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Dominant bacterial taxa drive
microbiome differences of
juvenile Pacific oysters of the
same age and variable sizes

Mary K. English1, Chris J. Langdon2, Carla B. Schubiger3

and Ryan S. Mueller1*

1Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States,
2Department of Fisheries, Wildlife, and Conservation Sciences, College of Agricultural Sciences, Oregon
State University, Corvallis, OR, United States, 3Department of Biomedical Sciences, Carlson College of
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Oyster aquaculture is a growing industry that depends on production of fast-

growing, healthy larvae and juveniles (spat) to be sold to farmers. Despite nearly

identical genetics and environmental conditions in the early life stages of oysters,

larvae and spat sizes can vary drastically. As the microbiome can influence the

health and size of marine invertebrates, we analyzed the microbiomes of

differently-sized juvenile Pacific oyster (Crassostrea gigas) spat of the same age

to examine the relationship of their microbiomes with size variation. We used 16S

sequencing of 128 animals (n = 60 large, n = 68 small) to characterize the

microbiomes of each size class, comparing alpha diversity, beta diversity, and

differentially abundant taxa between size classes. We observed that small spat

had higher alpha diversity using measures that considered only richness, but

there was no difference in alpha diversity between the two size classes using

measures that incorporate compositional metrics. Additionally, large and small

spat had distinct microbiomes, the separation of which was driven by more

dominant bacterial taxa. Taxa that were differentially abundant in large oysters

were also more abundant overall, and many appear to have roles in nutrient

absorption and energy acquisition. The results of this study provide insight into

how the microbiome of C. gigasmay affect the early development of the animal,

which can inform hatchery and nursery practices.
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1 Introduction

In 2018, aquaculture facilities in the United States produced over 1.5 billion USD in

seafood, with more than half of this amount coming from shellfish production (NOAA,

2021). Oysters have been the highest-producing marine shellfish by value in recent years in

the USA, accounting for almost 220 million USD in 2018. Bivalve hatcheries and nurseries
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produce larvae and juvenile oysters (spat), respectively, that are

planted on farms for cultivation and harvest (Prado et al., 2010).

Substantial size variation is commonly observed among juvenile

shellfish (Lemos et al., 1994; Collet et al., 1999). Small, slower-

growing animals are culled by size-selective sieving (Bardach et al.,

1974), leaving only a fraction of the animals available for farms

(Taris et al., 2006). It is in the interest of aquaculture that the causes

of this size variation are better understood to reduce losses and

maximize production efficiencies.

Research has shown that genetic factors are correlated with size

variation (Singh and Zouros, 1978; Ernande et al., 2003), but while

it is known that the microbiome is correlated with the health and

growth in marine finfish (Forberg et al., 2016; Trinh et al., 2017),

little work has been done exploring the relationship between

variation in oyster growth rate and microbiome composition and

function. Given the relationship of the microbiome and host

performance, we hypothesize that the microbiome may help

explain some of the observed variations in growth rates and sizes

of spat that are of similar genetic origin and raised under the

same conditions.

Oysters and other filter-feeding bivalves accumulate microbes

from their environment while feeding, ingesting free-living and

food particle-associated bacteria (Langdon and Newell, 1989;

Kreeger and Newell, 1996; Cranford et al., 2011). Bacteria in the

gut of oysters have been reported to be present at densities tenfold

greater than in the surrounding seawater (Cavallo et al., 2009). As a

result, a resident microbiome forms with the highest bacterial

density in the digestive system and lower densities in other parts

of the oyster (Kueh and Chan, 1985). Bacteria colonize the

gastrointestinal tract, becoming permanent residents over time if

they are able to maintain their presence in the gut and proliferate

(Verschuere et al., 2000). During early growth stages, the

microbiome of C. gigas plays an important role in immune

system development (Fallet et al., 2022). Studies also suggest that

the microbiomes of marine invertebrates can be assembled in ways

that match the predominant diet of the host, enhancing nutrient

extraction from specific food sources. For instance, abalone

(Haliotis midae) host saccharase-producing bacteria in the gut,

matching the animal’s saccharide-based seaweed diet (Erasmus

et al., 1997).

The oyster microbiome community structure varies by extrinsic

factors, such as geography and temperature, and intrinsic factors

such as host age, genetics, and health. The microbiome is known to

be associated with host health and disease in aquaculture. For

example, King et al. (2019a) found that Pacific oysters had

distinct microbiomes enriched in certain taxa depending on an

oyster ’s susceptibility to ostreid herpesvirus (OsHV-1).

Relationships between animal microbiomes and growth have been

found in many aquaculture species, including juvenile killifish

(Forberg et al., 2016), Atlantic cod (Forberg et al., 2016; Trinh

et al., 2017), Pacific white shrimp (Fan et al., 2019), black tiger

shrimp (Infante-Villamil et al., 2019; Duan et al., 2020), and razor

clams (Dai et al., 2022). The oyster microbiome has been explored

with regard to animal age, environmental influences, and the

relation to health and disease (Trabal Fernández et al., 2014;

Lokmer and Wegner, 2015; Pierce et al., 2016; Green et al., 2019;
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King et al., 2019b; Scanes et al., 2021). We performed an

observational study to determine if differences in microbiome

were correlated with differences in juvenile oyster (spat) size

while holding their genetics, age, culture environment, and diet

constant. We also identified microbial taxa that may affect spat

growth in aquaculture settings.
2 Materials and methods

2.1 Sample collection

C. gigas larvae were produced in March 2020 by crossing

gametes of selected parents of known pedigree to produce

families of cohort 29 of the Molluscan Broodstock Program at

Oregon State University. Oysters were grouped by “family”, defined

as a cohort of animals from the same parents and reared under the

same conditions. The larvae of each family were raised to

metamorphosis in separate cultures, resulting in the production

of spat, as described by Langdon et al. (2003). Spat from each family

were separately reared in upweller containers in a land-based

nursery that was continuously supplied with sand-filtered

seawater at 18 °C. The spat were fed ad libitum on a mixed algal

diet of flagellate Isochrysis galbana (C-ISO strain) and the diatoms

Chaetoceros muelleri and C. gracile. The culture system was cleaned

with a jet of pressurized freshwater every day. When the spat

reached 3 to 5 mm, families were transferred to separate labeled

PVC mesh bags at 400 spat per bag and placed in outdoor tanks

where they were fed the same mixed algal diet and constantly

supplied with sand-filtered seawater at ambient temperatures of 10-

12 °C. Growth was limited by batch-feeding the oysters only once or

twice a week with the seawater flow turned off until the algal ration

had been consumed during each feeding period. The culture system

and spat bags were cleaned every week using pressurized freshwater,

and spat bags were shaken to re-distribute spat within the bags. In

October 2020, spat were sampled after seven months of culture.

They were not fed in the 48 hours before collection to reduce the

effects of recently consumed particulate material on gut flora

composition. Ten of the visually largest and ten of the smallest

oysters in each family were removed from mesh bags. Animals were

briefly submerged in 100% ethanol, patted dry, and put into 50 mL

vials containing 100% ethanol. They were stored at -20 °C; within 4

hours of the start of sample collection and processed within

six months.
2.2 DNA extraction, PCR, and sequencing

Eight large and eight small oysters from each of ten families

were selected for microbiome sequencing, except for family 94, in

which all ten large and small oysters were extracted for microbiome

sequencing (though only eight were ultimately sequenced). The

remaining two sampled oysters from each size class and family were

used to determine spat weights (see “Processing and weighing

samples”). For microbiome sequencing, each animal was shucked

by prying open the shell hinge with a sterile scalpel in a sterile Petri
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dish. The soft tissue was separated from the shell, cut into 1 mm

pieces, and placed in a 2 ml tube containing lysing matrix A and a

35 mm ceramic bead (both MP Biomedicals, Santa Ana, CA, USA)

and 1 ml CTAB buffer (Crump et al., 2003). A phenol:chloroform

method was used to extract DNA (as in Crump et al., 2003, except

that RNAse was added after sodium dodecyl sulfate). DNA pellets

were dried in a roto-vac and resuspended in 50 µl molecular grade

water (Thermo Fisher Scientific, Waltham, MA, USA). DreamTaq

green master mix (Thermo Fisher Scientific, Waltham, MA, USA)

was used to amplify 16S V4 hypervariable locus following the

manufacturer’s instructions and with the following cycles: A 3

minute initial denaturation at 94 °C; 30 cycles of 45 second

denaturation at 94 °C, 1 minute anneal at 52 °C, and 1.5 minute

extension at 72 °C; a 10 minute final extension at 72 °C; and a hold

at 4 °C. Modified dual-indexed 515F and 806R universal 16S rRNA

(V4) primers were used based on Kozich et al. (2013) and

modifications were based on Wang et al. (2021). Amplicon

quant i t ies and sizes were checked with agarose ge l

electrophoresis. All but seven (147/154) samples were amplified

successfully. Agencourt AMPure XP beads (Beckman Coulter, Brea,

CA, USA) were used to purify the PCR reactions per the

manufacturer’s instructions. A Qubit 2.0 fluorometer (Thermo

Fisher Scientific, Waltham, MA, USA) was used to quantify

concentrations of purified amplicons, and these values were used

to pool libraries to an equimolar concentration prior to paired-end

2 x 250 bp sequencing with the Illumina MiSeq V2 system (Illumina

Inc., San Diego, CA, USA). Samples were demultiplexed by the

Center for Quantitative Life Science (CQLS) at Oregon

State University.
2.3 DADA2 sequence analysis

The DADA2 package (v. 1.20.0; Callahan et al., 2016) was used

to analyze raw sequencing reads of 16S amplicons within the R

environment (v. 2021.9.0.351; RStudio Team, 2021). The

‘filterandtrim’ command with default settings and truncation

lengths based on FASTQC score reports was used to quality filter

the raw sequences. Default settings were used for error-rate

training, denoising, and paired-read merging to create

representative amplicon sequence variants (ASVs) and create a

sequence count table of ASVs. Due to uneven sequencing depth that

ranged from 100s to ~65,000 reads per sample, we set upper and

lower read depth limits. To determine an appropriate sequencing

depth range to capture all observed taxa, the ‘rarecurve’ function of

the vegan R package (v. 2.5.7; Okansen et al., 2019) was used to

make a rarefaction curve. Based on this curve, only samples with a

minimum depth of 5000 reads were kept, with 128/147 libraries

remaining (Table S1 and Figure S1). A maximum of 15000 reads per

sample was chosen as an upper limit, and libraries over 15000 reads

were rarefied using the ‘rrarefy’ function of vegan. The number of

reads per sample, which ranged from 5000 to 15000, is referred to as

the rarefied sampling depth. ASVs were assigned to taxonomic

rankings down to the genus level using a naive Bayesian classifier

(Wang et al., 2007) trained on the SILVA database (v. 132; Quast

et al., 2013). A total of 3181 unique ASVs across 128 samples
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remained after removing ASVs assigned as mitochondria or

chloroplasts. ASVs contributing < 0.1% of the total reads across

all libraries were excluded from subsequent steps except for the core

microbiome analyses, leaving 97 ASVs for community analysis.
2.4 Microbiome community analysis: Alpha
and beta diversity

To make a phylogenetic tree containing the ASVs, the ‘align.seqs’

and ‘filter.seqs’ commands of the mothur software package (v.1.39.3;

Schloss et al., 2009) were used to make filtered alignment of the ASV

sequences against the pre-computed SILVA Ref NR 132 alignment.

FastTreeMP (v. 2.1.11 SSE3; Price et al., 2009) was used to calculate a

phylogenetic tree from the alignment using a generalized time-

reversible model of evolution, and rerooted at its midpoint using

‘reroot.pl’ (Junier and Zdobnov, 2010). The ASV table, taxonomy

table, sample metadata (including size category, spat family, and dry

weight), filtered sequences, and phylogenetic tree were combined to

make a phyloseq object (v. 1.23.0; McMurdie and Holmes, 2013).

Richness, Simpson, and Shannon alpha diversity indices were

calculated using the ‘estimate_richness’ function in phyloseq.

Richness is the number of observed species, with no regard to their

evenness (relative abundance). The Simpson index (Simpson, 1949)

weighs species evenness higher than richness (Wagner et al., 2018).

The Shannon index (Shannon, 1948) equally weighs richness and

evenness (Wagner et al., 2018). Faith’s phylogenetic diversity, which

is a richness measure calculated by examining relatedness of taxa

without considering relative abundance (Faith, 1992), was calculated

using the ‘PD’ function in picante (v. 1.8.2; Kembel et al., 2010). The

four alpha diversity scores were normalized to compare between

indices using phyloseqCompanion (Stagaman, 2022). If assumptions

of normality were not met, then generalized linear models (GLMs)

were used in the ‘stats’ package (v. 4.1.1; R Core Team, 2022). Beta

diversity measured with weighted UniFrac metrics (Lozupone et al.,

2011) to account for taxa relatedness within a sample was calculated

using the count table and phylogenetic tree in vegan. A

PERMANOVA test for significant effects of spat family and size on

clustering was performed using the ‘adonis2’ function in vegan.

Family was treated as a random effect using the setBlocks option

for permutations. To test for differences in variance, the ‘betadisper’

function in vegan was used. All plots were created with the ‘ggplot2’

package in R (v. 3.3.5; Wickham, 2016). Reported summary statistics

are mean ± standard deviation unless otherwise stated.
2.5 Core microbiome

All 3181 amplicon sequence variants, their accompanying

filtered sequences, and phylogenetic tree were used to create a

phyloseq object to define the core microbiome. To investigate

whether oysters of different size classes harbored distinct

microbiomes, the main phyloseq object was subset into two

objects based on size class (large and small; n = 60 and 68

samples, respectively). Due to small sample sizes within families

by size class (n = 4 to n = 8 replicates per size class per family), core
frontiersin.org
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microbiomes were not investigated for each family and size. Subsets

were made of each phyloseq object similar to a previously

established method (Ainsworth et al., 2015), wherein the number

of ASVs found in an increasing number of samples was plotted (1 to

100% of samples, in increments of 1%). The core microbiome

threshold was defined as the number of ASVs that remained

constant over a 4% increase in the number of samples in a size class.
2.6 Differential abundance

The ANCOMBC package (v. 2.0.2; Lin and Peddada, 2020) was

used to detect ASVs that were differentially abundant in one size class

over the other. The ‘ancombc2’ function was run in R with default

settings, with two exceptions: the Benjimini Hochberg method was

used to adjust p-values, and ‘neg_lb’ was set to TRUE following

developer’s recommendations when using large sample sizes. The

‘fix_formula’ option was set to incorporate the covariate of spat family

(Size + Family), as recommended by the developers. Only ASVs with

an adjusted p-value of ≤ 0.05 were classified as differentially abundant.

We have reported log fold change (LFC), the magnitude of differential

abundance in large spat over small from ANCOM-BC2’s natural log

model. To verify that there was no interactive effect between

differentially abundant ASVs and each family, a second model

testing for differential abundance between large and small spat was

created with ‘fix_formula’ set to an interactive effect (Size * Family).

All other parameters were the same as the first run.
2.7 Processing and weighing samples

Each family and size class had at least two leftover animals that

were not used for microbiome extraction, except for family 94,

which had DNA extracted from all ten of each size class (though

only eight were sequenced). These 36 oysters were patted dry and

weighed for wet weight when the shells were closed. For dry weight,

oysters were split open with a scalpel and dried at 60 °C; for 48 h.

For both wet and dry weights, the measurement included both

tissue and shell. For all subsequent weight-based analyses, the

averages of the two dry weights for each family and size class

were assigned as representative weights for all animal samples of

that family and size class. The ‘descdist’ function in the ‘fitdistrplus’

package (v. 1.1-8; Delignette-Muller and Dutang, 2015) in R was

used to fit the distribution of dry weight as quasibinomial. The ‘glm’

function in the ‘stats’ package was used to fit a generalized linear

model to test for weight differences based on family assignment. All

reported weights are mean ± standard deviation.
3 Results

3.1 Oyster size

Large oysters were on average 12-fold larger than small oysters

by dry weight (large = 0.356 ± 0.137 g; small = 0.029 ± 0.018 g;

Figures 1, S2, S3, and Table S2). The size classes were statistically
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different by dry weight (GLM: b = 2.917, 34, p < 0.0001). Family did

not have a significant effect on dry weight (ANOVA: F(8,27) = 0.47,

p = 0.867).
3.2 Overall community structure of
oyster microbiomes

A total of 97 taxa represented 99.9% of all sequence reads.

Communities were generally skewed in abundances of dominant

taxa, with few taxa representing most of the reads and many low-

abundance taxa constituting the rest. The two most abundant ASVs

in the dataset, with ASV01 accounting for 25.07% and ASV02

accounting for 6.51% of all reads, belong to the genus Mycoplasma

in the class Mollicutes. The remaining 95 taxa were present at

relatively low abundances (< 5% of total reads; Table S3).
3.3 Alpha diversity

After filtering out rare taxa (see methods), alpha diversity

metrics were calculated using the remaining 97 ASVs; due to this

additional filtering step, alpha diversity metrics here are a

conservative estimate of sample richness. Small oysters had

higher average values in richness, phylogenetic distance, and

Shannon index than large ones (Figure 2 and Table S4).

Richness and phylogenetic indices, which are two measures that

consider evenness, were both statistically higher in small spat

(richness, t(123.64) = -4.0, p < 0.001; phylogenetic, t(126) = -3.1, p

< 0.01). The Shannon index, which depends on both richness and

evenness of taxa in a sample, was significantly different by size (t

(119.5) = -2.77, p < 0.01); however, the Simpson index, which

weighs dominance more heavily than the Shannon index, was not

significantly different by size (GLM: b = 0.13, 126, p = 0.53). It can

then be inferred that it is the richness, or changes in the presence

and absence of rare, low abundance taxa, that drives the observed

difference in Shannon indices between large and small oysters.

When removing low abundance taxa (for instance, including only

taxa that account for 98% of all reads), the Shannon index is no

longer significantly different between sizes (t(124.94) = 0.31, p >

0.5; Figure S4).

Oyster family did not have a significant effect on Shannon or

Simpson index (p > 0.05) but did have a significant effect on

phylogenetic distance and richness (p < 0.05). Rarefied sampling

depth did not impact diversity for Shannon or Simpson indices (p >

0.05) but did impact phylogenetic distance and richness metrics (p

< 0.05; Table S5 and Figure S5).
3.4 Beta diversity

When considering size class, the centroids for small and large

samples were statistically distinct on a PCoA plot of weighted

UniFrac distances (Figure 3; PERMANOVA: F(1, 126) = 2.532,

R2 = 0.0197, p < 0.05). Variance was also statistically different

between the two sizes (ANOVA: (F(1,126) = 5.2, p < 0.05). As
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variance and centroid significance cannot be partitioned, the

significant p-value from the centroid PERMANOVA test reflects

both different variance and centroids. There were no significant

effects of oyster family (PERMANOVA: F(9, 118) = 1.432, R2 =

0.0985, p = 0.056) or rarefied sampling depth (PERMANOVA: F

(1,126) = 0.930, R2 = 0.0073, p = 0.435) on community structure.
3.5 Core microbiome by size class

The number of ASVs present in samples began to level out at

52% of samples for large oysters, and 56% for small oysters (Figure

S6), resulting in a subset of 26 ASVs in the large core microbiome

(Table S6) and 35 ASVs in the small core microbiome (Table S7).

ASV01, Mycoplasma sp. in the class Mollicutes, was the only ASV

present in every sample; by comparison, the second-most abundant

ASV (ASV02, also Mycoplasma sp.) was only present in 85.9% of

samples. The small and large core microbiomes shared 19 of these

ASVs, meaning seven were present only in the large core

microbiome, and 16 were present only in the small core

microbiome (Figure 4).
3.6 Differential abundance

A total of 19/97 taxa were differentially abundant between size

classes (Figure 5 and Table S8). Three ASVs were found in higher

relative abundance in the small oysters, while 16 were detected in

higher relative abundance in the large. The most common

taxonomic group over-represented in the large oysters was

Proteobacteria, with 12 of the 16 ASVs belonging to this phylum

(6 Alphaproteobacteria, 4 Gammaproteobacteria, which includes
FIGURE 1

Dry weight of spat by size class. The colored boxes represent upper
and lower quartiles, horizontal lines in boxes show the median
values, and the vertical whiskers represent the most extreme values
within the 1.5x interquartile range. Asterisks display mean values.
FIGURE 2

Alpha diversity measures normalized from 0 to 1 (from left: richness, Faith’s phylogenetic distance, Simpson index, and Shannon index). Individual
samples are represented by gray points. All indices except Simpson were statistically significant between size classes. The colored boxes represent
upper and lower quartiles, horizontal lines in boxes show the median values, and the vertical whiskers represent the most extreme values within the
1.5x interquartile range. Asterisks display mean values.
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one Vibrionaceae, and 2 Deltaproteobacteria). Alternatively, one

ASV each of the Alphaproteobacteria, Gammaproteobacteria, and

Bacteroidia classes were the three taxa that were more abundant in

small oysters. Most of the differentially abundant ASVs in each size

class (12/16 in large, and 3/3 in small) were also members of their

respective core microbiomes. When testing for interactive effects

between spat family and ASV differential abundance, there were no

significant q-values that would indicate an interaction.
Frontiers in Microbiomes 06
4 Discussion

Oysters harbor bacterial communities that are known to be

correlated with the organism’s health and vary based on host

genetics, age, rearing environment, and feed. Studies have

established a strong relationship between oyster size and

development in terms of sexual maturity (Pouvreau et al., 2000;

Akélé et al., 2017). Our study shows that there is a relationship

between the microbiome and the size of C. gigas spat. Small oysters

showed higher alpha diversity by most measures, suggesting that the

oyster undergoes a microbial community succession with size,

which we infer to be related to development, and that the loss of

certain low-abundance taxa may be a part of a selective process

initiated by the host.

Other aquaculture studies have noted a reduction in alpha

diversity that correlates with organism age. Trabal Fernández

et al. (2014) found higher gut microbiome diversity in postlarval

life stages of three different oyster species, including C. gigas,

compared to adults. The postlarval individuals had higher

richness based on observed operational taxonomic units (OTUs)

and the Chao1 estimate, which emphasizes less abundant taxa, and

higher Shannon and Simpson indices, both of which consider the

relative abundance of taxa in a sample. The reduction in alpha

diversity with size suggests that the conditions in the gut become

more selective for a less rich microbiome as the animal grows. This

pattern has also been observed in other marine species, such as cod

larvae and killifish. Forberg et al. (2016) found that richness, but not

Shannon diversity, was higher for small compared to large killifish
FIGURE 3

Principal coordinates analysis (PCoA) plot of beta diversity based on
weighted UniFrac distances. Samples are grouped by size class
(n = 60, large; n = 68, small) with statistically distinct centroids
(PERMANOVA: F(1, 126) = 2.532, p < 0.05). Ellipses show 95%
confidence intervals of the centroid estimates of the community
structures of each size class. The centroid of each size class is
shown as a square.
FIGURE 4

Relative abundances of taxonomic classes within the core microbiomes of large and small spat. Relative abundance is averaged by size and oyster
family. Each stacked vertical bar represents one oyster family and size class, consisting of 4-8 replicate oysters sampled per family and size class.
Abundance does not sum to 100% because non-core microbiome members are omitted.
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of the same age. The same study found that small and large cod

larvae did not vary in richness, but small larvae had a higher

Shannon index than large larvae. Arfken et al. (2021) compared

larval C. virginica oysters at different early stages of development

and observed a decrease in richness with age; however, they did not

detect a difference in the Shannon index. Contrastingly, Duan et al.

(2020) compared postlarval shrimp of the same age, genetic

background, and rearing conditions that differed in growth rate in

an experimental approach that was very similar to ours. No

significant difference in richness was observed between size

classes. Dai et al. (2022) found statistically higher alpha diversity

in the clam gut microbiome measured by the Shannon index in the

largest compared to the smallest clams, but no difference in the

richness was observed. The inconsistencies between our study and

the two similar studies carried out with clams and shrimp may be

attributed to inherent differences among host organisms. Combined

with observations that the gut microbiome of bivalves is

consistently different from its environment (Valley et al., 2009;

Lokmer and Wegner, 2015), the phenomenon of alpha diversity

reduction with age and size suggests that there is a degree of

selection of microbial community occurring during animal

development. This selection with age has also been proposed in

Atlantic salmon (Bozzi et al., 2021).

Each size class of spat harbored a statistically significantly

different microbiome, while each spat family did not. These

results agree with the study of Dai et al. (2022) examining razor

clam microbiome variation among different-sized individuals. Dai

et al. found significant differences in the microbiomes when

examining beta diversity, with the smallest clams clustering

differently from the normal-sized and the largest clams in a PCA

plot. Statistically significant clusters were also seen in NMDS plots

of Bray-Curtis dissimilarity in Forberg et al.’s study on differently-

sized juvenile killifish and cod larvae of the same age (2016).

Additionally, each spat size class had a distinct core microbiome

as defined by Ainsworth et al. (2015). This definition of core

microbiome was previously used in a study on oysters by Dubé
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et al. (2019). Dube et al. found that the core microbiome stabilized

at the presence threshold of 70% of samples, while we observed

thresholds of 52% and 56% for large and small spat, respectively.

When not segregated by size, the core microbiome stabilized at the

presence threshold of 61% of samples, indicating that segregation of

the core microbiome by animal size was meaningful. Only one

taxon,Mycoplasma sp. (ASV01), was present in all samples. Because

the definition of the core microbiome differs by study (King et al.,

2012; King et al., 2019a; King et al., 2019b; King et al., 2020), and

researchers have examined the microbiomes of different

compartments of the oyster separately, it is difficult to compare

core microbiomes among studies.

Given that the gut microbial community of oysters is proposed

to be involved with nutrient absorption (Kesarcodi-Watson et al.,

2008), selecting particular residents would appear to benefit the

host. To test this hypothesis, we explored potential functional

contributions of the differentially abundant taxa between size

classes in our study, focusing primarily on the members of the

microbiome that increase in proportion in larger animals. We

detected that 16 ASVs were statistically more abundant in the

large spat. Most ASVs that were differentially abundant in the small

oysters were very low in abundance, further supporting our

conclusion that these taxa may be selectively removed from the

microbiomes of large animals. The 16 ASVs differentially abundant

in the large juveniles made up 53.6% of the reads in all samples,

while the three ASVs differentially abundant in the small juveniles

only made up 1.6% of all reads. It is possible that the three taxa that

were differentially abundant in small oysters simply had not yet

been passively lost in the development of the microbiome. Based on

previously described phylogenetic-functional relationships, the

ASVs differentially found in the large oysters appear to show or

possess capabilities of the degradation of macromolecules, including

hydrocarbons and sugars.

ASV01, Mycoplasma sp., made up 25.81% of ASVs in large

samples on average. Mycoplasma has been reported to be

consistently abundant in studies of the microbiome of C. gigas,

dominating the gill (Wegner et al., 2013), gut (Lokmer et al., 2016;

Arfken et al., 2021), stomach, (King et al., 2012), and digestive gland

(King et al., 2020). Mycoplasma has been documented not only in

bivalves, but also in other aquatic animals. Aronson et al. (2017)

found that Mycoplasma species accounted for over half of the 16S

rRNA reads in the digestive gland of deep-sea snail Rubyspira

osteovora. Additionally, Mycoplasma spp. represented 90% of the

reads from tissue homogenates of the marine mollusc Elysia

rufescens (Davis et al., 2013).

Though no studies to date have shown the precise role of

Mycoplasma species in their hosts, their consistent dominance

among host microbiomes, combined with the fact that we

observed the genus differentially abundant in large oysters during

an early life stage, possibly suggests a role in digestion, specifically

biomass conversion for animal growth. This phenomenon has been

observed in Atlantic salmon as a positive correlation between

relative Mycoplasma sp. abundance in the gut and animal weight

(Bozzi et al., 2021). Fraune and Zimmer (2008) found a positive

correlation between a Mycoplasma-like symbiont (Candidatus

Hepatoplasma crinochetorum, within the order Mycoplasmatales)
FIGURE 5

Results from ANCOM-BC2 showing differentially abundant ASVs in
each size class. ASVs are colored by taxonomic class. The orange
box (top) includes ASVs differentially abundant in the large spat, and
the blue box (bottom) includes ASVs differentially abundant in the
small spat. Vertical axis shows log fold change (LFC), the magnitude
of differential abundance in large spat over small (Lin and Peddada,
2020). The size of points corresponds to the relative abundance of
the ASV in the size class in which it is differentially abundant.
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in the midgut glands of the terrestrial isopod host Porcellio scaber

and the survival of the host on low-quality, cellulose-rich food. This

bacterial taxon was the only one detected in isopods that survived.

Furthermore, the presence of this taxon did not confer a benefit to

the host when a high-quality, easily digested food source was offered

instead. Their findings suggest that this Mycoplasma-like symbiont

may aid in acquiring energy from refractory food sources. Wang

et al. (2016) found multiple copies of genes involved in

oligosaccharide degradation and proteolysis in two Mycoplasma

species recovered from the stomachs of deep-sea isopods, indicating

the potential to aid the host in breaking down and acquiring energy

from food sources.

Mycoplasma spp. have also been implicated in marine animal

health regarding disease state, though findings differ regarding

positive or negative correlations with host disease status. Cleressi

et al. (2020) noted that Mycoplasmataceae was more abundant in

oysters with increased susceptibility to oyster herpesvirus type 1

(OsHV-1). Similarly, Mycoplasma was a predictor of mortality in

oysters that succumbed to OsHV-1 in a study by Delisle et al.,

(2022). In contrast, Green and Barnes (2010) reported that the sister

taxon to ASV01 was present in the digestive glands of Sydney rock

oysters not infected with the parasite Marteilia sydneyi, but it was

absent in infected samples. Related to this observation, a high

abundance of Mycoplasma has been associated with better health

with regard to disease status in Atlantic salmon (Bozzi et al., 2021).

Given that Mycoplasma spp. are often obligate parasites with

reduced genomes and intracellular lifestyles, it is likely that their co-

existence with a host is highly developed. Rasmussen et al. (2021)

used metagenome assemblies of abundant Mycoplasma spp.

associated with salmonid hosts and found genes specific to

ammonia use in the biosynthesis of amino acids. They also found

other biosynthetic genes encoded by Mycoplasma that complement

gaps in the biosynthetic capabilities of their salmonid host,

suggesting a mutualistic relationship between host and symbiont.

Similar work has been carried out in oysters, possibly beginning to

explain why Mycoplasma may be so abundant. Pimentel et al.

(2021) performed a metagenome assembly analysis on multiple

Mollicutes species (the family to which Mycoplasma belongs)

abundant in eastern oysters and found reduced genomes that

suggest a reliance upon the host for nutrients. Additionally, they

found two energy acquisition pathways involving chitin and

arginine deiminase that were unique only to the Mycoplasma

species found in the eastern oyster gut and absent in closely

related Mycoplasma spp., indicating a symbiotic relationship.

ASV10, Rhodospirillaceae, had the highest effect size of all

differentially abundant taxa (see supplemental material) and

constituted 5.56% of ASVs in large samples on average. A SINA

search classified the taxa as Marispirillum sp. Many Marispirillum

species have been associated with hydrocarbon and lipid

degradation. A BLAST search (NCBI Resource Coordinators,

2018) found that the closest hit to ASV10 was M. indicum, a

bacterium originally isolated from a crude oil-degrading microbial

consortium in the Indian Ocean (Lai et al., 2009) and closely related

to other Marispirillum spp. that have also been associated with oil

wells and tarballs (Shinde et al., 2018). M. indicum was shown to

emulsify lipids (Gomes et al., 2018). Given the phylogenetic
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relationships, the Rhodospirillaceae ASV10 may be involved with

lipid degradation, which may provide a source of energy to their

hosts. Further nutrients may be provided to their hosts through

nitrogen cycling; a metagenomic study on sponge-associated

Rhodospirillaceae found taxa capable of carrying out various parts

of the denitrification process (Karimi et al., 2018). Interestingly,

Cleressi et al. (2020) found that a higher abundance of

Rhodospirillaceae was linked to susceptibility to OsHV-1;

however, in another study, King et al. did not note this taxon as

being related to OsHV-1 (2019a). Cleressi et al. noted two other taxa

associated with increased mortality from OsHV-1, both of which

(Vibrionaceae and Mycoplasmataceae) followed the same pattern in

our data as Rhodospirillaceae, wherein they were more abundant in

the large oysters.

ASV09 was assigned to the Vibrionaceae family and made up

4.37% of ASVs on average in large spat samples. Many members of

the Vibrionaceae belong to the Vibrio genus, which are often

pathogenic to oysters (Elston et al., 2008; Arunkumar et al.,

2020). Wegner et al. (2019) found that the pathogenicity of

Vibrio spp. to Pacific oyster larvae was dependent on whether the

species was allopatric or sympatric, with sympatric species being

less harmful to larvae. Furthermore, Kapareiko et al. (2011)

discovered a Vibrio sp. with probiotic effects that acted

antagonistically toward pathogenic Vibrio in eastern oysters

(Crassostrea virginica). Madison et al. (2022) have also observed

antipathogenic activity of potentially probiotic Vibrio sp. Thus, it is

possible that ASV09 behaves more like a beneficial bacterium than a

harmful one within the C. gigasmicrobiome. Dai et al. (2022) found

contrasting results in their study examining differences in mean

abundance among three different size classes of clams regarding the

proportion of Vibrionaceae. In that study, Vibrionaceae was more

abundant in the largest compared to the smallest size class, but it

was also more abundant in the smallest compared to the medium

size class. The authors proposed that because it was more abundant

in the extreme size classes compared to the medium size class, the

increased relative abundance of Vibrionaceae may indicate a

disturbance to the digestive system related to abnormal growth.

ASV11, Psychromonas sp., made up an average of 3.75% of

ASVs in large samples. SINA classified the sequence as

Psychromonas sp. In the deep-sea bone-eating snail Rubyspira

osteovora, Psychromonas was second only to Mycoplasma in gut

microbiome abundance (Aronson et al., 2017). Similar to

Mycoplasma spp., Psychromonas in symbiotic relationships with

eukaryotic hosts have more reduced genomes compared to free-

living Psychromonas, with the absence of certain metabolic genes

indicating adaptation to a specific environment within the host

(Zhang et al., 2018). In that study, the genome of the symbiotic

Psychromonas was only about half the size of free-living species.

ASV13, Spirochaetaceae, made up an average of 2.95% of ASVs

in large oyster samples. The SINA aligner classified ASV13 as

belonging to the genus Salinispira within the family

Spirochaetaceae. S. pacifica is an obligate fermenter of glucose

discovered in a hypersaline mat (Ben Hania et al., 2015). Gao

et al. (2022) found Salinispira in saline oil-contaminated soil.

Currently, there is no literature exploring the functions of

Salinispira in host microbiomes. King et al. (2020) found that
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Spirochaetaceae were the only taxon that were conserved across all

C. gigas samples in six different estuaries.

ASV06, Aliikangiella, made up an average of 3.40% of ASVs

in large samples. Literature on Aliikangiela is sparse at this time;

however, Wang et al. (2018) performed genomic analysis on

several strains of Kangiella, within the same family as

Aliikangiella, and found reduced genome sizes in conjunction

with many diverse genes relating to extracellular protein

degradation. ASV20, Colwellia, made up 1.66% of all reads in

large samples. Colwellia sp. was isolated from an oil spill plume

and had genes for hydrocarbon degradation (Mason et al., 2014).

ASV22, Devosiaceae, made up 1.43% of all reads in large

samples. Devosiaceae are associated with marine biofilms on

wood and plastics (Kesy et al., 2019) and have been found in

hydrocarbon-rich environments, indicating a potential to

degrade hydrocarbons (Kumar et al., 2008). Eight ASVs were

differentially abundant in large oyster samples but had low

abundance (they did not reach an average of ≥ 1% abundance
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in large samples). The proposed functions for all these taxa are

summarized in Table 1.

While this study is robust in its 16S rRNA amplicon-based

community analysis, there are limitations to this study and areas

that can be further explored. PCR-based methods of community

analysis, while providing impressive depth of sequencing per

sample on the Illumina MiSeq, introduce many biases that can be

avoided with PCR-independent methods (Bonk et al., 2018).

Additionally, by only sequencing the V4 region of the 16S gene

instead of the entire 1500bp gene, it is impossible to assign ASVs

down to the taxonomic level of species (Johnson et al., 2019). Given

that different species within the same genus can have variable

metabolisms (Vieira-Silva et al., 2016), this discrepancy has

important implications in the potential functional role of each

ASV. Further explorations of the role of microbiome constituents

may include metagenome sequencing, which provides a more

accurate representation of the given community than 16S

amplicon-based analysis (Jovel et al., 2016).
TABLE 1 Proposed functional roles of ASVs differentially abundant in large spat, sorted by relative abundance.

Taxonomic ID Mean relative abundance in
large spat (% of reads)

Proposed functions Source(s)

asv01
(Mycoplasma)

25.81 Biomass conversion/digestion Fraune and Zimmer, 2008; Wang et al., 2016; Bozzi
et al., 2021; Rasmussen et al., 2021

asv10
(Rhodospirillaceae)

5.56 Hydrocarbon degradation, lipid emulsion,
nitrate reduction, ammonification

Lai et al., 2009; Gomes et al., 2018; Karimi et al.,
2018; Shinde et al., 2018

asv09
(Vibrionaceae)

4.37 Antagonism towards pathogens Kapareiko et al., 2011; Madison et al., 2022

asv11
(Psychromonas)

3.75 Unknown

asv06
(Aliikangiella)

3.40 Extracellular protein degradation Wang et al., 2018

asv13
(Spirochaetaceae)

2.95 Potential oil degradation Gao et al., 2022

asv20 (Colwellia) 1.60 Hydrocarbon degradation Mason et al., 2014

asv22
(Devosiaceae)

1.35 Potential hydrocarbon degradation Kumar et al., 2008; Kesy et al., 2019

asv29 (Maritalea) 0.67 Nitrate reduction Fukui et al., 2012; Zhukova et al., 2022

asv72
(Helicobacteraceae)

0.54 Sulfide oxidation Murray et al., 2016; Nakagawa et al., 2017

asv41 (Salinirepens)
0.50 Sulfate reduction, organic matter

decomposition
Espıń et al., 2021

asv89
(Oligoflexaceae)

0.44 Nutrient turnover Kieft et al., 2020

asv62
(Lentilitoribacter)

0.43 Unknown

asv61
(Halobacteriovorax)

0.38 Nutrient cycling, anti-pathogen activity Chen et al., 2018

asv48 (Rhizobiales)
0.35 Nitrogen fixation, aromatic compound

degradation
Gomes et al., 2014; Liu et al., 2019

asv82 (Terasakiella)
0.29 Denitrification, inhibition of sulfate-reducing

bacteria
Bødtker et al., 2009
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The observed compositional shift in beta diversity is due to

differentially abundant taxa. While we cannot distinguish whether

the change in the microbiome is a result of or cause of changes in

body size, we propose that the specific changes in composition

indicate that the more dominant taxa found in larger animals confer

specific benefits upon animal performance. We suspect that the

physiological capabilities of the specific microbiome members that

change among animal size is related to animal growth and

performance, although controlled experiments and full (meta)

genome sequencing is necessary to fully support the proposed

hypotheses. These findings can have significant implications on

the mechanisms influencing the host-microbiome relationship

to nutrition and the discovery of new probiotics, which can

be employed in aquaculture systems to help maximize

production yields.
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