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Evolutionary robotics allows biologists to test hypotheses about extinct animals. In our
case, we modeled some of the first vertebrates, jawless fishes, in order to study the evo-
lution of the trait after which vertebrates are named: vertebrae. We tested the hypothesis
that vertebrae are an adaptation for enhanced feeding and fleeing performance.We created
a population of autonomous embodied robots, Preyro, in which the number of vertebrae,
N, were free to evolve. In addition, two other traits, the span of the caudal fin, b, and
the predator detection threshold, ζ, a proxy for the lateral line sensory system, were also
allowed to evolve. These three traits were chosen because they evolved early in verte-
brates, are all potentially important in feeding and fleeing, and vary in form among species.
Preyro took on individual identities in a given generation as defined by the population’s six
diploid genotypes, Gi. Each Gi was a 3-tuple, with each element an integer specifying N, b,
and ζ. The small size of the population allowed for genetic drift to operate in concert with
random mutation and mating; the presence of these mechanisms of chance provided an
opportunity for N to evolve by accident.The presence of three evolvable traits provided an
opportunity for direct selection on b and/or ζ to evolve N as a by-product of trait correlation.
In selection trials, different Gi embodied in Preyro attempted to feed at a light source and
then flee to avoid a predator robot in pursuit.The fitness of each Gi was calculated from five
different types of performance: speed, acceleration, distance to the light, distance to the
predator, and the number of predator escapes initiated. In each generation, we measured
the selection differential, the selection gradient, the strength of chance, and the indirect
correlation selection gradient. These metrics allowed us to understand the relative contri-
butions of the three mechanisms: direct selection, chance, and indirect selection. Direct
selection on N, operating alone, caused the initial increase in N, but was then augmented
by chance and indirect selection.Through the course of 11 generations, chance and indirect
selection would occasionally supplant direct selection as the primary evolutionary driver.
In later generations, direct selection switched sign, stabilizing N at an apparent optimum
mean value of 5.7. These results tentatively support the hypothesis that vertebrae evolved
as an adaptation for enhanced feeding and fleeing performance in early vertebrates.

Keywords: robotics, evolution, modeling, selection, vertebrae, vertebral column, vertebrates

INTRODUCTION
When properly designed, physically embodied robots may be used
to test hypotheses about the workings of animals. This is the goal of

Abbreviations: α, significance threshold; β, directional selection gradient; χ, indi-
rect selection gradient; ρ, partial correlation coefficient; θ, number of escapes; ζ,
predator detection threshold; ω, individual relative fitness; a, acceleration, peak; b,
tail span; C, strength of chance; D, distance to predator, average; E ′, storage modulus;
E ′′, loss modulus; G, genotype, diploid; H, genotype, haploid; H *, mutated haploid
genotype; N, number of vertebrae; r, Pearson correlation coefficient; R, distance to
light source, average; S, selection differential; U, swimming speed, average.

biorobotics, as demonstrated and codified by Webb (1995, 2001).
For example, biomechanists interested in fish propulsion have used
self-propelled, embodied robotic models to test hypotheses about
the interactions of mechanical stiffness and control (McHenry
et al., 1995; Lauder et al., 2007; Tangorra et al., 2010; Long et al.,
2011b; Esposito et al., 2012; Shelton et al., 2014). Biorobotics, with
its explicit biological goals, is a natural complement to evolution-
ary robotics (Harvey et al., 1997; Lipson and Pollack, 2000; Nolfi
and Floreano, 2000, 2002; Pollack et al., 2000; Pfeifer and Bongard,
2006; Vargas et al., 2014). Evolving embodied robots to test bio-
logical hypotheses offers new modeling tools to biologists and new
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insights about evolutionary mechanisms to engineers, computer
scientists, and cognitive scientists (Floreano and Keller,2010; Long,
2012; Bongard, 2013; Eiben, 2014a,b).

Evolutionary robotics can help address difficult questions in
evolution. For events that occurred in extinct species, a major
challenge is the nature of the physical evidence. Fossils, if they are
even available, provide only limited information about morphol-
ogy and environment; they are silent regarding physiology and
behavior. Phylogenetic reconstruction can readily infer patterns
of trait evolution but says nothing about the real-time dynam-
ics of the specific microevolutionary mechanisms creating those
changes. In general, historical analyses of adaptation are ham-
pered by the change in a trait’s function over time and the lack of
information about the individual and population-level genetics,
behavior, ecology, and selection environment (Brandon, 1990). If
one is interested in the relationship between morphology, behav-
ior, performance, and evolutionary mechanisms, then the only
recourse is to judiciously design and test models.

Digital simulation, where models of organisms or mobile
robots operate and evolve autonomously in a virtual environment,
has proven to be a powerful approach in evolutionary robotics.
Modeling a quadruped and hexapod, Bongard (2014) found that
evolution toward a targeted behavior accelerated when the neural
network controllers occupied a succession of different body plans
that changed over developmental and evolutionary timeframes.
Lipson and Pollack (2000) explored vast regions of morphologi-
cal space with digital simulation in multiple replicates of mobile
organisms, creating physically embodied versions of a few evolved
designs to validate their physics engine. Lenski et al. (2003) pio-
neered the use of digital organisms, populations of computer
programs that evolve and can be used to directly test evolutionary
theory and the origins of complexity over thousands of genera-
tions. Digital simulations of the coupled, closed-loop mechanics
of swimming vertebrates tested biological hypotheses of motor
control (Ijspeert and Cabelguen, 2006; Ijspeert et al., 2007; Tytell
et al., 2010). Most importantly, digital simulation makes possible
models with large population size, large numbers of generations,
and multiple replicates and starting conditions (Long et al., 2010).

In the face of these obvious benefits of digital simulation
why bother evolving physically embodied robots? First, embodied
robots offer physical interactions that – by virtue of being instanti-
ated rather than simulated – are more accurate (Pfeifer et al., 2007).
For example, digital simulation of the physical dynamics of swim-
ming is particularly challenging given the hydroelastic interactions
of a bending body and non-linear fluid forces (Tytell et al., 2010).
Second,embodied robots cannot violate the laws of physics. Digital
simulations may – for the sake of simplicity, invention, abstrac-
tion, ignorance, or elegance – assume the physically impossible,
like frictionless joints, infinitely stiff bones, or a smooth, feature-
less environment. The failure of embodied robots to behave or
function as predicted is immediately informative about the work-
ings of the system. Third, the physical is logically and empirically
prior to the digital if one’s goal is to model an actual physical
system. Usual engineering practice is to validate a digital simula-
tion with a working physical model; differences between the two
point to problems with assumptions or mechanisms of the digital
model. Fourth, the evolution of physical things, notably robots, not

only allows for the testing of scientific hypotheses, but also for the
automatic design of purpose-built and intelligent machines, over-
coming the limitations of systems designed directly by humans
(Eiben, 2014b).

While they offer important benefits over digital simulations,
physically embodied robots have costs that are magnified in the
context of evolutionary robotics. When we fail to create embodied
robots that autonomously reproduce and develop, we must engage
in the labor-intensive process of constructing by hand each indi-
vidual. This problem can be overcome by using a hybrid approach
(Eiben, 2014b), evolving and developing just the software con-
troller (Nolfi and Floreano, 2000), or by conducting a portion of
the experiments in simulation (Elfwing and Doya,2014). But if one
seeks to evolve morphology in complex physical circumstances,
where no valid physics engine exists, then the new bodies must
be fabricated each generation. Thus manufacturing time currently
imposes a high labor cost on embodied evolution experiments
involving morphology (Long et al., 2006; Doorly et al., 2009; Long,
2012). The experimental testing of physically embodied robots is
also time-consuming: robots must be built, maintained, and fixed;
a strict protocol must be developed and followed for all proce-
dures; and data from each individual in each experiment must be
checked for quality, concatenated with other data, and used appro-
priately in algorithms for calculating fitnesses and the genotypes
of the next generation.

In this study, we use physically embodied robots to model trait
evolution via three co-operating mechanisms: (1) direct selection,
(2) random effects, including mutation, mating, and genetic drift,
and (3) indirect selection via genetic or functional correlation with
other traits. Changes in a trait that result from the direct selection
on that trait are called adaptations. Changes in a trait that result
from neither direct nor indirect selection are accidents, and they
come about by random effects. Mutation is the most commonly
modeled random effect, as it is required to generate the genetic
variation upon which selection operates. Another random effect,
often avoided by modelers because of its tendency to swamp out
selection effects, is genetic drift. Drift is essentially a sampling error
that comes about because of the mathematics of small numbers. A
small population size allows for genetic drift to operate alongside
mutation. Finally, changes in a trait that result from the indirect
effects of selection on other traits correlated with the focal trait
are often called by-products. The presence of other traits allows
for selection to alter its target from the focal trait and to work
indirectly, through correlated effects, or to avoid the focal trait
altogether (Connor, 2012).

Our goal is to test the following hypothesis about trait evolu-
tion: selection for enhanced feeding and also fleeing from preda-
tors in early vertebrates was sufficient to increase the number of
vertebrae. We test this hypothesis using an evolutionary robotic
approach: we employ an embodied biorobotic model of an early
vertebrate fish species acting as a prey in a predator-prey ecology.
The robots, based on the Tadro-class of robots (Long et al., 2006;
Doorly et al., 2009; Long et al., 2011a,b; Long, 2012), are behav-
iorally autonomous, seeking light as a proxy for feeding, while
avoiding a pursuit predator.

Fossil records show that between 550 and 400 million years
ago, early fish-like vertebrates evolved at least three morphological
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traits that have been retained in modern fish species: vertebrae,
caudal fins, and lateral lines (Janvier, 2008). Each of these three
traits appears in the first 100 million years Paleozoic Era, with
proto-vertebrae first observed in Haikouichthys during the early
Cambrian (Shu et al., 2003), a caudal-fin-like structure making its
appearance in Haikouella during the Cambrian (Chen et al., 1999;
Holland and Chen, 2001), and lateral lines evident in jawless fishes
from the Ordovician (Janvier, 2008). Because of this shared early
history, we selected caudal fins and lateral lines as the companion
traits to evolve along with vertebrae.

Vertebrae, the bones that run in series from head to tail to
form the vertebral column, show a particularly interesting pattern
of evolution. Centra, the structures that form the compression-
resisting bodies of vertebrae (Porter and Long, 2010), have evolved
and been lost multiple times [for review see Koob and Long
(2000)]. Might each case of evolutionary origin have been dri-
ven by the same selection pressures? Might vertebrae evolve under
multiple selection pressures? Might their repeated origin and loss
suggest that they also evolve as by-products of selection on other
traits?

To understand the mechanisms that might have evolved
vertebrae in vertebrates, we tested three related hypotheses:

HYPOTHESIS 1
Vertebrae evolve as a direct target of selection. We predict that: (a)
the number of vertebrae will increase and (b) the selection gradi-
ent for vertebrae will be positive under constant selection. If this
prediction is upheld, then the evolution of more vertebrae is an
adaptation for enhanced feeding and fleeing.

HYPOTHESIS 2
Vertebrae evolve via random processes. We predict: (a) no par-
ticular pattern for the evolution of vertebrae, (b) the number of
vertebrae will not be correlated with another trait under selection,
and (c) the selection gradient for number of vertebrae will be zero
or will be small and vary in sign from generation to generation.
If these predictions are upheld, then the evolution of more ver-
tebrae is an accident (random) with respect to selection and the
correlated effects of other traits.

HYPOTHESIS 3
Vertebrae evolve as an indirect target of selection through corre-
lation among traits. We predict that: (a) the number of vertebrae
will increase in positive or negative correlation with a change in
another trait, (b) the selection gradient for vertebrae will be zero
or negative, and (c) the selection gradient will be non-zero for
another trait. If this prediction is upheld, then the evolution of
more vertebrae is a by-product of selection on some other trait.

The evolutionary mechanisms described in these three
hypotheses may alternate in relative magnitude over time. For
example, direct selection may predominate in one generation and
random processes may do so in the next. This is possible because
even though the fitness function – and hence the selection pres-
sure – remains constant over generational time, the individuals
that make up the population do not. By allowing for three different
mechanisms to operate in parallel, we are increasing the probabil-
ity that selection will be refuted as the primary evolutionary driver

of this system. Under this condition, failure to refute selection as a
primary driver in this small population would constitute stronger
evidence for selection than in a large population where the magni-
tude and importance of drift is reduced. We remain neutral as to
whether or not vertebrates evolved primarily in small or large pop-
ulations; however, it is worth noting that small isolates of larger
populations often create conditions amenable to rapid evolution
(Ridley, 1996). This study models evolutionary dynamics in small
populations, and hence any claims as to the generality of the results
are limited to that context.

MATERIALS AND METHODS
AUTONOMOUS ROBOTS
We developed two surface-swimming, physically embodied,
autonomous robots to simulate a vertebrate prey (“Preyro”),
predator (“Tadiator”), and their behavioral interactions. Only the
population of Preyros evolved; the single Tadiator was held con-
stant in morphology and coding, providing a consistent force of
selection over the generations. Preyro and Tadiator were first intro-
duced in evolutionary experiments by Doorly et al. (2009) and
their design was elaborated in Long (2012). We briefly summarize
and update their design here.

Preyro was modeled after a jawless fish from the Paleozoic
Era, Drepanaspis gemuendenensis (Figure 1). We examined a fossil
(Figure 1A) and a 3D physical model by Anton Fürst (Figure 1B)
of Drepanaspis at the Natural History Museum, Vienna, Austria
(Figure 1A). Drepanaspis is reconstructed as having a rigid, pan-
shaped body propelled by a flexible tail with a backbone that lacks
bony vertebral centra; it lacks paired fins but possesses eyes and
a lateral line (Tarlo, 1964). Preyro is similar in size and shape to
Drepanaspis, with a rigid, pan-shaped body propelled by a flexible
tail (Figure 1C).

The body of Preyro was a circular 7.7 cm diameter plastic
container (Tupperware, Orlando, FL, USA). To facilitate straight
swimming and to damp lateral rocking, a Plexiglas™ keel was
added to the bottom of the hull; the keel was trapezoidal (9.3 cm
at the base, 5 cm at the top, and 5 cm deep). For tracking via video,
Preyro had two LEDs of different colors mounted on the hull at
the bow and the stern. Lead weights were used as ballast and for
trimming.

For detection of the light source, Preyro had two photoresis-
tors, mounted above the waterline±45° from the midline, serving
as eyespots (Figure 2). Two IR emitter–receivers mounted on
the sides were used for predator detection and served as prox-
ies for the lateral line of Drepanaspis. Just as the lateral line
informs fish of moving objects in the near vicinity, the IR emitter–
receivers informed Preyro of objects within a pre-defined distance
determined by ζ, the predator detection threshold, in centimeters.

Preyro also carried a three-axis accelerometer (Wireless
Dynamic Sensor System, Vernier Software & Technology, Beaver-
ton, OR, USA), a digital microcontroller (MIT HandyBoard, New-
ton Labs, Renton, WA, USA), an omni-directional IR transmitter,
a servo motor, driveshaft, and a submerged biomimetic tail (see
below for details).

The software controller for Preyro was written in Interactive C
(v. 4; Newton Labs) as a simple subsumption hierarchy consist-
ing of two behaviors: feeding and fleeing. When feeding, Preyro
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FIGURE 1 | From fossil to autonomous robot. (A) This fossil of the
jawless fish Drepanaspis gemuendenensis was collected by Dr. Krantz
from the Devonian Hunsrück Lagerstätte of Germany (400–408 million
years old). This specimen was acquired by the Natural History Museum in
Vienna in 1910. (B) Using this fossil and the paleontological reconstruction
of Tarlo (1964), Anton Fürst created the static 3D model of Drepanaspis at
the Natural History Museum in Vienna. (C) Based on the fossil and its
reconstruction, Preyro is self-propelled, autonomous, and
surface-swimming biorobotic model from the class of robots known as
Tadros. See Figure 2 for more details. All photos by John Howard Long Jr.

swam forward with a constant tailbeat amplitude and frequency.
To turn toward the light, the center of the tailbeat was shifted in
proportion to the light differential detected by the two photoresis-
tors. This resulted in the robot approaching the light source, which
served as a proxy for food. Feeding behavior continued until inter-
rupted by the fleeing behavior. The fleeing behavior was modeled
after a fish’s fast-start escape response and consisted of three steps:
(1) high-amplitude tailbeat to rotate Preyro toward the side receiv-
ing the stimulus; (2) high-amplitude swing of the tail back in the
other direction to rotate Preyro away from Tadiator and propel it
forward; and (3) return of the tail to center and resumption of
the regular feeding behavior. A flee attempt was initiated when
an object was detected by the lateral IR emitter–receivers, which
served as a proxy for the lateral line.

FIGURE 2 | Preyro models specific features of the fossil fish,
Drepanaspis. Preyro swims on the surface using a submerged biomimetic
tail. Mimicking the neural architecture of living fish, Preyro uses a two-layer
subsumption hierarchy to arbitrate between behavior primitives for feeding
from a light source and fleeing a predator. Fleeing involves an escape
behavior triggered when either the left or the right IR detects an object
within its detection threshold, ζ. Feeding is a behavior in which the
continuously flapping tail is turned to the left or the right to zero the
difference between the light intensity at the two photoresistors. Fleeing
overrides feeding. The biomimetic tail has two traits that are variable, coded
in a genetic algorithm, and, hence, may evolve over generational time: the
span of the caudal fin, b, and the number of vertebrae, N. The third trait that
may evolve is ζ. Note that the length of individual vertebrae and the overall
length of the tail are held constant.

Tadiator differed from Preyro in the following ways. The only
sensory input for Tadiator came from an array of four IR receivers
mounted on its top (Pololu, Las Vegas, NV, USA). This array mon-
itored the IR signal from the omni-directional beacon placed on
top of Preyro. The direction of Preyro from Tadiator was deter-
mined by the relative strength of the beacon’s signal in the four
quadrants of the array. The bearing of Preyro was used as a turning
signal, with Tadiator continuously adjusting its heading to keep the
bearing of Preyro near zero degrees, dead ahead. Instead of a bio-
mimetic tail, Tadiator swam with a flapping tail of square plastic.
In preliminary trials, Tadiator’s performance was adjusted so that
it swam at a speed and with a maneuverability similar to that of
Preyro, thus ensuring that the competition between the two was
initially even.

Frontiers in Robotics and AI | Evolutionary Robotics November 2014 | Volume 1 | Article 12 | 4

http://www.frontiersin.org/Evolutionary_Robotics
http://www.frontiersin.org/Evolutionary_Robotics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Roberts et al. Testing biological hypotheses with embodied robots

FIGURE 3 | Evolvable traits and their ranges. The span of the caudal fin, b,
can vary in 1 mm increments from 0 to 50 mm. The number of vertebrae, N,
can vary in integer increments from 0 to 11; the vertebrae are spaced to make

joints of the same length for a given N. Predator detection threshold, ζ, can
vary in 1 cm increments from 10 to 60 cm. Each trait is coded genetically (see
Figure 4).

BIOMIMETIC TAILS
Preyro was propelled by a biomimetic tail (Figure 2). This tail, sub-
merged 6 cm below the waterline, was attached to a 8.25 cm long
drive shaft rotated by the servo motor. The tail varied from individ-
ual to individual by the morphology of its vertebral column. The
morphology and biomechanical properties of these biomimetic
vertebral columns are based on those of living shark species (Long
et al., 2011a,b). Construction details are reviewed briefly here.

The biomimetic vertebral column consisted of a hydrogel noto-
chord with ring vertebrae. Hydrogels were made of a 0.1 g one-
to-one concentration of powdered gelatin (porcine skin, Type A;
Sigma, St Louis, MO, USA) dissolved in distilled boiling water
(Long et al., 2006). The liquid gelatin was poured into cylindrical
Delrin molds of 9.3 mm inner diameter and hardened at 4°C for
1 h. After solidifying, the hydrogels were carefully extracted from

the molds and inspected for cracks or tears. Intact hydrogels were
cross-linked in a solution of 2.5% glutaraldehyde (stock, 25% EM
grade; Polysciences, Warrington, PA, USA) in phosphate buffer
solution (0.1 mol 1-1 NaH2PO4, 0.15 mol 1-1 NaCl, pH 7.0) on
a shaker bed at room temperature for 1 h. Immediately following
cross-linking, hydrogels were rinsed thoroughly in distilled water
and stored in an aqueous solution of 19.98% ethanol for 12–24 h
before use in tail assembly. Once fixed and rinsed, the hydrogel
rods were trimmed to a uniform length of 84 mm. Each hydrogel
was used within 24 h.

Ring vertebrae were constructed of Delrin tubing (9.6 mm
inner diameter; 1.5 mm thickness) cut to a length of 5 mm. The
number of ring vertebrae, N, depended on an individual’s geno-
type (see Section “Evolvable Traits and Their Genetics”). Ring
vertebrae were evenly spaced on the 84 mm long notochords and
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affixed with cyanoacrylate adhesive; as N increased, the number
of joints increased and their length decreased.

The biomimetic vertebral column was then used as the axial
skeleton of the biomimetic tail. One end of the biomimetic verte-
bral column was first glued to a rectangular piece of Plexiglas that
served as a grip for the drive shaft (Figure 2). To its other end,
the biomimetic vertebral column was affixed using thermoplastic
glue to a trapezoidal Plexiglas caudal fin. Caudal fins varied in the
magnitude of their span, b, as indicated by an individual’s geno-
type (see Section “Evolvable Traits and Their Genetics”). Finally,
this construct was enclosed in a vertical septum, a bilayer of Press
and Seal™ (Glad, Oakland, CA, USA). This bilayer septum pre-
vented the cantilevered tail from bending vertically. To account
for unavoidable variability in production, we constructed three
replicate tails of each genotype. Thus each genotype was tested in
the selection trials (see below) by three replicates, each of which
was, in turn, tested three times.

EVOLVABLE TRAITS AND THEIR GENETICS
In addition to the focal trait, the number of vertebrae, N, two
additional traits were selected to be evolvable in Preyro: the span
of the caudal fin, b, and the predator detection threshold, ζ. Each
trait had a fixed range in which it could evolve (Figure 3). Preyro
took on individual identities in a given generation as defined by
the population’s six diploid genotypes, Gi. Each Gi was a 3-tuple,
with each element an integer specifying N, b, and, ζ. These are
quantitative traits, each modeled as a polygenic system with the
number of genes determined by the resolution of the phenotypic
increment (see Figure 3). To create independent genetic assort-
ment, and thus avoid genetic correlation among traits, we placed
the polygenes for one trait on its own separate chromosome pair.

In each generation, the three of the six Gi with the best relative
fitnesses, ω – as determined by the selection experiments and the
fitness function (see sections below) – were selected to reproduce.
The number of gametes contributed by each Gi to the gene pool
was proportional to ω rank: six, four, and two gametes, respec-
tively, for the first, second, and third-place robots. The other three
individuals of the population contributed 0 gametes to the gene
pool.

To create gametes, the diploid Gi was split into two haploid
genotypes, Hi, by dividing by two the value of each entry in the
individual’s defining 3-tuple (Figure 4). Each Hi was then mutated
by an amount drawn from a Poisson distribution, making the
probability biased toward mutations of small magnitude. For mat-
ing, the 12 mutated haploid gametes, H∗i , making up the gene pool,
were then randomly combined, creating the six new diploid Gi for
the offspring in the next generation. Gametes from the same or
different parents had the same probability of mating. Gametoge-
nesis and mating were conducted in simulation using a custom
genetic algorithm program written in Java (Version SE 6).

Population size was held constant at six individual Gi. The
three replicate biomimetic tails created and tested for each Gi can
be thought of as clones.

SELECTION EXPERIMENTS
During each experiment a single Preyro and a single Tadiator swam
for 3 min in a circular tank with a 3.2 m diameter. The tank was

FIGURE 4 | Random processes of mutation and mating. In this example,
the genes for the span of the caudal fin, b, from each diploid adult genotype,
G, are partitioned into haploid gametes, H, mutated, and combined in a
random mating algorithm to create the offspring genotypes for the next
generation. The genes of each trait sort independently from those of other
traits. This process is repeated separately for each of the three traits, b,
number of vertebrae, N, and the detection threshold for the lateral line, ζ.

matte black and sat in a black, light-proofed room to prevent any
light pollution from influencing the swimming direction of any
individuals. A single 100-watt light hung from the ceiling 1 m over
the center of the tank, providing the only illumination in the room
and serving as the concentrated food source for the light-seeking
Preyro (Figure 5).

In each generation, j, three clones of each of six individual, i, Gi

were instantiated in Preyro; these 18 different instantiations were
pitted separately against Tadiator in three, 3-min trials. The order
of the trials with respect to Gi and clone was randomized. To pre-
pare the Preyro for each Gi it was outfitted with the biomimetic
vertebral column carrying the appropriate trait morphology for b
and N as specified by the Gi. In addition, Preyro’s software was
altered to use the appropriate ζ as specified by the Gi.

At the start of each trial, Tadiator and Preyro were released
from the same locations on opposite sides of the tank. Trials
ran for 3 min without interference from the experimenters. Bio-
mimetic tails were inspected after each trial to ensure that they
had not broken. If the tail had broken, the trial was discarded,
and a new tail was made, and the trial was repeated at the end
of the random trial queue. Each trial was videotaped by an over-
head camera (JVC digital video; 30 Hz temporal resolution; 1.2 cm
spatial resolution).

PERFORMANCE MEASUREMENTS
Performance of each trial of a Gi clone was measured from video
tape and the on-board accelerometer on Preyro. Five specific types
of performance were measured: (1) average speed, U, (2) average
distance to the light source, R, (3) average distance to the preda-
tor, D, (4) peak acceleration, a, during fast-start trials (see below),
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Roberts et al. Testing biological hypotheses with embodied robots

FIGURE 5 | Selection experiments. In order to flee the predator, Preyro (left) has initiated an escape maneuver in response to detecting Tadiator (right) with its
right-side IR proximity detector. Note the light source, reflected on the surface of the water; it serves as a proxy for food.

and (5) the number of successful escape responses, θ. These types
of performance were chosen to characterize feeding (U, R) and
fleeing from a predator (D, a, θ).

At a time resolution of 30 images per second, we manually dig-
itized the locations of the predator and prey robots throughout
the trials by tracking the two LEDs on each robot using LoggerPro
(v. 3.6.0, Vernier Software & Technology, Beaverton, OR, USA).
The absolute position of each robot was determined by taking the
average between the positions of the front and back LEDs.

The U was calculated by finite differences of the position of
Preyro from frame to frame; a single average U was used to repre-
sent this performance in each trial. The R was the average distance
of Preyro from the light source over the 3-min trial. The D was
the average distance between Preyro and Tadiator over the 3-min
trial. The θ was the difference between the total number of escape
responses and those not initiated by the predator; this corrected
for escapes initiated by interaction with the wall of the tank.

The a was the only performance variable not determined dur-
ing the selection trials. Because of the noise introduced to the
accelerometer by collisions with walls and with Tadiator, we could
not determine which parts of the accelerometer record during
the experiments corresponded to true predator-mediated escapes.
Instead, we measured a immediately after each selection trial by
letting Preyro swim without Tadiator; when Preyro was swimming
steadily in the center of the tank, we initiated an escape by placing
an object near one of the IR sensors. We did this three times for
the left IR sensor and three times for the right IR sensor, in ran-
domized order. From the three-axis accelerometer trace for each
escape, a was calculated as the resultant of the smoothed peak
acceleration of the two vectors in the horizontal plane.

FITNESS FUNCTION
The fitness, ω, of an individual, i, in generation, j, is defined as
the chance of survival of the genotype, Gi (Ridley, 1996). The
individual relative fitness,ωij, is relative to that of other individuals

in a given generation. To calculate ωij, we used the average perfor-
mance values from the three trials of the three clones (n= 9 trials
for each Gij): Uij, Rij, Dij, aij, θij. To standardize the different scales
of the performance measures, the ωij was calculated as a sum of
z-scores:

ωij =
Uij − Ūj

sUj

−
Rij − R̄j

sRj

+
Dij − D̄j

sDj

+
aij − āj

saj

+
θij − θ̄j

sθj

where s denotes the standard deviation of the performance in the
population in that generation. Note that the z-score for R is neg-
ative; this sign rewards smaller distances from the light source.
All other performance measures reward larger magnitudes. The
process of selection and mating was repeated for 10 generations.

We created this fitness function for two reasons. First, we sought
a fitness function that would reward enhanced feeding and preda-
tor avoidance while allowing for trade-offs between the two. From
previous work evolving tail stiffness in light-seeking embodied
and digital Tadros (Long et al., 2006, 2010), we determined that
U and R, among a host of variables, were the performance vari-
ables that best predicted the ability to get to and stay near a light
source. The other variables used in this current fitness function, D,
a, and θ, were chosen to characterize predator avoidance. In fish, D
has clear implications, since one cannot be ingested by a predator
without being in immediate proximity; a has been shown to be a
central performance variable in the fitness of fishes [for review see
Ghalambor et al. (2003)]. Finally, θ measures the ability to initiate
an escape response; we have shown in guppies that the likelihood
of capture by a predator increases if the prey fails to fully initiate a
fast-start escape response (Jones et al., 2008).

Second, by using a compound fitness function composed of
five performance variables, we are able to study the relationship
between morphology, performance, and fitness, and this net-
work is extremely important in evolutionary theory (Kingsolver
and Huey, 2003). By defining the causal relationship between
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Roberts et al. Testing biological hypotheses with embodied robots

performance and fitness, we create a simpler relationship between
morphology and fitness that allows us to more easily understand,
as a first approximation, the complicated dynamics of the fish
predator-prey evolutionary system (Ghalambor et al., 2003). Alter-
natively, we could have measured those five performance variables
(and others) and used a single, independent measure of fitness,
like the actual amount of light gathered.

MEASURING SELECTION, CHANCE, AND CORRELATION AMONG TRAITS
The selection differential, S, is the difference between the mean
value for a trait in the population as a whole and the mean value
for that trait in the three Gij selected to breed. The S estimates the
total strength of selection acting on the trait, including the selec-
tion acting directly on that trait and indirectly through selection
on correlated traits (Lande and Arnold, 1983). The linear selection
gradient, β, measures the strength of directional selection acting
directly on a character; it is the coefficient for a given trait from
a multiple regression of fitness, ωij, onto all of the traits. The β

is usually given as a standardized coefficient to permit compari-
son among traits and different studies. We report both raw and
standardized values.

To measure the magnitude of random effects on the change in
the mean value of a trait, we calculated the strength of chance, C,
as the difference between the predicted change in the value of the
mean of the trait if S alone were operating and the actual realized
change in mean. S and C are component vectors of the resultant
evolutionary change.

Correlation among the traits was measured using the Pearson
correlation coefficient, r, and the partial correlation coefficient, ρ.
The ρ removes the effect of the correlation with other variables as
it measures the correlation of a particular pair of traits. To find
the relative magnitude of the indirect correlated selection, χ, for a
focal trait, x, in a given generation, we calculated:

χx =
∑

(ρiβi)

where i indicates the other traits. All of these measures are reported
from the generation in which they were calculated; note that they
pertain to the changes occurring in the mean value from that gen-
eration to the next. Although we conduct standard statistical tests,
please note that we are working with the entire population, and
not a sample. With the whole population in hand, S, β, C, χ, and
differences in means from generation to generation are therefore
the actual values and we need not rely on significance tests to esti-
mate the presence of a difference. However, in order to provide
a conservative interpretation of our results we provide statistical
tests with α= 0.05 for analysis of all genotypes (n= 66, 6 for each
of 11 generations), α= 0.10 for analysis of correlation between
traits within a generation (n= 6), and α= 0.05 for analysis of cor-
relations among S and β across generations (n= 10). JMP (version
10.0.0) was used for all statistical analyses.

RESULTS
EVOLUTION OF TRAITS BY CHANCE ALONE
To ascertain the magnitude and possible patterns of evolution by
chance alone, we ran our genetic algorithm without inputs from
selection experiments. With the same mean and variation for the
starting condition as the trials for the embodied Tadros, we ran

FIGURE 6 | Random evolution by mutation, mating, and drift. With the
same mean and variation for the starting condition as the trials for the
embodied Tadros, we ran three different simulation trials using the genetic
algorithm without selection. (A) Span of the caudal fin, b. (B) Number of
vertebrae, N. (C) Predator detection threshold, ζ. Points represent the mean
of six individuals; error bars are ±1 standard deviation. The possible range is
given by the ordinate range for each trait. The gray bars represent the
population’s original footprint in terms of the variance (±1 standard
deviations of population at generation 1). Horizontal white lines indicate
position of no change in the mean of the population.

three different simulation trials using the genetic algorithm with-
out selection (Figure 6). Note that in some cases purely random
evolution will produce patterns that are directional over multiple
generations. Thus selection is not the only way to achieve direc-
tional evolution over short time frames. Moreover, the genetic
mechanisms that we include in our model – mutation, mating, and
genetic drift – can combine to create intergenerational changes in
the traits of the same magnitude that we see in the experiments
with the robots.

EVOLUTION OF TRAITS BY SELECTION, CHANCE, AND CORRELATION
Over 10 generations of selection, the population’s mean number of
vertebrae,N, increased significantly (Figure 7A; n= 66, r2

= 0.125,
F = 9.159, p= 0.004). Likewise, the caudal fin span, b, increased
significantly as determined by linear regression (Figure 8A; n= 66,
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Roberts et al. Testing biological hypotheses with embodied robots

FIGURE 7 | Evolution of the number of vertebrae, N . (A) The mean of N
in the population of Preyros evolves in a single direction and then stabilizes.
Mean±one standard deviation (n=6). (B) Selection differential, SN (gray
squares), shows initial pressure for the directional trend. Starting with
generation 5, strength of chance, CN (red squares), is equal and opposite to
SN. (C) Directional selection gradient, βN, standardized (scaled by range/2)
and raw values. Generations 5, 6, and 7 are the only ones to have
statistically significant values of βN (p < 0.10; ANOVA), as marked by open
blue circle. (D). Indirect selection gradient, χN. The total χN is in blue
(“sum”), with components as open circles (N-b) and open triangles (N -z ).

r2
= 0.109, F = 7.795, p= 0.007). However, predator detection

threshold, ζ, did not increase significantly in a linear regression
(Figure 9A; n= 66, r2

= 0.005, F = 0.325, p= 0.5706). Instead,
ζ was significantly fit by a model that included a linear and a
quadratic term for the independent variable generation (n= 66,
F = 5.664, p= 0.0055, r2

= 0.152; both linear and quadratic terms
were significant, p < 0.05, with the linear term of positive sign and
the quadratic of negative). When a quadratic term was included
for N and b, in neither model was the quadratic term significant;
hence, we used the original linear models. In summary, for all three
traits, univariate regression analysis detects significant positive and
linear terms for each, which is evidence of directional evolution
on average over the 11 generations analyzed.

Please note that the statistical analysis represents a conservative
and simplified approach to the complexities of the evolutionary

FIGURE 8 | Evolution of the span of the caudal fin, b. (A). The mean of b
in the population of Preyros evolves in two different directions, first getting
smaller and then larger. Mean± one standard deviation (n=6).
(B) Selection differential, Sb (gray circles), shows initial pressure for
reducing size and then later pressure for increasing size. Strength of
chance, Cb (red circles), shows the magnitude of random effects.
(C) Directional selection gradient, βb, standardized (scaled by range/2) and
raw values. Only generation five (open blue circle) is statistically significant
(p < 0.10; ANOVA). (D). Indirect selection gradient, χb. The total χb is in blue
(“sum”), with components as open squares (b-N ) and open triangles (b-ζ).

system. Since we have all individuals in the population, one could
argue that statistics that assume a sample as representative of the
larger, unsampled population are unnecessary. From that per-
spective, if we look at the data from generation to generation
(Figure 7), we see that the population’s mean value of N increases
in generations 2 and 3, oscillates, and then achieves a steady state
in generation 7. Likewise, the population’s mean value of b ini-
tially decreases before increasing from generation 4–11 (Figure 8).
The two approaches are compatible: the statistical analysis detects
simple, longer-term patterns while we can discuss changes from
generation to generation without statistics.

SELECTION, CHANCE, AND CORRELATION
The selection differential for N, SN, is positive in generations 1 and
2, and that corresponds to intergenerational increases in the mean
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Roberts et al. Testing biological hypotheses with embodied robots

FIGURE 9 | Evolution of the predator detection threshold, ζ. (A). The
mean of ζ increases, stabilizes, then decreases, while the variance shrinks
and then expands. Change in mean is directional, then stabilizing, then
directional. Mean±one standard deviation (n=6). (B). Selection differential,
S ζ (gray triangles). When the variance is low, so is the S ζ. The strength of
chance, C ζ (red triangles), tends to oppose S ζ when the S ζ is large.
(C). Directional selection gradient, βζ, standardized (scaled by range/2) and
raw values. Only generation 3 (open blue circle) is statistically significant
(p < 0.10; ANOVA). (D) Indirect selection gradient, χζ. The total χζ is in blue
(“sum”), with components as open squares (ζ-N ) and open circles (ζ-b).

N from 1 to 2 and 2 to 3, respectively (Figure 7). In generation 1,
direct selection alone is operating on N. While SN is positive, the
strength of chance, CN, is zero. The standardized selection gradi-
ent,βN, of 1.39 indicates the relative strength of the direct selection
on N. The lack of any correlated indirect selection, χN, rules out
the third class of possible mechanism.

By generation 2, the picture is more complicated. While SN is
positive, and the mean of N increases from generation 2 to 3, βN

is nearly zero, ruling out a role for direct selection on N. Instead,
indirect selection is a driver, as indicated by a total χN of 1.09, with
all of that positive magnitude contributed by the correlation of N
and ζ. Chance, too, plays a role, as shown by CN, which has the
same positive value as SN.

In generation 3, we see yet another type of interaction between
selection, chance, and correlation. While the SN value of 0 would
seem to indicate that no selection, direct or indirect, is acting, the
βN of 1.03 shows positive direct selection. This direct selection is
counterbalanced by a negative CN and a very strong negative χN,
once again due mostly to the correlation of N and ζ.

Generation 4 is notable because of the small role of βN and CN;
a small χN of 0.18 drives up the mean N of the population and
accounts for the positive SN. Generation 5 is the first in which we
see a strong negative βN, which wins the day in terms of decreasing
the mean of N, in the face of positive CN and positive χN. Gener-
ation 6 shows an immediate reversal of the sign of selection, with
a strong positive βN and an increase in the mean of N, in the face
of a very strong negative χN, with little effect of CN. Generation
7 shows another reversal in the sign of βN, now strongly negative;
however, in this case the mean N of the population is stable inter-
generationally; hence the large-magnitude of CN, coupled with a
positive χN, balances βN. The stable value of the mean N for the
remaining generations is explained by equal and opposite values of
SN and CN coupled with small, oscillating values of βN and small
positive values of χN.

While neither b nor ζ is the focal trait, each has the poten-
tial to be under direct selection. The overall statistical pattern of
the mean of b increasing over the 11 generations comes about
by variable contributions from selection, chance, and correlation
(Figure 8). The largest values of βb occur in generation 5 and 6
and are negative (Figure 8C). Generation 6 is interesting since the
large negative βb is accompanied by a large negative Cb and the
largest χb, which is positive. Even though the total selection, Sb,
is positive with a value of 1.0, the Cb is larger still, with a nega-
tive value of −1.17; the result is that the mean b in generation 7
decreases slightly. Generation 8 is also dominated by chance but in
a different way than generation 6. Here, the Cb is large and positive,
but Sb is small and negative. The βb is small and positive, and χb is
close to zero. Thus Cb is the only strong effect and it accounts for
the abrupt increase in mean b from 24.67 to 26.33 in generations
8 and 9, respectively. As with N, the evolution of b is a mix of
selection, chance, and correlation that changes from generation to
generation.

Compared to N and b, the quadratic pattern of the change in
the mean of ζ differs in its balance of underlying mechanisms in
important ways (Figure 9). First, the variance in the value of ζ

drops dramatically from generation 2, is close to 0 in generation
5, and then increases again. Without variance in a trait, selection
cannot operate; that is what we see in generation 5, with near-zero
values of Sz. Second, in generation 5 we see little or no impact
of selection, chance, or correlation. The value of Cz is 0 and the
value of standardized βζ is 0.97, the smallest absolute measured
for βζ with the exception of that for generation 10 (0.09); χζ is
also of small magnitude. It is no surprise then that the mean of
ζ in generation 6 is virtually identical to that in generation 5.
Third, we find the largest negative value of β,−5.79, in any of the
traits, in generation 3. Fourth, with the exception of generations
6 and 7, the effect of indirect, correlated selection on ζ is small,
as measure by χζ. Thus unlike N or b, the pattern of evolution of
ζ is largely explained by an interplay of just direct selection and
chance.
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Roberts et al. Testing biological hypotheses with embodied robots

FIGURE 10 | Correlation of traits. (A) For each pairwise combination of
traits, the Pearson correlation coefficient, r, is marginally significant
(α=0.10; non-directional) when r ≥0.73. The b-N pair has the highest
number of significant correlations, with three positive (the other two pairs
have only one each). Note, however, that the changes in r among the pairs
follows the same pattern from generation 1 to 4 and then generation 8 to
11. (B) Partial correlation, ρ, shows only a single marginally significant
coefficient for b-N.

The variation in the dominant evolutionary mechanism from
generation to generation is explained, in part, by the changing
pattern of correlation among the traits (Figure 10). For example,
while the partial correlations, ρN-b and ρN-ζ are negative in gen-
eration 5, the ρN-b switches sign to become strongly positive in
generation 6 while ρN-ζ becomes more strongly negative. Because
of this, and in conjunction with changes in ββ and βζ, we can
explain the rapid oscillation of indirect correlation selection on N
(Figure 7D).

EVOLUTION OF PERFORMANCE
The five different types of performance that we measured for
the fitness function underwent different patterns of evolution-
ary change (Figure 11). Generations 5, 6, and 7, which show the
strongest direct selection on N, as measured by βN (Figure 7C),
show a corresponding connection between negative βN in gener-
ations 5 and 7 and the resulting increases in the population mean
of swimming speed, U, in generations 6 and 8. The positive βN

in generation 6 results in a decrease in the mean U in generation
7. Overall, mean U decreases initially, oscillates, and then returns
from the negative range to where it started in generation 10. The
population mean for the distance to the light, R, increases and stays
in the positive range, relative to its starting point, until generation

FIGURE 11 | Evolution of performance. The five types of performance
evolve because they determine the fitness of the genotypes. (A) Average
swimming speed, U. (B) Average distance to light, R. (C) Average distance
to predator, D. (D) Average peak acceleration, a. (E) Average number of
escapes θ. The means of the three breeders in each generation are in gray;
the means of the remaining three non-breeders in each generation are in
open boxes; the mean of the whole population is in black. The gray
horizontal line references the mean of original population mean in
generation one.

10. The population mean for the distance to the predator, D, drops
initially and only by generation 8 is positive relative to where it
started. The population mean for peak acceleration, a, increases in
generation 3, drops back to 0 in generation 5, before staying in the
positive range. The population mean for the number of escapes,
θ, decreases into negative range at generation 4.

Although we have focused on the mean performance values,
keep in mind that only the genotypes from breeders in each gen-
eration (indicated by gray markers) are those selected to pass on
traits to the next generation. Thus the position of the breeders
relative to the mean value is a proxy for the contribution of that
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Roberts et al. Testing biological hypotheses with embodied robots

type of performance to fitness. If the performance types uniformly
mapped onto fitness we would expect all of the means of breeders
to be positive relative to the mean of the population, with one
exception: R, by virtue of smaller values being rewarded, should
be negative. We do not always see that simple pattern. For example,
sometimes we see no difference between the mean of the breeders
and the mean of the population; in those instances that perfor-
mance type is not contributing to the differences in fitness among
individual genotypes.

Generation 2 serves as an example. The performance values
for R and θ differ in the expected directions from the population
means; U, D, and a do not. Thus in generation 2, when N increases
without direct selection (Figure 7C), we would postulate that
selection on N requires a connection to U, D, and/or a. The posi-
tive χb, mostly from the N-z correlation (Figure 7D), suggests that
the changes in θ are directly linked to the positive direct selection
on ζ (Figure 9C) and, through the correlation, to N. By examin-
ing connections like these among morphology, performance, and
fitness we begin to gain insight into the causal feedback between
selection on performance and the pathway through which selec-
tion, both directly and indirectly, act on a trait. We will undertake
a full analysis of this network in a future study.

DISCUSSION
In a population of autonomous, embodied, fish-like robots, the
mean number of vertebrae, N, in the vertebral column of the
propulsive tail evolves under selection for enhanced performance
in feeding and fleeing. The population’s mean value of N increases
from 4.7 to 5.7 over 10 generations (Figure 7). From biomechan-
ical studies, we know that increasing N increases the apparent
storage modulus, E ′ (MPa), and apparent loss modulus, E ′′ (MPa),
of a biomimetic vertebral column (Long et al., 2011b). From that
same study, we know that as N increases, so too does the steady
swimming speed and peak acceleration of a swimming robot using
the biomimetic vertebral column in its propulsive tail. Thus, at
one level our explanation of adaptation seems complete using our
robotic system as a model for early vertebrates. We were unable
to refute our biological hypothesis: selection for enhanced feed-
ing and fleeing in early vertebrates was sufficient to increase the
number of vertebrae, N.

But we must interpret cautiously. First and foremost, please
keep in mind that we have not run multiple replicates of this
population of embodied robots in this study. We have, however,
published a preliminary study using the identical set-up; this pop-
ulation ran for only six generations (Doorly et al., 2009) and
yielded nearly identical patterns of evolution for N as seen in
the first six generations in this study. In addition, we have used
digital simulations to examine the repeatability of evolutionary
results on the Tadro-class of robots (Long et al., 2010). We ran
32 replicates of a population of 70 light-seeking, one-eyed digi-
tal Tadros for more than 500 generations. Selecting for enhanced
light-seeking, without a predator, we found that structural stiffness
of the tail, proportional to the number of vertebrae (Long et al.,
2011a), repeatedly evolved to a single, stable global optimum.

Second, these results pertain to populations of very small size,
where mutation and drift, random effects of chance, may operate
at a magnitude equal to that of selection. In vertebrates in the

wild, small populations under new predation pressure are note-
worthy for their rapid and large-magnitude evolutionary change
(Reznick et al., 1997; Grant and Grant, 2002; Losos et al., 2006).
This empirical evidence supports the hypothesis that small, repro-
ductively isolated populations of a species may offer important
opportunities for speciation (for review, Losos and Glor, 2003).
Thus populations of small sizes are biologically relevant.

Third, because of the time it takes to build, run, and analyze
a population of embodied robots with evolving morphology (see
“Introduction”), we have allowed the population to evolve for only
10 generations. Thus claims of testing evolutionary phenomena
must be qualified with the important caveat that we are allowing
very little time. However, we note the rapid evolutionary changes
in living populations of vertebrates in the wild. With as little as
one generation of selection by introduced predators, Anolis lizards
show rapid evolution of behavior and morphology (Losos et al.,
2006). Small, isolated populations of Geospiza ground finches
show dramatic changes in morphology annually (Grant and Grant,
2002). Male Poecilia guppies in small populations exposed to an
introduced predator show significant changes in size and life his-
tory traits in just 4 years or about 12–20 generations (Reznick et al.,
1997). Thus in the wild significant evolutionary events in verte-
brates may occur in the smallest time scale possible, between single
generations.

SELECTION, CHANCE, AND CORRELATION
Our initial interpretation of the results of this evolutionary robotic
model is incomplete. First, we need to consider in more detail
other aspects of the model, in particular the alternative evolution-
ary mechanisms to direct selection. Next, we need to consider what
those more complicated results tell us about the target. In short,
the evolution of vertebrae in robots and, likely, vertebrates, is not
simply about direct selection acting to drive the adaptation of a
single trait.

The mechanisms that constrain adaptation are as important
as those that create it (Kingsolver and Huey, 2003). Correlations
among performance elements indicate the degree of functional
constraint or facilitation of the evolution of morphology (Lande
and Arnold, 1983; Ghalambor et al., 2003; Walker, 2007). Genetic
correlations may also constrain or facilitate the evolution of mor-
phology; however, in this study we have removed the possibility
of genetic correlations from our model by allowing independent
assortment of alleles. To allow for the possibility of functional
constraint by correlation, we modeled the evolution of N with
two other evolving traits, tail span, b, and predator detection
threshold, z.

What appears to be a simple, linear increase in the mean value
of N is not. First, the linear regression, while significant, misses
the fact the mean N for the last five generations is constant
(Figure 7A). Second, direct selection on N, as measured by the
selection gradient, β, varies from generation to generation in its
magnitude (Figure 7C) and in its relative importance as an evo-
lutionary driver. In the first generation, direct, positive selection
is the primary cause of the increase in mean N in generation 2.
But in generation 2, direct selection is negligible, and chance and
indirect correlated selection drive the mean of N to the value seen
in generation 3. In generation 3, all three mechanisms operate.
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Roberts et al. Testing biological hypotheses with embodied robots

Depending on the generation in which one looks, you could say
that the change in N is an adaptation, an accident, or a by-product.

These results show the value of evolving a single trait in con-
junction with other traits in a small population. Local optima are
less likely to be terminal for the focal trait if indirect selection,
acting on other traits, is present. Small populations guarantee the
presence of drift and hence chance. One might worry that direct
selection would be swamped under these conditions. But we show
that is not the case necessarily. For example, strong direct selection
on N in generations 5, 6, and 7, switching signs from negative, to
positive, to negative, may dominate in the first two cases and be
counterbalanced in the third by chance and correlation.

In the face of all three of these evolutionary mechanisms in
operation, a trait can only be said to be an adaptation for a par-
ticular type of performance without qualifications if the change
in its mean value in a population, over generational time, can be
shown to be caused solely or primarily by direct selection on that
trait. If we had designed this study to use a very large population,
then we could have reduced the relative impact of chance via drift
on the evolution of N. If we had allowed only one single trait,
N, to evolve, then we would have eliminated the opportunity for
indirect correlation selection. While these caveats are well-known
to evolutionary biologists, they are worth keeping in mind as we
use robots to model biological evolution.

TESTING THE MECHANISTIC HYPOTHESES
We tested the predictions that followed from three mechanistic
hypotheses. While applied here to the evolution of N, they pro-
vide a starting point for understanding the mechanisms driving
the evolution of any single trait. We review each in turn.

Hypothesis 1
Vertebrae evolve as a direct target of selection. We predicted that
(a) the N would increase and (b) the selection gradient for N
would be positive under constant selection. This was true in some
generations but not others, so it would seem unwise to make the
blanket claim that a greater N are an adaptation for enhanced
feeding and fleeing.

One argument in favor of the adaptation hypothesis is that a
mean N of 5.7 vertebrae may be a strong local optimum. Our
biomechanical studies of the impact of N on swimming perfor-
mance show an abrupt drop-off in swimming speed of 20% and
peak acceleration of 30% when N increases from 6 to 7 (Long
et al., 2011b). Looking just at the selection gradients (Figure 7C),
they alternate sign from generation 4 through 10, with four rever-
sals. Thus it is tempting to characterize this pattern as a case of
stabilizing selection. From that perspective, the large amount of
chance present would act to maintain genetic variance, which is
usually lost under stabilizing selection. Compared to a population
with stabilizing selection but diminished variance, this popula-
tion would respond more quickly to a change in the environment,
showing greater evolvability.

Another way to test the adaptation hypothesis is to repeat the
experiment. If the mean of N evolves in the same way, with chance
and correlation present, then we can assert that the total selec-
tion, acting directly and indirectly as measured by the selection
differential, S, (Figure 7B) is the primary driver. In an earlier

preliminary experiment (Doorly et al., 2009), we saw a nearly
identical pattern, with a positive increase in N to just under 6.0;
however, the experiment lasted only for five generations, so we
cannot compare later generations. Also, in the previous study we
did not calculate S or β, so we do not know the impact of direct
selection.

Hypothesis 2
Vertebrae evolve via random processes. We predicted (a) no partic-
ular pattern for the evolution of N, (b) N would not be correlated
with another trait under selection, and (c) the βN would be zero
or would be small and vary in sign from generation to generation.
Over 11 generations these predictions were not upheld. Thus, in
spite of the clear presence of strong effects of chance, as measured
by CN, the impact on evolutionary response was intermittent. In
addition,N was correlated with the other traits and βN was present.
The evolution of N appears then to be accidental only in a few
generations.

We were concerned on the one hand that the random effects of
our model were of sufficient magnitude to generate and maintain
variance, while on the other hand not swamping selection. The
impact of accidental evolution may be increased by increasing
the magnitude of mutation and decreasing the size of the popu-
lation. Our data on the evolutionary patterns created by chance
alone (Figure 6) indicate that these random effects were titrated
properly, such that they could create directional patterns equal in
magnitude to those we saw in our experiments. Despite the oppor-
tunity for chance to drive the evolution of N to the same degree
that we see with all three mechanisms present (Figure 7), chance
did not dominate.

Hypothesis 3
Vertebrae evolve as an indirect target of selection through corre-
lation among traits. We predicted that (a) N would increase in
positive or negative correlation with a change in another trait, (b)
the selection gradient for N would be zero or negative, and (c) the
selection gradient will be non-zero for another trait. As with our
chance hypothesis, indirect correlated selection occurs in some
generations and not in others (Figure 7D). Thus we cannot say
that increased N is always a by-product of selection on b or ζ.
Indirect correlated selection on N is present, important in some
generations, but not dominant overall.

One reason that indirect selection varies is that the correlation
among the traits varies from generation to generation (Figure 10).
We did not anticipate this changing pattern, in spite of the com-
plexities of functional constraint (Walker, 2007) and co-variation
(Walker, 2010). Because both N and b are morphologies of the
tail that impact propulsion, we expected that they would be pos-
itively and constantly correlated; a stiffer backbone (higher N ) is
needed to withstand the greater hydrodynamic loads imposed by
a larger caudal fin (higher b). This positive correlation between
N and b occurs in only 6 of 11 generations. Meanwhile, we
expected ζ, a sensory trait, to be uncorrelated with either N or
b. The fact that we do not yet understand the reasons behind these
functional correlations shows the importance of linking morphol-
ogy, and correlations among morphologies, to different types of
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performance (Figure 11). This work is forthcoming using the
analytical framework codified by Walker (2010).

One way to increase the complexity of indirect selection is
to allow genetic correlation. By design, we did not. Genetic
correlation – in its many forms – is likely to provide more and
different patterns of indirect selection than with functional corre-
lation alone. In this study, we have a simple one-to-one mapping of
the genotype to the phenotype. Interactions among genes may be
modeled as epistasis,with large possible impacts on the evolvability
of the population.

ROBOTS AS BIOLOGICAL MODELS
How do the results from evolving robots relate to ancient ver-
tebrates? One could argue that there is no relation between the
two and thus we learn nothing about vertebrates by studying
robots. We beg to differ. The initial point of discussion is this:
what constitutes a useful model and does ours qualify as such?
With biorobotics in mind, Webb (2001) proposed seven dimen-
sions to characterize and evaluate any model simulation. Using
slightly modified terminology (Long, 2007), those dimensions are
(1) biological relevance in terms of testing a hypothesis, (2) match
of the performance of the model compared to the target, (3) accu-
racy of mechanisms represented by the model, (4) abstractness of
the model, (5) level in structural hierarchy of the target that the
model represents, (6) specificity as to the number of targets repre-
sented by the model, and (7) substrate out of which the model is
created. For Webb, useful biorobotic models must, at a minimum,
have biological relevance and be of physical substrate.

The basic logical requirement for usefulness is to establish that
a model represents its target. The nature of that representation is
made explicit by use of Webb’s hyperspace (Webb,2001). Once rep-
resentation is established, it follows that tests of the model are tests
of the target. Thereafter, fruitful interpretation of the experiments
is not about whether the model is “good” or “bad” or whether we
learn anything about the biological target, but, instead this: what
exactly does the model tell us about the target, what level of confi-
dence do we place in those results, and how might we improve the
model?

We assert that the model of an evolving population of Prey-
ros represents an evolving population of early vertebrates in the
following ways. First, we tested a hypothesis about the selec-
tion pressures evolving vertebrae, thus fulfilling the need for
the biological relevance of the model. Second, while we do not
have the ancient vertebrates available to match performance of
behaviors, we do see feeding, fleeing, and chase behaviors in our
robots, and those behaviors are found in living fishes. Third,
we use mechanisms seen in living fish: the biomechanics of the
biomimetic vertebral column, sensory-motor responses, the neu-
rally inspired subsumption architecture for the controller, and
the evolutionary mechanisms themselves. Fourth, our models
are simplifications of the target, concrete in the sense of mod-
eling specific traits and processes. Fifth, the lowest level of our
model is at tissues and materials of the backbone; the high-
est at the level of populations. Sixth, we attempt to be specific
in our modeling by focusing on a single target, the early ver-
tebrate Drepanaspis. Seventh, our robotic models are physically
embodied.

What exactly does the evolution of a population of Preyros
tell us about the evolution of vertebrae in early vertebrates? First,
models have explanatory limits (Rosenblueth and Weiner, 1945).
An evolutionary robotic model of past events, no matter how accu-
rate the modeled agents, can never reconstruct the actual events
with complete certainty. Fossils simply do not provide enough
information about physiology, behavior, and ecology. Rather than
claiming that we have discovered the exact pattern of causes dri-
ving the evolution of a biological trait, the best that we can do is
work to refute specific hypotheses and, in so doing, eliminate the
less-likely explanations. This leaves us with what Brandon (1990)
calls “how-possible” explanations. These, in turn, are subject to
further testing and possible falsification.

In our first work on the evolution of the embodied Tadro-class
robots, we re-analyzed our original work (Long et al., 2006) and
refuted the hypothesis that the stiffness of the backbone, which
is proportional to N (Long et al., 2011b), is an adaptation for
enhanced feeding behavior in robots or in early vertebrates (Long,
2012). Feeding alone as selection force evolving N is thus placed
in the “unlikely” category of explanations. To the fundamental
behavior of feeding we added predator avoidance and were unable
to refute the hypothesis that N evolved in robots and vertebrates
as an adaptation for enhanced feeding and fleeing performance
(Doorly et al., 2009). This current follow-up study, with twice the
number of generations, also was unable to refute the adaptation
hypothesis for feeding and fleeing. However, as we have shown,
the picture, even in this simple model system, is more complicated
than answering, “Adaptation: yes or no?”. Direct selection on N
is not the sole evolutionary driver. Chance and indirect selection,
through character correlation, both act to augment, constrain, or
supersede direct selection.

Given these important qualifications, we tentatively place the
main research hypothesis of this paper into the“how-possibly”cat-
egory for the evolution of early vertebrates: selection for enhanced
feeding and fleeing in early vertebrates was sufficient to increase
the number of vertebrae, N.

Looking ahead, we see at least eight different ways to improve
our model. First, Tadros swim on the surface of the water, in two
dimensions. To improve behavioral match, these models must be
submerged and capable of movement and maneuvers in three-
dimensions. Second, we have not explored how the gene regulatory
networks might constrain or augment evolvability of our popula-
tion. Allowing for sign epistasis among traits, for example, would
allow for the possibility of dramatic genetic correlation among
traits. Third, given the importance of indirect, correlated selection
(Walker, 2007, 2010), we could add more evolvable traits to the
Preyro. The tricky research question is: which ones? Changes two
and three would interact to increase the chance for the evolution
of by-products. Fourth, the population size could be increased,
thus reducing the effects of genetic drift and testing the hypoth-
esis that direct selection on N could become a more dominant
evolutionary driver by changing this factor alone. Fifth, we could
simply allow more generations of evolution, thus allowing us to
test, for example, if the population has really reached an equilib-
rium state of N or if it can migrate from what looks like a local
optimum? Sixth, we could test new types of selection pressures.
Letting the predator co-evolve (Nolfi, 2012; Elfwing and Doya,

Frontiers in Robotics and AI | Evolutionary Robotics November 2014 | Volume 1 | Article 12 | 14

http://www.frontiersin.org/Evolutionary_Robotics
http://www.frontiersin.org/Evolutionary_Robotics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Roberts et al. Testing biological hypotheses with embodied robots

2014), for example, would add in realistic complexity to selection
landscape, as would variation on other environmental parame-
ters (Kingsolver and Gomulkiewicz, 2003). Seventh, and related
to the sixth point, we could use different fitness functions. The
most biological would be the number of offspring reproduced.
Reproduction in evolving robots can be linked directly to the
amount of energy gathered (Elfwing and Doya, 2014). Eighth,
we could allow the predators and the prey to learn in response to
their interactions, as this ability has been shown to have important
effects on the evolution of behavior in robotic systems (Elfwing
and Doya, 2014).

CONCLUSION
Autonomous, physically embodied robots permit physical interac-
tions, behavior, ecological interactions, performance, and fitness
to be outputs of rather than inputs to the evolutionary model.
With physical models, physics need not be modeled because it
is inherent. Autonomy is created (1) by the continuous feedback
between sensory input and movement output that creates behav-
ior, and (2) by removing a human operator from that control loop.
In summary, evolutionary robotic models that allow adaptations,
accidents, and by-products offer enhanced realism and complexity
that permits more robust tests of biological hypotheses compared
to models that focus on single traits and the single mechanism of
adaptation by selection.

Eiben (2014a) has identified three grand challenges for evo-
lutionary robotics: (1) to demonstrate that evolution can create
a surprisingly novel robot; (2) to create physical robots that can
reproduce; and (3) to evolve physical robots in the real world
in an open-ended process. While this study succeeds at none of
those challenges, we have made some headway toward the “evolu-
tion of things” (Eiben, 2014b). Our robotic things, the Tadro-class
Preyros, are physically embodied and behaviorally autonomous.
While they behave in vivo, as it were, Preyros start the reproduc-
tive cycle in silico, with mutation and mating algorithms creating
new genotypes for offspring. With those genotypes, the equiva-
lent of development is done per manum, by the hand of a human
builder. Thus the evolution of a population of Preyros, while suc-
ceeding in evolving physical robots, fails to do so in a hands-off,
open-ended process.

What is a grandly challenged evolutionary roboticist to do?
We can frame the challenges in terms of the three hierarchically
nested timescales described by Pfeifer and Bongard (2006): (1) the
behavioral here-and-now, (2) the ontogenetic (reproductive and
developmental), and (3) the phylogenetic (evolutionary). To solve
the grand challenges of evolutionary robotics, our physical robot
individuals and populations need four kinds of hierarchically
nested autonomy operating simultaneously: (1) behavioral auton-
omy, (2) reproductive autonomy, (3) developmental autonomy,
and (4) evolutionary autonomy.
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