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Towards the objectives of the UnitedStates Food and Drug Administration (FDA)
generic drug science and research program, it is of vital importance in developing
product-specific guidances (PSGs) with recommendations that can facilitate and
guide generic product development. To generate a PSG, the assessor needs to
retrieve supportive information about the drug product of interest, including from the
drug labeling, which contain comprehensive information about drug products and
instructions to physicians on how to use the products for treatment. Currently,
although there are many drug labeling data resources, none of them including
those developed by the FDA (e.g., Drugs@FDA) can cover all the FDA-approved
drug products. Furthermore, these resources, housed in various locations, are often
in forms that are not compatible or interoperable with each other. Therefore, there is a
great demand for retrieving useful information from a large number of textual
documents from different data resources to support an effective PSG
development. To meet the needs, we developed a Natural Language Processing
(NLP) pipeline by integrating multiple disparate publicly available data resources to
extract drug product information with minimal human intervention. We provided a
case study for identifying food effect information to illustrate how a machine learning
model is employed to achieve accurate paragraph labeling. We showed that the pre-
trained Bidirectional Encoder Representations from Transformers (BERT) model is
able to outperform the traditional machine learning techniques, setting a new state-of-
the-art for labelling food effect paragraphs from drug labeling and approved drug
products datasets.
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INTRODUCTION

Product-Specific Guidance1 (PSG) represents the United States
Food and Drug Administration (FDA)’s current thinking on the
best approaches for demonstrating bioequivalence between a test
product and the reference product. The development of product-
specific guidances (PSGs) intends to facilitate generic drug
product development, and Abbreviated New Drug Application
(ANDA) submission and approval, ultimately promote safe,
effective, affordable generic drugs to the public in the
United States. During the Generic Drug User Fee
Amendments II (GDUFA II), FDA is committed to issuing
PSGs for 90 percent of non-complex new chemical entity New
Drug Applications that are approved on or after October 1, 2017,
at least 2 years prior to the earliest lawful ANDA filing date2. This
commitment, in addition to the demands of developing PSGs for
complex drug products, calls for an enhanced PSG developing
process. To answer this challenge, one of the solutions is to
identify and automate the labor-intensive works during the PSG
development. To generate a PSG, FDA staff usually need to take
extensive efforts (e.g., 50% efforts for a regular immediate release
solid oral dosage form drug product) to collect relevant
information from multiple data resources to a PSG review
template, e.g., extracting the information related to boxed
warning, indication, dosage and administration, clinical
pharmacology and pharmacokinetics including absorption,
distribution, metabolism, excretion, food effect (ADMEF) from
drug labeling as well as the reference listed drug and reference
standard (RLD/RS) information from the Orange Book3. If this
part of the PSG development work can be automatically
accomplished by a well-designed data analytics tool, the PSG
developers can have more time and effort to focus on the human
intelligence-required work.

Natural language processing (NLP) has been increasingly used
with a specific focus on text mining and information extraction in
drug labeling. For example, Fung et al. (2013) extracted
information from the indications section of the drug labeling
from DailyMed to encode drug-indication pairs, whereas Bisgin
et al. (2011) extracted three labeling sections (Boxed Warning,
Warnings and Precautions, Adverse Reactions) from DailyMed
to group drugs by topics that are associated with the same safety
concerns and therapeutic uses. However, most of the previous
work focused only on a single data source (for review, see, e.g.
Fang et al., 2016). Since none of the data sources can cover all the
drug products, retrieving drug labeling information from
multiple sources is needed in PSG developing process. The
data sources used in our PSG developing process include
Orange Book, Drugs@FDA,4 DailyMed5 and DrugBank6,
which are described as follows.

Data Sources
Orange Book
Orange Book, formally known as the Approved Drug Products
with Therapeutic Equivalence Evaluations, is considered to be the
authoritative source of information in the United States on the
therapeutic equivalence of FDA approved drug products. It
includes currently marketed prescription drug products
approved by the FDA through new drug applications (NDAs)
and abbreviated new drug applications (ANDAs) with different
dosage forms (Center for Drug Evaluation and Research 2020). It
also selects the reference standard (RS) which an applicant
seeking approval of an ANDA must use in conducting an in
vivo bioequivalence study required for approval. In this paper, we
used Orange Book as the baseline for the FDA application
number.

Drugs@FDA
Drugs@FDA is a publicly available resource, which includes the
majority of drug labeling, approval letters, reviews, and other
information for FDA-approved drug products for human use
provided by the FDA. It contains prescription brand-name drug
products, over-the-counter brand-name drug products, generic
drug products, and therapeutic biological products.

DailyMed
DailyMed is a free drug information resource provided by the
United States. National Library of Medicine (NLM) that consists
of digitized versions of drug labeling as submitted to the FDA. It is
the official provider of the FDA labeling information (package
inserts). The documents published use the Health Level Seven
(HL7) version 3 Structured Product Labeling (SPL) standard,
which specifies various drug label sections (Schadow 2005, 7). It
uses Logical Observation Identifiers Names and Codes (LOINC)
to link sections and subsections of human prescription drug and
biological product labeling.

DrugBank
DrugBank is a richly annotated resource that combines detailed
drug data with comprehensive drug target and drug action
information provided by the University of Alberta and the
Metabolomics Innovation Center (Wishart et al., 2008). It
contains FDA-approved small molecule and biologics drugs
with extensive food-drug and drug-drug interactions as well as
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) information (Knox et al., 2011).

As a proof of concept, in this study, we proposed an
information extraction pipeline using NLP and machine
learning to provide an automatic data-processing workflow to
extract, annotate and integrate drug labeling data from multiple
publicly available data sources with minimal human intervention
for PSG development. However, mining the drug labeling from
multiple sources is challenging, since these data sources,
including those developed by the FDA, with the various data
formats and access methods, are often not easily available to
inform the PSG development process.

To address the challenge of interoperation with multiple data
sources, our pipeline provided examples to access data via

1https://www.accessdata.fda.gov/scripts/cder/psg/index.cfm
2https://www.fda.gov/media/101052/download
3https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm
4https://www.accessdata.fda.gov/scripts/cder/daf
5https://dailymed.nlm.nih.gov/dailymed/
6https://go.drugbank.com
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different methods, parse data in various data formats, and unify
identification scheme. At the same time, there are complex
scenarios where machine learning models are essential to
achieve accurate information extraction. We provided a case
study for labelling food effect paragraphs (Food Effect vs.
Non-Food Effect) as an example to illustrate how we
addressed the scenarios when keyword detection and regular
expression were not adequate. In our case study, we leveraged the
pre-trained BERT (Bidirectional Encoder Representations from
Transformers) model to identify food effect paragraphs from the
drug labeling. The BERT (Devlin et al., 2019) is a ground-
breaking unsupervised NLP model, which has been trained
with huge general language datasets, such as Wikipedia
Corpus, and can be fine-tuned on usually small datasets for
specific language tasks to achieve the state-of-the-art
performance on many NLP tasks. Therefore, in this work,
instead of training a new model from scratch, we took
advantage of the pre-trained BERT model for labeling food
effect paragraphs to obtain better performance. We showed
that the BERT-based model is able to outperform the
traditional machine learning techniques for identifying food
effect-related paragraphs on drug labeling datasets. It is
expected that our developed information extraction pipeline
will save a great amount of time and effort so that the PSG
developers can devote more time to the human-intelligence-
required work.

The software package for data collection, preprocessing, and
the model training and validation for labeling food effect
paragraphs will be provided at https://github.com/Yiwen-Shi/
drug-labeling-extraction.

METHODS

We collected drug product information from multiple publicly
available data sources, including Orange Book, Drugs@FDA,
DailyMed, and DrugBank. The raw data varied widely in
format, from well-structured XML files to highly irregular
free-text PDF files. To create a structured dataset to facilitate
the assessment process for PSG development, we attempted
to convert various data formats into a structured data frame
in four steps. First, we collected raw data from either
requesting RESTful (representational state transfer) API
(application program interface) or downloading the full
database whenever the API is not available. Second, we
parsed raw data in various data formats into structured
data records. Third, we mapped different identification
schemes to the FDA application number, which is a
unique six-digit number assigned to a drug product by the
FDA. Last, we kept the latest version if multiple versions of
drug labeling existed.

We provided a case study for labeling food effect
paragraphs, in which a pre-trained BERT model was
finetuned on a small set of annotated labels. We showed
that the BERT-based model is able to outperform the
traditional machine learning techniques for food effect
paragraph labeling on drug label datasets.

Data Processing
The workflow applied to the aforementioned data sources for
processing, i.e., Drugs@FDA, DailyMed and DrugBank, is
summarized in Figure 1. It contained four steps in general,
which need to be adjusted in a variety of ways to
accommodate data source diversity. In this section, we
illustrate how the workflow is implemented for each data source.

Data Collection and Parsing
Table 1 presented the details of the data format/access method,
the download date/version and the number of records extracted
from four different sources. In the original data files, Drugs@FDA
and DailyMed provided the complete list to access the SPL and
PDF files via RESTful API, whereas DrugBank provided the
complete dataset in a single XML file.

After pulling the raw data, they were parsed, extracted and
annotated based on the 12 sections (For details, see Table 4
below) which are essential for PSG assessment, including boxed
warning, indication, dosage and administration, pregnancy,
lactation, mechanism of action, pharmacodynamics, and five
subsections under pharmacokinetics: absorption, distribution,
metabolism, excretion, and food effect.

Drugs@FDA provides the latest FDA-approved drug labeling
and previously approved labeling in PDF format. After having
converted the PDF file to text, we extracted the 12 sections from
free text via regular expression, which is a sequence of characters
that define a search pattern. We used regular expression to detect
and locate keywords/subtitles, then extract the related sections
from the free text converted from pdf files.

DailyMed maintains the labeling in a document markup
standard approved by HL7 referred to as SPL, which specifies
various drug labeling sections by LOINC codes and names.
Table 2 listed a sample of eight sections we collected in this
paper. However, since absorption, distribution, metabolism,
excretion, and food effect do not have LOINC codes, we
extracted their parent section pharmacokinetics via LOINC
codes first, then applied keywords detection and regular
expression to locate subsections and automatically
annotated them.

DrugBank provides the complete dataset in a single XML
format. Drugs are represented by <drug> tag. Its children
elements contain both pharmacology information and
commercial drug products. We extracted their contents from
eight elements by tag names, including ADMEF information and
the FDA application number whenever it is available. With the
well-defined tags, DrugBank is a good complement when the
subtitles of ADMEF are not available in Drugs@FDA or
DailyMed.

Unify Identification Scheme
Different data sources have their own identification schemes.
They vary from source to source. For example, the sources
developed by the FDA such as Orange Book and Drugs@FDA
use the FDA application number, a unique six-digit number to
identify the drug, whereas DailyMed uses a unique Set ID to
detect the SPL file. DrugBank uses its own DrugBank-ID for drug
identification.
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In order to provide a unified identifier to retrieve and combine
information from multiple data sources, we mapped the Set ID in
DailyMed and the DrugBank-ID in DrugBank to FDA
application number, which is recognized by both Orange Book
and Drugs@FDA. It is possible that one Set ID or DrugBank-ID

may have more than one FDA application number. Under such
circumstances, all the corresponding FDA application numbers
are listed. Figure 2 illustrated a typical example as to how the Set
ID was mapped in the parsed result of an SPL file to the FDA
application number.

FIGURE 1 | The birds’ eye view of the workflow used for information extraction from various data sources, as shown at the top, which includes Drugs@FDA,
DailyMed and DrugBank. On the left depicts the main steps of information extraction. Note that the Orange Book is used as a point of reference for the FDA NDA (New
Drug Application) application number with which the data extracted from multiple sources are integrated at the step of Filter (Downloaded Version: Oct. 2020).

TABLE 1 | Data resources overview.

Data source Data format/Access method Version/Date Number of records

Initial Accessible Unified ID Filtered

Orange book csv/datafiles Oct. 2020 39,229 — — 3,624
Drugs@FDA Pdf/RESTful API Nov. 24, 2020 21,508 21,012 — 3,266
DailyMed Xml/RESTful API Nov. 27, 2020 134,702 134,024 137,508 2,573
DrugBank Xml/datafiles July 2, 2020 13,580 — 25,002 3,308
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Filtering
Since both Drugs@FDA and DailyMed contain historical drug
labeling, we only need to keep the latest version for each FDA
drug application number with regard to the effective date of the
latest document. Due to the different update schedules, each data
source contains an inconsistent list of FDA-approved drugs. As
the authoritative source of information in the United States on
the therapeutic equivalence of FDA-approved drug products, the
Orange Book contains 3,624 unique New Drug Application
(NDA) FDA application numbers in the datafiles downloaded
in Oct. 2020, which is used as a point of reference for the currently
valid FDA-approved drugs in this paper.

Paragraph Labeling of Food Effect
As described in the last section, we extracted information from
drug labeling including Boxed Warning, Indication, Dosage and
Administration, Use in Specific Populations, and Clinical
Pharmacology. However, there are often complex scenarios
(e.g., labeling food effect paragraphs from pharmacokinetics
sections) where machine learning models are essential to
achieve accurate information extraction. As such, we provide a
case study for labeling food effect paragraphs as an example to
illustrate how we address the scenarios when keyword detection
and regular expression are not applicable.

Food may affect pharmacokinetics by any or all of the
following mechanisms: delaying gastric emptying, stimulating
bile flow, changing the pH of the gastrointestinal tract, increasing
splanchnic blood flow, changing luminal metabolism of a drug,
and physically/chemically interacting with a dosage form or drug
(Sharma et al., 2013). Food effect paragraphs can appear in
different sections in drug labeling. Figures 3A,B, respectively,
provide examples of the subsection under pharmacokinetics and
the subsection under the absorption section, where each
paragraph has been automatically annotated as either “Food
Effect” (red border) or “Non-Food Effect” (blue border). There
are also the cases where the food effect paragraphs included in the
absorption section without any subtitle (Figure 3C), which
cannot be automatically extracted and easily annotated by
keyword detection and regular expression. In these cases, the
content of drug labeling relevant to the food effect is determined
by semantic meaning, which motivated us to treat the food effect
paragraph labeling as classification task (Food Effect vs. Non-
Food Effect). We note that paragraph labeling is only one
component (related to food effect) of our drug labeling

extraction pipeline which integrates multiple disparate publicly
available data resources to extract drug product information for
enhancing PSG development.

Dataset
Food effect information is available in both Drugs@FDA and
DailyMed. Table 3 shows the statistical summary of food effect
sections we extracted from two data sources, where the numbers
in the table represent the number of paragraphs. To train the
model for identifying the food effect paragraphs from the
absorption sections (e.g., Figure 3C), we constructed a dataset
in which each paragraph was labeled as either Food Effect or
Non-Food Effect. For Figure 3A, we detected the section title
with regular expression “̂(food effect|food effects|effect of food|
effects of food)$” and annotated the paragraph that followed the
title as “Food Effect”. For 3B, we used a slightly different regular
expression “̂(food effect|food effects|effect of food|effects of
food)\s*(:|-)”, to detect if a paragraph belongs to “Food Effect”.
We removed the title at the beginning of the paragraph that was
detected by regular expression in the dataset. For other
paragraphs under the section title detected by regular
expression “̂absorption$“, they were labeled as “Non-Food
Effect”. The annotated results were manually checked
afterwards to verify the paragraph labeling. Note that there
was no change in the annotated label after manual checking.
For model training and evaluation, we randomly selected 2,400
records in total (1,200 records from Drugs@FDA, 1,200 records
from DailyMed), including both Food Effect and Non-Food
Effect. Note that we used the equal number of records from
Drugs@FDA and DailyMed (1,200 records each) to keep the data
balanced and avoid potential bias during the training.

Rule-Based Methods
We performed two rule-based methods as a baseline to compare the
performance of machine learning models in test dataset. For the
Rule-BasedMethod 1, if a paragraphmatched the regular expression
“(food effect|food effects|effect of food|effects of food)” anywhere, it was
labelled as “Food Effect”; otherwise, it was labelled as “Non-Food
Effect”. For the Rule-Based Method 2, we used a simple keyword
search for “food” for paragraph labelling.

Machine Learning Models
Machine learning algorithms have been widely used for natural
language processing, in which the text is represented by word
embedding. Among various word embedding techniques, Term
Frequency-Inverse Document Frequency (TF-IDF) perhaps is the
most used statistical measure that evaluates how relevant a word
is to a document (Chowdhury 2010). TF-IDF for a word in a
document is calculated by multiplying two different metrics:
Term Frequency (TF) and Inverse Document Frequency
(IDF). TF-IDF score for the word t in the document d from
the document set D is calculated as follows:

TF − IDF (t, d,D) � TF(t, d) · IDF(t,D)
Where:

TF(t, d) � log[1 + freq(t,D)],

TABLE 2 | LOINC of selected sections from drug labeling in DailyMed.

LOINC code LOINC name

34066-1 BOXED WARNING SECTION
34067-9 INDICATIONS and USAGE SECTION
34068-7 DOSAGE and ADMINISTRATION SECTION
42228-7 PREGNANCY SECTION
77290-5 LACTATION SECTION
43679-0 MECHANISM OF ACTION SECTION
43681-6 PHARMACODYNAMICS SECTION
43682-4 PHARMACOKINETICS SECTION
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FIGURE 2 | Unify identification scheme example (DailyMed SETID: c040bd1d-45b7–49f2-93ea-aed7220b30ac).
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IDF(t,D) � log( N
count(d ∈ D : t ∈ d)),

N refers to the total number of documents in the corpus and
count(d ∈ D : t ∈ d) corresponds to the number of documents
where the term t appears. The TF-IDF score is then fed to
machine learning algorithms such as Logistic Regression and
Support Vector Machines, which has been shown improved
results over the basic word embedding methods such as Bag-
of-Words (BoW). However, the methods based on the
concurrence of terms, including the BoW and TF-IDF (that
embeds the text by term frequency in the document, which
lose the information about the relationship between the
words), fail to identify syntactic and semantic relationships
between words in the documents.

Language model pretraining has recently advanced the state of
the art in many NLP tasks ranging from sentiment analysis, to
question answering, natural language inference, named entity

recognition, and textual similarity. State-of-the-art pre-
trained models include ELMo (Peters et al., 2018), GPT
(Radford et al., 2019) and more recently Bidirectional
Encoder Representations from Transformers (BERT;
Devlin et al., 2019). BERT combines both word and
sentence representations in a single very large Transformer
(Vaswani et al., 2017); it is pre-trained on vast amounts of
text, with an unsupervised objective of masked language
modeling and next-sentence prediction and can be fine-
tuned with various task-specific objectives. With the pre-
trained model, fine-tuning allows BERT to model many
downstream tasks, such as text classification. While BERT
has dramatically improved outcomes in NLP tasks in the
general domain such as optimizing search results, its
performance in domain-specific tasks such as drug labeling
has not fully been explored.

In this paper, we assessed the predictive performance of three
pre-trained BERT-base models: BERT, RoBERTa (Liu et al., 2019),

FIGURE 3 | Three Examples of Food Effect Section. In (A) and (B), the paragraphs in the blue border are annotated as “Non-Food Effect”, and the paragraphs in the
red border are annotated as “Food Effect”. In (C), the Food Effect paragraph classificationmodel is able to identify the paragraph in the blue border as “Non-Food Effect”,
and the paragraphs in the red border as “Food Effect”. The dashed borders signify the paragraphs labeled by the model, whereas the borders in solid line represent the
paragraphs automatically labeled by using regular expressions.

TABLE 3 | Statistical Summary of Food Effect/Non-Food Effect Data Extracted by Keyword Detection and Regular Expression. The numbers represent the number of
paragraphs.

Non-food effect Food effect

Food effect in
pharmacokinetics section

Food effect in
absorption section

Total

DailyMed 3,691 822 108 930
Drugs@FDA 1,166 327 74 401
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and DistilBERT (Sanh et al., 2020). We compared these state-of-
the-art approaches with three traditional machine learning
algorithms: Logistic Regression, Linear Support Vector
Classification (SVC), and Random Forest, with the TF-IDF as the
word embeddingmethod.We note that the input to themodel was a
single paragraph and the output was a label for that paragraph to
indicate whether it was “Food Effect” or “Non-Food Effect”.

The BERT-base models were implemented by Simple
Transformers library7. We used Adam optimizer (Kingma and
Jimmy, 2017) with the learning rate of 4e-5. The train batch size
was set to 32. To avoid exploding gradients, we clipped the gradients
to themaximumnorm of one. Other hyperparameters of themodels
were initialized by default values.

Evaluation
We evaluated the classification results from two perspectives: the
impact of training and testing dataset and the performance of text
classification algorithms.

To check the impact of the training and testing dataset on
classification results, we created three datasets related to the data
sources: Drugs@FDA (1,200 records), DailyMed (1,200 records) and
the combined Drugs@FDA and DailyMed (Drugs@FDA +
DailyMed, 2,400 records). For each dataset, we kept 80 percent
data for training and the remaining 20 percent for testing. Then, we
trained and tested on various combinations of datasets. For example,
we trained the model by combined Drugs@FDA and DailyMed
dataset (Drugs@FDA +DailyMed) and tested with the dataset only
from DailyMed or trained the model by the dataset only from
Drugs@FDA and tested with the dataset only from DailyMed.

To assess the performance of different machine learning
algorithms for text classification, we used the Drugs@FDA and
DailyMed and combined dataset. We used precision, recall and
F1-score as the performance metrics, which are calculated by
using the number of true positives (TP), false positives (FP) and
false negatives (FN) as follows:

precision � TP
TP + FP

recall � TP
TP + FN

F1-score � 2 · precision · recall
precision + recall

RESULTS

Information Extraction
There were total 12 sections (See Table 4 for details) in the drug
product information we extracted in this work, only eight sections
could be extracted by the LOINC codes (See Table 2 for details;
we note that only DailyMed has the LOINC codes). For sections

TABLE 4 | Comparison of Source Coverage and Overlap of Unique Drug and Drug Labeling Sections.

Coverage (%) Overlap (%)

Drug labeling section Drugs@FDA DailyMed DrugBank Drugs@FDA DailyMed DrugBank

Boxed warning 83.01 77.79 — 36.62 39.08 —

Indication 56.97 75.01 96.49 89.07 80.75 66.04
Dosage and admin 67.85 88.97 — 41.87 31.93 —

Use in specific populations
Pregnancy 74.44 85.07 — 39.97 34.97 —

Lactation 94.56 68.52 — 33.35 46.03 —

Clinical pharmacology
Mechanism of action 56.23 51.64 96.93 86.67 91.46 53.47
Pharmacodynamics 43.38 38.04 95.51 84.36 91.10 38.97

Pharmacokinetics
Absorption 41.48 34.33 96.68 82.69 91.26 36.63
Food effect 92.35 63.14 — 30.04 43.94 —

Distribution 53.05 44.09 88.28 76.87 85.33 44.28
Metabolism 47.92 38.73 96.07 81.26 90.97 42.26
Excretion 49.43 41.36 93.97 81.10 89.30 43.29

Drug 90.12 71.00 91.28 82.00 95.96 82.89

The coverage represents the percentages are relative to total counts of 3,624 unique drug, 977 unique boxed warning section, 3,414 unique indication section, 2,883 unique dosage and
administration section, 2,578 unique pregnancy section, 1,655 unique lactation section, 3,356 of mechanism of action section, 3,294 pharmacodynamics section, and 3,134 absorption
section, 510 food effect section, 2,722 distribution section, 3,101 metabolism section, 3,051 excretion section parsed from pharmacokinetics section. The overlap represents the
percentages of the average number of sources sharing each labeling section.

TABLE 5 | Result for rule-based methods and different machine learning models
(Best model performance is in bold).

Precision Recall F1

Rule-based method 1 0.6429 0.2348 0.3439
Rule-based method 2 0.5000 0.6522 0.5660

Logistic regression 0.9091 0.8696 0.8889
Linear SVC 0.8966 0.9043 0.9004
Random forest 0.9386 0.9304 0.9345
BERT 0.9316 0.9478 0.9397
RoBERTa 0.9469 0.9304 0.9386
DistilBERT 0.9649 0.9565 0.9607

7https://github.com/ThilinaRajapakse/simpletransformers
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without the LOINC codes in DailyMed and all 12 sections in
Drugs@FDA, we used regular expression to extract the data we
needed (Data in DrugBank is an xml file, all sections of which are
well defined by tag name). To identify food effect information,
machine learning models such as DistilBERT were used to label
food effect paragraphs in the absorption section.

The Orange Book data file downloaded in Oct. 2020 provided
3,624 unique drugs with FDA NDA application number, which
provided the reference list of valid NDA application numbers in
this paper.

Table 4 summarized how much the data was covered by each of
the three other sources. DrugBank covered the largest number of
unique drugs (91.28%), followed by Drugs@FDA (90.12%). For the
drug labeling sections, where the information is available in
DrugBank (indication, mechanism of action, pharmacodynamics,
absorption, distribution, metabolism, excretion), it also has the
largest coverage among the three sources. Drugs@FDA and
DailyMed both provided more labeling sections than DrugBank,
though Drugs@FDA has higher coverage than DailyMed in general.

To quantify the uniqueness of each source’s contribution, we
computed the overlap measure, which is defined as the percentage
of the average number of sources that contributed to each drug
labeling section to the total number of the data sources. For
example, 0% overlap indicates that the data source is the only
source provided information for that drug labeling section, which
has no overlap with other sources. Similarly, 100% overlap
indicates that the information of the drug labeling section that
one source provided completely shares with the other two sources.
Drugs@FDA had the least overlap for the unique drugs (82.00%).

Classification Performance of Food Effect
by Machine Learning Models
Table 5 shows the results of the rule-based methods and different
text classification models applied to the combined dataset of the
Drugs@FDA and DailyMed. First, the machine learning models
outperformed the ruled-based methods. Second, the BERT-based
models performed better (with F1 score 0.9397, 0.9386 and 0.9607
for BERT, RoBERTa, and DistilBERT model, respectively) than
traditional machine learning models (0.8889, 0.9004, and 0.9345
for Logistic Regression, Linear SVC, and Random Forest). The
performance evaluation metrics reported are the average of ten
random experiments. Random Forest and DistilBERT are the best

performance model in traditional machine learning algorithms
and BERT-base models, respectively. Next, we used these two
models for further evaluation with different combinations of
training and testing on various datasets.

Table 6 shows the different combinations of training and
testing on various datasets. The results show that DistilBERT has
a better performance than Random Forest. In general, both
DistilBERT and Random Forest, trained on the Drugs@FDA
and DailyMed, can improve the prediction performance on a
single dataset alone, which indicates that the combined training
dataset can help to overcome the differences between data
sources. However, we observed one exception for DistilBERT
that was trained with the combined data and tested with Drugs@
FDA: though it did not reach the best performance, the F1 score
(0.9313) is tied with that of Random Forest and the difference in
F1 scores between different training datasets is rather narrow.

To evaluate the model generalization ability to an unseen (but
related) data, we tested both DistilBERT and Random Forest with
a manually created manually-labeled dataset containing 64 “Food
Effect” paragraphs and 46 “Non-Food Effect” paragraphs that are
not detectable by regular expression. We can observe that the
DistilBERT (precision: 0.9524, recall: 0.9375 and F1: 0.9449) also
performed better than Random Forest (precision: 0.9474, recall:
0.8438 and F1: 0.8926) on these data.

To further substantiate that the pre-trained BERT model
performs better than traditional machine learning methods, we
show in Figure 4 by comparing the learning curves of the
Random Forest with DistilBERT model when the training data
were gradually increased. We observed that the DistilBERT
reached an F1-measure > 0.9 even with a much smaller
training dataset than Random Forest. Together, it is shown
that the pre-trained BERT-based model is able to outperform
the traditional machine learning techniques for food effect
labeling on drug labeling datasets.

DISCUSSION AND CONCLUSION

In this paper, we developed an NLP pipeline to perform information
extraction from FDA drug labeling for PSG development. We
integrated drug product information from multiple data sources
(Orange Book, Drugs@FDA, DailyMed, and DrugBank) and have
collected information with a variety of data formats via different

TABLE 6 | Result with different combinations of training and testing on various datasets (Best model performance of each combination is in bold).

Train Test F1

Random forest DistilBERT

Drugs@FDA + DailyMed Drugs@FDA + DailyMed 0.9345 0.9607
DailyMed Drugs@FDA + DailyMed 0.9204 0.9333
Drugs@FDA Drugs@FDA + DailyMed 0.9067 0.9478

Drugs@FDA + DailyMed DailyMed 0.9388 0.9796
DailyMed DailyMed 0.9149 0.9388
Drugs@FDA DailyMed 0.8866 0.9583

Drugs@FDA + DailyMed Drugs@FDA 0.9313 0.9313
DailyMed Drugs@FDA 0.9242 0.9302
Drugs@FDA Drugs@FDA 0.9219 0.9394
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access methods and addressed the inconsistent issue of the
identification scheme of different data sources, which allows one
to request the FDA-approved drug data by a unified identifier.
Among these data sources, Drugs@FDA has relatively high coverage
and the least overlapwith other data sources,making itself ideally the
primary source for the PSG assessment. Nonetheless, other data
sources can still provide complementary information to Drugs@
FDA for a comprehensive assessment of the drug products.

We used food effect paragraph labeling as an example to address
the complex scenarios when keyword detection and regular
expression are not adequate. For example, some “Non-Food
Effect” paragraphs may include a sentence such as “Effect of
food on the bioavailability of methadone has not been
evaluated,” which matches the regular expression but is not
related to food effect study of the drug. Similarly, some “Food
Effect” paragraphs may contain the food effect content but without
the keyword “food” (e.g., “A high-fat meal increased the extent and
rate of naloxegol absorption. The Cmax andAUCwere increased by
approximately 30 and 45%, respectively. In clinical trials, naloxegol
was dosed on an empty stomach approximately 1 h prior to the first
meal in the morning.”). We further demonstrated the pre-trained
BERT-based model, when fine-tuned on a small set of annotated
labels, is able to outperform the traditional machine learning
algorithms in text classification for food effect labeling on drug
labeling datasets. This result was confirmed by checking the model
on unseen test domain. For example, the second paragraph in
Figure 3Cwas correctly identified as “Food Effect” by the BERT, yet
completely missed by keywords/regular expression.

Several limitations need to be noted. First, we only apply this
classifier to separate food effect paragraphs within the absorption
section. As a result, the Non-Food Effect data only contains
absorption data from drug labeling. Second, the minimum text
unit we extracted and annotated is a paragraph. The food effect is
not required to be written in a separate paragraph in the drug
labeling and thus has the possibility to be either mentioned in a
sentence within other sections or spanned more than one
paragraph. In either case, it is possible that a small amount of
food effect paragraphs can be mixed with the Non-Food Effect
data. Third, when the size of the training dataset is limited, e.g., less
than 400 as shown in Figure 4, Random Forest has a better
performance than DistilBERT. As the amount of the data
increases, the advantage of the BERT-based model becomes
clear. Our observation is consistent with what is well known in
the deep learning field that a deep learning model requires much
more data than a traditional machine learning algorithm.

In summary, we developed a pipeline to integrate four publicly
available data sources for drug product information various data
formats and access methods. 12 related sections in the drug
labeling were extracted from these data sources, which aimed
to enhance the assessment process for PSG development. In
addition, we demonstrated that the pre-trained BERT model is
able to outperform the traditional machine learning techniques,
setting a new state-of-the-art on drug labeling datasets to address
the classification challenge for labeling food effect paragraphs,
which can be adapted to other drug labeling sections or data
sources.
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