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Objective: In 2016, the International Agency for Research on Cancer, part of the World
Health Organization, released the Exposome-Explorer, the first database dedicated to
biomarkers of exposure for environmental risk factors for diseases. The database contents
resulted from a manual literature search that yielded over 8,500 citations, but only a small
fraction of these publications were used in the final database. Manually curating a database
is time-consuming and requires domain expertise to gather relevant data scattered
throughout millions of articles. This work proposes a supervised machine learning
pipeline to assist the manual literature retrieval process.

Methods: The manually retrieved corpus of scientific publications used in the Exposome-
Explorer was used as training and testing sets for the machine learning models (classifiers).
Several parameters and algorithms were evaluated to predict an article’s relevance based
on different datasets made of titles, abstracts and metadata.

Results: The top performance classifier was built with the Logistic Regression algorithm
using the title and abstract set, achieving an F2-score of 70.1%. Furthermore, we
extracted 1,143 entities from these articles with a classifier trained for biomarker entity
recognition. Of these, we manually validated 45 new candidate entries to the database.

Conclusion:Ourmethodology reduced the number of articles to bemanually screened by
the database curators by nearly 90%, while only misclassifying 22.1% of the relevant
articles. We expect that this methodology can also be applied to similar biomarkers
datasets or be adapted to assist the manual curation process of similar chemical or
disease databases.
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1 INTRODUCTION

Biomarkers are biological parameters objectively measured in the body as indicators of normal
biological conditions, environmental lifestyles, pathological conditions, or responses to therapeutic
interventions (Strimbu and Tavel, 2010). They can be chemicals, metabolites, enzymes or other
biochemical substances, like products of an interaction between a compound and a target molecule
or a cell type. Characterizing the relationship between biomarkers and the possible biological
outcomes is crucial to correctly predict clinical responses, screen, monitor and diagnose patients and
to improve efficiency in clinical trials. Biomarkers play a significant role in risk assessment, as they
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allow one to identify exposure to hazards and to associate
responses with the probability of a disease or exposure outcome.

Biomarkers of exposure are a specific type of biomarkers that
reflect exposure of an individual to an environmental factor (such
as diet, pollutants or infectious agents) known to affect the
etiology of diseases. Compounds can get in contact with living
organisms through absorption, inhalation or ingestion and then
are either metabolized, stored or eliminated. This exposure can be
detected by analysing biospecimens, such as blood or urine, or by
measuring concentrations and characterizing the exogenous
substance, its metabolites or its products of interaction with
target molecules.

Exposomics is the study of the totality of exposures of a
particular individual over lifetime, from an omics perspective.
In the recent years, several studies have focused on studying the
exposome, since this a new paradigm to biomedical informatics
(Martin Sanchez et al., 2014). For example, Kiossoglou et al.
(2017) present an approach to analyse exposome studies based on
word frequency counts and ontology concepts. They applied their
methodology to a set of 261 abstracts, and identified terms,
concepts and ontologies to characterize the current knowledge
about the human exposome. Lopez-Campos et al. (2019)
expanded this methodology to more documents, and found
that exposomics research and literature doubled over the
course of 2 years (2016–2018), and identified more relevant
ontologies.

The Exposome-Explorer is the first database dedicated to
biomarkers of exposure for environmental risk factors for
diseases released in 2016 (Neveu et al., 2016) and updated in
2020 (Neveu et al., 2020) based at the International Agency for
Research on Cancer, part of the World Health Organization.
Exposome-Explorer is a highly curated resource by experienced
researchers working in the exposomics field. The database
contents resulted from a manual literature search that yielded
over 8,500 citations, but only a small fraction of these publications
were used in the final database. Manually curating a database is
time-consuming and requires domain expertise to gather relevant
data scattered throughout millions of articles. This work proposes
a supervised machine learning pipeline, trained based on the
existing curation work to update the resource with new
information using a literature retrieval mechanism and manual
curation.

Gathering relevant data scattered throughout millions of
articles from text repositories is a time-consuming task which
requires specialized professionals to manually retrieve and
annotate relevant information within the articles. Keeping
biological databases updated as new papers are released, as
well as collecting new data, is equally challenging and time
consuming. Such tasks would benefit from being assisted with
text-mining tools. To our knowledge, there is no Information
Retrieval (IR) solution available to assist literature screening
regarding biomarkers of exposure using machine learning.

Studies have been carried out to either improve the IR task
using machine learning or to perform entity recognition (ER) and
information extraction (IE) on biomarker data. However, none
applies IR-based methods to biomarkers of exposure. Almeida
et al. (2014) developed a machine learning system for supporting

the first task of the biological literature manual curation process,
called triage, which involves identifying very few relevant
documents among a much larger set of documents. They were
looking for articles related to characterized lignocellulose-active
proteins of fungal origin to curate the mycoCLAP database
(Strasser et al., 2015). They compared the performance of
various classification models, by experimenting with dataset
sampling factors and a set of features, as well as three
different machine learning algorithms (Naïve Bayes, Support
Vector Machine and Logistic Model Trees). The most fitting
model to perform text classification on abstracts from PubMed
was obtained using domain relevant features, an under-sampling
technique, and the Logistic Model Trees algorithm, with a
corresponding F-measure of 0.575. Lever et al. (2019) used a
supervised learning approach to develop an IE-based method to
extract sentences containing relevant relationships involving
biomarkers from PubMed abstracts and Pubmed Central Open
Access full text papers. With this approach, they built the
CIViCmine knowledge base, containing over 90,992
biomarkers associated with genes, drugs and cancer types.
Their goal was to reduce the time needed to manually curate
databases, such as the Clinical Interpretation of Variants in
Cancer (CIViC) knowledgebase (Griffith et al., 2017), and to
make it easier for the community curators, as well as editors, to
contribute with content.

Following these previous approaches, this work aims to reduce the
time, effort and resources necessary to keep the Exposome-Explorer
database updated as new articles are published, by using a supervised
machine learning approach to automatically classify relevant
publications and automatically recognize candidate biomarkers to
be reviewed by the curators. The approach of the curators of this
database consisted in developing search queries to retrieve relevant
publications and then manually analyse each one. However, the
number of publications retrieved is still too large to manually screen
each one of them. This work proposes a system, available on Github
(https://github.com/lasigeBioTM/BLiR), to further narrow down the
literature that holds important information about biomarkers of
exposure. The existing manually curated data used to develop the
Exposome-Explorer database has been used to train and test the
models (classifiers). We also provide a corpus of articles classified by
our system as relevant, along with biomarkers automatically
annotated on the abstracts of these articles. When given a new
publication, these classifiers can predict whether this publication is
relevant to the database and annotate the candidate biomakers
mentioned on that document.

2 METHODS

2.1 Exposome-Explorer Dataset
This work was developed using the data used to set up and
develop the Exposome-Explorer, which included:

− the queries used to search for citations with information
about dietary and pollutant biomarkers in the Web of Science
(WOS), which are provided as additional data;
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− the WOS search results based on the previous queries, with
8,575 citations used to manually screen the relevant articles
containing biomarker information;
− the 480 publications used to extract information about
biomarkers for the database.

Figure 1 shows a general workflow of our pipeline. In this case,
we can start with a first version of the database, such as is the case
of Exposome-Explorer. The documents used to develop the
database can then be used to train classifiers that are able to
predict other relevant documents, while the entry names can be
used to train entity recognition classifiers to predict new
candidate entries.

2.2 Data Collection
All 480 publications used to curate the database were expected to
be listed in the 8,575 citations retrieved from the WOS. However,
only 396 of them were present: the 84 publications absent from
the WOS query results were additionally identified by database
annotators while screening the literature for relevant articles.
These 84 scientific papers were excluded from the dataset used to
build the models since we could not replicate the original
workflow if we included them.

The main objective of this database was to gather information
about concentration values of biomarkers in various human
biospecimens and correlation values between dietary intakes
and biomarker concentrations. Therefore, the papers used to
curate the database reflect this criteria. In the version of the
database used for this dataset, the search results of the queries
related to dietary biomarkers were explored more exhaustively,
therefore providing more consistent labels. The curators added
publications that mentioned correlations between specific
biomarker measurements and food or dietary compound
intake, therefore establishing a more defined type of relevant
article. For this reason we consider both a scenario where only
papers relevant to dietary biomarkers, and where all types of
papers were considered.

The existing dataset, listed above, was missing some
features that we wanted to explore to construct our models,
such as number of citations and PubMed ID. For this reason,
PubMed was used to extract the titles, abstracts and metadata
(publication date, author names, number of times the article
was cited and journal name). The PubMed search and retrieval
of PMIDs, titles, abstract and metadata was carried out with
E-utilities, a public API available at NCBI Entrez system.
Some publications were found through the DOI to PMID
(PubMed ID) converter and others by a combined search with
the title and first author name. The resulting corpus of articles
consisted of 7,083 publications.

2.3 Data Preprocessing
After retrieving the title, abstract and metadata for each article, it
was necessary to prepare the textual data to be used as input by
the machine learning models (classifiers). This task included:

1. Assign labels to each article: A supervised learning approach
was used to build the classifiers, which means each article
(document) has a known class assigned to it. To label each
article, the list with the 396 articles used to curate the database
was cross-referenced with the 7,083 publications in the corpus.
If they were present in the list of 396 database articles, they
were considered relevant and assigned the label 1. If they were
not present in the list, as they were not used to extract
information about biomarkers, they were considered
irrelevant and therefore assigned the label 0;

2. Text pre-processing and tokenization: The text was separated
into words (tokens). All words with the same root were
reduced to a common form (stemming) and all stop words
were removed. The tokens were lowercased and then
combined into n-grams, a contiguous sequence of n items
from a given sample of text or speech. For example, for n � 2,
the features from the sentence “Determining thiocyanate
serum levels,” were combined into three n-grams: “determin
thiocyan,” “thiocyan serum” and “serum level;”

3. Transform textual data to numerical data: The machine
learning model expects numeric data as its input. However,
the titles, abstracts, and metadata are in text format. To this
end, each distinct token that occurred in the documents was
mapped to a numerical identifier, and the number was used to
refer to the token instead of the token itself;

FIGURE 1 | Diagram of the Information Retrieval workflow for database
curation. Using existing curated information from a database, it is possible to
train both document and entity classifiers. These classifiers can then generate
new candidate entries based existing literature.
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4. Build the matrices: Each feature represents one column and
each document represents a row of the matrix. Depending on
the type of matrix chosen, the matrix contained either n-gram
counts (number of times each term occurs in each document)
or TFIDF (term frequency-inverse document frequency)
features (how important a n-gram is to a document in a
collection of documents). An additional column was added to
the training and testing data, with the respective labels. The
goal of the classifier was to predict this column when applied
to a new data.

The metadata of each article was handled slightly differently
from the titles and the abstracts. Since it already had numerical
attributes (publication date and number of citations), the matrix
was created with two columns dedicated to these features, instead
of having one column for each year and number of citations. The
authors’ names were joined into one single word (Wallace RB →
WallaceRB) and were neither combined into n-grams nor went
through the stemming and stop word removal stages. The journal
name had no special preprocessing.

Stemming was performed using the class SnowballStemmer
from the module nltk. stem in the NLTK package (Loper and
Bird, 2002). Steps (2), (3) and (4) used the Scikit-learn (Pedregosa
et al., 2011) classes CountVectorizer and TfidfVectorizer from the
module sklearn. feature_extraction.text. The main difference
between the two classes is that the first one converts a
collection of raw text documents to a matrix of token counts
and the last one to a matrix of TFIDF features. Combinations of
three different parameters were tested to preprocess the data,
resulting in different matrices used to build the classifier and,
therefore, different results. The parameters tested were:

−ngram_range (min_n, max_n): the lower and upper
boundary of n for different n-grams to be extracted. The
range values tested were n � {1}, n � {1, 2} and n � {1, 3};
− min_df: ignore all n-grams that have a document frequency
lower than the given threshold. If min_df � 2, then terms that
only appear in one article (document) will be ignored. The
values of min_df ranged from 2 to 23, depending on the value
of n used in the ngram_range parameter ([1 + n − gram, 21 +
n − gram]);
− type of the matrix: matrix of token counts or TFIDF features.

Finally, we divided the dataset into a train set of 70% and a test
set of 30%, while keeping the same proportion of positive and
negative classes on both subsets. The train set was used to
optimize the parameters through 10-fold Cross Validation
(CV) and the test set was used to obtain the results on held-
out data.

2.4 Machine Learning Models
The goal of the IR task was to reduce the time needed to screen the
articles, by narrowing down the literature available to a set of
publications that provide a reliable resource of information, in
this specific case, related to biomarkers of exposure. Thus, in this
case we can model the IR task as a classification task, where we
have to decide whether a document is relevant or not.

2.4.1 Building the Classifiers
The machine learning models, also known as classifiers, were
separately trained and tested using the titles, abstracts, titles +
abstracts and titles + metadata, to assess which section of the
article was more suitable to predict its relevance. We explored the
combination of titles and metadata since our preliminary results
indicated that the metadata by itself would not obtain reasonable
results. However, these preliminary results also indicated that
combining the abstracts with metadata would result in equal or
worse results than using just the abstracts. For this reason, we did
not explore the option of combining abstracts with metadata, or
combining all three.

Six machine learning algorithms were explored:

• Decision Tree (Apte et al., 1998): the features are fractioned
in branches that represent a condition to be applied to each
instance;

• Logistic Regression (Walker and Duncan, 1967): learns a
logistic function to perform binary classification;

• Naïve Bayes (Zhang, 2004): the independence of the features
is assumed and a probability model is used to determine the
most probable label for each instance;

• Neural Network (Rumelhart et al., 1986): this algorithm can
learn non-linear functions by introducing hidden layers
between the input features and output label;

• Random Forest (Breiman, 2001): combines various tree
estimators trained on subsamples of the training data;

• Support Vector Machine (Cortes and Vapnik, 1995): the
data is represented as points in a hyperplane and the
algorithm tries to establish a clear division between the
instances with the same label.

The Scikit-learn package was used to run these algorithms.
Most of the parameters used for each algorithm were the
default ones, however, a few ones were altered to better suit
the data (class_weight, solver, kernel, gamma, bootstrap,
n_estimators), others to maximize the performance of the
model (C, alpha, max_depth, min_samples_leaf), and one to
assure a deterministic behaviour during fitting
(random_state). The values of the parameters altered to
maximize the performance of the model were found
through grid search with 10-fold CV on the train set.
Table 1 summarizes the Scikit-learn functions used and the
parameters changed for each algorithm.

2.4.2 Ensemble Learning
When testing different classifiers using the abstracts, titles, titles +
abstracts or the titles + metadata set, the prediction each model
makes for a certain article might differ. The titles + metadata
model may correctly identify a publication as being relevant,
while the abstracts model fails to do so. For this reason, we
explored ensembles of classifiers to understand if we could
retrieve more relevant publications this way.

We used two ensemble approaches to join the results of
multiple models. The first was Bagging, where the same
algorithm is used to train a classifier on random subsets of the
training data, and the results are then combined (Breiman, 1996).
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The second was Stacking, which consists in training multiple
classifiers and using their output to train a final model which
predicts the classes (Wolpert, 1992). With this approach, each of
the first-level classifiers can be specified, as well as the final
classifier. Therefore, we used all of the previously mentioned
algorithms as first-level classifiers, and then tried each of them as
the final estimator. For the Bagging approach, we also tried every
algorithm previously mentioned. In both cases, we used the
parameters specified in Table 1, using the Scikit-learn
implementations and the default parameters of the
BaggingClassifier and StackingClassifier classes.

2.5 Performance Evaluation
In the data preprocessing task, labels were given to each article: 0
for irrelevant (negative) and one for relevant (positive). These
labels were considered the gold-standard and represent the actual
class of the publications.

In the document classification task, all classifiers built were
optimized using the Scikit-learn CV function
(sklearn.model_selection.cross_validate). This model
optimization technique provides a more accurate estimate of
the model’s performance, since it evaluates how the model will
perform on unseen data. Additionally, we selected a test set to
evaluate the models after parameter optimization.

The cv parameter of the function determines how many groups
the data will be split into. In this work, a cv � 10 was used, which
means the data was separated into 10 groups, each one was used
9 times as a training set and once as the testing set. Ten different
models were built using the same parameters, with different training
sets. Each time a trained model was applied to testing data, it
generated a vector with predicted classes for those documents. By
comparing the predictions of the testing set to the gold standard, it
was possible to separate the documents into four different categories:

− True Positives (TP): documents correctly labelled as positive;
− False Positives (FP): documents incorrectly labelled as
positive;
− True Negatives (TN): documents correctly labelled as
negative;
− False Negatives (FN): documents incorrectly labelled as
negative.

This categorization allows to calculate the precision and recall,
two commonly used metrics that assess the performance of the

tools by measuring the quality of the results in terms of relevancy.
Precision (P) is the proportion of true positives items over all the
items the system has labelled as positive. Recall (R) is the
proportion of true positives items over all the items that
should have been labelled as positive.

P � TP
TP + FP

R � TP
TP + FN

The F1-score is a measure between 0 and one that combines
both precision and recall. Higher values of this metric indicate
that the system classifies most items in the correct category,
therefore having low numbers of FP and FN.

F1 � 2 · P · R
P + R

Furthermore, we also considered a variation of the F1-score,
the F2-score, where more weight is given to the recall:

F2 � 5 · P · R
4 · P + R

This metric was important for our evaluation since we wanted
to avoid low recall values, which would mean that many
documents were mistakenly classified as not relevant. Our
objective was to reduce the number of documents that manual
curators had to analyse, but without losing important
information, therefore preferring false positives over false
negatives. This evaluation strategy has also been used in other
document curation studies (Gay et al., 2005; Almeida et al., 2014;
Rae et al., 2019).

To estimate the balance between the true positive rate (recall)
and false positive rate, we also computed the AUC (Area under
the ROC Curve), using the Scikit-learn implementation of this
measure that computes the area under a curve plotted by the true
positive rate and false positive rate at various thresholds.

2.6 Biomarker Recognition
We performed biomarker recognition on the documents
classified as positive by our best performing classifier. The
objective of this task was to demonstrate how the document
classifiers can be used to aid the curation process. By
automatically screening the articles for biomarkers, curators
can focus on articles that mention entities of their interest and
help them to extract information from those articles.

TABLE 1 | Scikit-learn functions and parameters for each algorithm: Decision Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), Neural Network (NN), Random Forest
(RF) and Support Vector Machine (SVM).

Sklearn functions Parameters

DT DecisionTreeClassifier class_weight � “balanced;” random_state � 0; min_samples_leaf � 5
LR LogisticRegression class_weight � “balanced;” random_state � 0; solver � “liblinear;” C � 10.0, 1.0 or 0.1a

NB MultinomialNB alpha � 0.01
NN MLPClassifier solver � “lbfgs;” random_state � 0
RF RandomForestClassifier class_weight � “balanced;” random_state � 0; bootstrap � False; max_depth � 20; min_samples_leaf � 2; n_estimators

� 100
SVM SVC class_weight � “balanced;” random_state � 0; kernel � “rbf;” gamma � “scale”

aC � 0.1 for term-count matrices; For TFIDF matrices, C � 10.0 for the abstracts; C � 1.0 for the titles and titles + metadata; C � 0.1 for the metadata.
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To train a NER classifier, it is necessary to have a dataset where
the words corresponding to the entities of interest are annotated.
Since we did not have this type of dataset for biomarkers, we
developed our own training set based on the biomarkers of the
Exposome-Explorer database. We identified all the biomarker
names of the database on the documents using MER, a Minimal
Entity Recognition tool (Couto and Lamurias, 2018). This tool
returns a list of entities recognized in the text, including their
exact location and unique identifier, if available. The resulting
dataset will not be as gold standard, however these automatically
generated datasets have been shown to be enough to train
information extraction models in some cases (Rebholz-
Schuhmann et al., 2010; Sousa et al., 2019). Furthermore, we
trained our model using a Transformer architecture (Vaswani
et al., 2017), based on a pre-trained model for the biomedical
domain (Gu et al., 2021). This way we only had to fine-tune the
pre-trained model on the biomarker entities from our dataset.

We evaluated the NER classifier similarly to the document
classifiers, using F1-score, precision and recall, although we only
evaluated on a held-out test set. We trained for 10 epochs using
the default parameters of the Transformers library1. Afterwards,
we run the trained model on the documents that were not used to
create the database, in order to find potential candidate entries
that might have been missed.

3 RESULTS

3.1 Data Collection and Preprocessing
After data collection, the Exposome-Explorer dataset consisted of
titles, abstracts, and metadata from a total of 7,083 publications.
Among them, 6,687 were considered irrelevant, because no
information about biomarkers was extracted from them for
the Exposome-Explorer database. The remaining 396
publications were considered relevant, as they were used to
construct the database.

In the beginning, all articles from all types of biomarkers in the
dataset were used, however, this approach yielded poor results. To
try to improve the results, the data was restricted to articles
obtained using queries specific to dietary biomarkers, since they
were handled more attentively by the curators. The new dataset
consisted of 3,016 publications (2,860 irrelevant +156 relevant).

3.2 Document Classification
3.2.1 Dietary Biomarker Publications
Our first objective was to train models to classify which articles
from a search query were relevant to the Exposome-Explorer
database. We optimized both the parameters used to preprocess
the diet training data (ngram, minimum frequency, vectorizer), as
well as hyperparameters of each algorithm, using grid search-CV.
For each algorithm, we tested several combinations and selected
the trained models that achieved the highest score of each metric
on the CV evaluation.

The maximum values each algorithm could reach for these
metrics, using optimized preprocessing and algorithm parameters,
are summarized in Table 2. The complete values for each highest
metric, as well as the parameters used, can be found in Additional
File 1. For example, the maximum F2-score of 0.701 of the LR
algorithm on the titles + abstracts set was obtained using a min_df
of 5, ngram_range (1, 3) and a token count matrix.We can see that
all algorithms except Decision Trees could achieve high values on
the various data subsets, although using only the titles, the LR
algorithm achieved higher scores in most metrics. The parameters
and algorithms used to maximize the F2-score for each feature set
can be found in Table 4.

In addition to exploring single classifiers, we also explored two
ensemble approaches: Bagging and Stacking. We trained a
Stacked classifier that combined the best individual models
(Table 1), and then applied again one of the algorithms as the
final classifier. Table 3 show the maximum Precision, Recall, F1-

TABLE 2 | Dietary biomarkers document classification results. Highest precision,
recall, F1-score, F2-score and AUC achieved by each algorithm: Decision
Tree (DT), Logistic Regression (LR), Naïve Bayes (NB), Neural Network (NN),
Random Forest (RF) and Support Vector Machine (SVM). The highest value of
each metric on each feature type is bolded.

TITLES

MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC

DT 0.216 0.433 0.262 0.302 0.635
LR 0.388 0.707 0.495 0.601 0.910
NB 0.528 0.652 0.475 0.561 0.903
NN 0.560 0.331 0.385 0.348 0.887
RF 0.415 0.661 0.489 0.577 0.889
SVM 0.586 0.688 0.462 0.560 0.904

ABSTRACTS

MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC

DT 0.337 0.570 0.397 0.449 0.720
LR 0.559 0.770 0.618 0.687 0.953
NB 0.606 0.752 0.644 0.684 0.952
NN 0.854 0.441 0.542 0.472 0.948
RF 0.621 0.705 0.591 0.644 0.954
SVM 0.512 0.798 0.572 0.658 0.949

TITLES + ABSTRACTS

MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC

DT 0.379 0.533 0.419 0.480 0.740
LR 0.550 0.779 0.614 0.701 0.948
NB 0.601 0.788 0.643 0.695 0.950
NN 0.764 0.432 0.528 0.463 0.945
RF 0.665 0.687 0.586 0.634 0.953
SVM 0.512 0.807 0.564 0.664 0.948

TITLES + METADATA

MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC

DT 0.307 0.468 0.328 0.390 0.693
LR 0.392 0.734 0.502 0.616 0.930
NB 0.373 0.707 0.456 0.566 0.914
NN 0.603 0.266 0.333 0.274 0.905
RF 0.476 0.725 0.492 0.592 0.924
SVM 0.163 0.168 0.144 0.154 0.725

The highest value of each metric is bolded.

1https://github.com/huggingface/transformers
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Score, F2-score and AUC of each algorithm, using the Stacking
and Bagging approach, and training only on the abstracts + titles
subset, which provided the best results of most of the individual
models. This way, we can compare directly with the results of
Table 2. The full set of values of each metric is also provided in
Additional File 1.

We then applied the classifiers of the previous table with
highest F2-score to the test set which we did not use during grid
search-CV 5. With this held-out dataset, we wanted to observe if
the classifiers had been overfitted to the training set due to the
parameter optimization procedure.

3.2.2 All Biomarker Publications
To quantify how much restricting the dataset to dietary
biomarkers had improved the results, new models were
trained with the whole corpus of 7,083 publications from all
biomarkers using the same algorithms and parameters that had
maximized the recall score for dietary biomarkers. The
comparison between the values of precision, recall and F-score
can be found in Table 6.

3.3 Biomarker Entity Recognition
We trained aNERmodel for biomarkers using a silver standard corpus
which we provide along with the code. On a held-out set of 30% of the
sentences, we obtained an F1-score of 0.6735, for a precision of 0.5574
and recall of 0.8507. However, this evaluation was made on
automatically annotated data, and as such there is a high chance
that some of the false positives that lowered the precision were due to
entities that were not annotated in the silver standard.

We then applied thismodel on 7,444 documents thatwere not used
to develop the database and that we had title and abstract available.We
aggregated the extracted entities, filtered out entities that were already
entries in Exposome-Explorer and manually validated the top 100
entities that appearedmore often.We observed that 45 of these entities
were biomarker names that were not already present in the database.
These entities constitute new candidate entries, along with the
supporting documents from where they were found.

4 DISCUSSION

The highest F2-score (0.701) was obtained using a single classifier
with the Logistic Regression (LR) algorithm on the abstracts and title
set, using cross-validation (Table 2). Among the 905 dietary
publications used to test the classifiers, 365 were classified as
positive, which could reduce by 90% (proportion of articles
classified as positive) the time needed to find 77.9% (recall score)
of the relevant articles, and only 22.1% of the relevant articles would
be lost. Looking at the results from the titles and metadata set,
globally lower values were obtained when compared to the abstracts
sets. Using features from both the titles and abstracts resulted in
better F2-scores in almost every algorithm, comparing with using
them separately. This indicates that, similarly to how it is carried out
during manual curation, both titles and abstracts should be
considered when evaluating the relevance of an article to the
database. The LR algorithm obtained the best performance on
many metrics, although the SVM algorithm obtained a higher
recall using the titles and titles and abstracts, and Random
Forests obtained the highest AUC on the same sets. The Neural
Networks algorithm obtained the highest precision using the
abstracts, titles and abstracts, and titles and metadata sets.

TABLE 3 | Dietary biomarkers ensemble classifiers’ results. Highest precision,
recall, F2-score and AUC reached for each algorithm: Decision Tree (DT),
Logistic Regression (LR), Naïve Bayes (NB), Neural Network (NN), Random Forest
(RF) and Support Vector Machine (SVM). The NB algorithm did not work with the
Stacking approach.

BAGGING

MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC

DT 0.742 0.477 0.546 0.502 0.941
LR 0.664 0.707 0.642 0.663 0.950
NB 0.716 0.580 0.594 0.582 0.951
NN 0.729 0.477 0.537 0.497 0.942
RF 0.648 0.541 0.571 0.550 0.958
SVM 0.740 0.405 0.489 0.433 0.957

STACKING

MaxPrecision MaxRecall MaxF1 MaxF2 Max-AUC

DT 0.417 0.735 0.513 0.622 0.842
LR 0.380 0.890 0.521 0.685 0.961
NN 0.581 0.505 0.521 0.509 0.911
RF 0.568 0.734 0.624 0.673 0.952
SVM 0.374 0.890 0.513 0.679 0.947

The highest value of each metric is bolded.

FIGURE 2 | Trade-off between Precision and Recall for different
parameters of a classifiers trained with Naive Bayes.

TABLE 4 | Algorithm and parameters used to get the highest F2 for each set
of data.

Title Abstracts T + a T + M

Algorithm LR LR LR LR
df 4 4 5 4
n-gram [1, 2] [1, 3] [1, 2] 2
matrix token-count TFIDF token-count token-count
Precision 0.388 0.500 0.514 0.392
Recall 0.707 0.770 0.779 0.734
F1-score 0.495 0.587 0.614 0.502
F2-score 0.601 0.687 0.701 0.616
ROC AUC 0.910 0.938 0.937 0.930
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The balance between precision and recall is an important topic to
take into consideration in this type of approach.We included both the
balanced F1 scores and the F2 scores, as both have been used in other
document curation studies. However, we cannot say for sure the
balance that is expected by a curator. While ideally no relevant
document should be excluded by a classifier (False Negatives), it
will make the curators task harder if many irrelevant documents are
presented (False Positives). Figure 2 illustrates how just one algorithm
can obtain a range of P/R trade-offs. With the same algorithm (Naïve
Bayes), we can train a classifier more biased for Precision or Recall. A
user-study could help understand what is the balance that is more
ideal for database curators.

To assess whether joining the best models would improve the
scores, we applied two ensemble approaches to the abstracts set:
Bagging and Stacked. In some cases, using a Bagging approach results
in better scores than just the model by itself, for example, comparing
the scores of theDecisionTree classifier.However, inmost cases, using
just one classifier provided better results. The Stacking approach also
obtained better scores in some cases, including a maximum recall of
0.890 using the Logistic Regression and SVM classifiers. However this
approach took much longer to train since it requires training one
model with each of the previously mentioned algorithms, as well as an
additional model to predict the class based on the other models’
prediction scores. Furthermore, both ensemble approaches resulted in
similar or worse results than the single classifiers. This could be due to
the increased complexity of thesemodels, whichmay be less adaptable
to new data due to overfitting to the train data.

In Table 5, we can see the effect of the cross-validation evaluation
when compared to the test set validation. Although some of the scores
are lower, the LR algorithm achieves the highest balanced scores and
the Neural Networks achieves the highest precision. The Stacking
algorithm achieves a high recall, but at the cost of lower precision.
Although the balanced metrics are lower on the test set when
compared to the test set evaluation, we believe that the difference
is not relevant, since the cross-validation results were averaged over
five iterations, and the test set shows the results of only one run.

4.1 Error Analysis
In order to interpret the gap of results between the training set and the
predictions obtained from the classifiers on each cross-validation
iteration, the LR classifier built with the titles was analysed. This
classifier had a similar recall score to the abstracts but, as the titles

are shorter, they make the interpretation easier. One interesting pattern
we noticed was that almost all titles that had the words “food frequency
questionnaire” were classified as relevant. As previously mentioned in
section 2.2, this related to how articles about dietary biomarkers were
chosen to be included in the database. From a total of 82 titles
containing these words, only 2 were classified as irrelevant (both
had words such as “calcium”, “water” and “energy” that were
mostly found on irrelevant articles); 29 were TP and the remaining
51 were being wrongly labelled as relevant.

The title “Toenail selenium as an indicator of selenium intake
among middle-aged men in an area with low soil selenium” was
classified as negative, when it was in fact used in the database (FN). 39
out of 40 titles with the word “selenium”were not used in the database
and thus labelled irrelevant: this over-represented feature may be the
reason why the classifier failed to classify this article as relevant
although selenium was considered of interest by the annotators.

It is also important to highlight that papers inserted in the
database have been analysed considering the full-texts. This
means that papers tagged as “relevant” either by the classifier
and/or manually, could subsequently be rejected by the
annotators, for a variety of reasons including “the paper is not-
available online,” or “the data in the paper is not presented in a way
acceptable for the database.” These papers would then be considered
false positive by the classifier, because they are present in the corpus
of citations but absent from the database.

Restricting the analysis to the dietary biomarker citations provided
much better metrics than when using all the data from the database
(dietary, pollutants, and reproducibility values) (Table 6). When
restricting the analysis to citations describing the different classes of
biomarkers of pollution, the performance of themodels was even lower
(preliminary results not shown). This difference in performance could
be explained by the difference of nature of the data searched by the
annotators for the different sets of biomarkers. For dietary biomarkers,
the focus was made on publications providing correlation values
between dietary intakes and biomarkers measured in human
biospecimens, and mostly describing validation studies of dietary
questionnaires with biomarkers. For the pollutant biomarkers, the
focus was made on papers describing concentration values of
pollutant biomarkers in human biospecimens. Moreover, by lack of
time and human resources, not all potentially relevant publications on
pollution biomarkers were inserted in the Exposome-Explorer, while
the dietary biomarkers were handled more attentively. As a
consequence, the dietary biomarkers account for almost half of the
entries of the database. All of this could explainwhy themodel seems to
perform better for dietary biomarkers. Having a closer look at false
positives obtained by the classifier on pollutants could be a good way to
check if the model developed on dietary biomarkers could also be
applied to pollutants, and identify new relevant papers from the corpus
of pollutants. This also means that as we obtain a more comprehensive
corpus for other classes of biomarkers, the performance of ourmachine
learning solution will also improve.

4.2 Biomarker Recognition
To demonstrate how biomarker recognition can also be useful for
database curation, we trained a model based on the entities and
documents that we already in the database, in order to find
biomarkers and documents that might have been missed during

TABLE 5 |Dietary biomarkers classifiers on the test set. Precision, recall, F2-score
and AUC achieved each algorithm: Decision Tree (DT), Logistic Regression
(LR), Naïve Bayes (NB), Neural Network (NN), Random Forest (RF) and Support
Vector Machine (SVM), as well as the Bagging and Stacking approaches, using the
combinations that achieved the highest F2-score.

Precision Recall F1 F2 AUC

DT 0.403 0.532 0.459 0.500 0.744
LR 0.530 0.745 0.619 0.689 0.854
NB 0.515 0.745 0.609 0.684 0.853
NN 0.700 0.447 0.545 0.482 0.718
RF 0.450 0.766 0.567 0.672 0.857
SVM 0.451 0.787 0.574 0.685 0.867
Bagging 0.542 0.681 0.604 0.648 0.825
Stacking 0.388 0.851 0.533 0.687 0.889

The highest value of each metric is bolded.
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the curation process. We extracted a total of 7,444 entities,
however many of these entities were incomplete or duplicated.
We then looked at the top 100 entities that appeared most often,
excluding entity names that were already in the database, and
found 45 potential new entries, which we provide as
Supplementary Data Sheet. Of these, we highlight sucrose,
which is described as a biomarker along with fructose
(Tasevska et al., 2005). Although fructose exists in Expose-
Explorer, sucrose was missing. A NER model like the one we
trained could have prevented this. Another example is Julin et al.
(2011), an article that studies the role of cadmium as a biomarker,
which was also missed during the development of the database.

5 CONCLUSION

The Exposome-Explorer database is being manually curated, without
any assistance frommachine learning tools. As the number of scientific
papers continues to grow, text-mining tools could be a great help to
assist the triage of documents containing information about
biomarkers of exposure and keep the database updated.

To this end, several machine learning models were created using
different combinations of preprocessing parameters and algorithms.
These classifiers were trained using the publications’ abstracts, titles
and metadata. The model with the highest F2-score (70.1%) was
built with the LR algorithm and used the titles and abstracts to
predict a paper’s relevance. We also extracted named-entities from
the abstracts, obtaining a total of 45 candidate biomarkers.

To apply this methodology to the database curation pipeline,
the IR task will consist of two steps. In the first one, articles will be
retrieved using the query search on WOS, to target domain-
specific publications. Then, the classifier could be used to narrow
down the publications even more, and a named-entity
recognition tool can be used to provide candidate entries to

the database. Manual curation will still be needed, to extract
information about biomarkers from full-text articles.

In the future, we will work on improving the results from the
classifiers that use themetadata set. For example, by assigning different
weights to the authors, according to the position they appear in, or by
creating new features that result from the combinations between all
authors within the same article. We will also study the impact of the
recognized biomarkers in the retrieval classification. When analysing
why the model misclassified some publications, a few chemicals, like
“calcium” and “selenium” were strongly associated with irrelevant
articles. An idea to explore is to replace chemical tokens by a category
they belong, such as “chemical,” and see if it improves the precision and
recall of the classifiers. This should avoid over-fitting on the training set.
Furthermore, we will improve this gold standard by addingmore types
of biomarkers, that can also classify non-dietary biomarkers. Another
idea to explore is to train deep learning models for document
classification, even though this would require more training data
and will take longer to train than the algorithms used in this paper.
Finally, the performance of classifiers trained on this dataset when
applied to the results of other search queries will be explored.
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TITLES

Precision Recall F1 F2 ROC AUC

All biomarkers 0.362 0.529 0.430 0.485 0.737
Dietary biomarkers 0.386 0.574 0.462 0.523 0.762

ABSTRACTS

Precision Recall F1 F2 ROC AUC

All biomarkers 0.218 0.765 0.340 0.510 0.801
Dietary biomarkers 0.342 0.809 0.481 0.635 0.862

TITLES + ABSTRACTS

Precision Recall F1 F2 ROC AUC

All biomarkers 0.354 0.630 0.453 0.545 0.781
Dietary biomarkers 0.468 0.787 0.587 0.693 0.869

TITLES + METADATA

Precision Recall F1 F2 ROC AUC

All biomarkers 0.310 0.681 0.426 0.550 0.795
Dietary biomarkers 0.330 0.638 0.435 0.538 0.784
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