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For millennia people have wondered what makes the living different from the non-living.
Beginning in the mid-1980s, artificial life has studied living systems using a synthetic
approach: build life in order to understand it better, be it by means of software, hardware, or
wetware.This review provides a summary of the advances that led to the development of
artificial life, its current research topics, and open problems and opportunities. We classify
artificial life research into 14 themes: origins of life, autonomy, self-organization, adapta-
tion (including evolution, development, and learning), ecology, artificial societies, behavior,
computational biology, artificial chemistries, information, living technology, art, and philos-
ophy. Being interdisciplinary, artificial life seems to be losing its boundaries and merging
with other fields.
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1. THE PAST
Google’s Ngram Viewer (Michel et al., 2011) allows users to search
the relative frequency of n-grams (short-words combinations,
n ≤ 5) in time, exploiting the large database of Google Books that
includes about 4% of all books ever written. Hiroki Sayama did a
search for“artificial life”1, and the curve showed how the frequency
jumps from 1986 and reaches a peak in 1997 before stabilizing.
However, there is an even higher peak around 1821. “What were
they doing in those days?” Hiroki tweeted. Well, Frankenstein, or
The Modern Prometheus by Mary Shelley was published in 1818.
That created a wave in literature until the end of the 1820s and had
an impact for the rest of the nineteenth century, as people debated
on the nature of life in view of the impressive technological and
scientific advances of the age. What are the causes and conditions
of life? Can we make living creatures?

We know that such questions were asked from the dawn of his-
tory. Consider, for instance, the artificial creatures found in the
Greek, Mayan, Chinese, and Jewish mythologies, where human
beings acquire the divine ability to make living creatures through
magic. Other examples can be found during the middle ages,
such as the automata created by al-Jazari (including the first pro-
grammable humanoid robot) and the legendary Albertus Magnus’
brazen head (an automaton reputed to be able to answer any ques-
tion) and its mechanical servant (which advanced to the door
when anyone knocked and then opened it and saluted the visitor).
Later on, during the Italian Renaissance, several automata were
designed (Mazlish, 1995). Leonardo da Vinci’s mechanical knight
(a humanoid that could stand, sit, raise its visor and indepen-
dently maneuver its arms) and its mechanical lion (which could
walk forward and open its chest to reveal a cluster of lilies) are just
two examples of this kind of automata. There is also a legend that

1http://t.co/boMAxmjQ2c

says that Juanelo Turriano created an automata called “The Stick
Man.” It begged in the streets, and when someone gave him a coin,
he bowed. Through the modern age, automata became more and
more sophisticated, based on and leading to advances in clock-
work and engineering (Wood, 2002). Perhaps the most impressive
of this period were the automata of Vaucanson. His first work-
shop was destroyed because the androids he wanted to build were
considered profane. He later built a duck, which appeared to eat,
drink, digest, and defecate. Other examples of modern automata
are those created by Pierre Jaquet-Droz: the writer (made of 2500
pieces), the musician (made of 2500 pieces), and the draughtsman
(made of 2000 pieces).

Questions related to the nature and purpose of life have been
central to philosophy,and the quest of creating life has been present
for centuries (Ball, 2011). Being able to imitate life with automata,
can we understand better what makes the living alive? Hobbes
(1651, p. 1) begins his Leviathan with:

Nature (the art whereby God hath made and governs the
world) is by the art of man, as in many other things, so in this
also imitated that it can make an artificial animal. For seeing
life is but a motion of limbs, the beginning whereof is in some
principal part within, why may we not say that all automata
(engines that move themselves by springs and wheels as doth
a watch) have an artificial life? [our emphasis]

Descartes also considered the living as being mechanical: life being
similar to a clockwork (Descartes, 1677). Still, Descartes did not
consider the soul to be mechanical, leading to dualism.

Nevertheless, in spite of these many antecedents, it is commonly
accepted [see, for example, Bedau (2003)] that it was not until 1951
that the first formal artificial life (ALife) model was created, when
von Neumann (1951) was trying to understand the fundamen-
tal properties of living systems. In particular, he was interested in

www.frontiersin.org October 2014 | Volume 1 | Article 8 | 1

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/about
http://www.frontiersin.org/Journal/10.3389/frobt.2014.00008/abstract
http://www.frontiersin.org/people/u/184588
http://www.frontiersin.org/people/u/186860
http://www.frontiersin.org/people/u/40939
http://www.frontiersin.org/people/u/142875
mailto:cgg@unam.mx
http://t.co/boMAxmjQ2c
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Intelligence/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aguilar et al. The past, present, and future of artificial life

self-replication, a fundamental feature of life. Collaborating with
Stanislaw Ulam at Los Alamos National Laboratory, von Neu-
mann defined the concept of cellular automata and proposed a
self-replicating formal system, which was aimed at being com-
putationally universal (Turing, 1936) and capable of open-ended
evolution (von Neumann, 1966; Mange et al., 2004). Simpler alter-
natives to von Neumann’s “universal constructor” were later pro-
posed by Codd (Hutton, 2010) and Banks (1971). Langton (1984)
then proposed simpler self-replicating “loops,” based on Codd’s
ideas but without universality2. Popularization and further devel-
opment of cellular automata continued in the 1970s and 1980s, the
best known examples being Conway’s Game of Life (Berlekamp
et al., 1982), and Wolfram’s elementary cellular automata (Wol-
fram, 1983). A contemporary of von Neumann, Barricelli (1963)
developed computational models similar to cellular automata,
although focusing on evolution.

In parallel to these studies by von Neumann and others, cyber-
netics studied control and communication in systems (Wiener,
1948; Gershenson et al., 2014). Cybernetics and systems research
described phenomena in terms of their function rather than
their substrate, so similar principles were applied to animals
and machines alike. Langton (1984) suggested that life should
be studied as property of form, not matter. This resonates with
the cybernetic approach, so it can be said that ALife has strong
roots in cybernetics. Moreover, central concepts such as homeosta-
sis (Ashby, 1947a, 1960; Williams, 2006) and autopoiesis (Varela
et al., 1974; Maturana and Varela, 1980) were developed within
and inspired by cybernetics (Froese and Stewart, 2010). A couple
of examples, Walter (1950, 1951) built robotic “tortoises” (Hol-
land, 1997), which can be classified as early examples of adaptive
robotics. In the 1960s, Beer (1966) developed a model for orga-
nizations based on the principles of living systems. Beer’s ideas
were implemented in Chile during the Cybersyn project (Miller
Medina, 2005) in the early 1970s.

It is clear that life does not depend only on its substrate. Take,
for example, Kauffman’s blender thought experiment (Kauffman,
2000): imagine you take the biosphere, place it in a giant blender,
and press MAX. For some time, you would have the same mol-
ecular diversity. However, without its organization, the complex
molecules of the biosphere would soon decay and their diversity
would be lost. Living systems organize flows of matter, energy, and
information to sustain themselves. Life cannot be studied without
considering this organization, as one cannot distinguish mole-
cules, which are part of a living organization from those that are
not. There have been several advances, but there is still much to
discover about the realm of the living.

ALife has been closely related to artificial intelligence (AI), since
some of their subjects overlap. As Bedau (2003, p. 597) stated:
“living and flourishing in a changing and uncertain environment
requires at least rudimentary intelligence.” However, the former is
particularly focused on systems, which can mimic nature and its
laws and therefore it is more related to biology, while the latter is
mainly focused on how human intelligence can be replicated, and
therefore, it is more related to psychology. Moreover, they differ

2Some of these and other self-replicators and cellular automata can be tested in the
open source simulator Golly (Trevorrow and Rokicki, 2013).

in their modeling strategies. On the one hand, most traditional
AI models are top-down specific systems involving a complicated,
centralized controller that makes decisions based on access to all
aspects of global state. On the other hand, ALife systems are typ-
ically bottom-up (Maes, 1993), implemented as low-level agents
that simultaneously interact with each other, and whose decisions
are based on information about, and directly affect, only their own
local environment (Bedau, 2003).

The research around these topics continued until 1987, the
year in which Langton organized the first Workshop on the Syn-
thesis and Simulation of Living Systems in Santa Fe, New Mexico,
where the term “artificial life” was coined in its current usage. The
event marked the official birth of the field. Incidentally, the scien-
tific study of complex systems (Gershenson, 2008) also initiated
roughly at the same time in the same place, the Santa Fe Institute.

Figure 1 summarizes the “prehistory” of ALife, which begins
with the ancient myths and stories and finishes with the formal
creation of this area of research.

2. THE PRESENT
2.1. WHAT IS ARTIFICIAL LIFE?
The concept of artificial life can take different meanings. In its
current usage, the term artificial life (ALife) was coined in the late
1980s by Langton (1989), who originally defined it as “life made by
man rather than by nature,” i.e., it is the study of man-made sys-
tems that exhibit behaviors characteristic of natural living systems.
However, with time, Langton found fundamental problems with
this definition, and redefined it as “the study of natural life, where
nature is understood to include rather than to exclude, human
beings and their artifacts” (Langton, 1998). He stated that human
beings, and all that they do, are part of nature, and as such, a major
goal of ALife should be to work toward removing “artificial life” as
a phrase that differs in meaning in any fundamental way from the
term “biology.” Indeed, it is now quite common for biologists to
use computational models, which would have been considered as
ALife 20 years ago, but now they are part of mainstream biology
(Bourne et al., 2005).

Bedau (2007) defined contemporary artificial life as an inter-
disciplinary study of life and life-like processes, whose two most
important qualities are that it focuses on the essential rather than
the contingent features of living systems and that it attempts to
understand living systems by artificially synthesizing simple forms
of them. Three broad and intertwining branches of artificial life
correspond to three different synthetic methods. “Soft” artificial
life creates simulations or other purely digital constructions that
exhibit life-like behavior (most ALife research is soft), “hard” arti-
ficial life produces hardware implementations of life-like systems,
and “wet” artificial life synthesizes living systems from biochem-
ical substances (Rasmussen et al., 2003, 2008). In this way, ALife
attempts to synthesize properties of living systems in computers,
machines, and molecules. Thus, ALife aims to understand bio-
logical life better by creating systems with life-like properties and
developing novel forms of life.

In a broad sense, artificial life can be understood as the syn-
thesis and simulation of living systems, which actually has been the
name of the international workshops and conferences organized
since 1987.
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FIGURE 1 | Summary of the historical roots of artificial life, from its precedents in the ancient myths and stories to the formal creation of this area of
research.

ALife has been an interdisciplinary research field (Langton,
1997; Adami, 1998; Dorin, 2014), bringing together biologists,
philosophers, physicists, computer scientists, chemists, mathe-
maticians, artists, engineers, and more. It has also been related
to several fields, having a strong overlap with some of them, such
as complexity (Bar-Yam, 1997; Mitchell, 2009), natural comput-
ing (de Castro, 2006), evolutionary computation (Baeck et al.,
1997; Coello Coello et al., 2007), language evolution (Cangelosi
and Parisi, 2002; Christiansen and Kirby, 2003), theoretical biol-
ogy (Waddington, 1968a), evolutionary biology (Maynard Smith
and Szathmáry, 1995), philosophy (Boden, 1996), cognitive sci-
ence (Clark, 1997; Bedau, 2003; Couzin, 2009), robotics (Mataric
and Cliff, 1996), artificial intelligence (AI) (Steels and Brooks,
1995)3, behavior-based systems (Maes, 1993; Webb, 2000), game
theory (Sigmund, 1993), biomimesis (Meyer, 1997; Carmena et al.,
2001), network theory (Newman, 2003; Newman et al., 2006), and
synthetic biology (Benner and Sismour, 2005), among others.

Current ALife research can be classified into the 14 themes
summarized in the rest of this section: origins of life, autonomy,
self-organization, adaptation (evolution, development, and learn-
ing), ecology, artificial societies, behavior, computational biology,
artificial chemistries, information, living technology, art, and phi-
losophy. Figure 2 shows the number of papers published in the

3Interestingly, according to Google’s Ngram Viewer, artificial intelligence had its
peak around 1988 – the same year artificial life started growing – and has reduced
its popularity since (http://t.co/d2r96JIuCm).

Artificial Life journal related to each of these themes since 1993.
The first four themes focus more on properties of living systems.
The next five themes study life at different scales. The last four are
related to our understanding, uses, and descriptions we have of
the living. This categorization is somewhat arbitrary, as several of
the themes are entwined and overlapping. This also causes some
of the topics to appear underrepresented, as related work has been
mentioned in other subsections.

2.2. ORIGINS OF LIFE
ALife has had a close relationship with the community of scien-
tists working on the origins of life. Similar to the subdivision of
ALife into two rather distinct areas focused on either individual
autonomy or population evolution, there have been two major the-
ories about the origin of life, known as the metabolism-first and
replicator-first approaches (Dyson, 1985; Pross, 2004). The former
typically views the origin of life as related to the emergence of self-
producing and self-maintaining far-from-equilibrium structures,
for example, based on the principles of autopoiesis (Ono et al.,
2008), autocatalytic networks (Kauffman, 1986), and reaction-
diffusion systems (Froese et al., 2012a). The latter approach, which
has received more attention in mainstream science (Joyce, 2002),
prefers to identify the origin of life with the beginning of evolu-
tion by natural selection (Tessera, 2009). Its classic formulation
is the “RNA world” hypothesis (Gilbert, 1986), which has been
generalized to the idea of natural selection in chemical evolution
(Fernando and Rowe, 2007). In recent work, these two approaches
can no longer be clearly distinguished as both autonomy and
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FIGURE 2 | Popularity of different themes per year, as measured by
papers published in the Artificial Life journal. Adaptation has been a
dominant theme in the journal, as it includes evolution, development,
and learning. Self-organization has not been that popular, but is a

constant topic. Some themes are poorly represented, such as art,
because artists usually choose different venues to publicize their work.
Other themes have had peaks of popularity for different reasons, such
as special issues.

evolution are thought to be necessary for life (Ruiz-Mirazo and
Moreno, 2004). Metabolism-first approaches have accepted the
necessity of an informational capacity to enable open-ended evo-
lution, even if it is in terms of a prebiotic “composite” genome
(Segré et al., 2000). Replicator-first approaches, on the other hand,
had to make recourse to membrane boundaries and metabolic
activity, for example, to give rise to individuated protocells capa-
ble of competition (Chen et al., 2004). More recently, a new debate
has arisen about the role of movement and adaptive behavior in
the origin of life (Hanczyc, 2011; Egbert et al., 2012; Froese et al.,
2014), a topic that had long been ignored by both metabolism-
and replicator-first approaches. Indeed, one of the major open

challenges in this area is to better understand the engineering of
second-order emergence (Froese and Ziemke, 2009), that is, how
to synthesize the underlying conditions for the emergence of an
individual that, in interaction with its environment, gives rise to
interesting behavior. Here, we therefore find the flipside of the
problem faced by evolutionary robotics (see below); while mod-
els of the origin of life must somehow make its systems more
interactive, robotics has to somehow make their systems more
autonomous. It is likely that attempts at integrating biological
autonomy, adaptive behavior, and evolution into one model will
continue to improve, which would at the same time mean an inte-
gration of the various subfields of ALife. This integration of life and
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mind on various timescales is also supported by ongoing develop-
ments in the philosophy of mind and cognitive science, which is
increasingly realizing the many ways in which mind is inseparable
from a living body (Thompson, 2007).

A key question related to the studies of the origin of life is the
definition of life itself (Schrödinger, 1944; Haldane, 1949; Mar-
gulis and Sagan, 1995; Bedau, 2008; Lazcano, 2008), to be able to
determine when it began. Some argue that one of the defining
properties of living systems is autonomy.

2.3. AUTONOMY
Since its beginnings, the field of ALife has always been closely asso-
ciated with the concepts of biological autonomy and autopoiesis
(Bourgine and Varela, 1992). The term “autopoiesis” was coined
by the biologists Maturana and Varela (1980) to characterize a
bounded network of processes that self-maintains its organiza-
tion such that it is identifiable as a unity in the chemical domain.
They created a computer model that can be considered as one of
the first examples of ALife (Varela et al., 1974), and which has
given rise to a tradition of computational autopoiesis in the field
(McMullin, 2004). The precise definition of autopoiesis continues
to be debated, and even Maturana and Varela were not always in
agreement with each other (Froese and Stewart, 2010). Although
the core idea seems to be that living beings are not only self-
organizing but are also self-producing, they owe their existence as
individual material entities to their ongoing internal (metabolic)
and relational (regulatory) activities. This idea is sometimes for-
malized as operational closure, which can be defined as a network
of processes in which each process enables, and is enabled by, at
least one other process in that network. Varela (1979) used this
concept to abstract autopoiesis from the specificities of the chemi-
cal domain so as to derive a concept of autonomy in general. In this
way, Varela was able to describe other biological systems, such as
the nervous system and the immune system, as being autonomous,
even if they did not chemically self-produce. Relatedly, this concept
of autonomy has been used to describe the self-sustaining dynam-
ics of social interaction (De Jaegher and Froese, 2009). However,
there is a concern that this abstraction makes us overlook what
is essential to life itself, which has prompted some researchers to
develop a more concrete theory of biological autonomy. For exam-
ple, Ruiz-Mirazo and Moreno (2004) propose that “basic auton-
omy” is the capacity of a system to manage the flow of matter and
energy through it so that it can regulate internal self-constructive
and interactive exchange processes under far-from-equilibrium
thermodynamic conditions.

This conception of autonomy, as referring to processes of self-
production, must be distinguished from the term’s common use
in robotics, where it is employed more loosely as the capacity of a
system to move and interact without depending on remote con-
trol by an operator (Froese et al., 2007). Nevertheless, it is the
strong sense of autonomy that allows us to talk about a system
as being an individual that acts in relation to its intrinsic goals,
i.e., of being a genuine agent (Barandiaran et al., 2009), rather
than being a system whose functions are heteronomously defined
from the outside. This has implications for how we should think
about the so-called “ALife route to artificial intelligence” (Steels,
1993; Steels and Brooks, 1995). An important first step along this

route was the development of behavior-based robotics, rather than
micromanaging all aspects of a system’s behavior, as was common
practice in good old-fashioned AI and still is in industrial robotics,
behavior (see below) began to be seen as an emergent property of
the robot-environment as a whole (Brooks, 1991).

Living systems need a certain degree of autonomy. This implies
that they have certain control over their own production. This can
be achieved through the process of self-organization.

2.4. SELF-ORGANIZATION
The term“self-organizing system”was defined by Ashby (1947b) to
describe phenomena where local interactions lead to global pat-
terns or behaviors, such as in swarms, flocks, or traffic (Haken,
1981; Camazine et al., 2003; Gershenson and Heylighen, 2003;
Gershenson, 2007). Early examples of self-organization in ALife
include snowflakes [Packard (1986), p. 305–310] and boids
(Reynolds, 1987), which are examples of models of pattern forma-
tion (Cross and Hohenberg, 1993) and collective motion (Vicsek
and Zafeiris, 2012), respectively. There have also been several mod-
els of collective behavior (Couzin et al., 2004), such as flocks,
schools, herds, and crowds.

Self-replication can be seen as a special case of self-organization,
as a replicator has to conserve and duplicate its organization by
itself. Examples from von Neumann to Langton have been already
mentioned, although there have been several more (Sipper, 1998).

Another special case of self-organization is self-maintenance,
which is related to homeostasis (Ashby, 1947a, 1960; Williams,
2006) and has been studied in relation to artificial chemistries
(Ono and Ikegami, 1999, 2001) (see below).

Self-assembly (Whitesides and Grzybowski, 2002) can also be
seen as a form of self-organization. There have been several exam-
ples in hard ALife of self-assembling or self-reconfigurating robots
(Murata et al., 1994; Holland and Melhuish, 1999; Zykov et al.,
2005; Dorigo et al., 2006; Støy and Nagpal, 2007; Ampatzis et al.,
2009; Rubenstein et al., 2014; Werfel et al., 2014).

Some of these robots have taken inspiration from insect
swarms. Their self-organization has served as an inspiration in
computational intelligence (Bonabeau et al., 1999; Prokopenko,
2014a). More recently, these studies have been extended toward
cognitive science (Trianni and Tuci, 2009; Gershenson, 2010). This
kind of research is also related to collective intelligence (Hutchins,
1995) and the evolution of language (Steels, 2003).

Recent attempts to guide self-organization (Prokopenko, 2009,
2014b; Ay et al., 2012; Polani et al., 2013) are using information
theory to develop systems, which are able to adapt to unforeseen
circumstances (Gershenson, 2007).

2.5. ADAPTATION
Adaptation can be defined as “a change in an agent or system as
a response to a state of its environment that will help the agent
or system to fulfill its goals” (Gershenson, 2007). Adaptation is
a central feature of living systems and is essential for autonomy
and survival. One of the major criticisms of AI has been its lack
of adaptability, as it traditionally attempted to predict and con-
trol rather than to adapt (Gershenson, 2013a), while part of ALife
has focused on bringing adaptability to AI (Maes, 1993; Steels
and Brooks, 1995). Still, both adaptability and predictability are
desirable properties in natural and artificial systems.
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Adaptation can occur at different time scales (Jablonka and
Lamb, 2006; Gershenson, 2010). At a slow scale (several lifetimes),
adaptation is called evolution. At a medium scale (one lifetime),
adaptation is called development (including morphogenesis and
cognitive development). At a fast scale (a fraction of a lifetime),
adaptation is called learning. Adaptation at one or more scales has
been a central topic in ALife, as shown by Figure 2.

2.5.1. Evolution
Computer science has exploited artificial evolution extensively, ini-
tially with genetic algorithms (Holland, 1975; Mitchell et al., 1992;
Mitchell and Forrest, 1993)4, which were generalized in the field
of evolutionary computation (Baeck et al., 1997; Coello Coello
et al., 2007), an important part of computational intelligence
(Prokopenko, 2014a). The main purpose of using evolutionary
algorithms is to search suitable solutions in problem spaces that
are difficult to explore with more traditional heuristic methods.

ALife systems such as Tierra (Ray, 1993) and Avida (Ofria,
1999; Ofria and Wilke, 2004) have been used to study the evolu-
tion of “digital organisms,” using a formal framework, which has
brought fruitful advances in the understanding features of living
systems such as robustness (Lenski et al., 1999), the evolution of
complexity (Adami et al., 2000), the effect of high-mutation rates
(Wilke et al., 2001), the evolution of complex organisms (Lenski
et al., 2003), mass extinctions (Yedid et al., 2012), and ecological
networks (Fortuna et al., 2013).

In hard ALife, evolution has been used also for further removing
the influence of the designer with the development of evolutionary
robotics (Cliff et al., 1993; Eiben, 2014), e.g., the use of evolu-
tionary algorithms in the automated design of a robot’s cognitive
architecture, which could simply be initialized as a generic dynam-
ical system (Beer, 1995). This approach continues to be a popular
tool for the ALife community (Nolfi and Floreano, 2000; Har-
vey et al., 2005; Vargas et al., 2014), but it has become evident
that replacing the human designer by artificial evolution does
not spontaneously lead to the emergence of agents in the strong
sense discussed above (Froese and Ziemke, 2009). One response
has been to apply insights from organisms to better design the
internal organization of artificial agents such that they can sponta-
neously re-organize, for example, by incorporating some capacity
for homeostatic adaptation and habit formation (Di Paolo, 2003).
Initial attempts followed Ashby (1960) proposal of ultrastability,
but the problem of heteronomous design quickly resurfaced. It is
still an important open challenge to enable more profound forms
of internal adaptation in these agents without pre-specifying the
underlying mechanisms and/or their goals (Iizuka et al., 2013;
Izquierdo et al., 2013; Egbert and Cañamero, 2014).

2.5.2. Development
Artificial development is, on one hand, inspired by the devel-
opmental processes and cellular growth seen in nature (biolog-
ical development), and on the other hand, it is interested in

4Barricelli (1963) proposed computational models of evolution earlier, but his work
has not had an impact within the ALife community. Current work on soft ALife can
be traced back to Holland (1975).

studying developmental processes related to cognition (cognitive
development).

Chavoya (2009) defined “biological artificial development” as
the study of computer models of cellular growth, with the objective
of understanding how complex structures and forms can emerge
from a small group of undifferentiated initial cells. These systems
have been traditionally divided into two groups: (1) those that
are based on self-organizing chemical processes in and between
cells, and (2) those that follow a grammatical approach. Turing
(1952) seminal paper on the chemical basis of morphogenesis
is probably the earliest work belonging to the first group. In
that paper, Turing used a set of differential equations to pro-
pose a reaction-diffusion model, which led him to suggest that
an initially homogeneous medium might develop a structured
pattern (such as certain radial and dappling patterns observed
in the skin of many animals) due to an instability of the homo-
geneous equilibrium, triggered by small random disturbances.
Later on, Gierer and Meinhardt (1972) presented a model sim-
ilar to Turing’s. They proposed that pattern formation was the
result of local self-activation coupled with lateral inhibition. The
most famous result of their theory is the simulation of seashell
patterns (Meinhardt, 2003). Regarding those systems that follow
a grammatical approach, Lindenmayer (1971) proposed the so-
called L-Systems,which are a formal grammar with a set of symbols
and a set of rewriting rules. They were introduced as a mathemat-
ical formalism for modeling development of simple multicellular
organisms. These systems were applied to modeling the devel-
opment of plants and trees (Prusinkiewicz et al., 1990). In 1996,
Dawkins (1996) introduced his famous work on “biomorphs” to
illustrate how evolution might induce the creation of complex
designs by means of micro-mutations and cumulative selection.
His results include biomorphs that resemble tree-like structures,
insects, crustaceans, and mammals. More recently, Stanley (2007)
proposed a novel abstraction of natural development, called“com-
positional pattern producing networks” (CPPNs). This model
allowed him to demonstrate the existence of intrinsic proper-
ties found in natural development, such as bilateral symmetry
and repeating patterns with and without variation. There has also
been interest in creating software platforms as tools for experi-
menting with simulated developmental processes. For example,
Stewart et al. (2005) created the METAMorph open source soft-
ware, which allows researchers to manually design genetic regu-
latory networks and visualize the resulting morphological growth
process.

The artificial life community has also been interested in cre-
ating computational models of cognitive development. Mareschal
and Thomas (2006) defined them as formal systems that track
the changes in information processing taking place as a behav-
ior is acquired. Several approaches have been taken to tackle this
problem, such as neural networks [e.g., Shultz et al. (1995); Parisi
and Schlesinger (2002)], dynamical systems theory [e.g., Thelen
and Smith (1996)], cognitive architectures [e.g., Anderson (1993);
Simon (1998); Jones et al. (2000)], and Bayesian networks [e.g.,
Xu and Tenenbaum (2000); Schlesinger and Parisi (2001)]. For
recent reviews of this topic, see Elman (2005) and Schlesinger and
McMurray (2012).
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2.5.3. Learning
Learning is a fundamental aspect of adaptive behavior for living
organisms. Although there is no agreed definition, it can be con-
ceived as a change in an organism’s capacities or behavior brought
about by experience (Wilson and Keil, 1999). In the context of
artificial life, several approaches have been taken to model learn-
ing, some of which have influenced the field of machine learning
(Bishop, 2006).

Artificial neural networks (Rojas, 1996; Neocleous and Schizas,
2002) are a well known approach to learning, which are inspired by
the structure and functional aspects of biological neural networks.

Another common form of machine learning, inspired by behav-
iorist psychology, is reinforcement learning (Kaelbling et al., 1996;
Sutton and Barto, 1998; Nowé et al., 2012), where adaptation
occurs through environmental interaction (Woergoetter and Porr,
2008).

There have been several other ALife approaches to learning
in conjunction with other themes, e.g., behavior or evolution
(Izquierdo et al., 2008).

2.6. ECOLOGY
At a high level of abstraction, ecological studies in ALife can
be described as interactions between individuals from different
species and with their environment.

Coevolution involves species interaction across generations,
having strong relations with ecology. Sims’s creatures (Sims, 1994)
are one example of coevolution. These creatures compete for a
resource and evolve interesting morphologies and behaviors. A
relevant topic within coevolution is the “red queen effect” (Dave
and Miller, 1995) where species evolution affects the fitness of
other species, leading to “arm races” (Nolfi and Floreano, 1998),
which can promote the evolution of complex traits.

Also, related with evolution, ecological studies of ALife can offer
insights into relationships such as symbiosis, parasitism (Watson
et al., 2000; Froese et al., 2012a), and mutualism (Pachepsky et al.,
2002).

At a global level, the living properties of biospheres have been
studied. Perhaps the best known example is Daisyworld (Watson
and Lovelock, 1983; Lenton and Lovelock, 2000). ALife models
can study how regulation can occur as a consequence of multiple
ecological interactions (McDonald-Gibson et al., 2008).

ALife ecological models, including cellular automata and agent-
based (Grimm et al., 2005), have been used already in ecology for
applications such as resource management (Bousquet and Page,
2004) and land-use models (Matthews et al., 2007), where models
have to include also the social dimension.

2.7. ARTIFICIAL SOCIETIES
Societies are defined by the interactions of individuals of the same
species. The computational modeling of social systems has become
very popular because it enables the systematic exploration of pos-
sibilities of social interaction, which are very difficult to achieve
with complex societies (Gilbert and Conte, 1995; Epstein Axtell,
1996; Gershenson, 2001; Epstein, 2006).

For example, the evolution of cooperation has been a popu-
lar research topic (Burtsev and Turchin, 2006). Mainly based on
game theory (Nowak, 2006), one of the most studied problems of
cooperation is the prisoner’s dilemma (Santos et al., 2006, 2008).

This approach has also been used to study multilevel selection
(Traulsen and Nowak, 2006; Powers et al., 2011).

Central to human societies, the evolution of language and com-
munication has been widely studied, beginning within the ALife
community (Cangelosi and Parisi, 2002; Kirby, 2002; Steels, 2012).
The evolution of language can be seen as a special case of semi-
otics, i.e., the problem of how meaning is acquired, which is also
studied within ALife (Emmeche, 1991; Rocha, 1998; Ziemke and
Sharkey, 2001) and closely related with philosophy (Gershenson,
2002).

Language is also a part of culture, which is beginning to be
modeled within computational anthropology (Axtell et al., 2002).

The modeling of societies has led to the development of pop-
ular ALife games, such as Creatures (Grand, 2001) and The Sims
(Wikipedia, 2014).

In several cases, artificial societies include models of individual
behavior [e.g., Burtsev and Turchin (2006)].

2.8. BEHAVIOR
Some of the differences between artificial intelligence and artifi-
cial life can be seen in their contrasting views of and approaches
to synthesizing behavior. Put in somewhat simplified terms, AI
reduces behavior to something that is specified to take place inside
an agent independently and on its own terms. This internal pro-
cessing is often implemented in terms of a sense-model-plan-act
architecture, which means that the agents behavior has more to do
with logical inferences based on internal representations rather
than with interacting with the world in real time. This tradi-
tional view was widely criticized from scientific, engineering, and
philosophical perspectives. These have agreed that the structure
of behavior is primarily to be conceived, designed, and analyzed
in terms of the dynamics of a closed sensorimotor loop (Braiten-
berg, 1986; Brooks, 1991; Cliff, 1991; Dreyfus, 1992; Clark, 1997;
Pfeifer and Scheier, 1999; Pfeifer et al., 2007a). This has led to the
study of adaptive behavior, mainly based on ethology (Maes, 1993;
Meyer, 1997). This widespread paradigm shift made it evident that
the contributions of the body and of the environment cannot be
ignored, which is why this research is often referred to as embod-
ied and situated (or embedded) cognition (Varela et al., 1991).
Since the 1990s this paradigm has continued to grow in popu-
larity (Wheeler, 2005; Chemero, 2009; Robbins and Aydede, 2009;
Beer, 2014b), so much that the next step is to disentangle the many
versions that have been proposed (Kiverstein and Clark, 2009).
ALife has benefited from this paradigm shift because it has always
preferred to study the conditions of emergence to pre-specified
behavior, and because it has closely linked the notion of life with
biological embodiment and its environment. As cognitive science
is in the process of continuing its theoretical development from
an embodied to a so-called “enactive” approach, which pays par-
ticular attention to the properties of the living such as autopoiesis,
autonomy, and sense-making (Weber and Varela, 2002; Thomp-
son, 2007; Di Paolo, 2009).Therefore, we can expect that ALife will
take the place of AI as the most important synthetic discipline
of cognitive science. It is ALife, not traditional AI, which has the
tools in order to investigate the general principles of the biologi-
cally embodied mind (Di Paolo, 2003; Pfeifer et al., 2007b; Froese
and Ziemke, 2009). At the same time, given the increasing inter-
est in the science of consciousness, it is likely that these efforts
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will be complemented by a growing emphasis on synthesizing and
using new kinds of immersive and life-like human-computer inter-
faces to explore life- and mind-as-it-could-be from the first-person
perspective (Froese et al., 2012b).

2.9. COMPUTATIONAL BIOLOGY
Theoretical biology (Waddington, 1968b) preceded ALife in the
abstract study of living systems. In return, ALife has contributed
to theoretical biology with the development of computational
models and tools.

Computers have enabled the study of complex systems (i.e.,
having many non-linearly interacting components), in a similar
way as microscopes enabled microbiology (Pagels, 1989). Sys-
tems biology (Kitano, 2002) has also required computers to study
the complexity of biological systems at different scales, overlap-
ping with ALife in several aspects. The transmission, storage, and
manipulation of information at different scales are essential fea-
tures of living systems, and several ALife models focus on one or
more of these.

Cellular automata were already mentioned (Wolfram, 1986;
Wuensche, 1992). Similar models have been used to study other
aspects of biology. For example, Kauffman (1969) proposed ran-
dom Boolean networks as models of genetic regulatory net-
works (Aldana-González et al., 2003; Gershenson, 2004). Studying
ensembles of such networks, the functional effects of topologies,
modularity, degeneracy, and other structural properties can be
measured (Gershenson, 2012), providing insights into the nature
of adaptability and robustness. These models of genetic regulatory
networks have been useful for theoretical biology, as they have
demonstrated the role of criticality in evolution (Balleza et al.,
2008) and suggested that a possible evolutionary mechanism for
obtaining this criticality (Torres-Sosa et al., 2012).

The study of biological neural networks led to the proposal of
several models of distributed computation (Rojas, 1996). Some of
these have been used in ALife for the evolution, development, or
learning of artificial “brains” with different applications.

In a similar way, the computational study of immune systems
(Bersini, 1992; Forrest et al., 1994) has led to developments in
computer security and optimization (Burke et al., 2014).

2.10. ARTIFICIAL CHEMISTRIES
Artificial chemistries are used to study questions related to the
origin of life from chemical components, as well as prebiotic and
biochemical evolution (Dittrich et al., 2001). This is because chem-
ical components are considered non-living, while they form living
organisms. Perhaps the first computer simulation of the forma-
tion of a simple protocell consisting of a metabolic network and
a boundary was that which introduced the concept of autopoiesis
(Varela et al., 1974; Maturana and Varela, 1980; McMullin, 2004).

Other examples of work related to the transition from chem-
istry to biology include M, R systems (Rosen, 1958; Letelier et al.,
2006), the chemoton (Gànti, 1975, 2003), the hypercycle (Eigen
and Schuster, 1978, 1979), autocatalysis (Farmer et al., 1986;
Kauffman, 1986), and algorithmic chemistry (Fontana, 1991).

Artificial chemistries have been extended to include evolu-
tion (Hutton, 2002) and are closely related with self-organization
(Sayama, 2008).

2.11. INFORMATION
It has been argued that living systems lie at the “edge of chaos”
(Langton, 1990; Kauffman, 1993), i.e., they require a balance
between stability/robustness and change/adaptability. How to find
this balance? More generally, how are we to measure organization
and self-organization? And adaptability, homeostasis, autonomy,
or even autopoiesis? There have been several proposals, but still
there is no agreement on how the properties of living systems
should be measured.

A recent attempt has been to use information theory (Shannon,
1948; Prokopenko et al., 2009) to measure different properties of
living systems. In this context, the field of guided self-organization
is emerging (Prokopenko, 2009, 2014b; Ay et al., 2012; Polani et al.,
2013), combining tools and concepts from information theory,
self-organizing systems, and ALife.

For example, following Ashby’s law of requisite variety (Ashby,
1956), autopoiesis can be seen as the ratio of the complexity of a
system over the complexity of its environment (Fernández et al.,
2014). This implies that a living system requires a higher complex-
ity than its environment to have a certain degree of autonomy.
This view shifts the definition of life from “all or nothing” to a
continuous transition between the non-living and living.

2.12. LIVING TECHNOLOGY
There have been hundreds of papers published on applications
of ALife (Kim and Cho, 2006). More recently, the term “liv-
ing technology” has been used to describe technology that is
based on the core features of living systems (Bedau et al., 2009,
2013). Living technology is adaptive, robust, autonomous, and
self-organizing. Living technology can be classified as primary and
secondary [Bedau et al. (2009), p. 91]. Primary living technology
is constructed from non-living components, while secondary liv-
ing technology depends on living properties already present in its
elements.

An example of primary living technology would be the design
of protocells (Rasmussen et al., 2008) or artificial cells (Gibson
et al., 2010) for applications such as cleaning pollution, generating
energy, and improving health.

A broad area of application of secondary living technology lies
within socio-technical systems (Helbing et al., 2012; Gershenson,
2013c). Governments, economies, and cities will be more efficient
if they are “living,” i.e., exhibiting some of the key properties of
living systems, potentially bringing numerous benefits to society.

ALife has the capacity to improve technologies, but also tech-
nologies have contributed to ALife. For example, there has been
substantial ALife research based on the Internet, which facilitates
the study of, e.g., interactive evolution (Taylor, 2014), which has
also led to some artistic applications, e.g., Picbreeder (Secretan
et al., 2008).

2.13. ART
Within artificial intelligence, methods have been developed to
model creativity (Boden, 1998). This has also been the case in ALife
(Rinaldo, 1998; Whitelaw, 2004), where computational methods
such as evolutionary computation have been used for creating
artwork (McCormack and d’Inverno, 2012; Antunes et al., 2014),
mainly within design, the visual arts, and music.
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There have been several exhibitions dedicated to ALife art, such
as the Ars Electronica Festival 1993, with many artists producing
works within this movement (Penny, 2010). The VIDA Art and
Artificial Life International Awards (Tenhaaf, 2008) began in 1999
and has been active since, supporting and promoting ALife art.

The interaction between the scientific and artistic ALife com-
munities has been marginal and could be enhanced. Still, they are
far more interconnected than is sometimes the case between the
sciences and the humanities.

2.14. PHILOSOPHY
Artificial life has dealt with several philosophical questions (Boden,
1996). An ontology is required to discuss what life is. Epistemology
is needed for understanding living systems (Pattee, 1995), but also
artificial creatures can have their own epistemology (Beer, 2014a).
ALife has also contributed to the philosophical discussions related
to the nature of emergence (Bedau and Humphreys, 2008). Fur-
thermore, building living systems has ethical implications (Bedau
and Parke, 2009).

In particular, one unresolved question in the philosophy of arti-
ficial life is the status of the modeled phenomena. In the case of wet
ALife, the synthetic creation of a living system logically implies the
creation of an actual life form. But what about simulation models
of living systems? Some researchers argue that since life is a prop-
erty of the systemic organization of a material phenomenon (such
as autopoiesis), and not identical with the material phenomenon
per se, we should also treat modeled life as real life. This posi-
tion is known as “strong” ALife. Still, it could also be argued that
even though life is expressed by a certain systemic organization, it
nevertheless requires a concrete material realization in order to be
considered real life. On this view, modeled life is just that – a model
and not real life. An intuitive way to understand this position
(“weak” ALife) is to consider what happens when we run a pro-
gram that is simulating the molecular structure of water. Although
the formal organization of the molecules in the model is the same
as of real water, the computer running the simulation does not get
wet! Therefore, it becomes understandable why many researchers
do not assign to their modeling results the same status as empir-
ical data, that is, data obtained from wet ALife or other physical
experiments. Yet, due to the complexity of most models, running
a computer simulation can provide us with new insights, some
of which may, in fact, be unattainable without actually running
the simulation. In other words, models are not just computerized
versions of thought experiments, they are“opaque”thought exper-
iments (Di Paolo et al., 2000). This interpretation also connects the
field of ALife with a long tradition in continental philosophy of
mind that is currently gaining popularity in cognitive science, i.e.,
phenomenology (Gallagher and Zahavi, 2008), which also relies on
imaginative thought experiments (a method known as eidetic vari-
ation) to investigate the essential structure of life and mind (Froese
and Gallagher, 2010). Of course, this more conservative and prag-
matic interpretation of the status of ALife models will not convince
those who see life as a purely abstract relational phenomenon, and
therefore, realizable by digital computers. Fortunately, for most
purposes of scientific investigation based on the use of artificial
life tools, this still unresolved philosophical debate is somewhat
tangential. No matter whether we treat our simulations as models

or as actual realizations, the objective results we obtain from them
remain the same.

3. THE FUTURE
How can systems be built with metabolism, heredity, and mem-
branes at the same time? How can adaptation at multiple temporal
and spatial scales be achieved? Is there an inherent limitation to
computer simulations of open-ended evolution? How to integrate
adaptivity and autonomy? How can ALife benefit society?

These and other questions have been asked within the ALife
community. Bedau et al. (2000) distilled a list of 14 open problems:

1. Generate a molecular proto-organism in vitro.
2. Achieve the transition to life in an artificial chemistry in silico.
3. Determine whether fundamentally novel living organizations

can exist.
4. Simulate a unicellular organism over its entire lifecycle.
5. Explain how rules and symbols are generated from physical

dynamics in living systems.
6. Determine what is inevitable in the open-ended evolution of

life.
7. Determine minimal conditions for evolutionary transitions

from specific to generic response systems.
8. Create a formal framework for synthesizing dynamical hierar-

chies at all scales.
9. Determine the predictability of evolutionary consequences of

manipulating organisms and ecosystems.
10. Develop a theory of information processing, information flow,

and information generation for evolving systems.
11. Demonstrate the emergence of intelligence and mind in an

artificial living system.
12. Evaluate the influence of machines on the next major evolu-

tionary transition of life.
13. Provide a quantitative model of the interplay between cultural

and biological evolution.
14. Establish ethical principles for artificial life.

There have been advances in all of these problems since 2000,
but all of them remain open. As such, they continue to serve as
guidelines for future ALife research.

A better understanding of life will allow us to make better
decisions at all levels: managing ecological resources, regulat-
ing social interactions, planning urban systems, commercializing
biotechnology, and more.

We are increasingly designing living systems: from husbandry in
ancient times to molecular robots (Benenson et al., 2004) and syn-
thetic biology in the present and near future. The complexity of liv-
ing systems limits the scalability of the systems we can design. For
example, electronic circuits are scalable because their interactions
can be regulated. Even when there is a registry of standard biolog-
ical parts5, it is difficult to isolate components. Moreover, unex-
pected chemical interactions bound the complexity of molecular
machines because of limited scalability. Techniques based on evo-
lution or self-organization have produced some advances, but

5http://parts.igem.org
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there is much to do before we will be able to design living sys-
tems reliably. The interactions between components have been a
limitation, as these generate novel information, which limits pre-
dictability (Gershenson, 2013b). Guiding these interactions has to
be the way forward in the design of living systems.

The creation of artificial life is having deep implications in
society and culture. The film “Mechanical Love” (Ambo, 2009;
Gershenson et al., 2010) explores two implications: how pet robots
can benefit human beings emotionally, and how artificial creatures,
which look closely like human beings, generate an “uncanny val-
ley” (Mori, 1970), i.e., discomfort because they look real but not
real enough. As ALife progresses and its applications permeate into
society, how will society be transformed as living artifacts are used?
Will we still distinguish artificial from biological life?

As mentioned above, the methods and insights of ALife have
been also permeating into biology, in the sense that computational
modeling is now commonplace in all branches of biology. Will the
successes of ALife imply its absorption into the mainstream study
of life? That seems to be the case. If this tendency continues, soon
ALife will no longer be “artificial.”
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