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Background: The human gut microbiome harbours diverse species of archaea,

bacteria, fungi, protists and viruses. To date, most gut microbiome studies have

focused on bacteria, neglecting other microbial communities. Consequently,

less is known about the diversity and abundance of the latter. Here, we aimed to

characterise the diversity and composition of protists in the gut of preschool-

aged children (PSAC) in rural Zimbabwe relative to host age, sex, and

schistosome infection status.

Methods: The gut protist of 113 PSAC (1–5 years) was examined via shotgun

metagenomic sequencing and analysed for diversity. Variation in protist

abundance with host and environmental factors was analysed by permutational

multivariate analysis of variance (PERMANOVA). To investigate how the

composition of specific taxa varies across age, sex, nutritional measures and

Schistosoma hematobium infection status, analysis of the composition of

microbiomes (ANCOM) was used.

Results: Eighty protist genera were identified, and the most abundant genera

detected was Blastocystis. The prevalence of pathogenic protists was

comparatively low, with 12.4% and 3.4% of the participants’ gut colonised by E.

histolytica and Cryptosporidium, respectively. Of all the independent variables

only S. haematobium infection showed significant relationship with the structure

of the gut protist, being associated with increases in Peronospora,

Pseudoperonospora, Plasmopara and Blastocystis (FDR= 0.009).

Summary: This study provides data on the prevalence and diversity of the gut

protists in young Zimbabwean children with an emphasis on the host factors;

age, sex and schistosome infection status. Our results showed no association

between the host factors investigated, including anthropometric measures

adjusted for age and the intestinal protist composition and structure, but S.
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haematobium infection status was associated with composition of specific taxa.

There is a need for more studies determining how pathogenic protist interact

with non-pathogenic protist in people exhibiting clinical symptoms to inform

therapy and nutraceuticals.
KEYWORDS

gut protist, diversity, composition, Zimbabwe, children
Introduction

The gut microbiome harbours diverse species of archaea, bacteria,

fungi, protists and viruses that contribute to host biology (Garcia-

Bonete et al., 2023). To date, gut microbiome studies in humans have

focused on bacteria neglecting other microbial communities such as

protists (Vargas-Albores et al., 2023). There are at least fifteen

different protist genera from diverse groups that either parasitise or

are commensals, in the human gut (Hamad et al., 2016) and thus,

there is a need to study the relative importance of these in human

health. Gut protists show high inter-individual variability but less

abundance and diversity than bacteria (Hooks and O’malley, 2020),

and research has primarily centred on disease-causing parasitic

protists. However, gut protists are often commensals and their role

in the gut remains poorly understood. It has been suggested that

some commensal species induce beneficial host innate immune

responses (Underhill and Iliev, 2014), as well as other potential

benefits such as eubiosis and alleviating the symptoms of

inflammatory bowel disease (IBD), Crohn’s disease and Type 1

diabetes (T1D) (Parfrey et al., 2014; Lukes ̌ et al., 2015; Bach, 2018;
Ianiro et al., 2022). Furthermore, some protists such as Blastocystis

and non-pathogenic Entamoeba have been associated with a healthy

gut (Audebert et al., 2016; Chabé et al., 2017). Nonetheless, the

impact of these commensals and the pathogenic nature of parasitic

protists remains poorly studied. Pathogenic protists such as Giardia

duodenalis, Entamoeba histolytica and Cryptosporidium spp (Maas

et al., 2014). are important for human health as they are widely

distributed and cause serious pathology. The World Health

Organization (WHO) has identified Cryptosporidium spp. as the

most common diarrhoea-causing protist globally (Pedersen et al.,

2014), and giardiasis, caused by Giardia duodenalis is experienced by

20–30% of people in developing countries (Hajare et al., 2022).

Accordingly, both parasites Cryptosporidium spp. and G.

duodenalis were included in the “Neglected Disease Initiative”

launched by the WHO in 2004 (Osman et al., 2016). Amoebiasis is

also highly prevalent with amoebic colitis, estimated to kill more than

55 000 people each year (Lozano et al., 2012). These numbers

underscore the need to address protist-related diseases. Embracing

the One Health approach (Galán-PuChades et al., 2021; Massengo

et al., 2023) is essential for comprehensively understanding and

effectively combating these parasitic protists. By recognising the
02
multifaceted nature of these infections and their implications across

different domains, we can develop holistic strategies to tackle the

challenges posed by these neglected diseases.

In Africa, the exact burden of these protist infections is difficult to

quantify, and reports can be affected by geographic region, study

design, sample size, incubation, symptom severity, and the sensitivity

of the diagnostic modality used (Shirley et al., 2018). Furthermore,

diagnostic capacities and surveillance are often limited in this

continent. The infections, which are caused by these protists are

characterised by chronic to severe diarrhoea, sometimes accompanied

by abdominal cramping, flatulence, nausea, vomiting, anorexia,

fatigue, low-grade fever; some even cause malabsorption as well as

severe debilitating illness, especially in immunosuppressed

populations (Stark et al., 2009; Kucerova et al., 2011; Stensvold

et al., 2011). The resulting intestinal malabsorption can be so severe

that chronic infections in children can be associated with retardation

of growth and development (Farthing, 2006), especially in developing

countries where hygienic and healthcare standards (Wawrzyniak et al.,

2013; El Safadi et al., 2014; Lhotská et al., 2020) are continuously

deteriorating. More than 82% of all under-five deaths in Africa are

caused by diarrhoeal diseases (Gupta, 2012). In 2015, diarrhoea was

the second leading cause of childhood deaths in Zimbabwe,

contributing to 10% to 15% of deaths in under-five children (Tate

et al., 2016; UNICEF, 2016). However, despite several years of policy

and practice aiming to reduce the incidence, morbidity and mortality

associated with diarrhoea in the country, it remains a significant

contributor to under‐five morbidity and mortality (Mukaratirwa et al.,

2018). G. duodenalis and E. histolytica have been shown to be

associated with differences in the composition and diversity of gut

microbiota (Burgess and Petri, 2016; Barash et al., 2017; Beatty et al.,

2017). Given that these protists are known to cause disease in certain

individuals and that the reported results are confounded by disease

status (asymptomatic/symptomatic), it is unknown whether the

observed changes in microbial composition are due to the protist or

ongoing inflammation (Nieves-Ramıŕez et al., 2018).

Over the past decade there has been a growing interest in

investigating the diversity of microbiome in the healthy human

population, partly due to the hypothesis that one or more of these

genera/species could be conducive to human health (Lukes ̌ et al.,
2015; Chabé et al., 2017; Stensvold and van der Giezen, 2018).

However, little is known about the prevalence and factors that
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influence the abundance and diversity of gut protists in humans

(Mann et al., 2020). Thus, the aim of this study was to characterise

the gut protist using shotgun metagenomics that may be associated

with human health, especially in Zimbabwe where dysentery and

diarrhoeal diseases are the cause of significant childhood mortality.

We further related this to host factors, specifically; we were

interested in the following host factors: age, sex and schistosome

infection status. Moreover, this study aimed to provide additional

data on the gut microbiome studies in Southern Africa.
Materials and methods

Ethical approval and consent

The study received ethical and institutional approval from the

Medical Research Council of Zimbabwe (MRCZ/A/1964) and the

University of Edinburgh respectively. Permission to conduct

the study was obtained from the Mashonaland Central Provincial

Medical Director. Prior to enrolment, the study aims and

procedures were explained to all participants and their parents/

guardians in their local language (Shona). The parents/guardians of

the participants provided written informed consent and

participation in the study was voluntary, with participants able to

withdraw at any time.
Study design, population and site

This cross-sectional study was conducted in Shamva district,

one of the seven districts in the Mashonaland Central province of

Zimbabwe. It was part of a larger research project, the ‘Paediatric

Schistosomiasis Study’, which investigated the overall health impact

of paediatric schistosomiasis in children aged 5 years and below;

commonly called pre-school aged children (PSAC) (Osakunor et al.,

2020; Pfavayi et al., 2021).

A cohort of 116 children was selected from the baseline survey

for microbiome analysis (Osakunor et al., 2020). Of these, 113 met

the inclusion criteria for the current study. The criteria were as

follows: a) they had to be lifelong residents of the study area; b) no

current episode of diarrhoea or dysentery; c) their guardian/parent

had to consent to their participation; d) there had to be socio-

demographic data available; and e) consent for their stool samples

to be used for microbiome characterisation. The 3 excluded

children had missing metadata and could not be included in

downstream analysis.
Sample collection, processing and
DNA extraction

Urine and stool samples were collected from participants to

screen for schistosomiasis and soil-transmitted helminths, using

methods previously described by our group (Osakunor et al.,

2020). Briefly, about 50 ml of urine was collected on three

successive days and a stool sample was collected on a single day
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from each participant. For young children, urine bags (Hollister

7511 U-Bag Urine Specimen Collector, Hollister Inc., Chicago,

IL, USA) and disposable diapers were used for collection.

Urine samples were analysed for Schistosoma haematobium

using the standard urine filtration method, while stool samples

were examined for Schistosoma mansoni using the Kato-

Katz technique.

Stool DNA for gut microbiome analysis was extracted from the

samples using the QIAamp DNA Stool Mini Kit (QIAGEN),

following the manufacturer’s protocol. DNA purity was verified

using a Qubit fluorometer (Thermo Fisher Scientific) at the

University of Edinburgh before DNA sequencing. The DNA

samples were shipped on dry ice for library preparation and

shotgun metagenomic sequencing to BGI (Beijing Genomics

Institute, Shenzhen, China).
Next-generation sequencing

The preparation of DNA samples for next-generation sequencing

(NGS) was carried out as previously outlined (Osakunor et al., 2020).

FASTQC and BBduk2 [BBMap—Bushnel l B.—https://

sourceforge.net/projects/bbmap/] were utilised for sequencing

quality control and trimming of the reads, respectively. The

trimmed reads were used as input to align directly to reference

sequence databases downloaded via NCBI GenBank clade-specific

assembly summary.txt files (ftp:/ftp.ncbi.nlm.nih.gov/genomes/

genbank) utilising k-mer alignment (KMA) (Osakunor et al., 2020;

Pfavayi et al., 2021). To determine the biome content of each sample,

a classification was performed on the read pairs using Kraken

software (version 2.1.1; https://github.com/JenniferLu717/

KrakenTools 2 which includes RefSeq archaea, bacteria, viruses,

plasmid complete genomes, UniVec Core, and the human

reference genome, GRCh38). Paired reads were classified using the

entire set of reads for each and a kraken-report was generated to

provide taxonomic information. After classification, reads identified

as belonging to the human genome were filtered out. Based on the

obtained taxon ID, a putative taxonomy was assigned to the obtained

primary alignment of mapped sequences. Taxon IDs and associated

taxonomy classifications were obtained from reference microbial

genomes downloaded from NCBI (ftp:/ftp.ncbi.nih.gov/pub/

taxonomy/taxdump.tar.gz), and then assigned to all taxonomic

levels. To obtain information about the abundances of features in

the datasets relative to each other, datasets were treated as

compositional and prior to transformations a small pseudo-count

of half the smallest non-zero abundance per feature was added to

each feature for each of the normalised abundance matrices. Centred

log ratio (clr) transformations were performed on the microbiota

abundance tables and for all subsequent analysis, these clr matrices

were used (Osakunor et al., 2020; Pfavayi et al., 2021).
Data analysis

Statistical analyses and data visualisation were performed using

various Bioconductor packages within the R environment v3.6.1.
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Using R, the Euclidean distances were calculated to determine if

sample-related metadata predicted within-group microbiome

dispersion. The effect of such metadata on sample dissimilarities

was analysed using permutational multivariate analysis of variance

(PERMANOVA; adonis2 function in the vegan package) with a

significance threshold of P < 0.05. A false discovery rate (FDR

(Benjamini–Hochberg FDR)) correction was applied to counteract

multiple testing (Benjamini and Hochberg, 1995). The analysis of

composition of microbiomes (ANCOM) (Mandal et al., 2015) was

employed to investigate how the composition of specific taxa varies

across statistically significant metadata (from PERMANOVA)

while controlling for other variables of interest. Box plots

stratified by specific independent variables, using the clr-

transformed abundance data of significant taxa previously

identified by ANCOM were used to highlight differences in

groups. Bar plots from normalised and zero-corrected abundance

matrices were used to give an overview of the microbiota gene

abundances across all samples. Beta diversity was measured using

the Bray-Curtis index and Principal coordinate analysis

(PCoA) ordination.
Frontiers in Microbiomes 04
Results

Population demographics

The mean age of the 113 study participants was 3.7 ± 1.1 years,

with 57 (50.4%) males and 56 (49.6%) females. Of these 113

children, 18 were S. haematobium positive. The demographic

information of the study participants are compiled in Table 1.
Characterisation of the intestinal
protist microbiota

There were between 3,994,704 and 13,164,482 classified read

pairs per sample. At any taxonomic level, at least 33% of the mapped

read pairs could not be assigned a taxonomic classification and were

therefore classified as “unknown”. Overall, 80 protist genera were

detected in all 113 samples and were dominated by Blastocystis,

representing 82% of the total protist community (Figure 1). Seven

Blastocystis subtypes were identified in the study, ST1, ST2, ST3, ST4,
TABLE 1 Demographic characteristics of study population.

Demographic categories Frequency Percentage (%, 95% CI)

n

Gender 113 Female 56 49.6 (40.0 - 59.1)

Male 57 50.4 (40.8 - 60.0)

Age group (years) 113 ≤3 69 61.1 (51.4 - 70.1)

4 29 25.7 (17.9 - 34.7)

5 15 13.3 (7.6 - 21.0)

S.haematobium infection status 113 Negative 95 84.1 (76.0 – 90.3)

Positive 18 15.9 (9.7- 24.0)

Nutritional and growth factors

Breastfed (months) 90 <6 1 1.1 (0.03 - 6.0)

≥ 6 89 98.9 (94.0 - 100.0)

Solid food introduction (months) 102 <6 32 31.4 (22.6 - 41.3)

≥ 6 70 68.6 (58.7 - 77.5)

Stunted (HAZ) 109 Yes 16 14.7 (8.6–22.7)

No 93 85.3 (77.3–91.4)

Malnourished (WHZ) 107 Yes 4 3.7(1.0–9.3)

No 103 96.3(90.7–99.0)

Malnourished (MUACZ) 100 Yes 8 8.0(3.5–15.2)

No 92 92.0(84.8–96.5)

Underweight (WAZ) 108 Yes 6 5.6 (2.1–11.7)

No 102 94.4(88.3–97.9)

Total 113 100
Classification of nutritional status was based on a cut off <−2 Z scores. WHA, weight-for height Z scores; HAZ, height-for-age Z scores; MUACZ mid-upper arm circumference z score; WAZ,
weight-for-age.
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ST6, ST8 and ST9 (Table 2). ST2 and ST3 were the most prevalent

subtype, found in all PSAC (100%) followed by ST1 and ST6 in 110/

113 PSAC (97.3%). E. histolytica was detected in 14/113 (12.4%),

while E. dispar was detected in 90/113 (79.6%) of PSAC.

The protist genera showed homogeneity with no distinct

clustering according to metadata (Figure 2) which indicates a

high level of diversity in the cohort.
Relative abundance of protist genera in the
gut microbiome

Abundance was calculated for each microbial taxon across all

samples. The most prevalent genera was Blastocystis (100%, present

in all the samples). Majority of the detected phyla were classified as

“Unknown”, as putative classification could not be assigned to at

least 33% of the mapped read pairs. Figure 3 depicts a summary of

the nine most abundant protists in the study population, while

Figure 4 depicts a composition heat map of all the protists detected.
Variation in the protist and association with
participant metadata

Principal coordinate analysis
Principal Coordinate Analysis (PCoA) was used to examine

variability and patterns in the data set across the first two principal

components. PCoA explained 52.7% of the total variance between

the samples. We were unable to distinguish the samples by

S.haematobium infection status, sex or age along the first or

second axis (Figure 5) suggesting the presence of communities

with similar overall compositions.

Association between gut protist and
participant metadata

To test whether the sample-related metadata (age (categorised

based on individual ages), sex, nutritional status and S.
Frontiers in Microbiomes 05
haematobium infection status) were different with respect to

centroid and dispersion, PERMANOVA analysis was performed.

PERMANOVA analysis showed a significant effect of S.

haematobium infection status (FDR= 0.009) across the samples,

signifying that differences exist between S.haematobium infection

status groups. Table 3 provides an overview of the results of

the analysis.

Gut protist analysis by S.haematobium infection
From the PERMANOVA results, further analysis via ANCOM

showed that the abundance of four specific protist genera was

associated with S.haematobium infection.

Peronospora (W= 28), Pseudoperonospora (W= 28),

Plasmopara (W= 26) and Blastocystis (W= 25), showed variation

with S.haematobium infection. The magnitude of the differences in

abundance between groups are shown in Figure 6. The abundance

of all the identified genera that varied with S.haematobium infection

was slightly higher in schistosome-positive children.
Discussion

To date, diarrhoeal disease is the world’s second leading cause

of death among young children in developing countries (Hartman

et al., 2022; Benzamin and Hoque, 2024). While a range of different

pathogenic organisms can cause diarrhoea, including viruses and

bacteria (Wilhelmi et al., 2003; Al-Thani et al., 2013; Najafi et al.,

2013; Weam et al., 2016), a significant percentage of cases of

paediatric diarrhoea is associated with the presence of gut

protists; especially in developing countries where declining

hygienic standards and poor healthcare standards (Wawrzyniak

et al., 2013; El Safadi et al., 2014; Lhotská et al., 2020) are a

persistent problem.

In the current study, we characterised the diversity and

composition of protists in the gut of preschool-aged children

(PSAC) in rural Zimbabwe in relation to host age, sex and
TABLE 2 Blastocystis subtypes and Entameoba species distribution.

Blastocystis subtype Distribution (%)

ST1 97.3

ST2 100

ST3 100

ST4 18.1

ST6 97.4

ST8 66.4

ST9 74.1

Entamoeba species

Entamoeba histolytica 12.4

Entamoeba dispar 79.6

Entamoeba moshkovskii 1.7

Entamoeba nuttalli 68.9
FIGURE 1

Overall prevalence of protist detected in the 113 samples. Red
coloured bars are pathogenic protist, and blue coloured bars are
non-pathogenic protist.
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schistosome infection status. The overall prevalence of any enteric

protist in the population was 100%, and some individuals had

multiple colonisation. Blastocystis was detected in all the one

hundred and thirteen children (100%), which agrees with the

results obtained by others (El Safadi et al., 2014; Iebba et al.,

2016; Poulsen et al., 2016). Overall, ten different Blastocystis

subtypes (ST1–ST9 and ST12) have been found in humans

(Alfellani et al., 2013; Stensvold et al., 2020), of which we detected

seven in this study, specifically ST1–ST4, ST6, ST8 and ST9. Our

results on the subtype distribution across humans are in agreement

with findings from similar studies (El Safadi et al., 2016). However,

in humans, the most frequently detected subtypes are ST1-ST3 or

ST1-ST4 (Scanlan et al., 2014, 2016; Jalallou et al., 2017;

Mohammad et al., 2017; Valença Barbosa et al., 2017). In the

present study, the most common subtype were ST2 and ST3.

Despite its high prevalence, the role of Blastocystis in health

and disease remains controversial because asymptomatic

colonisation is common, as demonstrated by the higher

prevalence in healthy controls (Andersen and Stensvold, 2016;

Kurt et al., 2016; Lhotská et al., 2020); however, some studies have

provided evidence for Blastocystis-induced pathogenicity

(Wawrzyniak et al., 2013). It has also been argued that

identification of Blastocystis from patient samples is not
Frontiers in Microbiomes 06
clinically significant but should be used as a marker of potential

exposure to other pathogenic protists.

It is important to highlight that at the time of sample collection,

none of the children were suffering from diarrhoea/dysentery nor

presented with intestinal symptoms which could have decreased the

probability of pathogenic protist detection. However, it was

important to determine the non-pathogenic protist presented in

the children’s gut microbiome since their existence points to a

faecal-oral transmission in infected people. Furthermore, the

presence of these non-pathogenic parasites is an indicator of the

sanitary and health conditions in a particular place (Sarkari

et al., 2016).

Among the Entamoeba species infecting humans, E. histolytica

is so far the only one associated with amoebiasis (Kantor et al.,

2018). Amoebiasis is one of the most problematic parasitic

infections worldwide, particularly in poor communities from

developing countries, resulting in severe conditions such as

amoebic colitis and amoebic liver abscess and even in fatal cases

(Roure et al., 2019; Shirley et al., 2019). In the current study, while E.

dispar was detected in ninety (79.6%) of participants, E. histolytica

was detected in fourteen participants (12.4%). Similarly, there was a

low infection frequency of Cryptosporidium with a 3.4% prevalence.

As previously mentioned, none of the children had intestinal
FIGURE 3

Overview of the protist microbiota abundance and diversity. Stacked bar charts show the most abundant protist genera per sample (n=113),
proportional to the total microbiota within each sample. “Other” denotes abundance data for all other taxa in the abundance data set.
FIGURE 2

Protist composition dendrograms. Clustered dendrograms show protist genera per sample. The vertical axis of the dendrogram represents the
distance or dissimilarity between clusters. The horizontal axis represents the population and clusters.
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symptoms in this study, which could explain the observed values.

Here, G. duodenalis or Dientamoeba fragillis infections were

undetected, yet in a previous study in Zimbabwe the prevalence

of G. duodenalis was high and highly prevalent in the urban areas

(Mason et al., 1986). Possible reasons for this difference could have

been due to sampling methods, differences in study population or

prevalence of the parasites. In a recent multicentre birth cohort
Frontiers in Microbiomes 07
study in eight low income countries Cryptosporidium spp. were

some of the top diarrhoea-associated pathogens (Korpe et al.,

2018).The evaluation of individuals with no intestinal symptoms

could have resulted in the difference observed between our results

and the Korpe et al (Korpe et al., 2018).

In the current study we also detected a number of

Acanthamoeba spp., which according to our knowledge have not
FIGURE 4

Heat map of protist composition of study population. The relative abundances of the protist genera identified in the study population are depicted
on a heat map. The row-scaled relative abundance of each taxon across all samples is represented by the hue (blue to red) of the heat map.
B

C

A

FIGURE 5

Principal coordinate analysis (PCoA) plots for protists microbiota across samples, annotated by schistosome status (A), sex (B) and age (years) (C).
Results of Principal-component analysis (PCoA) showing positions of all samples along the first two axes (explaining 40.3% and 12.4% of the total
variation respectively). The ordination was based on Bray-Curtis dissimilarities. The eigenvalues associated with the eigenvectors are used to describe
the amount of explained variation per axis. Ellipses represent the confidence intervals (CIs) at 95%.
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been reported in Zimbabwe. However, Acanthamoeba spp. are

known to be widely distributed in the environment and have

been found in many countries worldwide, including Africa. They

are ordinarily free living within the environment but capable of

causing severe infections under suitable circumstances. In addition

to increasing cases of Acanthamoeba-associated infections globally

(Carnt et al., 2018; Randag et al., 2019; Scruggs et al., 2019;

Höllhumer et al . , 2020) this finding warrants further

investigations to identify the risk factors associated with exposure

and subsequent infection. Such studies will be essential for

understanding the epidemiology of the organism, implementing

appropriate public health measures.

Among the host factors evaluated in our study, only S.

haematobium infection showed a significant association with

intestinal protist colonisation. We observed that the protist were

largely heterogeneous, with Peronospora, Pseudoperonospora,

Plasmopara and Blastocystis clearly differentiating the microbiome

of schistosome-infected versus uninfected children. Kay et al (Kay

et al., 2015), and Schneeberger et al (Schneeberger et al., 2018),

reported that schistosome infection is associated with alterations in

the diversity and abundance of specific taxonomic groups in the

microbiome, as was observed in the current study. However, it was

beyond the scope of this study to determine the causal relationship

between protist composition and schistosome infection. As

Peronospora, Pseudoperonospora and Plasmopara are plant

pathogenic oomycetes, and are obligate aerobes that cannot

colonise the human gut (Savory et al., 2011; Thines and Choi,

2015; Koledenkova et al., 2022). It is most likely that these are

transient members of the gut and not resident members and hence

their presence might not have an effect on the gut microbiome

composition. Nonetheless, it is possible that schistosome infection

resulted in alterations of the gut microbiome favouring a particular

structure of gut protists or the presence of specific protists
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predisposed the children to schistosome infection, for example by

influencing the innate immune responses (Kay et al., 2015).

We investigated the association between schistosomiasis and

pathogenic intestinal protists because of its significant public health

implications. For instance, both infections are common in

developing countries where access to clean water and sanitation is

limited, resulting in co-infections (Blackwell et al., 2013). Thus,

individuals infected with both schistosomiasis and an intestinal

protists could be at risk for more severe symptoms and

complications. Furthermore, schistosomes and pathogenic

intestinal protist can interfere with each other; for example,

Schistosoma mansoni infection is known to affect the gut

microbiome (Floudas et al., 2019) and this can affect the

susceptibility or resistance of the host to other pathogens.

Likewise, age is an important factor in colonisation with

intestinal protists with young children being more susceptible to

infection and as the protists can contribute to malnutrition and

stunting in children by interfering with the absorption of nutrients

(Mondal et al., 2006; Mulatu et al., 2015). We further assessed the

association between age, growth standards and intestinal protists. In

our study, there were no significant differences in stunting,

malnutrition or age. This could have been due to the small

sample size of stunted or malnourished children. Furthermore,

there were no sex-related differences in the children’s gut protist.

Given that all the children enrolled in this study were ≤ 5 years, it

was not surprising that there were no sex-related differences, as they

have not reached puberty, where the influences of the sex hormones

on physiology or innate immune responses can be marked (Kay

et al., 2015). Furthermore, this finding implies male and female

children have equal chances of colonisation since they are engaged

equally in all activities around that age.

Despite ongoing efforts to enhance disease surveillance and

response, many African countries face challenges in accurately
B

C

A

D

FIGURE 6

Box plots showing the abundance of specific protist genera Peronospora (A), Pseudoperonospora (B) Plasmopara (C) and Blastocystis (D), grouped
by S. haematobium infection status. The horizontal box lines represent the first quartile, the median, and the third quartile. Whiskers denote the
range of points within the first quartile −1.5× the interquartile range and the third quartile +1.5× the interquartile range.
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diagnosing and reporting infectious diseases due to the remoteness

of some communities, shortage of skilled health care workers and

laboratory facilities (WHO, 2015). This has resulted in most of these

diseases being neglected (Bär et al., 2015). The current study was

carried out in a rural area where most of the community members

are subsistence farmers, growing crops and raising livestock.

Therefore as previous studies have shown that numerous animal

species including livestock are infected with some of these intestinal

protist, a ‘One Health’ approach to intestinal protist prevention,

surveillance, monitoring and control, should be adopted broadly

(Yanyan et al., 2022). Adopting the One Health approach enables

integration of data from various disciplines and researchers can gain

a comprehensive understanding of disease dynamics (Bhatia, 2019;

Nzietchueng et al., 2023). Such collaborative work could potentially

facilitate early detection and response to emerging diseases in both

humans and animals, preventing the spread of potential epidemics.

Additionally, this could potentially enhance the implementation of

evidence-based interventions, ultimately leading to better research

outcomes (Mackenzie and Jeggo, 2019).

The present study is subject to limitations that should be

acknowledged and considered in the interpretation of its findings.

Firstly, a key limitation arises from the reliance on reference databases

primarily tailored for prokaryotes in the taxonomic assignment

process of shotgun metagenomics. Consequently, these databases

may not encompass a comprehensive representation of eukaryotic

organisms, which in turn poses challenges in accurately identifying

and classifying eukaryotic taxa (Lind and Pollard, 2021). This

inherent limitation can result in reduced taxonomic resolution and

potentially lead to misinterpretations regarding the composition of

the eukaryotic microbiome. Furthermore, the eukaryotic microbiome

exhibit lower abundance compared to its prokaryotic counterpart (Lu

and Salzberg, 2018; Steinegger and Salzberg, 2020). The pronounced

presence of prokaryotic DNA can overshadow the detection of less

abundant eukaryotic DNA, thereby introducing a bias into the

analysis. Consequently, there is a potential risk of underestimating

the diversity and functional potential of the eukaryotic microbiome.
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Conclusion

The current study characterised the intestinal protist in rural

Zimbabwean children. Our results showed that there was no

association between the host factors investigated and the

intestinal protist composition. However, S. haematobium

infection status was associated with composition of specific taxa.

Although the prevalence of pathogenic protist was relatively low,

there is need for further research to investigate the interactions

between pathogenic and non-pathogenic protists in individuals

displaying clinical symptoms, in order to provide insights for the

development of therapeutic interventions and nutraceuticals.
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TABLE 3 Summary of sample metadata and association with gut
protist microbiome.

n P-value FDR

Sex 113 0.184 0.361

Age_years 113 0.089 0.267

Malnourished_(WHZ) 107 0.440 0.659

Malnourished (MUACZ) 100 0.683 0.769

Underweight (WAZ) 108 0.201 0.361

Stunted (HAZ) 109 0.056 0.252

S.haematobium status 113 0.001 0.009

Months_breastfed 90 0.785 0.785

Months_Solid_food 102 0.636 0.769
Classification of nutritional status was based on a cut off <−2 Z scores. WHA, weight-for
height Z scores; HAZ, height-for-age Z scores; WAZ, weight-for-age Z Score; MUACZ; mid-
upper arm circumference z score; p-value-unadjusted p-value; FDR- adjusted p-value
(FDR-corrected).
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