Kuhn referred to this unit of analysis
as a “research community,” but he did not recommend that
one use researchers to identify these communities. Rather, he
suggested using their communications–specifically the claims
they make in their articles that build upon separate claims
made in other articles. The corpus used to create these RCs
includes documents from Clarivate’s Web of Science (WOS)1,
Digital Science’s Dimensions (DS), Microsoft Academic Graph
(MAG), and the Chinese National Knowledge Infrastructure
(CNKI). The data include ∼1.4 billion citation links—instances
where a researcher is communicating that they are using ideas,
methods, results, or in any other way building on the work of
other researchers. The large-scale clustering solution for creating
RCs from these citation links builds upon the work of others
(Waltman and Van Eck, 2012, 2013; Sjögårde and Ahlgren, 2018).

The method for forecasting the publication growth of each
RC uses a recently developed forecasting methodology (Klavans
et al., 2020). This forecasting method is transparent (i.e., the
methods are described in the article) and was tested using
data from the Scopus database (roughly 50 million papers)
and separately using the merged dataset of WOS, DS, MAG,
and CNKI. We applied this method to the RCs inferred from
our merged database (roughly 104.9 million documents as of
October 2020).

We also address other technical issues. The capabilities of a
funding organization in a specific area of research may be over-
or underestimated because we are relying on acknowledgments
in the open literature. In this study, we address this problem
by providing concrete examples so that the reader (who may be
more familiar with a specific organization) can come to their own
conclusions. We will look at the funding portfolios of a few of
the largest granting organizations in the world—U.S. National
Institutes of Health (NIH), U.S. National Science Foundation
(NSF), European Commission (EC), European Research Council
(ERC), National Natural Science Foundation of China (NNSFC),
and Japan Society for the Promotion of Science (JSPS).

Previous work in several areas is relevant to the study reported
here. Rather than providing an extensive review, we point to
other papers that have substantially reviewed recent work in

1The WOS indices utilized by this study include the following: Science Citation

Index Expanded (January 2000–October 2020), Social Sciences Citation Index

(January 2000–October 2020), Arts andHumanities Citation Index (January 2000–

October 2020), Conference Proceedings Citation Index-Science and Technical

(January 2000–October 2020), Conference Proceedings Citation Index-Social

Sciences and Humanities (January 2000–October 2020), Book Citation Index-

Science (January 2005–October 2020), Book Citation Index-Social Sciences and

Humanities (January 2005–October 2020), Emerging Sources Citation Index

(January 2015–October 2020), Chinese Science Citation Database (January 2000–

October 2020), and Russian Science Citation Database (January 2005–October

2020).

large-scale clustering of the research literature (Boyack and
Klavans, 2019), identification of emerging topics (Small et al.,
2014), forecasting of growth in research topics (Klavans et al.,
2020), and use of funding acknowledgments (Liu et al., 2020).

The paper will proceed as follows: details are given of our
methods and data, followed by an explanation of the resulting
RC framework and results. The final section discusses findings,
implementation principles, and a brief discussion of limitations.

2. MATERIALS AND METHODS

Using a comprehensive corpus of scholarly literature published
worldwide, we aim to infer RCs from these publications and
forecast the clusters’ growth. In this section, we describe (1) the
dataset of scientific publications used in our analysis, (2) the
method we use to infer RCs using direct citation links present
in the publications, and (3) the method we use to predict growth
in each cluster using the cluster forecasting model proposed by
Klavans et al. (2020).

2.1. Scholarly Literature Dataset
In order to generate a comprehensive network of publications
through direct citation links, we combine four large-scale
scholarly literature data sources. The combined dataset merges
three (MAG, Dimensions, and WOS) of the four commonly
used large citation databases (Visser et al., 2020) with a large
Chinese-language citation database, CNKI, and thus accounts
for a relatively large fraction of the world’s scholarly journal
literature. All years from the MAG and DS databases are
included, CNKI content includes 2005 onward, andWOS indices
include content primarily from 2000 onward. Ultimately, the data
include publications from a wide breadth of publishers, authors,
institutions, and languages. In total, the data sources contain over
382.8 million documents2.

Since our datasets of scholarly literature do not share
a publication identifier system, we deduplicate publications
present in multiple data sources according to the following
procedure presented in Figures 1, 2. In the first step, for
each document in each data source, we select six identifiers:
(1) normalized title, (2) normalized abstract, (3) publication
year, (4) normalized surnames of authors, (5) DOI, and (6)
citations. In steps 1, 2, and 4, the strings are normalized
following the Normalization Form Compatibility Composition
standard: unicode characters are decomposed by compatibility,
then recomposed by canonical equivalence; letters are de-
accented andHTML tags, copyright signs, punctuation, numbers,
and non-alphanumeric characters strings are stripped; and all
white space is removed from the strings. Regarding step 6,
we match two articles within a given dataset if they share the
same set of references, along with two other identifiers; at the
moment we do not use references to match across datasets. If
two documents have at least three identifiers in common, we
treat these documents as identical. Once the first deduplication
step (Figure 1) is complete, we use the processed data to the

2The full combined corpus includes patents and dataset descriptions that are not

counted as part of these 382.8 million documents.
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FIGURE 1 | Article deduplication process scheme (step 1).

FIGURE 2 | Article deduplication process scheme (step 2).

second deduplication step (Figure 2). We use the simhash
fuzzy matching algorithm (Charikar et al., 2002; Manku et al.,
2007) with a rolling window of three characters (k = 3) to

match concatenated titles and abstracts of articles that share a
publication year; documents that match according to this method
are also considered identical.
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We apply this deduplication process first to the original
datasets and then to the merged dataset (see Figure 3). The
deduplication process results in 237.6 million unique documents,
of which 108.9 million were designated as articles by the original
data sources and have at least one citation or reference, see
Dunham et al. (2020) for additional details3. These 108.9 million
articles constitute our academic dataset. From the academic data
we select the 54.7 million core publications (as of October 2020)
that have at least one citation and one reference as of June 2020—
these data form the initial clusteringmodel. After that, we assign a
cluster ID to the remaining linked articles in the academic dataset
using their references or citations to form a final set of clustered
documents that contains 104.9 million articles.

The majority of the documents, including those indexed by
CNKI, have English abstracts and titles, despite many being
originally written and published in another language. Table 1
displays the total number of articles in the combined dataset that
were written in various languages; the top seven most common
languages are presented. The majority of global scientific articles
have English language titles (67% of unique documents). The
CNKI dataset, as acquired, requires the creation of a citation
graph to map direct citations between articles4. To address this
gap, a citation graph is created by matching references from the
full-text of the CNKI articles to the article titles from CNKI,
WOS, DS, andMAG. The simhashmatching algorithm is again
utilized. This approach matched about 50% of the non-Chinese
citation strings from CNKI. For comparison, the WOS dataset
has a match rate that is∼75%.

The quality of reference disambiguation and the number of
linked references tend to be lower among articles not written
in English. For example, among 12.1 million documents with
Japanese-language titles, only 500,000 articles have citations or
references that we observe. For the articles included in the
citation graph5, the share of articles that have an English language
title rises to 86%. Among the core scientific articles that have at
least one reference and at least one citation, the share of articles
that have an English title peaks at 94%; this percent slightly
reduces to 88% among the clustered articles we analyze. The
number of clustered articles (displayed in the last row of Table 1)
with titles in the top seven languages is 108.6 million, while the
number of unique documents is 104.9 million. An article can
present the abstract and title in multiple languages, though 92.1%
of articles have only one language, 7.7% have two languages,
and only 0.2% have more than two languages. Our analysis
treats each article as one unit even if it presents information in
multiple languages.

Table 2 breaks down the articles by the authors’
country/region of affiliation for the four regions represented
by our funding organizations of interest (China, the European
Union, Japan, and the United States)6. If the authors of an article

3The Python code to match articles is available at https://github.com/georgetown-

cset/public-article-linking.
4All CNKI content is furnished by East View Information Services, Minneapolis,

MN, USA.
5To be included in the citation graph, an article needs to have at least one reference

or citation.
6The European Union includes the United Kingdom for the purpose of this study.

are affiliated with different countries, then the publication is
included in both national accounts. Similarly, if the same author
is affiliated with multiple countries, then the article receives a
whole number count for all the countries noted in the affiliation.
Among the 104.9 million clustered articles we analyze (see the
last row of Table 2), 40.6 million articles lack country affiliation
due to incomplete affiliation string parsing and disambiguation.
The total national counts of China, the European Union, Japan,
and the United States amounted to 54 million articles, while the
remaining 10.3 million articles in the RCs were affiliated with
countries or regions not mentioned above. For CNKI articles
written in Chinese, we assume the authors are affiliated with
China. In practice, this made a minimal difference, adding
country affiliations for about 2% of the articles beyond those
Chinese articles that had an explicit Chinese affiliation.

We discard over half of the documents in the combined
dataset prior to clustering because these documents do not
have any observed citations and references, and thus, cannot
be included in the citation graph. Documents with no country
affiliations are most likely to be in this category. Out of 157.6
million such documents, only 44 million are included in the
citation graph and only 10 million are included in the core
science data subset. In Table 2, we see that most of the articles
in the Japanese language are dropped. However, in Table 2we see
that the articles affiliated with Japan have much lower attrition
rate than the articles with a title in the Japanese language. Out
of 4.5 million documents affiliated with Japan, 3.7 million are
included in the citation graph and in the set of clustered articles.
Most of the articles written in the Japanese language are missing
country affiliation (97%) and observed citations (96%), so in
Table 2 they would be included in the column of articles with
missing country affiliation. Most likely these documents are not
scientific articles because they have no references, no citations,
and no author affiliation information. This characteristic is most
common among MAG and CNKI documents.

Table 3 presents the breakdown of documents by the six
funding organizations of interest (EC, ERC, JSPS, NIH, NNSFC,
and NSF). The majority of articles in our combined dataset
do not acknowledge any funding organizations. While funding
information may be incomplete for various reasons, we take
the papers at face value and make no effort to infer the
correct funding organization.We recognize that this missing data
makes head-to-head comparisons between funding organizations
impossible. Instead, we compare the areas of research that each
funding organization supports relative to their median number of
supported papers. We believe this is a more reliable comparative
measure for analysis than using the total number of articles that
acknowledge funding support.

Of the 104.9 million clustered articles, 86.9 million did
not acknowledge any funding, while 18 million articles did
acknowledge at least one funding organization. Among the
articles that acknowledge a funding organization, 9.2 million
listed the funding organizations we analyzed (EC, ERC, JSPS,
NIH, NNSFC, and NSF), and 10.5 million articles were funded
by other funding organizations. The 18 million funded articles
recognized 19.7 million funding events, indicating that some
articles were funded by more than one funder, but this was
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FIGURE 3 | Construction of merged academic dataset.

TABLE 1 | Breakdown of document counts by languages (in millions), language labels are non-exclusive.

All languages English Chinese German French Spanish Portuguese Japanese

All documents 382.8 307.1 72.1 7.6 6.1 5.3 3.7 13.0

Unique documents 237.6 159.9 33.5 5.2 4.7 4.7 2.8 12.1

Citation graph 108.9 93.7 14.1 2.0 1.1 1.0 0.8 0.5

Core science 54.7 51.6 4.0 0.6 0.3 0.2 0.2 0.1

Clustered papers 104.9 92.0 11.4 1.9 1.1 0.9 0.8 0.5

All Documents include all the scientific publications aggregated from Web of Science, Digital Science, Microsoft Academic Graph, and the Chinese National Knowledge Infrastructure;

Unique Documents is the deduplicated set of scientific publications; Citation Graph contains the articles with at least one citation or one reference; Core Science contains the articles

with at least one citation and one reference; and Clustered Papers contains the core science data clustered using the Leiden algorithm with additional articles assigned to clusters using

direct-citation connections.

TABLE 2 | Breakdown of document counts by country affiliation (in millions), country labels are non-exclusive.

All Missing country China EU Japan United States

All documents 382.8 193.7 31.4 60.3 10.9 56.7

Unique documents 237.5 157.6 12.6 24.8 4.5 23.9

Citation graph 108.9 44.0 10.9 20.6 3.7 19.3

Core science 54.7 10.0 6.4 15.2 2.7 14.2

Clustered papers 104.9 40.6 10.6 20.5 3.7 19.2

All Documents include all the scientific article publications from Web of Science, Digital Science, Microsoft Academic Graph, and the Chinese National Knowledge Infrastructure, while

Unique Documents implements article-level disambiguation on this set. Citation Graph contains the articles with at least one citation or one reference, Core Science contains the articles

with at least one citation and one reference, and Clustered Papers contains the core science data clustered using the Leiden algorithm with additional articles assigned to clusters using

direct-citation connections.
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relatively uncommon. Almost all of the articles that declared a
funding organization are included in the citation graph and core
science data subset. Notably, many NNSFC-funded articles did
not have observed citations; however, 4.0 million are present
in our cluster analysis due to their references, so the dataset
is well-represented.

2.2. Inferring Research Clusters
From our scholarly literature dataset, we identify 55 million
articles that have at least one citation and one reference to another
article. We selected articles that were members of the solid
scientific network (which includes references and citations). We
picked a minimum in order to be the most inclusive of the papers
where there is a clear signal of their network relationship. These
documents that may not have any references (such as a book
or newspaper article) can be added later if they are cited by the
clustered papers. The documents that may not have any citations
(such as an article that was just published yesterday) can also be
added because of the references within the clustered papers.

Based on these direct citation links between these 55 million
articles, we construct a network of 1.4 billion (109) links.
We cluster this direct citation network using the modularity-
maximizing Leiden algorithm (Traag et al., 2019), a method
whose accuracy has been characterized in Klavans and Boyack
(2017b). Following the work of Klavans and Boyack (2017a), we
infer a clustering solution targeting the average cluster size of
several hundred articles. We run the Leiden clustering algorithm
with 20 different starting resolution values ranging from 1×10−20

to 9×10−2.We compare each iteration’s final network output and
find a clustering resolution of 1.615× 10−4 produces the average
cluster size most similar to our target of several hundred articles.
Overall, we identify 224,000 preliminary RCs with the average
cluster size of 468 papers. The smallest RC contained two articles
and the largest RC contained more than 20,000 articles.

Next, we erase RCs with fewer than 50 articles, as these clusters
contain noisy data and were unstable throughout the clustering
iterations, leaving 126,915 clusters in the network. We assign
articles from these small clusters, articles that were never assigned
a cluster (e.g., that had references or citations but not both), and
outstanding articles that were indexed between June 2020 and
October 2020 to these 126,915 RCs. We measure the number of
in- and out-citation links between unclustered papers and each
inferred cluster, and then assign 41 million remaining articles
to an RC based on the maximal citation links. This returns 96
million articles with an assigned RC (a distinct cluster ID) and 13
million articles unassigned. With this updated network of RCs,
we repeat the assignment process, resulting in the assignment
of 9 million articles additional (of the 13 million unassigned
articles) tomultiple RCs. The remaining fourmillion articles have
weak citation connections; therefore, we stop the RC assignment
process here to ensure an optimal clustering solution and do
not include these in the final RC structure. Our final network
of RCs contains 104.9 million articles from the four combined
data sources.

We test the quality and stability of clustering solutions in
two ways using modularity and review articles. Modularity is
the difference between the edge density inside clusters to the

expectation of such density with random cluster assignment, see
more in Reichardt and Bornholdt (2006). Review articles present
alternative topical definitions as the authors of review articles
often cover a specific coherent topic. Klavans and Boyack (2017b)
suggested using review article references as a basis of comparison.
We identify review articles as all articles with the number of
references between 100 and 1,000 references. We measure the
share of references from the 1.6million review articles (1.5% of all
articles) that appear in the same cluster as the review article. We
estimated 10 randomly seeded clustering models for the periods
2005–2014, 2005–2015, and 2005–2016 and calculated the two
quality measures for each model. The clustering solutions show
great stability, the standard deviation in modularity is 0.0018
(mean modularity is 0.183), while the standard deviation of the
average share of review references belonging to the review articles
is 0.0025 (mean share is 0.243).

We display our RC network in Figure 4, with each RC
categorized by its corresponding research area. The map presents
122,110 clusters that have at least five publications in the last 5
years. To create the map, we calculate cluster-cluster relatedness.
For a given cluster, we calculate the number of direct citation
(DC) connections between the cluster and the other RCs. To
reduce noise and improve computational speed, we keep the
top 20 strongest connections for each cluster. We measure
the strength of connections between two RCs, A and B, as:
StrengthA&B = DCA&B/DCA, where DCA&B is the total number
of undirected edges between A and B and DCA is the number of
external edges for A.

We calculate a map layout using Distributed Recursive Graph
Layout (Martin et al., 2011) in the iGraph Python package, which
positions clusters that are most connected close to each other.
The map coloring is based on the aggregation of 19 level-0 (most
aggregated) scientific fields fromMicrosoft Academic Graph into
11 even more aggregated fields. The scientific field of a cluster is
the most common scientific field among its papers. If no paper
in a cluster is classified by MAG, we assign a scientific field based
on the most frequent appearance in the top 100 most connected
clusters. The cluster connectedness is the share of direct citation
connections between the two clusters as described above.

2.3. Forecasting Extreme Growth
We use the methods fromKlavans et al. (2020) to predict extreme
growth clusters for our inferred RCs. Following Klavans et al.,
we estimate several backcasting models in order to predict the
probability that, for a given RC, its share of the total scientific
production will grow by at least 8% annually over a 3-year period.
Only clusters with at least 20 publications in the last 12 months
are stable and active enough to predict their growth; therefore, we
restrict our attention to forecasting the future state for the 55,975
clusters that satisfy this criterion. On average 3–4% of clusters
were forecasted to reach the level of extreme growth.

Four factors are used to predict the extreme growth of
each cluster:

• Paper Vitality: Defined as pvit = 1
Nc

∑ 1
agepaper+1 , where Nc is

the number of papers in a cluster, Paper Vitality measures how
“young” the articles are in a given cluster.
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TABLE 3 | Breakdown of document counts by funding agencies (in millions), funding agency acknowledgments are non-exclusive.

All No funder EC ERC JSPS NIH NNSFC NSF Other funder

All documents 382.8 328.1 2.3 0.7 2.1 8.0 11.3 2.3 32.3

Unique documents 237.5 219.3 0.7 0.2 0.7 2.9 4.2 0.7 10.7

Citation graph 108.9 90.9 0.7 0.2 0.7 2.9 4.0 0.7 10.5

Core science 54.7 39.7 0.6 0.2 0.6 2.5 2.6 0.6 8.7

Clustered papers 104.9 86.9 0.7 0.2 0.7 2.9 4.0 0.7 10.5

FIGURE 4 | Map of science: 126,915 active research clusters (RCs) creating an inferred structural basis for analysis from direct citation links between tens of millions

of articles across four data sources.

• Citation Vitality: Defined as cvit =

( 1
Nc

∑ 1
Nr

∑ 1
1+agereference

)1/4, where Nc is the number of

papers in a cluster and Nr is the number of times the paper
was referenced (i.e., the age of reference is the difference
between the current year at calculation, 2020, and the year the
article was published that references the article in the cluster).

• Top 250 sources: The number of publications in the top
250 journals and conferences based on Elsevier’s CiteScore
metric. For each journal we take the number of publications
in 2016–2018 and measure the number of citations these
publications receive in 2019. Then we divide the number of
publications by the number of citations to get the score. We
rank the journals/conferences according to this score and get
the list of top 250 sources. For each cluster we calculate the
logarithm of the number of publications in the top 250 sources:
Top250J= log(N).

• Growth Stage: For each cluster, we determine the year where
the cluster’s share of the global scientific output reached its
maximum. Then we calculate the number of years that have

passed since this peak year until current year at calculation,
2020 [i.e., growth stage= 1/(1+ 2020− yearpeak)].

All variables are standardized by subtracting the mean and
dividing by the standard deviation. Then we predict extreme
growth probability based on the regression coefficients estimated
by Klavans et al. (2020):

Extreme Growth Probability = 0.473 ∗ pvit+ 0.113 ∗ Top250J

+ 0.292 ∗ GrowthStage+ 0.1 ∗ cvit .

(1)

We then rank all clusters based on the probability of high growth
and select the top 2,000 (3.6%) clusters. This threshold maps to
an expected yearly share increase of publications at or above 8%
per year.

RCs that do not meet the 8% threshold of extreme growth
encompass RCs that have minimal growth, no growth, and
reduction in growth. We refer to these RCs as having “typical
growth.” The forecasting model is estimated from the data
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observed in late October 2020. We assume a 150-day lag between
publication and the appearance of an article in our database.
Thus, the forecasting model predicts which clusters are expected
to experience extreme growth between May 2020 and May 2023,
as it would be observed in late October 2023.

In Klavans et al. (2020), the authors make a 3-year extreme
growth forecast using the relatively clean English Scopus
metadata and citation data from Elsevier. They measure a
Critical Success Score (CSI) score (among other measures) to
characterize the forecasting accuracy of rare events: CSI score =

(true positives)/(true positives+ false positives+ false negatives).
The CSI scores for Klavans et al. (2020) vary between 0.2 and
0.33. Our forecasting task is more difficult because the linkages
between the four diverse datasets are more sparse, which results
in a less connected citation graph. In sparse citation graphs, the
clusters are less pronounced and their growth is harder to predict.

To characterize CSI in our model, we create three backcasting
datasets, where we take three historical snapshots and then
evaluate the accuracy of the forecasting model using known
future observations: 2014–2017, 2015–2018, and 2016–2019. For
each time period, we generate nine randomly seeded clustering
maps to test both the accuracy and stability of backcasting results.
The average CSI results for all clusters is 0.17, and the results from
different clustering maps are tightly bounded between 0.16 and
0.19. The average CSI for AI RCs is 0.19, but it varies between
0.08 and 0.43. The main source of variation is the changing
composition of AI clusters due to the stochastic nature of the
clustering algorithm. We define clusters to be AI if more than
50% of the articles in the cluster are classified as AI/ML (see the
classification discussion below).

2.4. Funding Organization Disambiguation
In order to analyze a funding organization’s funding portfolio,
we need to identify the articles that acknowledge any of the
six funding organizations we selected. These organizations have
many variations in how they are acknowledged (e.g., organization
aliases and misspellings). To ensure the most representative
lists of articles for each funding organization are included, we
implement twomethods to disambiguate organization names: (1)
the Global Identifier Research Database7 (GRID) identifiers that
are automatically linked in the Dimensions and MAG datasets
and (2) regular expression matching to expand coverage in the
GRID-friendly datasets and to include acknowledgments in the
CNKI and Web of Science datasets.

The first disambiguation method uses GRID identifiers
associated with the funding organization in order to include any
departments or sub-organizations within an organization; for
example, NSF has seven directorates that are often listed as the
funding organization. We identify the GRID identifiers for the
six funding organizations of interest and use GRID to identify
their sub-organizations.

The second disambiguation method uses regular expression
string matching in the funding organization field of our dataset
to catch any mentions of an organization that are variations on
its official name format. We searched for strings that contained

7https://www.grid.ac/

an organization’s name (e.g., Japan Society for the Promotion of
Science), as well as the organization’s acronym (e.g., JSPS). We
includedmisspellings for “European Commission” and restricted
the National Science Foundation searches to include “US” or
“U.S.,” since many countries have a National Science Foundation.

2.5. AI/ML Article Classification
We classified articles as AI/ML according to the predictions from
the SciBERT machine learning classifier (Devlin et al., 2018)
performed by Dunham et al. (2020). The classifier was trained
on article abstracts and titles from arXiv8 where the authors
labeled their articles with at least one of the following fields:
cs.AI, cs.LG, stat.ML, and cs.MA. While cs.AI is
strictly AI, cs.LG, stat.ML, and cs.MA are heavily AI/ML-
related. Articles labeled with other fields are considered non-
AI/ML examples. In addition, Dunham et al. (2020) use the
SciBERT model to classify three sub-fields of AI: Computer
Vision (CV), Natural Language Processing (NLP), and Robotics
(RO). Each of the sub-fields was predicted using an independent
classifier, allowing for rare cases where an article can be classified
as a sub-field of AI (e.g., RO) but not as AI/ML-related. Articles
can also be classified as general AI/ML and not as any of the
three sub-fields.

Once the model is trained on the arXiv dataset, Dunham
et al. (2020) use it to classify the rest of the articles from the
Dimensions, WOS, andMAG data sources. Articles from 2010 to
2020, with abstracts and titles available in English (nearly 88%),
are classified using this method. Since the AI/ML classification
model was designed for English articles, there was an additional
general AI classification method for the Chinese articles (10.9%
of all articles) that uses a search query for relevant terms and
phrases. If an article does not contain any of these Chinese terms
and phrases, it is classified as non-AI.

An RC was classified as AI if more than 50% of its articles
were classified by the SciBERTmodel or by the Chinese-language
AI query. The Chinese-language articles are classified as AI/ML-
related when the following regular expression query returns
TRUE9. English language articles published prior to 2010 are
assumed to be non-AI. Out of the 126,915 RCs, there are 600 of
these RCs where the share of AI/ML-classified papers are above
50%, and this subset of RCs enables our analysis of AI scientific
research funding.

3. RESULTS

For our analysis, we are interested in RCs with a strong focus
in AI/ML. If at least 50% of articles in an RC are classified
as AI/ML, we label the cluster as AI. Our completed network
of RCs contains a total of 126,915 clusters, of which 600
are labeled as AI clusters and had at least 20 publications
between May 2019 and May 2020. Using the 8% annual
forecasted growth threshold to classify an extreme growth
cluster, we forecast that 161 AI-relevant RCs will experience

8https://arxiv.org/
9https://github.com/georgetown-cset/frontiers_funders_2020/blob/main/

regular_expression_AI_query.txt
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extreme growth, which contain 344,022 out of 1,032,850 (33.4%)
publications in these 600 clusters. In Table 4, we count the
number of publications in these clusters by region and by
funder to understand which funding organizations and regions
target AI/ML research areas and extreme forecasted-growth
research areas.

We analyze each funding organization by their contribution
to AI research clusters and identify those that are forecast
to experience extreme growth. For each funder we calculate
the shares of papers funded in each of the 600 AI research
clusters considered. Due to variance in funding organization
reporting in research publications, we calculated a median
share of article funded by each funder and used it as our
measure of focus. We measure a funding organization’s level
of contribution as follows: (1) Identify the share of articles in
AI clusters on which the funding organization is acknowledged
(see the “Median Share Funded” column in Table 4); (2) Set
the median share of AI/ML-classified articles funded as the
threshold for the funding organization to be labeled a contributor
to a given research cluster—each funder is thus a contributor
to the half of the clusters in which they have greater than
their median share; and (3) Define the level of contribution
as the fraction of clusters in which the funding organization
is acknowledged.

Table 4 shows that NNSFC funds 256,526 articles of the
355,068 articles published by Chinese authors. Furthermore,
NNSFC has the highest median share of AI clusters funded
at 19.3%; NSF, with the second-highest median share of AI
clusters funded, is significantly lower at 1.7%. Overall, NNFSC
funds 75% of all the funded articles in this subset of RCs. The
161 extreme growth AI clusters contain 33.3% of the articles
in all AI clusters considered. We find that the United States
and China have higher-than-average shares of AI/ML-classified
articles in extreme growth clusters at 39.4 and 35.8%, respectively.
Alternatively, the EU and Japan have below-average shares of
AI/ML-classified articles in extreme growth clusters at 28.7 and
27.5%, respectively.

We find that the NSF and ERC are the top two funding
organizations for extreme growth AI RCs, with 35 and 36.2%
funding contributions, respectively (see Table 5). While the
NSF and ERC are frequent contributors to extreme growth
clusters, their national funding contributions are smaller, with
only 12.0 and 3.8% funding contributions to AI/ML-classified
papers published in the United States and the EU, respectively.
Alternatively, NNSFC has a slightly lower contribution to
extreme growth AI RCs (30.7%) but is acknowledged by
69% of AI/ML-classified research papers published by authors
representing Chinese organizations. Additionally, we observe a
significant difference in funding contributions between the ERC
and EC in Table 5. The ERC targets extreme growth AI RCs
at a higher level than the EC does, with a 14.3% difference
in share of funding. The overall share of extreme growth RCs
is 26.8%, indicating that all funders, except for the EC and
Japan, support extreme growth RCs at a rate slightly above
random chance.

Recognizing that funding organizations have varying
motivations and goals, we further investigate the differences in

their funding portfolios. Table 6 presents the results for the top
five AI RCs, as well as their sub-fields: Computer Vision (CV),
Natural Language Processing (NLP), and Robotics (RO). We use
the classification labels from section 3.5 and compute the percent
of CV, NLP, and RO articles for each cluster. We label a cluster
as CV, NLP, or RO if the percent of a given AI sub-field was
at least 25% and greater than all other sub-fields. For example,
if %NLP ≥ 0.25, %NLP ≥ %CV , and %NLP ≥ %RO, then the
cluster is labeled as NLP. If a cluster has <25% of articles in
any of the three AI sub-fields, we label the cluster as AI/ML
to represent general AI/ML research not covered by the other
three areas.

Figure 5 shows the percent of the 600 large AI RCs that are
classified into each sub-field of AI, including the general AI/ML
category10. CV has a significant lead over the other fields, with
49.3% of the extreme growth AI RCs classified under its research
area, and NLP and RO are almost evenly represented in the
extreme growth clusters with 12% of the RCs classified in each
respective research area. Figure 6 provides the results for each
funding organization’s support across the AI RCs by the AI fields
we assigned. In general, each funding organization contributes
above their median share to CV the most, with general AI/ML,
RO, and NLP following, respectively. The exception is the
NNSFC, who contributes above their median share to NLP (18
RCs) slightly more than RO (17 RCs).

Table 6 provides more insight into which sub-fields of AI
each funding organization supports, as well as specific research
areas within those sub-fields. We also include the share of articles
published by authors in the regions of the funding organizations
we analyze. The CV sub-field provides a noticeable example of
this, as NNSFC is the leading funder for all but one CV RC,
with NSF as the second highest contributor. It is also of note
that most funders are contributing above their median share
to all of the top five extreme growth RO RCs, whereas NLP
has the smallest number of supported papers. CV RCs are the
second most supported by all six funding organizations, with
general AI/ML and NLP following accordingly. NNSFC only
funds one cluster in each of the top five extreme growth RCs for
general AI/ML and NLP. Additionally, all funding organizations
except for NNSFC contribute above their median share to the
Bias/Fairness RC in general AI/ML.

While NNSFC is the leading funding organization for 45% of
the top extreme growth RCs, there are several areas that other
funding organizations lead that are of note. JSPS leads in two
out of the five NLP extreme growth RCs, and is the only funder
contributing above its median share in the third RC (Neural
conversation models). The ERC contributes to three out of the
five extreme growth NLP RCs as the second highest contributor,
except for the first cluster (Natural language inference) where
they are the only funder. The leading funding organization for
three out of the five for AI/ML extreme growth RCs is NSF, with
the ERC as the second highest contributing funder for three out
of the five top RCs.

10Sub-field classification is not available for Chinese-language AI/ML-classified

articles.
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TABLE 4 | Publications in AI research clusters: production by region, funding organization, and presence in extreme growth RCs.

Region Total articles Articles in extreme

growth RCs

Share of articles in

extreme growth RCs (%)

Funder Org. Funded articles Median share

funded (%)

Articles funded in

extreme growth RCs

CN 355,068 127,378 35.8 NNSFC 256,526 19.3 102,326

EU 187,624 53,867 28.7
EC 18,731 1.3 4,702

ERC 7,037 0.2 2,999

JP 40,430 11,132 27.5 JSPS 16,139 1.0 4,954

U.S. 183,355 72,259 39.4
NIH 18,821 0.4 8,223

NSF 22,984 1.7 9,327

Article content is aggregated from Web of Science, Digital Science, Microsoft Academic Graph, and the Chinese National Knowledge Infrastructure databases and includes publications

from 600 research clusters with at least a 50% share of AI-relevant articles and contain at least 20 articles published between May 2019 and May 2020.

TABLE 5 | Funding organization participation in extreme growth AI research clusters (RCs).

Region Funder Share of extreme growth

RCs (%)

Share of typical RCs (%) Level of contribution

Region (%)

CN NNSFC 30.7 69.3 70.2

EU
EC 21.9 78.1 9.3

ERC 36.2 63.8 3.8

JP JSPS 26.7 73.3 36.7

U.S.
NIH 30.0 70.0 8.1

NSF 35.0 65.0 12.0

Article content is aggregated from Web of Science, Digital Science, Microsoft Academic Graph, and the Chinese National Knowledge Infrastructure databases and includes publications

from 600 research clusters with at least a 50% share of AI-relevant articles and contain at least 20 articles published between May 2019 and May 2020.

FIGURE 5 | Breakdown of research clusters (RCs) by AI field.

4. DISCUSSION

4.1. Analytic Conclusions
We are particularly interested in the growth of clusters since
it represents the growing importance of a particular research
area. Organizations that finance scientific research are typically
interested in knowing if their funds support growing or
stagnating areas of science. Here we provide insight into the
funding portfolios of six organizations with respect to extreme
growth AI RCs.

We find a significant difference in the amount of support the

national funders provide to AI and their focus on extreme growth

clusters. NNSFC supports most of the AI research in China and

the largest fraction of global AI research. The NSF and ERC are

similar in that they have a smaller share of AI research, but have
a high focus on extreme growth clusters. The EC, in contrast, has
the least focus on extreme growth. Whether these differences are
due to organizational policies that favor risk-taking is an open
question.While all of these research organizations claim that they
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FIGURE 6 | Research cluster (RC) funding portfolio breakdown by funder and AI field.

TABLE 6 | Top five extreme growth research clusters for each category of AI.

AI category RC rank and description Funders contributing above their median share CN share (%) EU share (%) JP share (%) U.S. share (%)

AI/ML 1. Interpretable machine learning NSF, NIH, EC, ERC, JSPS 9 32 4 32

2. Multiple attribute decision NNSFC 56 5 0 3

3. Overparameterized NNs NSF, ERC 9 13 2 55

4. Bias/Fairness in AI/ML NSF, ERC, EC, JSPS, NIH 1 28 2 48

5. Actor-critic models JSPS, ERC 22 20 5 30

CV 1. Deep learning (GANs) NNSFC, NSF, JSPS, NIH, ERC 30 17 5 25

2. R-CNN object detection NNSFC 58 9 3 11

3. 3D object classification NNSFC, NSF, ERC, EC, JSPS, NIH 34 18 3 22

4. Adversarial neural networks NSF, NIH, ERC 24 15 3 36

5. Depth estimation NNSFC, NSF, EC, ERC 35 18 3 20

NLP 1. Natural language inference ERC 23 13 3 35

2. Text completion NNSFC, ERC, NIH 28 20 8 22

3. Neural conversation models JSPS 35 12 6 26

4. Cross-lingual word embeddings JSPS, ERC 21 25 5 27

5. Hate speech detection NSF, EC, JSPS 4 28 2 27

RO 1. Soft robotics NNSFC, NSF, JSPS, EC, NIH, ERC 24 19 10 23

2. Imitation learning NSF, EC, NIH, JSPS, ERC 9 22 4 44

3. Gaussian processes ERC, EC, JSPS, NSF 5 29 4 20

4. Visual odeometry NNSFC, NSF, EC, ERC, NIH 33 18 1 26

5. Autonomous driving NNSFC, NSF 24 19 3 27

All funders are listed in order from highest contributor to lowest.

fund higher-risk research, the initial analysis above suggests that
the observed rate is only slightly above random chance.

Analyzing specific sub-fields of AI (general AI/ML, CV,
NLP, and RO) in the RCs that are forecast to experience
extreme growth, we find that the NSF and ERC are
active (i.e., contributing above their median share) to

general AI/ML RCs. We also highlight the Bias/Fairness
RC in the set of general AI/ML RCs, since all funding
organizations except NNSFC contribute above their median
shares. Notably, China only published 1% to this RC,
despite publishing 48.6% of the articles in the extreme
growth RCs.
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The research areas of CV and RO are actively supported by
all funding organizations. CV publications are dominated by
Chinese authors, while the RO publications are more widely
distributed across the geographic areas we consider, with the
United States often publishing the most articles. The research
area of NLP is actively supported by Japan and the EU, though
Chinese and American authors tend to publish the most papers
in this area.

These organizations have many factors to consider when
awarding funding to a research area, and funding an extreme
growth area of research may not always be the top priority.
For example, the use of robots in elder care is a high priority
for Japan (Tanioka, 2019), resulting in the JSPS prioritizing RCs
that focus on the development of robotic technology regardless
of the forecasted growth of the RCs. Knowing these priorities
would allow for more accurate comparisons among funding
organizations and is a promising area of research for future work.

4.2. Implications
Improving the portfolio-level management of the public-sector
funding organizations (Smit and Trigeorgis, 2006; Wallace
and Ràfols, 2015; Vonortas and Ràfols, 2018) may be worth
considering as the dominance of government-sponsored research
and development (R&D) investment is challenged by an
increasing array of actors and an increasing pressure for
documenting research outcomes (Flagg and Harris, 2020).
Expanding from processes that consider primarily the merit of
each project individually to one that also weighs an appropriate
mix of portfolio-level factors could positively impact each
funding organization’s ability to accomplish its mission. The
optimal method to balance technical merit, social value, and
comparative advantage within the context of the investment
landscape needs to be tailored to each organization. However,
the new methods introduced by this paper provide key
contextual insight that may provide valuable insight to all
funding organizations.

It is important to understand the interaction between a
given funding organization’s level and type of support in a
set of RCs. The results of our RC model and linked funding
data offer promising directions for future work by exploring
questions that have historically been very difficult to answer.
Examples include:

• Does a funding organization provide seed funding or
otherwise drive the research cluster activity or ride an
existing wave of activity (e.g., the percentage of papers
that acknowledge funding support at various stages in its
development)?

• Is a funding organization providing the lion’s share of regional
support for research (e.g., NNSFC) or is it part of a plurality of
regional AI research funders (e.g., NIH)?

• If funding in a given area were not provided, would the
desired goals of the project(s) in question still be achieved
on a reasonable timeline based on RC activity and extreme
growth forecasts?

• What is the right mix of typical vs. extreme growth research
areas of emphasis for a given funding organization? How does
the extreme growth forecast relate to project risk (e.g., lower

risk if part of a set of extreme growth research clusters or
higher risk because themethods are newer andmay not work)?

We do not answer these questions here, but leave them to
future work.

Portfolio management is often driven by the need to address
prioritized societal needs, such as health, security, environment,
economic, and social well-being; however, insights to questions
like those asked above do not require top-down funding decision
management or a quantitative model of return on investment.
Instead, the research program directors can proactively inform
decisions to expand or redirect support based on the dynamics
of the research landscape in the context of funding organizations.
These dynamics are now clearly laid out and the related forecasts
can be calibrated to best inform the decisions.

For example, a decision to invest in the development of
autonomous control of waterborne vehicles using reinforcement
learning techniques can be quickly informed by the level of
current activity in this problem area, the 3-year future growth rate
of the relevant research clusters, an analysis of the current relative
worldwide funding support by region, an institutional diversity
analysis, and a quick review of the degree to which the desired
program goals are already being pursued even if the program
is never started by the funding organization. The RC structure
and extreme growth predictions provide unique insight that can
help decision-makers determine the right mix of breakthrough
research, fundamental research, or translational research. The
portfolio can then be further balanced by the proper risk vs.
reward considerations.

4.3. Limitations
While the scale and scope of the methods described above
represent a step forward, there are many areas that require
additional work and testing before they can be officially deployed
by a funding organization to inform their portfolio. First, the
RC structure creates a useful frame of reference when it is
constructed; however, it is unclear how long this RC structure
will remain the best way to represent the scientific landscape. If a
unique line of inquiry around some problem very quickly grows
within 1–3 years, then it is possible the existing RC structure that
is recomputed from scratch every 3–5 years may not adequately
reflect this area of innovation. Secondly, what a human considers
a reasonable aggregation of research (e.g., autonomous ground-
based vehicle control) may be split across multiple RCs in this
representation; therefore, care must be taken when interpreting a
few extreme growth RCs in this broader area without considering
others that are not growing as quickly. Third, extreme growth
forecast accuracy needs further exploration and calibration over
multiple years to gauge its level of reliability for each agency
decision. Lastly, the analysis needs to be customized for the needs
of each funding organization. These limitations are currently
topics of continuing research.
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