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This paper proposes a text-mining framework to systematically identify

vanishing or newly formed topics in highly interdisciplinary and diverse fields

like cognitive science. We apply topic modeling via non-negative matrix

factorization to cognitive science publications before and after 2012; this

allows us to study how the field has changed since the revival of neural

networks in the neighboring field of AI/ML. Our proposed method represents

the two distinct sets of topics in an interpretable, common vector space, and

uses an entropy-based measure to quantify topical shifts. Case studies on

vanishing (e.g., connectionist/symbolic AI debate) and newly emerged (e.g., art

and technology) topics are presented. Our framework can be applied to any

field or any historical event considered to mark a major shift in thought. Such

findings can help lead to more e�cient and impactful scientific discoveries.

KEYWORDS

science of science, cognitive science, topic modeling, topic matching, matrix

factorization, entropy

1. Introduction

The science of science uses quantitative and computational approaches to examine

science itself. It measures and models the interactions between scientific agents and

entities in order to understand scientific practices, improve scientific processes, and

promote scientific innovation (Evans and Foster, 2011; Fortunato et al., 2018; Lee et al.,

2021; Portenoy et al., 2021). An important research topic in the science of science studies

how fields form, evolve, and disappear over time. This is particularly challenging — but

also rewarding—for complex, highly interdisciplinary subjects like cognitive science. For

example, Núñez et al. (2019) have argued that although cognitive science was designed

to integrate six disciplines (psychology, linguistics, artificial intelligence, anthropology,

philosophy and neuroscience), it has failed to transition into a coherent interdisciplinary

field; instead, it is dominated by cognitive psychology.

This paper presents a novel text-mining framework to systematically identify

vanishing or newly formed topics in a highly interdisciplinary and diverse field like

cognitive science. In contrast to the bibliometric and socio-institutional (i.e., contextual)

analysis done in Núñez et al. (2019), we employ topic modeling on the scientific

literature content to examine the change in topic compositions (Evans and Foster, 2011).

Bibliographic information (i.e., context) and text information (i.e., content) provide
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different lenses on the structure and evolution of scientific

fields (Evans and Foster, 2011; Vilhena et al., 2014). Topics

extracted from text have some advantages. Themes can be

easier to interpret, relying less on human labels or socio-

institutional structures like journal names. Text also allows us to

see connections between fields that are not visible at the level of

citation, because socio-institutional factors may lead authors to

point to distinct literatures when discussing substantively similar

material (Cheng et al., 2021).

We build on a long-standing tradition of using citations

and text to identify topics and their changes over time.

Tools like CiteSpace (Chen, 2016) have long enabled the

extraction of dynamic clusters from bibliographic information

(including automatic cluster labeling), and flow-based, dynamic

community detection methods (Rosvall and Bergstrom, 2010)

have identified the emergence of new interdisciplinary fields like

neuroscience. On the text side, dynamic topic models (Blei and

Lafferty, 2006) can trace the changing content of topics over

time, while recent extensions (Gerow et al., 2018) can quantify

the influence of past documents on the content of future topics

(while also providing evidence for the complex relationship

between citations and textual influence).

Our approach most closely follows the text-based, topic

modeling tradition. Using the cognitive science publications

dataset curated in Cheng et al. (2021), we apply topic

modeling separately to abstracts published before and after

the seminal AlexNet paper appeared in the adjacent AI/ML

literature (Krizhevsky et al., 2012). We propose a method to 1)

intuitively represent the two distinct sets of topics in a common

mathematical space and 2) use a novel entropy-based measure

to quantify changes in topics. Brief case studies on vanished

(e.g., symbolic AI) and newly emerged (e.g., art and technology)

topics, along with a quick comparison to a landmark publication

internal to cognitive science (Rumelhart et al., 1986) illustrate

the promise of our approach for more detailed investigations.

The chief value of our approach lies in its use of simple, well-

understood, and efficient building blocks. This makes it easy to

deploy, interpret, and improve (e.g., by swapping out different

topic modeling approaches).

While this paper focuses on how cognitive science has

changed since the revival of artificial neural networks in 2012,

we emphasize that this literature-based discovery framework

can be applied to any scientific field and any historical event

of interest. Scholars can identify potential change-points using

a range of qualitative evidence, including histories of the field,

review articles, interviews with domain experts, or their own

domain knowledge. These tools can help researchers make more

thoughtful decisions on research problems, identifying fields

that may have been prematurely abandoned or unexpected

genealogies of newly emerged fields. Such refined understanding

of how fields grow and change will result in more efficient

allocation of scientific effort and more powerful scientific

innovations. Our approach can also be a valuable tool for

scholars interested in the history and evolution of scientific

disciplines or other discursive fields.

2. Method

First, we describe our general framework for identifying

topics that have dissipated or materialized after a historical

event in complex and diverse scientific fields. This combines a

series of natural language processing (NLP) methods and well-

established mathematical procedures (e.g., cosine similarity,

entropy) through a new lens to detect topic trends from text data.

1. Identify a historical event of interest t, e.g., publication of a

seminal paper.

2. Apply topic modeling to publications before and after t, then

assign each paper to its most represented topic. Repeat the

process with the entire dataset to get reference topic clusters.

3. Represent each topic as a vector, whose elements count the

number of papers shared with the reference clusters. This

represents topics from non-overlapping time periods in a

common mathematical space that is easy to understand and

robust to vocabulary changes.

4. Compute a cosine similarity matrix for every pair of topic

clusters from before and after t. This quantifies topic

similarities without relying on human labeling or keyword

matching.

5. Calculate the entropy of each row and each column of the

similarity matrix to measure how much a topic from before t

can be “explained away” by a single topic from after t, and vice

versa. For example, maximum entropy will be achieved when

the pre-t topic is equally similar to all post-t topic vectors,

or when the post-t topic is equally similar to all pre-t topics.

This captures an element of surprise and therefore a potential

topical shift.

6. Investigate content (keywords) and context (authors,

affiliations, journals) of topics with high entropy.

The following sections explain the process in further detail,

as applied to studying how content discussed in cognitive science

papers has shifted since the publication of Krizhevsky et al.

(2012).

2.1. Data acquisition and split

We use the publications dataset from Cheng et al. (2021).

Initially, a total of 258,039 papers tagged cognitive science were

accessed from theMicrosoft Academic Graph (Sinha et al., 2015)

on July 2nd 2021. From the 200,000 papers with the highest

probabilities of being “important” as determined by Shen et al.

(2018), the authors removed papers published prior to 1950

in order to limit the scope to the modern notion of cognitive

science (Núñez et al., 2019). They then kept only the papers
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that contain references, and whose abstracts are between 30 and

500 words long. Many short abstracts are actually titles and

publication information, while long abstracts tend to be tables of

contents or the text of the entire first page of the paper. Finally,

after removing all papers with duplicate abstracts, we have a

dataset of 59,384 papers for further analysis.

Since we are interested in learning about how scientific

fields have changed and developed through time, we select a

checkpoint in history for t and look at how topics have changed

before and after t. We eventually select the year t = 2012, in

which the seminal paper by Krizhevsky et al. (2012) revived

neural networks, forever changing the landscape of artificial

intelligence and (we hypothesize) the adjacent field of cognitive

science. We might expect some substantial impact, because

many of the ideas behind deep learning were pioneered within

cognitive science (Rumelhart et al., 1986). 2012 is roughly a half-

way point and gives us similar number of papers for before

and after (26,859 and 32,535). Mathematically, we denote the

resulting sets—all papers, papers before 2012 and papers after

2012—as c, c−, and c+ respectively.

2.2. Topic modeling and paper
assignments

The text preprocessing step follows Cheng et al. (2021). We

first lemmatize the abstracts; remove numbers and punctuation;

remove English stop words, and stop words specific to abstracts

(e.g., “et al,” “this paper”); use Gensim bigram model to turn

frequent word combinations into bigrams and trigrams, and

filter out words that are too frequent (in more than 80% of

abstracts) or too infrequent (in less than 0.05% of abstracts).

Finally, we construct the data matrix using term frequency-

inverse document frequency (tf-idf) vectorization (Rajaraman

and Ullman, 2011). This yields three word-by-abstract matrices

X ∈ R
9106×59384,X− ∈ R

8852×26859,X+ ∈ R
8576×32525 from

the abstracts in c, c−, c+ respectively.

Non-Negative Matrix Factorization (NMF) (Lee and Seung,

1999; Xu et al., 2003; Gillis, 2014) is used to detect latent

semantic topics and assign papers to topics; we chose NMF

because it is a simple and fast method experimentally shown

to generate more stable and interpretable topics, especially on

shorter text, compared to other topic model such as LDA (Chen

et al., 2019; Egger and Yu, 2022). NMF approximates X ≈ WH

by

inf
W≥0, H≥0

‖X −WH‖2F , (1)

where the dictionary matrix W and the coding matrix H are

two low-rank (rank n) matrices with non-negative elements. The

ith column of W gives the weights of the words in the ith topic,

while the jth column of H gives the weights of the topics in the

jth abstract. We assign each paper to its most weighted topic

based onH, and describe each topic with its top weighted words

from W. Each paper is assigned to exactly one topic. The topics

are ordered based on the number of assigned papers, which gives

us paper groups ci, c
−
i , and c+i for i = 1, . . . , n. For example,

c−1 is the topic cluster with the highest number of papers in

the corpus before 2012. Note that ∪n
i=1ci = c,∪n

i=1c
−
i =

c−,∪n
i=1c

+
i = c+. After exploring n = 10, 50, 100, 200, 500,

we chose n = 50, as it gave us clear and diverse topics that are

neither too broad or too specific by inspection.

2.3. Topic representation and
entropy-based measurement of change

In order to compare topics before and after 2012, we

represent clusters {c−i }
n
i=1 and {c+j }

n
j=1 in the same vector

space—as a distribution on c1, c2, ..., cn. This allows us to

compute similarities and dis-similarities, and finally the entropy

in a way that is robust to semantic changes and human biases;

topics are represented by their usage inmodeling specific texts in

the corpus. Let T−
i ∈ R

n and T+
j ∈ R

n be the vectors describing

c−i and c+j , respectively, in dimensions of c1, c2, ..., cn. The k-

th entry of T−
i (or T+

j ) is the number of papers that are both

contained in ck and c−i (or c+j ).

We denote the cosine similarity (Singhal, 2001) between T−
i

and T+
j as Sij and assemble the matrix S = [Sij] ∈ R

n×n

such that the ith row of S describes how similar c−i is to the

clusters {c+
k
}n
k=1

, and the jth column represents c+j in terms of its

similarity to {c−
k
}n
k=1

. Since every element of S is non-negative,

the rows and columns of S can be treated as a probability

distribution once they are normalized to sum to one. Therefore,

we compute entropy for each row and column of the matrix S to

get H−
1 ,H−

2 , . . . ,H−
n , and H+

1 ,H+
2 , . . . ,H+

n
1. By formula,

H−
i = −

n
∑

j=1

Sij

Zi
log

(

Sij

Zi

)

, H+
j = −

n
∑

i=1

Sij

Aj
log

(

Sij

Aj

)

, (2)

where Zi =
∑n

j=1 Sij,Aj =
∑n

i=1 Sij. Entropy is a measure

of disorder, uncertainty, or surprise that has been extensively

studied in physics and information theory. In this context, H−
i

measures howmuch the ith topic from before t can be “explained

away” by a single topic from after t. For example, the entropy

is at its minimum, 0, when the similarity between the ith pre-

t topic is non-zero for only one post-t topic; let’s say with T+
j .

This is the case when every paper in both c−i and c+j belong

to the same cluster ck, a compelling argument for a one-to-

one matching between c−i and c+j that did not depend on any

human comparison of keywords. Meanwhile, the maximum

1 We get a similar result using kurtosis, which is another measure of

concentration.
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FIGURE 1

Topic similarity matrix S. The element Sij in the ith row and jth

column represents the similarity between the ith before topic

and jth after topic in terms of paper distributions.

entropy (log n) is achieved when the ith pre-t topic is equally

similar to all post-t topic vectors. We interpret this uncertainty

to mean that the papers have spread out and the topic has

potentially dissipated after t. On the other hand, if H+
j is high,

then papers from all across the before topics came together to

form the cluster c+j , which can be interpreted as the formulation

of a new coherent topic after t. The “high entropy" cases could

perhaps be interpreted as (mini-) paradigm shifts (Kuhn, 1970)–

a disruption of tradition through the disintegration of an old

sub-field or the formation of a new one–which more recent

sociology of science suggests can occur atmany scales and higher

frequency (Foster et al., 2015).

3. Results

This section compares topics in cognitive science literature

before and after 2012 based on the proposed similarity score and

entropymeasure, and identifies a few interesting topics that have

changed. We present a few case studies by investigating these

topics in the dimensions of keywords, affiliations, and journals.

3.1. Topic similarity

Figure 1 shows the heat map for the similarity matrix S.

Many topics have a before-after match with cosine similarity

close to 1, e.g., S8,8 = 0.9997, where c−8 (947 papers) and c+8 (725

papers) share the top two keywords “memory” and “retrieval.”

However, in many cases these strong matches correspond to

off-diagonal elements. Recall that the topic clusters are in

descending order; the indices correspond to the rank of the

FIGURE 2

Entropy for every before and after topic. Three highlighted

topics have the highest entropy.

topic, as measured by the relative number of papers in each

corpus. Then, when the ranks of the matching clusters differ, it

may relate to a rise or decline in the importance of the topic in

the research community. For example, c−21 (625 papers) and c+14
(573 papers) have top keywords such as “social,” “individual,”

“social interaction,” “network,” “interaction,” and S21,14 =

0.9932. Increase in social network analysis since 2012 may have

pushed this topic from rank 21 to 14. On the other hand,

c−18 (651 papers, keywords “knowledge,” “domain,” “acquire,”

“expert,” “know”) and c+30 (468 papers, keywords “knowledge,”

“conceptual,” “domain,” “logic,” and “world”) are also very

similar at S18,30 = 0.9959, but the ranking decreased from 18

to 30. This may correspond to a decreased interest in expertise,

once a prominent topic in cognitive science, paralleling interest

in expert systems and knowledge engineering in AI.

However, a few topics such as c−41 have significant similarities

with many other topics, making it hard to pinpoint a single good

match. While these topics in question are recognizable by eye as

blue-green horizontal and vertical lines in Figure 1, we quantify

this uncertainty rigorously with entropy. The calculated entropy

values are plotted in Figure 2, where the topics with three highest

entropy are highlighted in purple. Table 1 lists the keywords
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TABLE 1 Top keywords associated with the high entropy topics from Figure 2.

Before 34 Before 41 Before 49 After 26 After 45 After 49

question time paradigm art interaction narrative

answer event symbolic technology context story

address change ai digital dynamic event

whether temporal connectionist practice environment character

issue dynamic computational aesthetic embodied generation

raise state classical image interactive structure

ask sequence connectionism cultural individual storytelling

how do occur methodology Medium activity reader

think past within culture perspective text

way future traditional artistic multimodal world

Highlighted columns are discussed as case studies in Section 3.2.

TABLE 2 Contextual information for before topic 49 (404 papers) and after topic 26 (474 papers).

Top 5 Affiliations Top 5 Journals

Before 49 Indiana University 11 Trends in Cognitive Sciences 5

University of California Berkeley 9 Minds and Machines 5

Harvard University 8 Kybernetes 4

University of Michigan 7 J. of Experimental Psychology General 3

Complutense University of Madrid 7 J. of Educational Psychology 3

After 26 Johns Hopkins University 13 Leonardo 9

University of Vienna 12 Behavioral and Brain Sciences 6

University College London 10 Progress in Brain Research 6

Shanghai University 8 Frontiers in Psychology 5

University of California Los Angeles 7 AI & Society 4

attached to those topics of interest, which are potentially newly-

formed or disappeared/dissipated topics. In the next section, we

dig deeper into two particular cases to further examine how they

have changed.

3.2. Case studies: Before 49 and after 26

Based on the keywords in Table 1, the before 49 topic seems

to be related to the symbolic AI vs. connectionist AI debate

which was a hot topic in the 1960s–1990s (Smolensky, 1987).

Symbolic AI was gradually abandoned starting in the 1990s due

to issues discussed by philosopher Hubert Dreyfus (Dreyfus,

1992), and was put to bed once artificial neural networks (based

on connectionist approaches to AI) rose to prominence. The

top journals in Table 2 are Trends in Cognitive Sciences and

Minds and Machine, which are two big journals in cognitive

science, the latter focusing on the intersection of AI, cognitive

science, and philosophy (an appropriate venue for such a

debate). It further shows that the topic was quite promising

at one point before it disappeared. We also note that almost

none of the top keywords except “AI” appear as a top key word

in any of the topics after 2012. The “symbolic/connectionist"

topic seems to disappear after new deep learning methods

demonstrated their practical efficacy, offering a pragmatic (and

perhaps premature) conclusion to philosophical debates about

the best approach to AI. AI remains a hot topic, of course,

while previously pressing discussions of the major “paradigms”

of “symbolic” AI and “connectionist” AI have faded into

obscurity.

The keywords in after topic 26 roughly talk about the

intersection of “art” and “technology” and how they are

related to “digital” “culture” and society. Table 2 shows the

top affiliations and journals. Johns Hopkins University and

University of Vienna are two leading institutions on this topic,

with 13 and 12 papers in the topic affiliated. The top journal,

Leonardo, is a journal published by MIT Press covering the

applications of technologies to arts and music, which matches

our interpretation of the keywords. As technology becomes

more prominent and powerful in people’s daily lives, discussions

on art, technology and aesthetic practices have also increased–

a trend we can only imagine will continue with the rise of

Midjourney (Midjourney, 2022) and DALL-E 2 (Ramesh et al.,

2021).
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4. Discussion

In this paper, we propose a new unsupervised learning

method to identify topic trends and shifts from a corpus of

academic papers. We demonstrate it by exploring two sets

of topics in cognitive science: one set that was once popular

but disappeared or subdivided over time, and another that

has emerged since the revival of neural networks in 2012. We

provided a simple interpretation based on keywords, affiliations

and journals. We also note that our topics are consistent with

the account of Núñez et al. (2019), with most topics reflecting

cognitive psychology quite prominently and topics related

to anthropology or philosophy quite rare. We did, however,

find neuroscience and CS/AI playing quite a prominent role,

especially in post-2012 topics. We could explore the degree of

integration across these constituent fields by looking at the co-

appearance of related topics across documents: an excellent topic

for further work. As a further check on our method, we also split

the corpus into roughly equal chunks from 1950–1986 to 1987–

1994, basing our checkpoint on the publication of the famous

Parallel Distributed Processing book (Rumelhart et al., 1986).

With this earlier split, more philosophical topics were prominent

in c−, while new topics explicitly dealing with connectionism

appeared in c+. We found further corroboration of our method

in identifying dissipating topics like the language-training of

apes, significantly disrupted by the work of Herb Terrace. Most

intriguing, a pilot analysis of the entropy before and after 1986

suggests that (Rumelhart et al., 1986) was more “disruptive" of

the topical content of cognitive science than (Krizhevsky et al.,

2012); this makes sense, as the former occurred within the field

and the latter adjacent to it.

When identifying the newly appeared and disappeared

topics, we used the similarity matrix S based on using cosine

similarity, which normalizes the vectors to obtain a value

between 0 and 1. This can help us find two topics that are highly

similar. Yet this metric could have two spread out topics appear

almost identical when in fact they are completely different. It also

does not take into account the actual number of papers in each

topic, which could influence the size of the effect some topics

have on others.

In the future, we could make use of more fine-tuned or

model-based metrics to quantify the similarity between different

set of topics; such metrics could incorporate not only shared

number of papers, but also common keywords, authors and

affiliations, etc. While we assigned each paper to only one topic

at this stage, it is straightforward to assign “fractional” papers to

topics based on the distributions. We could also employ causal

inference techniques to identify potential causes for topics to

appear/disappear or become popular/divide; likewise we can

find pivotal change-points by finding especially high-entropy

splits and then try to identify the causal drivers of such change.

Even within the specific field of cognitive science, there is

considerable space for in-depth discussions of newly formed

topics— both their content and their socio-institutional context

(e.g., using our method to guide a more traditional history of

science approach). Finally, we can use prediction models to

predict whether a topic is likely to appear or disappear in the

future; this would be hugely beneficial to funders and practicing

scientists alike.
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