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Spatial and temporal
metagenomics of river
compartments reveals viral
community dynamics in an
urban impacted stream

Josué Rodrı́guez-Ramos1, Angela Oliverio1,2,
Mikayla A. Borton1,3, Robert Danczak3, Birgit M. Mueller4,
Hanna Schulz4,5, Jared Ellenbogen1, Rory M. Flynn1,
Rebecca A. Daly1, LeAundra Schopflin1, Michael Shaffer1,
Amy Goldman3, Joerg Lewandowski4,5, James C. Stegen3

and Kelly C. Wrighton1*

1Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States,
2Department of Biology, Syracuse University, Syracuse, NY, United States, 3Biological Sciences
Division, Pacific Northwest National Laboratory, Richland, WA, United States, 4Leibniz Institute of
Freshwater Ecology and Inland Fisheries, Berlin, Germany, 5Humboldt University, Berlin, Germany
Although river ecosystems constitute a small fraction of Earth’s total area, they are

critical modulators of microbially and virally orchestrated global biogeochemical

cycles. However, most studies either use data that is not spatially resolved or is

collected at timepoints that do not reflect the short life cycles of microorganisms.

To address this gap, we assessed how viral and microbial communities change

over a 48-hour period by sampling surfacewater and pore water compartments of

the wastewater-impacted River Erpe in Germany. We sampled every 3 hours

resulting in 32 samples for which we obtained metagenomes along with

geochemical and metabolite measurements. From our metagenomes, we

identified 6,500 viral and 1,033 microbial metagenome assembled genomes

(MAGs) and found distinct community membership and abundance associated

with each river compartment (e.g., Competibacteraceae in surfacewater and

Sulfurimonadaceae in pore water). We show that 17% of our viral MAGs

clustered to viruses from other ecosystems like wastewater treatment plants and

rivers. Our results also indicated that 70% of the viral community was persistent in

surface waters, whereas only 13% were persistent in the pore waters taken from

the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and

38 microbial genomes. These putatively linked hosts included members of the

Competibacteraceae, which we suggest are potential contributors to river carbon

and nitrogen cycling via denitrification and nitrogen fixation. Together, these

findings demonstrate that members of the surface water microbiome from this

urban river are stable over multiple diurnal cycles. These temporal insights raise

important considerations for ecosystemmodels attempting to constrain dynamics

of river biogeochemical cycles.

KEYWORDS

phage, time-series, auxiliarymetabolic genes, hyporheic zone, genome, biogeochemistry,
stability, biogeography
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Introduction

Rivers are key modulators of global biogeochemical cycles and

provide a dynamic, moving passageway between terrestrial and

aquatic ecosystems (Allen and Pavelsky, 2018). Corresponding

to ~7% of global CO2 and ~5% of global CH4 emissions per year,

rivers contribute up to 2,508 Tg yr-1of carbon dioxide (CO2), and

~30.5 Tg yr-1 of methane (CH4) (Villa et al., 2020; Rosentreter et al.,

2021; Friedlingstein et al., 2022; Liu et al., 2022). Microbial

communities are key orchestrators of carbon and nitrogen

transformations in rivers, where they contribute between 40-90%

of hyporheic zone respiration (Pusch and Schwoerbel, 1994; Naegeli

and Uehlinger, 1997; Rodrıǵuez-Ramos et al., 2022). Despite a

general understanding of the importance of microbial

metabolism, river viral communities and their impacts on

microbial communities remain poorly described.

Viruses are the most abundant organism on the planet, with

estimates of up to 1031 viral particles worldwide (Hendrix et al.,

1999; Munn, 2006; Bar-On et al., 2018; Mushegian, 2020). These

viral predators are mostly studied in marine ecosystems, where

viruses can lyse 20-40% of bacteria daily (Weinbauer, 2004;

Weinbauer and Rassoulzadegan, 2004; Suttle, 2007; Chow and

Suttle, 2015; Guidi et al., 2016) and play key roles reprogramming

their bacterial hosts with ecosystem-wide consequences (Sullivan

et al., 2006; Anantharaman et al., 2014; Hurwitz and U’Ren, 2016).

Although research has mostly focused on marine ecosystems, recent

efforts have been made to expand our knowledge of natural viral

communities in freshwater aquatic environments like lakes (Roux

et al., 2017; Berg et al., 2021) and estuaries (Hewson et al., 2001;

Cissoko et al., 2008). Early studies in these systems have shown viral

like particle (VLP) abundances and viral productivity (i.e., the

number of viruses produced per hour) in rivers can be equivalent,

or higher, than those in marine systems (Peduzzi and Luef, 2008;

Corinaldesi et al., 2010; Rowe et al., 2012; Peduzzi, 2016).

Additionally, early river studies found that up to 80% of bacterial

isolate strains from sediments had virulent phage that could be

isolated (Lammers, 1992). Together, these foundational works

highlight the importance of viral predation in regulating

microbial dynamics in river ecosystems.

There are two key reasons why it remains difficult to link viral

communities to river ecosystem function. First, river microbiome

studies are rarely genome-resolved, both from a bacterial and viral

perspective. While there is still much to explore, most information

on aquatic virus dynamics pertains to oceanic studies (Vincent and

Vardi, 2023), and rivers are described as one of the most

underexplored aquatic ecosystem with metagenomics, second

only to glacier microbiomes (Chu et al., 2020). Although the

taxonomic composition of microbial communities in rivers has

been well-described by 16S rRNA gene amplicon surveys (Hou

et al., 2017; Nelson et al., 2019), it remains unclear how microbial

membership relates to relevant ecosystem processes. Likewise, our

ability to link the viral community to their respective microbial

hosts, and subsequently to ecosystem biogeochemistry, remains

hindered by a lack of genome-resolved studies. Second, river

studies are often not temporally constrained. Although significant

changes in river chemistry and hydrology are observed at seasonal
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periods (Tomalski et al., 2021), they are also known to change at

sub-daily scales (Lundquist and Cayan, 2002; Alonso et al., 2017),

particularly in human-impacted rivers affected by wastewater

treatment plant effluent and reservoirs (Luo et al., 2020; Wang

et al., 2021; Lu et al., 2022). This is particularly important when

considering the microbial component of river systems, as microbial

generations are on the scale of minutes to hours, and microbiomes

can shift metabolically in hours (Wang et al., 2015; Erbilgin et al.,

2017; Gibson et al., 2018). Nonetheless, river microbiome time-

series are often resolved at seasonal scales (Kaevska et al., 2016;

Malki et al., 2021), meaning our understanding of viral

and microbial community dynamics across relevant temporal

gradients (i.e. hours) remains poorly understood.

To address these knowledge gaps, we collected a finely resolved

metagenomic time-series at the River Erpe near Berlin, Germany, a

lowland river receiving treated wastewater. Our sampling campaign

included biogeochemical measurements every 3 hours for 48 hours

across both surface water (SW) and pore water (PW) compartments

that were paired to metagenomics and metabolomics (Figures 1A–

D). This study design provided a metagenomically resolved dataset

which enabled us to interrogate how viral and microbial

communities are structured across river compartments, and how

this metabolic potential could modulate biogeochemical processes.

Additionally, the temporal resolution of our dataset allowed us to

analyze both the persistence of viral and microbial communities

across compartments, as well as the individual genome stability

throughout the 48 hours of sampling. Finally, by using genome-

resolved metagenomics, we show that viruses can be linked to hosts

in river ecosystems, and that these linkages can reveal putative

interactions that may be relevant to understanding the temporal

dynamics of ecosystem biogeochemistry.
Methods

Sample collection, DNA isolation, and
chemical characterization

The River Erpe is highly influenced by diurnally fluctuating

effluent volumes of the Münchehofe wastewater treatment plant

and consists of up to 80% treated wastewater (Mueller et al., 2021).

Our sampling site is in a side channel with a mean discharge of 25 l/

s (Lewandowski et al., 2011; Mueller et al., 2021) (Figure 1A). For

sample collection, a sampling station was set up ~1m from the

shoreline of the River Erpe side channel “Rechter Randgraben”

(52.476416, 13.625710), 1.6km from the wastewater treatment plant

outlet leading the same water as in the main channel as previously

described (Mueller et al., 2021), and in accordance to the

Worldwide Hydrobiogeochemistry Observation Network for

Dynamic River Systems (WHONDRS) protocol (Stegen and

Goldman, 2018). Samples were collected on September 25, 2018.

More information on the River Erpe sampling methods can be

found in another publication from our team, as well as the original

public data repository (Wells et al., 2019; Mueller et al., 2021).

Briefly, for surface water (SW), 60ml at a time of SW were collected

manually with a syringe and tubing fixed in the water column and
frontiersin.org
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then passed through a 0.20mm filter until clogged. A cap was then

put on the filter, filled with 3ml RNAlater, and refrigerated until

extraction. For pore water (PW), 60ml of PW from 25cm sediment

depth were collected with a stainless-steel rod in the middle of the

channel. The rods were covered with a filter mesh sock over the

screened area at the tip, pushed into the sediment, and equipped

with a Teflon suction line. Samples were then taken by manually

pulling 60ml of PW with syringes attached to the suction line and

filtering them through a 0.20mm filter until clogged. The filter was

then capped, filled with 3ml RNAlater, and refrigerated until

extraction. Each of these processes were repeated every 3 hours

over a period of 48hrs in September of 2018, resulting in 15 SW and

17 PW metagenomes. 2 SW samples failed due to lack of biomass.

For DNA isolation, filters were cut into ~5mm2 pieces and added to

the bead bashing tubes of Quick-DNA Soil Microbe Microprep Kit

(Zymo). The nucleic acids were then extracted according to the

manufacturer protocol and sequenced at the Genomics Shared

Resource Anschutz Medical Campus, Colorado. Accession

numbers, total metagenomic reads, and sample sizes can be found

on Supplemental Table 1 and the original data repository (Wells

et al., 2019).

Chemical characterization was performed as previously described

(Mueller et al., 2021). Water samples were filtered with 0.2mm
polyethersulfone Sterivex for Fourier transform ion cyclotron

resonance mass spectrometer (FTICR-MS) analysis or regenerated

cellulose for all other analytes, then acidified to a pH of 2 with 2M

HCl and stored at -18°C until analysis. Samples were analyzed at the

Leibniz Institute of Freshwater Ecology and Inland Fisheries for nitrate

and sulfate (ion chromatography, Metrohm 930 Compact IC Flex),
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ammonium and soluble reactive phosphorous (SRP) (segmented flow

analyzer Skalar SAN, Skalar Analytical B.V., Netherlands), and

manganese and iron (inductively coupled plasma optical emission

spectrometry (ICP-OES), (ICP iCAP 6000 series, Thermo Fisher

Scientific Inc.). Dissolved organic carbon (DOC) concentrations were

analyzed via infrared gas analyzer (NDIR) after combustion (TOC/TN

Analyzer, Shimadzu). Dissolved organic matter (DOM) data is part of

the WHONDRS dataset (Wells et al., 2019) and was analyzed using a

12T Bruker SolariX FTICR-MS (Bruker, SolariX, Billerica, MA, USA)

at the Environmental Molecular Sciences Laboratory in Richland, WA.

Once peaks were picked using the Bruker data analysis software and

formulas were assigned using Formularity (Tolić et al., 2017), DOM

was classified into seven compound classes based upon hydrogen to

carbon ratio (H:C), and oxygen to carbon (O:C) ratios (Kim et al.,

2003). FTICR-MS analysis does not allow for a quantitative approach,

therefore compound class data was analyzed qualitatively, and DOM

composition was evaluated using the number of molecular formulas in

every compound class as described in the original publication (Mueller

et al., 2021). The biogeochemical measurements for this study can all be

found on Supplemental Table 1.
Metagenome data processing
and assembly

Each set of metagenomic reads were trimmed using Sickle v1.33

with default settings (Joshi NA, 2011), and assessed using FastQC

(v0.11.2) (Andrews, n.d.). Trimmed reads were then assembled with

either 1) metaSPAdes BBCMS pipeline (v3.13.0) (Metagenome
D

A B C

FIGURE 1

Experimental design enables a genome- and time-resolved view of microbial communities at a finely scaled resolution. (A) River Erpe sampling site that
is located near Berlin, Germany. (B) Conceptual schematic of the surface and pore water compartments that were sampled as part of this research. (C)
Table of data types that were collected as part of this sampling effort. (D) Sampling schematic over 48-hour period with two ecological variables (water
stage, and temperature) shown across the timepoints collected. The colors and icons highlight the hour of the day when samples were collected.
Asterisks (*) denote samples where only pore water metagenomes were collected
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Assembly Workflow (v1.0.1) — NMDC Workflows 0.2a

documentation, n.d.), 2) Megahit (v1.2.9) (Li et al., 2015), or 3)

IDBA UD (v.1.1.0) (Peng et al., 2012). For metaSPAdes pipeline,

reads were merged into a single.fa file using fq2fa (Shen et al., 2016).

Then, bbcms was run with flags “mincount = 2” , and

“highcountfraction = 0.6”, followed by metaSPAdes using kmers

33, 55, 77, 99, 127, and flag “–meta”. For Megahit, reads were

assembled with flags “k-min = 31”, “k-max = 121”, “k-step = 10”,

and “m = 0.4”. For IDBA_UD, samples were rarefied to 25% of

reads using BBMAP’s reformat.sh (Bushnell, 2014) with flags

“samplerate = 0.25” and “sampleseed = 1234”. These 25% of

subset reads were then merged into a single.fa file using

fq2fa (Shen et al., 2016) and then assembled with default

parameters. Assembly statistics for each sample can be found in

Supplemental Table 1.
Viral identification, taxonomy,
and annotations

Viral metagenome assembled genomes (vMAGs) were

identified from each set of assemblies using Virsorter2 and

CheckV using the established protocols.io methods (Guo et al.,

2021a; Guo et al., 2021b). Resulting genomes were then screened

based on VirSorter2 and checkV output for viral and host gene

counts, VirSorter2 viral scores, and hallmark gene counts (Guo

et al., 2021b). Viruses were then annotated with DRAM-v using the

“–use_uniref” flag, and further manually curated according to

the established protocol (Shaffer et al., 2020; Guo et al., 2021b).

The resulting subset of 6,500 viral genomes were clustered at 95%

ANI across 85% of shortest contig per MIUViG standards (Roux

et al., 2018) resulting in 1,230 viral populations.

Viral taxonomic identification of viral populations was

performed using protein clustering methods with vContact2 using

default methods (Bin Jang et al., 2019). We supplemented the

standard RefSeq v211 database containing 4,533 vMAGs with viral

genomes from an additional 303 river and wastewater treatment

plant metagenomes that were publicly available from 1) JGI IMG/VR

(6,254 vMAGs ≥10kb), 2) two previously unpublished anaerobic

digestor metagenomic datasets that were mined in-house (14,436

vMAGs ≥10kb) (https://doi.org/10.5281/zenodo.7709817), 3) a

previously published wastewater treatment plant sludge database

(7,443 vMAGs ≥10kb) (Shi et al., 2022), 4) a previously available

reference database that included freshwater ecosystem viruses (2,032

vMAGs ≥10kb) (Rodrıǵuez-Ramos et al., 2022), and 5) the 43 TARA

Oceans Virome datasets (5,476 vMAGs ≥10kb) (Brum et al., 2015).

This resulted in an additional 35,641 reference vMAGs in our

network. Proteins file for all vMAGs used in the network as well as

accession numbers are available on Zenodo (https://doi.org/10.5281/

zenodo.7709817). Results from vContact2 can be found in

Supplemental Table 2.

Viral population genome representatives were annotated using

DRAM-v (Shaffer et al., 2020). To identify putative auxiliary

metabolic genes (AMGs), auxiliary scores were assigned by

DRAM-v to each annotated gene based on the following

previously described ranking system: A gene is given an auxiliary
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score of 1 if there is at least one hallmark gene on both the left and

right flanks, indicating the gene is likely viral. An auxiliary score of 2

is assigned when the gene has a viral hallmark gene on one flank

and a viral-like gene on the other flank. An auxiliary score of 3 is

assigned to genes that have a viral-like gene on both flanks (Shaffer

et al., 2020; Rodrıǵuez-Ramos et al., 2022). Genes identified by

DRAM-v as being high-confidence possible AMGs (auxiliary scores

1-3) were subjected to protein modeling using Protein Homology/

AnalogY Recognition Engine (PHYRE2) (Kelley et al., 2015), and

manually verified. All files for vMAG quality and annotations can

be found in Supplemental Table 2.
Bacterial and archaeal metagenomic
binning, quality control, annotation,
and taxonomy

Bacterial and archaeal genomes were binned from each set of

assemblies with MetaBAT v2.12.1 (Kang et al., 2019) as previously

described (Rodrıǵuez-Ramos et al., 2022). Briefly, reads were

mapped to each respective assembly to get coverage information

using BBmap (Bushnell, 2014), and then MetaBAT was run

with default settings on each assembly after filtering for

scaffolds ≥2,500bp. Quality for each MAG was then assessed

using CheckM (v1.1.2) (Parks et al., 2015). To ensure that only

quality MAGs were utilized for analyses, we discarded all MAGs

that were not medium quality (MQ) to high quality (HQ) according

to MIMAG standards (Bowers et al., 2017), resulting in 1,033

MAGs. These MAGs were dereplicated using dRep (Olm et al.,

2017) at 95% identity, resulting in 125 MAGs. These 125 MQHQ

MAGs were annotated using the DRAM pipeline (Shaffer et al.,

2020) as previously described (Rodrıǵuez-Ramos et al., 2022). For

taxonomic analyses, MAGs were classified using the Genome

Taxonomy Database (GTDB) Toolkit v1.5.0 on November 2021

using the r202 database (Chaumeil et al., 2019). Genome quality,

annotations, and taxonomy are reported in Supplemental Table 3.
Virus host linkages

To identify virus-host linkages, we used 1) CRASS (Direct

Repeat/Spacer based) v1.0.1 (Skennerton et al., 2013), 2)

VirHostMatcher (alignment-free oligonucleotide frequency based)

v.1.0.0 (Ahlgren et al., 2017), and 3) PHIST (all-versus-all exact

matches based) v.1.0.0 (Zielezinski et al., 2021). CRASS protocol

and scripts used are described in detail on GitHub (see Data

availability). VirHostMatcher was run with default settings, and

the best possible hit for each virus was considered only if it had a

d2* dissimilarity score of < 0.2. PHIST was run with flag “-k = 25”,

and a PHIST hit was considered only if it had a significant adjusted

p-value of < 0.05. To be classified as a virus-host linkage, a virus-

host pair had to be predicted by the significant consensus of both

VirHostMatcher and PHIST or a virus-host pair had to have a

CRASS linkage. With this consensus method, CRASS links, which

were always considered good hits, agreed across 60% of predictions

at the Genus level, 80% of predictions at the Order level, and 87% at
frontiersin.org
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the Class level, suggesting high accuracy of consensus-only, non-

CRASS linked virus-host pairs. All virus-host predictions are in

Supplemental Table 2.
Genome relative abundance
and normalization

To estimate the relative abundance of each vMAG and MAG,

metagenomic reads for each sample were mapped to a database of

vMAGs or MAGs with Bowtie2 (Langmead and Salzberg, 2012) at

an identity of 95%, with minimum contig coverage of 75% and

minimum depth coverage of 3x. To normalize abundances for

known temporal omics data biases (Coenen et al., 2020), we

performed a library size normalization of abundance tables using

TMM (Robinson and Oshlack, 2010). Given that PW and SW

organism abundances were drastically different in magnitude, and

that abundance zeroes across compartments are likely real zeroes,

vMAGs and MAGs were considered to be present if detectable in at

least 10% of samples in either compartment. Organisms detected

in > 10% PW samples were labeled “pore”, organisms detected in >

10% SW samples were labeled “surface”, organisms > 10% PW and

SW samples were labeled “both”, and organisms that were in < 10%

SW and PW samples were removed. Based on these groups, the

TMM abundances file was split into two different files, one for PW

samples (n = 17) including “pore” and “both” organisms, and one

for SW samples (n = 15) including “surface” and “both” organisms.

Abundances for vMAGs and MAGs can be found in Supplemental

Table 2, 3, and specific commands can be found on GitHub.
Temporal and statistical analyses

Temporal analyses were all performed in R with the TMM

normalized abundances described above. To determine which

environmental parameters were significantly driving differences

across our compartments, we performed multiple regressions

using envfit in the vegan R package (Oksanen et al., 2016) across

multiple types of ordinations. Principal Coordinate Analysis (PCA)

for biogeochemistry were done with vegan in R. Dissimilarities in

community composition were calculated with the Bray-Curtis

metric in vegan (Oksanen et al., 2016) for all vMAGs and MAGs

that were present in >3 samples per each compartment. Nonmetric

multidimensional scaling (NMDS) was then used with k = 2

dimensions for visualization. An analysis of similarity (ANOSIM)

was performed using the base R stats package in order to determine

community similarity between river compartments. PERMANOVA

analyses were done in R using the adonis function from vegan. The

NMDS ordinations of the vMAGs and MAGs were compared using

the PROCRUSTES function in vegan. To visualize the relative

contribution of each biogeochemical variable, we calculated the

envfit vector using function ordiArrowMul and plotted them using

ggplot. Shannon’s H’ were done using TMM normalized values with

vegan in R. Species accumulation curves were done using the vegan

function specaccum in R. All R code and files are available

on GitHub.
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To determine the relative stability of surface and pore water

communities, we first calculated the differences in Bray-Curtis

dissimilarity for each sample and its prior timepoint and then ran

an unpaired t test to compare the mean differences across

compartments with the vegan package in R. For assigning the

persistence of the different genomes, we used previously established

metrics to assess persistent (present in ≥ 75% of samples), intermittent

(present > 25% <75% of samples), or ephemeral (present in ≤ 25% of

samples) categories (Chow and Fuhrman, 2012). For establishing the

abundance stability, we assessed the total number of samples in which

each individual persistent genome fluctuated by ± 25% of the median

relative abundance value across all samples. Then, using the

established cutoffs by Fuhrman and Chow et al. (Chow and

Fuhrman, 2012)., we categorized our genomes as stable (shifting in

≤ 25% of samples), intermediately stable (shifting in > 25% < 75% of

samples) and unstable (shifting in ≥ 75% of samples). Fishers exact test

for count data was used for assessing the significance of difference in

stability metrics using fisher.test from R base stats package. The

enrichment analyses for AMGs were performed using a

hypergeometric test between the total AMGs in our dataset and the

individual groups of AMGs present in either compartment. The code

used is available on GitHub. All temporal analyses and results are in

Supplemental Table 4.

To reduce the complexity of our microbial data so we could link

viral and microbial communities more concretely to ecosystem

biogeochemical cycling, we applied a Weighted Gene Correlation

Network Analysis (WGCNA) to identify which groups of organisms

co-occurred using TMM normalized values in R with package

WGCNA (Langfelder and Horvath, 2008; R Core Team, 2018). A

signed hybrid network was performed with a combined dataset of

MAGs and vMAGs on a per-compartment basis. For SW, we used a

minimum power threshold of 14 and a minimummodule size of 20.

For PW, we used a minimum power threshold of 8 with and a

minimummodule size of 20. For both networks, a reassign threshold

of 0, and a merge cut height of 0.3 were used.

To link the modules to ecosystem biogeochemistry, we

performed sparse partial least square regressions (sPLS) on the

groups of organisms in each module. sPLS were done using TMM

normalized values of co-occurring communities that resulted from

WGCNA above in R with package PLS (Chung et al., 2012).

Subnetwork membership was related to the overall genome

significance for nitrate as described in the WGCNA tutorials

document (see GitHub code) using R and the WGCNA package

(Langfelder and Horvath, 2008). Full code for WGCNA and SPLS

are available on GitHub along with detailed instructions and input

files. Visualizations for the AMG and WGCNA figures were made

using RawGraphs (Mauri et al., 2017).
Results

Metagenomics uncovers viral novelty and
biogeography of River Erpe viruses

We sampled 17 pore water (PW) and 15 surface water (SW)

metagenomes collected over a 48-hour period using a Eulerian
frontiersin.org
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sampling scheme (i.e., at a fixed location) and collected 565.5Gbp

of paired metagenomic sequencing (10.2-47.9Gbp/sample,

17.7Gbp avg.) (Figure 1 and Supplemental Table 1). Assembly

of these samples revealed 6,861 viral metagenome assembled

genomes (vMAGs), of which 6,500 vMAGs were ≥10kb in

length and were subsequently clustered into 1,230 species-level

vMAGs (Supplemental Table 2). The average vMAG genome

fragment was 24,164bp (180,216bp max) in the PW, and

19,553bp (153,177bp max) in the SW (Supplemental Table 2).

Viral MAG richness was consistently 8 times higher (p < 0.01) in

the SW (845.0 ± 124.4) compared to the PW (108.3 ± 49.7) and

likely drove differences (p < 0.01) in Shannon’s diversity (H’)

recorded for the SW (SW = 6.05 ± 0.17, PW = 3.67 ± 0.49)

(Supplemental Figure 1). In addition to our vMAGs, we identified

1033 metagenome assembled genomes (MAGs) that were

dereplicated at 95% identity into 125 medium and high-quality

genome representatives. Similarly, MAG richness was higher (p <

0.01) in the SW (SW = 62.6 ± 7.2, PW = 21.8 ± 9.0), and showed

significantly different patterns (p < 0.01) in terms of Shannon’s

(H’) (SW = 2.9 ± 0.17, PW = 2.6 ± 0.3) (Supplemental Figure 1).
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Viruses from freshwater systems are not well sampled in the

databases commonly used for taxonomic assignment in viral studies

(Elbehery and Deng, 2022). To determine the extent of novel viral

diversity recovered, we mined additional set of 21,022 vMAGs from

a variety of freshwater, wastewater, and marine samples and added

this to the original vContact2 database (Supplemental Table 2, see

Materials and Methods). We then performed protein clustering of

our unique 1,230 viruses with this modified aquatic database,

revealing 3,030 viral clusters (VCs). This network was composed

of 19,623 nodes with 679,402 edges, which was simplified to only

show protein clusters that contained at least 1 vMAG from this

study (Figures 2A–C).

Of our 1,230 vMAGs, 1% clustered to known taxonomic

representatives of the Caudovirales Order (8 Podoviridae, 7

Siphoviridae, 3 Myoviridae). Of the remaining vMAGs, 37%

clustered only to Erpe viruses, constituting 189 novel genera. An

additional 41% did not cluster to any vMAG in our database and

were “singletons” or “outliers”. Interestingly, 17% of our total

vMAGs and nearly half of our novel genera were cosmopolitan in

aquatic ecosystems, meaning that while these vMAGs failed to
A B

C

FIGURE 2

vContact2 reveals Erpe vMAG database constitutes mostly novel genera, and a portion of these are cosmopolitan. (A) vContact2 protein cluster (PC)
similarity network where nodes represent vMAGs and edges show similarity across edges. Only high-confidence genera-level clusters are shown
(n=676) with node color representing whether the vMAG pertains to our input databases (gray) or other categories assigned to vMAGs recovered
here: orange shows novel genera (clustering only with Erpe genomes), green shows cosmopolitan novel genera (clustering with viruses from
additional input database not from RefSeq), and yellow represents vMAGs with known taxonomy (clustering with known RefSeq vMAGs). Singletons
(genomes that do not cluster with any other genomes) are excluded from the visualization (n=518). (B) Pie chart shows the distribution of the
different categories from the vContact2 network of vMAGs recovered. “Overlap” refers to a category where vContact2 assigns a vMAG to more than
one cluster but cannot confidently place in either. (C) Pie chart shows the proportion of vMAGs from novel genera in this study that were clustering
with vMAGs from different environmental input databases.
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cluster with taxonomically known strains, they did cluster with

vMAGs recovered from other ecosystems (Figure 2B). Specifically,

our cosmopolitan novel genera clustered with vMAGs from

wastewater treatment plant sludge or effluent (n=168), other

rivers surface or sediment samples (n=65), and marine samples of

the TARA oceans dataset (n=25) (Figure 2C). Notably, adding these

additional viral genomes reduced the total number of River Erpe

vMAGs that were categorized as singletons or outliers, resulting in

the addition of 49 novel genera.
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Viral and microbial River Erpe microbiomes
are compartment-specific

The collected biogeochemistry was significantly structured

across compartments and explained a large portion of the total

variation in our samples (R2 = 0.79, p < 0.01) (Figure 3A). The

surface water compartment was driven mostly by 1) the

accumulation of alternative terminal electron acceptors (i.e.,

nitrate (NO3
-), and sulfate (SO4

2-)), 2) the availability of nitrogen
A B

C

FIGURE 3

Surface and pore water compartments have distinct viral communities and distributions are driven by biogeochemistry (A) PCA plot of biogeochemical
measurements where loadings and bars show the biogeochemical drivers per compartment. The size of bars represents the distance between the end
of a loading arrow and the center of the plot. Within each bar plot, the drivers are labeled, and asterisks denote significant drivers by env.fit. The top 10
most significant drivers are numbered below each bar and are shown with solid, numbered arrows within the ordination below. (B) NMDS ordination of
river pore water and surface water vMAG abundances with bars and arrows showing the same as in (A). (C) NMDS ordination of river pore water and
surface water MAG abundances with bars and arrows showing the same as in (A). Non-compound abbreviations are: nominal oxidative state of carbon
(NOSC), calcium (Ca), chlorine (Cl), sodium (Na), magnesium (Mg), dissolved organic carbon (DOC), soluble reactive phosphorous (SRP), aromaticity
index (AI), and double bond equivalents (DBE). Note: NOSC values are plotted as the absolute value per value per sample (i.e., a higher SW NOSC driver
value translates to a more negative NOSC measurement).
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compounds (i.e., total nitrogen, avg. N), and 3) a more negative

overall nominal oxidative state of carbon (NOSC) and a higher H:C

ratio. Conversely, the pore water was characterized by 1)

accumulation of NH4, 2) the availability of soluble reactive

phosphorous (SRP), and 3) the overall concentration of carbon

(avg. C), its aromaticity index (AI), and the quantity of double bond

equivalents per molecule (DBE). In summary our data indicated

more oxidative conditions in the SW (Mueller et al., 2021) while the

FTICR-MS data showed that SW carbon was likely more labile,

accessible, and thermodynamically favorable.

To determine how viral and microbial communities were

structured across these biogeochemical gradients, we recruited the

time-series metagenomic reads to our viral database of 1,230

dereplicated vMAGs and 125 MAGs and then performed non-

metric multidimensional scaling (NMDS) ordinations (Figures 3B,

C). Like the geochemical PCA plots, PERMANOVA analyses

showed that river compartment explained 67% (p < 0.01) and

59% (p < 0.01) of the variation in viral and microbial communities,

respectively. The drivers of both viral and microbial communities

were nearly identical in both magnitude and direction. Similarly, a

PROCRUSTES analyses showed that vMAG and MAG ordinations

are highly coordinated with each other (sum of squares = 0.027,

corr. = 0.99, p < 0.01) (Supplemental Figure 2) emphasizing the

expected dependencies between our identified viral and microbial

communities due to our methods. Further highlighting these

compartmental distinctions, the abundances of 85% of vMAGs

(n = 1051) and 67% of MAGs (n = 87) were indicators of only one

compartment (Supplemental Table 5). Interestingly, across both

viral and microbial ordinations as well as our PCA, time only

explained an additional 4-5% of the total variation, albeit

significantly (p = 0.03, p = 0.02, and p < 0.01, respectively), likely

due to long travel times and hydrological separation

(Supplemental Table 5).
Temporally resolved metagenomics unveils
compartment-level stability and
persistence of viral and microbial
communities of the River Erpe

SW metagenomic temporal samples for both vMAGs and

MAGs were on average 2-fold more similar than PW by Bray-

Curtis dissimilarities (BC) (vMAG t = 6.3; MAG t = 6.2, p < 0.01)

(Figures 4A, B). We next evaluated whether the individual temporal

persistence of the viral and microbial genomes shared similar

patterns to the BC across compartments, and categorized

members using persistence metrics that were previously

established (Chow and Fuhrman, 2012). Briefly, if a viral genome

was in more than 75% of the samples it was designated as persistent,

between 25-75% of samples it was intermittent, and in less than 25%

it was ephemeral. Of the 1,035 vMAGs detected in the SW

compartment, 70% were categorized as “persistent”, with the

remainder being 25% intermittent and 5% ephemeral.

Contrastingly, of the 374 vMAGs detected in the PW, only 11%

were categorized as persistent, with the remainder being 26%

intermittent and 63% ephemeral (Figures 4C, D). Similarly, the
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bacterial and archaeal MAGs shared comparable persistence

patterns across the compartments (Figures 4E, F). Combined,

these results showed that SW communities were less temporally

dynamic in terms of BC and had more persistently sampled

genomes than the PW.

We then assessed whether the relative abundance of persistent

genomes was also temporally stable. Based on a prior study (Chow

and Fuhrman, 2012), we tallied the number of samples in which

persistent vMAG and MAG relative abundances exceeded ± 25%

of their respective median (Figures 4G, H, Supplementary

Table 4). Our results showed that both the relative abundance

of vMAGs and MAGs in the SW fluctuate less over time than the

PW as shown by Fishers exact t test (p < 0.01). Our persistence

and temporal stability results supplement the observation that

surface water communities in this urban stream change less over

the 48-hour period than pore water communities which are

more dynamic.
Genome-resolved virus-host analyses
demonstrated viruses could infect highly
abundant, phylogenetically diverse
microbial genomes

We were able to predict hosts for 73 vMAGs, matching 30%

(n = 38) of our total microbial genomes to a viral partner (Figure 5).

A majority (62%) of vMAGs with host associations were from the

SW compartment, with 22% of host-associated vMAGs found in the

PW, and around 10% found across both compartments. MAGs that

had viruses linked to them were highly abundant, with 54% of our

linked vMAGs infecting hosts of the top 25% most abundant

MAGs. At the phylum level, 11 of the 20 identified phyla had

evidence for a viral host. Notably, all the phyla that could not be

assigned a viral link had 2 or less MAG representatives, with the

exception of Desulfobacterota which had 6 MAGs. Additionally, of

the 51 Patescibacteria MAGs we recovered in this study, we

uncovered 12 possible viral genome links, which to our

knowledge is one of the few reports of possible infective agents

for members of this phylum (Holmfeldt et al., 2021; Trubl et al.,

2021), and is the only one thus far reported in rivers. Ultimately,

nearly a third of the genera from our MAG database as defined by

GTDB were successfully linked to a vMAG, providing further

evidence that viral predation is likely pervasive across these river

microbial communities.

To decipher the potential impacts that viral predation could

have on biogeochemical cycling across the collected timeseries, we

metabolically characterized the 38 viral-linked MAGs from our

genome-resolved database and saw a wide array of metabolisms

spanning ecosystem chemical gradients (Figure 5). Across both

compartments, viruses were inferred to impact hosts that could

modulate both aerobic and microaerophilic metabolism (carbon

respiration), as well as anaerobic metabolisms (nitrate reduction,

fumarate reduction, fermentation, and nitrogen fixation). For

example, vMAGs were predicted to infect hosts with metabolisms

such as methanogenesis (e.g., Methanothrix), and sulfur

metabolisms (e.g., Sulfurimonas), which were encoded more
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FIGURE 4

Surface water communities are more stable and persistent than pore water communities. (A) Difference in Bray-Curtis dissimilarities between each
sample and its prior timepoint calculated for vMAGs and (B) MAGs per compartment. (C) Bar plots show the number of persistent, intermittent, and
ephemeral vMAGs in the SW and (D) the PW. (E) Bar plots show the number of persistent, intermittent, and ephemeral MAGs in the SW and (F) the
PW. (G) Bar plot where the x-axis shows the number of samples where each vMAG that fluctuates above or below 25% of their median values and
the y-axis shows the normalized total percentage of persistent genomes per each compartment that are fluctuating. (H) Identical bar plots to those
in (G) but for MAGs.
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predominantly by MAGs in the PW. vMAGs were also predicted to

infect members that encoded denitrification pathways which were

prevalent in organisms across both compartments (e.g.,

Nanopelagicales). Interestingly, 20% of the vMAGs that infected

hosts were cosmopolitan, with representatives identified in other

freshwater and wastewater systems (Supplementary Table S2).

Together, our genome-resolved database of microbial

metabolisms and their putatively infecting viruses gives insight

into the underpinnings of River Erpe metabolisms, and show that

genome-resolved, river microbiome studies can provide critical

perspectives for understanding the impact that viruses can have

in river ecosystems.
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Virally encoded auxiliary metabolic genes
can potentially alter host metabolic
machinery in this urban-impacted river

In addition to the impact on microbial communities via

predation, viruses can also mediate biogeochemical cycles through

enhancing host metabolism with Auxiliary Metabolic Genes

(AMGs). We mined our 1,230 vMAGs for putative AMGs and

found 165 unique viral AMG candidates after quality filtering,

which encompassed 65 unique gene IDs. We failed to see a

statistical enrichment for the number of AMGs in either

compartment (Fisher’s exact p = 0.77), suggesting their shared
FIGURE 5

Viruses infect abundant microorganisms in rivers which can influence aerobic and anaerobic C, N, and S cycling by predation or auxiliary metabolic
genes. MAG families that had a linkage to a virus are shown and split into their compartment-level distributions. From left to right: Colors of each
circle on the leftmost side represent the Phyla, and for each family the total number of MAGs are shown. The presence absence heatmap describes
the metabolisms of each family. Following the heatmap are the number of vMAGs that are linked in each family, whether the virus-host link is
predicted by CRISPR or consensus method, and if at least 1 infecting vMAG with an AMG is reported. Numbers below each bounding box show
totals of above criteria. The overall average rank of each MAG within a family is shown in the rightmost column.
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importance for the River Erpe. The functionalities of these AMGs at

the gene annotation level (e.g., KO number) were mostly conserved

across compartments, with only 27% of unique gene IDs present in

both compartments. However, at the DRAM-v functional module

level (e.g., amino acid metabolism) 69% of metabolisms were

present across both our ecological gradients (Figure 6B).

Conserved DRAM categories across compartments pertained to

carbon utilization (e.g., CAZyme inferred substrates (cellulases),

glycolysis), energy generation (e.g., CO2 fixation (reductive pentose

phosphate pathway)), and other reactions (methionine

degradation). We note that genes necessary for viral replication

like nucleotide biosynthesis, ribosomal proteins, host mimicry,

glycan biosynthesis, cofactor and vitamin metabolism, and

molecular transporters were conserved between compartments.

There were also some unique AMGs that did show

compartment specificity. For example, within the surface water

we exclusively detected AMGs for organic nitrogen mineralization
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and transcriptional regulation (i.e., peptidase M50), sugar

metabolism (i.e., fructose and mannose (mannose-6-phosphate

isomerase)), and motility (i.e., flagellar motor switch protein

FliG). We note that among our putative AMGs, we also identified

several glycosyltransferases (i.e., GT1, GT2, GT17, and a general

sugar binding GT) (Figure 6A). These GT genes are commonly

reported as carbohydrate degradation enzymes in other studies,

particularly those annotated as glycosyltransferase 2 (GT2) because

of the breadth of reactions in their CAZyme families. As such, while

we report these in our figure and supplemental information for

transparency, we urge caution when inferring these activities in

carbon degradation.

We next considered AMGs that either expanded the host

metabolism or that were complementary to the host metabolism

(i.e., Class I AMGs) (Hurwitz and U’Ren, 2016). Of the 12

Patescibacteria MAGs that had possible viral genome links, MAG

representative CSBR16-119 had two possible vMAG linkages. A
D

A B

C

FIGURE 6

Distribution of viral Auxiliary Metabolic Genes (AMGs) and their function reveals key viral interactions that can enhance host metabolism in river
ecosystems. (A) Alluvial plot shows the subset of AMGs (77%, n=165) that had a metabolic function annotated by DRAM-v and were 1) not at the end
of a contig and 2) did not contain a transposon like element. In the first vertical line, colors show the compartments that each vMAG with an AMG
was detected in. The second vertical line shows the different DRAM-v metabolic categories for each AMG. The next vertical line shows the specific
metabolic module name as categorized by DRAM. The final line contains each of the Gene IDs for the detected AMGs. Genes that can have multiple
functions (n = 13) are duplicated and treated as individual genes within each category. (B) Stacked bar charts show the proportion of total AMGs
encoded in vMAGs from different compartments at the scaffold, gene ID, and metabolism header ID level as shown in (A). (C, D) Genome cartoons
of two computationally linked bacterial hosts and their respective metabolisms. Detected viral AMGs are shown as viral icons above each genome
cartoon. Pept., peptidases; HSP, heat shock proteins; SOD, superoxide dismutase; queCD, 7-cyano-7-deazaguanine synthase; 6-carboxy-5,6,7,8-
tetrahydropterin synthase. Asterisks (**) denote AMGs that were encoded within a virus that had a computationally linked host.
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comparison of the metabolic capabilities of the host and

viral genomes indicated multiple shared genes (Figure 6C,

Supplemental Table 2). For example, a peptidase-like protein

(M50) that is inferred transcriptional regulator (Rawlings et al.,

2018) was present in both the PatescibacteriaMAG and its infecting

vMAG. Across the length of the open reading frame, these bacterial

and viral genes shared 77% and 99% nucleotide and amino acid

similarity, respectively (Supplemental Table 2). The microbial host

genome also had a single copy of ribosome L28 encoded, and two

viral genomes putatively infecting this host contained a relevant

homolog to L28 (>93% identity, over 90% query coverage)

(Supplemental Table 2).

A second putatively infected genome was Proteobacteria

UBA2383 (a novel unclassified Competibacteraceae) which had

broad metabolic capabilities and was persistent in our samples

(Figure 6D). This MAG was inferred to be a facultative aerobe

encoding genes for aerobic respiration and for denitrification.

UBA2383 encoded genes supporting a heterotrophic lifestyle

including CAZymes necessary for the degradation of complex

carbon substrates (e.g., chitin, starch, and polyphenol) and the

enzymatic capacity to utilize these substrates for energy (e.g.,

glycolysis, tricarboxylic acid cycle). This MAG also encoded the

ability to fix nitrogen and denitrify. The two vMAGs that were

associated with this genome encoded genes to support host

metabolism (e.g., GTP cyclohydrolase) which generates important

co-factors for bacterial metabolic processes (Supplemental Table 2)

(He and Rosazza, 2003). Additional AMGs encoded by infecting

viruses could potentially enhance nucleotide biosynthesis (dCTP
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deaminase, dUTP pyrophosphatase, thymidylate synthase) as well

as other viral functions like host mimicry genes (i.e., 7-cyano-7-

deazaguanine synthase, 6-carboxy-5,6,7,8-tetrahydropterin

synthase) to avoid the CRISPR defense mechanisms encoded

within the host Proteobacteria. More research using non-

homology based methods, as well as expression patterns of these

AMGs would help confirm their functionality and activity in this

urban-impacted stream.
Co-occurrence networks elucidate
ecological patterns that inform
ecosystem biogeochemistry

To link viral and microbial communities more concretely to

ecosystem biogeochemical cycling, we leveraged our collected

temporal samples and applied a Weighted Gene Correlation

Network Analysis (WGCNA) to identify organismal groups that

co-occurred over the 48-hour sampling time. Highlighting the clear

distinctions in SW and PW compartments, WGCNA analyses could

not be reasonably performed simultaneously on a combined dataset

(scale free topology model fit max = 0.32 at power = 20). As such,

using only microbial and viral genomic abundances from either SW

or PW separately, we identified 15 and 4 co-occurring modules in

the SW and PW, respectively (Supplemental Figure 4). The largest

module in both networks (turquoise module) contained 254

genomes in the SW and 71 in the PW. In the SW compartment,

the overall modules had an average richness of 66 vMAGs and 5
A B

FIGURE 7

WGCNA co-occurrence networks reveal ecologically similar groups that are related to overall ecosystem biogeochemistry. (A) Voronoi diagram
shows VIP values of predictions for each predictive genome using a hierarchy structure. Each amorphous square within a group represents a single
MAG or vMAG. At the first level (i.e., splitting of the large hexagon into upper and lower groups), SW (top) and PW (bottom) predictions are shown. At
the second level (i.e., grouping of individual chemical variables predicted across each compartment), individual chemical variables are shown, per
each compartment, and how many vMAGs/MAGs were predictive are denoted by numbers next to each variable name. At the third level (i.e.,
individual amorphous square or genomes), shapes are sized by the VIP score (>1) of genomes that predict that variable and are colored by their
respective WGCNA module. (B) Sunburst diagram shows the predictive WGCNA modules in the innermost level, followed by what chemical values
each module predicts in the middle level. The outer level shows the average variable importance in projection (VIP) score for each genome type:
vMAG (black circles) and MAGs (white circles) for that chemical prediction.
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MAGs, while in the PW they had an average richness of 46 vMAGs

and 10 MAGs.

Both surface and pore water communities had modules of co-

occurring genomes that were significantly related by sparse partial

least square regressions (sPLS) to the collected biogeochemical

measurements (R2 > 0.3, p < 0.05) (Figure 7A, Supplemental

Figure 4). Only total Fe concentrations were related to modules in

both the SW (brown, salmon modules) and PW (red module). SW

modules were uniquely related to variables pertinent to nitrogen

(nitrate, average total nitrogen), carbon (average total carbon,

aromaticity index, hydrogen:carbon), as well as physical

(temperature, water stage) and geochemical (magnesium, calcium,

manganese, ammonium, sulfate) features in these samples. Of the

8 modules that were significantly related to ecosystem

hydrobiogeochemical features, viruses had significant variable

importance in projection scores (VIP > 1) in 7 of them, and 70%

of the most significantly related genomes across all regressions were

viral (Figure 7B).

Of the 73 vMAGs and 38 MAGs that were computationally

linked (Figures 5, 6), nearly a quarter of those vMAGs and a third of

MAGs were grouped into the same co-occurring modules.

Interestingly, the SW brown module was related to the total

nitrate concentrations in our dataset and contained a co-

occurring virus-host link (Figure 8A). The host genome was the

Competibacteraceae genome in Figure 6D and its putatively

infecting a virus, which together could play roles in modulating

the nitrogen cycling through both fixation and denitrification. This

virus and microbial host pair had significant negative correlations to
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nitrate concentrations and were the second and fourth most

significantly related genomes to nitrate within the brown module.

The virus bacterial ratio (VBR) for these two organisms was nearly

1:1 and significantly correlated, which is expected of kill the winner

dynamics (Trubl et al., 2021), and ultimately highlighting the

possible dependency of an infecting vMAG and its host

(Figure 8B). In support of this relationship, the viral genome

coverages were on average 10x more than the putative host MAG

coverage, suggesting a possible lytic infection lifestyle. Further

underlining the importance of these related genomes, both were

designated as persistent (i.e., present in >75% of all collected

timepoints) and were the 1st (vMAG) and 9th (MAG) most

abundant genomes detected in the surface waters.
Discussion

Viral reference databases underrepresent
certain habitats, missing cosmopolitan,
ecologically relevant lineages

Nearly a quarter of our Erpe viruses formed genus-level clusters

with viruses from wastewater and freshwater systems, and of those,

11% encoded a putative AMG with functions for metabolisms such

as carbon utilization, organic nitrogen transformations, and

housekeeping functions (i.e., transporters and flagellar assembly).

While the protein clustering of River Erpe vMAGs to wastewater

viruses was not entirely surprising given the sampling location was
A B

FIGURE 8

Computationally linked vMAG and MAG pair that share co-occurrence patterns demonstrate high significance for nitrate, and display kill-the-winner
dynamics. (A) Scatterplot depicts the genomic significance for nitrate of each of the genomes in the brown module in relation to the membership of
those genomes within the WGCNA network modules. Below, bar charts show the VIP score (≥1) of the different organisms in the brown module.
(B) A Virus bacteria ratio (VBR) plot of a viral genome within the brown module that was predicted to infect a Proteobacteria genome. Below it, bar
plots show the total coverage across all samples for both the vMAG and the MAG, and a line graph shows the measured nitrate concentrations that
these genomes predict.
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downstream from the wastewater outlet (Mueller et al., 2021), we

note that we also clustered a similar proportion of viruses to other

viral genomes from river systems. Notably, this similar clustering

proportion for River Erpe viruses was not observed with the TARA

ocean viruses (Figure 2C, Supplemental Figure 3). These results hint

at possible ecosystem filtering that may affect the biogeographical

patterns of freshwater viruses. Our results also underscore the

importance of customized, ecosystem relevant databases in

environmental viromics for extending the ecological relevance of

these ecosystem modulators, and further understanding the major

drivers for river microbiomes.
Temporally and spatially resolved
metagenomics coupled to metabolites and
geochemistry enhances our understanding
of river microbiome structure

Sampling with a Eulerian method allowed us to detect

microbiomes passing through the same space over time in the

SW and PW samples. Due to the flow rate of SW, and the

potential that PW communities may be more biofilm impacted,

we might have expected to see greater microbial and viral

changes in the surface compartment than the sediments over

the sampled time period. On the contrary, both vMAGs and

MAGs were more persistent and had more stable abundance

patterns over time in the SW of the River Erpe (Figures 4A, B).

A possible explanation is that the strong influence of the

wastewater treatment plant, where inputs were relatively

uniform and continuous over time (Mueller et al., 2021),

could contribute to the increased temporal stability we

observed. It is also possible that the mixing in the PW

hyporheic zone was more frequent than the flow rate within

this channel. In support of the former, we did observe strong

clustering between our viral genomes and wastewater treatment

viral genomes throughout the timeseries (Figure 2). Our study is

consistent with previous research showing surface water

microbiomes are not unstable, or intractable (Graham et al.,

2017), and could thus be important for the poorly resolved

indices of river health and biogeochemistry that currently exist.

Previous reports using non genome-resolved strategies

highlight that richness in river PW and sediments are generally

higher than those in the SW for bacterial communities (Abia et al.,

2018). Contrary to this, our data shows the opposite trends in the

Erpe river for both viral and microbial communities

(Supplementary Figure 1). One possible explanation could be

methodological due to the PW being sampled or assembled less

completely as a result of genomic extraction bias caused by fine

grain sediments, less sampling volume, or strain level complexity.

However, our species area curves did not signify an obvious

difference in sampling exhaustion between these compartments

(Supplemental Figure 1), leaving open the possibility that this

finding may be biological.

A possible biological explanation could be that the effluent of

the Münchehofe WWTP is altering viral and microbial community

diversity. Our geochemical data showed elevated total nitrogen and
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soluble reactive phosphorous concentrations, which are commonly

reported for WWTP impacted systems (Fox et al., 1989; Effler et al.,

2010). However, the role of these WWTP influences on river

microbiome diversity are variable, with some studies reporting

that WWTPs reduce bacterial diversity and overall nutrient

concentrations (Atashgahi et al., 2015; Carles et al., 2022; Xie

et al., 2022), and other studies showing increases in diversity

resulting from eutrophication (Garnier et al., 1992; Marti and

Balcázar, 2014).

Our presented and previously published geochemical data

inferred more anoxic conditions in the porewater compared to

the surface water (Mueller et al., 2021), while the FTICR-MS data

indicated a higher concentration of non-labile, microbially

inaccessible carbon in the pore water. Additionally, sediment

profiles for our samples ranged from 85.8%-96.6% clay content

(Mueller et al., 2021), which may impact groundwater and surface

water exchanges, resulting in altered nutrient fluxes to inhibit

microbial growth (Newcomer et al., 2016; Huettel et al., 1998).

Taken together, it is possible that limited nutrient and carbon

accessibility contributes to the decreased microbial and viral

diversity observed in the PW compared to the SW.
Viruses have the potential to regulate river
biogeochemical cycles by predation and
metabolic reprograming of microbial hosts

Although river viral ecology is only recently becoming

appreciated, early works suggested that viruses likely play key

roles in the structuring of river microbial communities (Peduzzi

and Luef, 2009; Peduzzi, 2016). By using a combination of

computational methods, we show viruses infect microorganisms

that encode a wide array of metabolic functionality critical to

river biogeochemistry (e.g., methanogens, denitrifiers, oxygen

respirers). In addition to predation, viral auxiliary metabolic

genes are recognized across aquatic systems to play key roles

in host metabolic reprogramming and can encompass a wide

range of processes from photosynthesis to the oxidation of sulfur

(Sullivan et al., 2006; Anantharaman et al., 2014). We add to the

existing literature and show AMGs in urban river systems may

also impact reactions involving nitrogen, carbon, and sulfur

cycling. Additionally, one of the vMAGs that was predicted to

infect a Patescibacteria genome encoded a ribosomal protein, a

finding that has been previously reported in other systems for

different bacteria (Mizuno et al., 2019). Candidate phyla

radiation (CPR) organisms like Patescibacteria are present in

wastewater treatment plants (Wang et al., 2023) and contain

non-redundant, small genomes (Tian et al., 2020; Wang et al.,

2023). As such, our results of ribosomal AMGs in

Patescibacteria-infecting viruses hint at the possibility that

viruses may help maintain those small genome sizes by

encoding necessary host genes, a concept previously

demonstrated for the virus-host dependency of cyanobacterial

photosynthesis in oceans (Sullivan et al., 2006).

Other works looking at vMAGs from freshwater lakes and

estuaries have shown that some viruses exhibit endemism for
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certain environments, meaning their distribution is limited to a

small geographic area (Ruiz-Perez et al., 2019). This points to an

interesting idea that perhaps AMGs may also be tuned to the

specific ecological functions of the sampled habitat, and as such

that we could expect some degree of endemism in the AMGs. A

recent study from an estuary identified significant partitioning of

AMG functions between habitat types (water particle and

sediment) (Luo et al., 2022). In support of these findings, we

identified a subset of unique AMGs within the SW (e.g., flagellar

assembly proteins, sugar metabolism) that could potentially be

more associated with a lifestyle supported by favorable carbon,

and aquatic environments that favor mobility. On the other hand,

in the PW we detected AMGs that encoded for plant

hemicellulose degradation (Supplementary Table S2), an

adaptation that could sustain metabolism in a litter impacted,

sediment habitat. However, most AMG functional categories from

our dataset were highly similar across compartments suggesting

some conservation within River Erpe compartments. As such, it is

possible that due to the constant mixing of surface and HZ water

in this river, and possibly others, stratification at the genomic

potential may be less notable, and expression information may be

necessary to capture habitat specific differences. Ultimately, this

study highlights how moving forward annotation resolution and

expanding reference database(s) are important factors to consider

when extrapolating AMG inferences across datasets (Hurwitz and

U’Ren, 2016; Shaffer et al., 2020).

In conclusion, our results highlight the power of temporally

resolved metagenomics in understanding river microbiome

dynamics. Leveraging the community-sequenced dataset of the

River Erpe, we provide insights regarding compartment-level

microbiome stability and show surface water microbiomes may

not be as “untraceable” or “unstable” as previously thought. This

stability at a genome-resolved view, suggests microbial content

could add to the growing body of indicators for river wellness.

Ultimately, this research provides a strong scaffolding foundation

for future temporally resolved river studies that couple microbial

omics measurements to biogeochemical rates to bridge the gap in

understand overall ecosystem functionality.
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Rodrıǵuez-Ramos, J. A., Borton, M. A., McGivern, B. B., Smith, G. J., Solden, L. M.,
Shaffer, M., et al. (2022). Genome-resolved metaproteomics decodes the microbial and
viral contributions to coupled carbon and nitrogen cycling in river sediments.
mSystems 7, e0051622. doi: 10.1128/msystems.00516-22

Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C.,
et al. (2021). Half of global methane emissions come from highly variable aquatic
ecosystem sources. Nat. Geosci. 14, 225–230. doi: 10.1038/s41561-021-00715-2

Roux, S., Adriaenssens, E. M., Dutilh, B. E., Koonin, E. V., Kropinski, A. M.,
Krupovic, M., et al. (2018). Minimum information about an uncultivated virus genome
(MIUViG). Nat. Biotechnol. doi: 10.1038/nbt.4306

Roux, S., Chan, L.-K., Egan, R., Malmstrom, R. R., McMahon, K. D., and Sullivan, M.
B. (2017). Ecogenomics of virophages and their giant virus hosts assessed through time
series metagenomics. Nat. Commun. 8, 858. doi: 10.1038/s41467-017-01086-2

Rowe, J. M., DeBruyn, J. M., Poorvin, L., LeCleir, G. R., Johnson, Z. I., Zinser, E. R.,
et al. (2012). Viral and bacterial abundance and production in the Western Pacific
Ocean and the relation to other oceanic realms. FEMSMicrobiol. Ecol. 79, 359–370. doi:
10.1111/j.1574-6941.2011.01223.x

Ruiz-Perez, C. A., Tsementzi, D., Hatt, J. K., Sullivan, M. B., and Konstantinidis, K.
T. (2019). Prevalence of viral photosynthesis genes along a freshwater to saltwater
transect in Southeast USA. Environ. Microbiol. Rep. 11, 672–689. doi: 10.1111/1758-
2229.12780

Shaffer, M., Borton, M. A., McGivern, B. B., Zayed, A. A., La Rosa, S. L., Solden, L.
M., et al. (2020). DRAM for distilling microbial metabolism to automate the curation of
microbiome function. Nucleic Acids Res. 48, 8883–8900. doi: 10.1093/nar/gkaa621

Shen, W., Le, S., Li, Y., and Hu, F. (2016). SeqKit: A cross-platform and ultrafast
toolkit for FASTA/Q file manipulation. PloS One 11, e0163962. doi: 10.1371/
journal.pone.0163962

Shi, L.-D., Dong, X., Liu, Z., Yang, Y., Lin, J.-G., Li, M., et al. (2022). A mixed blessing
of viruses in wastewater treatment plants. Water Res. 215, 118237. doi: 10.1016/
j.watres.2022.118237
frontiersin.org

https://doi.org/10.1038/s42003-021-01810-1
https://doi.org/10.1038/s41598-017-12275-w
https://doi.org/10.1038/s41598-017-12275-w
https://doi.org/10.1016/j.mib.2016.04.002
https://github.com/najoshi/sickle
https://doi.org/10.1186/s40064-016-2043-6
https://doi.org/10.7717/peerj.7359
https://doi.org/10.1038/nprot.2015.053
https://doi.org/10.1021/ac034415p
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1016/j.scitotenv.2011.01.028
https://doi.org/10.1016/j.scitotenv.2011.01.028
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1073/pnas.2106322119
https://doi.org/10.1016/j.ecoenv.2022.113641
https://doi.org/10.1175/1525-7541(2002)003%3C0591:SASPID%3E2.0.CO;2
https://doi.org/10.1186/s40168-022-01384-y
https://doi.org/10.1007/s11356-020-10159-7
https://doi.org/10.1128/AEM.00646-21
https://doi.org/10.1016/j.resmic.2014.04.002
https://nmdc-workflow-documentation.readthedocs.io/en/latest/chapters/3_MetaGAssemly_index.html
https://nmdc-workflow-documentation.readthedocs.io/en/latest/chapters/3_MetaGAssemly_index.html
https://doi.org/10.1038/s41467-019-08672-6
https://doi.org/10.1038/s41598-021-83750-8
https://doi.org/10.1017/S002531540601335X
https://doi.org/10.1128/JB.00052-20
https://doi.org/10.2307/1468172
https://doi.org/10.1029/2019JG005226
https://doi.org/10.1002/2015WR018351
https://doi.org/10.1002/2015WR018351
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1111/brv.12202
https://doi.org/10.1007/s00027-008-8068-3
https://doi.org/10.1093/bioinformatics/bts174
https://www.semanticscholar.org/paper/42cf63746d7d54d34807e2e7eaa9c6a5c19ce17e
https://www.semanticscholar.org/paper/42cf63746d7d54d34807e2e7eaa9c6a5c19ce17e
https://doi.org/10.1093/nar/gkx1134
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1128/msystems.00516-22
https://doi.org/10.1038/s41561-021-00715-2
https://doi.org/10.1038/nbt.4306
https://doi.org/10.1038/s41467-017-01086-2
https://doi.org/10.1111/j.1574-6941.2011.01223.x
https://doi.org/10.1111/1758-2229.12780
https://doi.org/10.1111/1758-2229.12780
https://doi.org/10.1093/nar/gkaa621
https://doi.org/10.1371/journal.pone.0163962
https://doi.org/10.1371/journal.pone.0163962
https://doi.org/10.1016/j.watres.2022.118237
https://doi.org/10.1016/j.watres.2022.118237
https://doi.org/10.3389/frmbi.2023.1199766
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Rodrı́guez-Ramos et al. 10.3389/frmbi.2023.1199766
Skennerton, C. T., Imelfort, M., and Tyson, G. W. (2013). Crass: identification and
reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 41,
e105. doi: 10.1093/nar/gkt183

Stegen, J. C., and Goldman, A. E. (2018). WHONDRS: a community resource for
studying dynamic river corridors. mSystems 3. doi: 10.1128/mSystems.00151-18

Sullivan, M. B., Lindell, D., Lee, J. A., Thompson, L. R., Bielawski, J. P., and Chisholm, S.
W. (2006). Prevalence and evolution of core photosystem II genes in marine cyanobacterial
viruses and their hosts. PloS Biol. 4, e234. doi: 10.1371/journal.pbio.0040234

Suttle, C. A. (2007). Marine viruses–major players in the global ecosystem. Nat. Rev.
Microbiol. 5, 801–812. doi: 10.1038/nrmicro1750

Tian, R., Ning, D., He, Z., Zhang, P., Spencer, S. J., Gao, S., et al. (2020). Small and
mighty: adaptation of superphylum Patescibacteria to groundwater environment drives
their genome simplicity. Microbiome 8, 51. doi: 10.1186/s40168-020-00825-w
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