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Ant colony optimization (ACO) performs very well on many hard optimization problems,
even though no good worst-case guarantee can be given. Understanding the effects
of different ACO parameters and the structural features of the considered problem on
algorithm performance has become an interesting problem. In this paper, we study
structural features of easy and hard instances of the traveling salesperson problem for
a well-known ACO variant called Max–Min Ant System (MMAS) for several parameter
settings. The four considered parameters are the importance of pheromone values, the
heuristic information, the pheromone update strength, and the number of ants. We further
use this knowledge to predict the best parameter setting for a wide range of instances
taken from TSPLIB.

Keywords: ant colony optimization, combinatorial optimization, traveling salesperson problem, theory, feature-
based analysis, max–min ant system

1. Introduction

Ant colony optimization (ACO) (Dorigo and Stützle, 2004) has become very popular in recent
years to solve a wide range of hard combinatorial optimization problems. Throughout the history
of heuristic optimization, attempts have been made to analyze ACO algorithm performance theo-
retically (Stützle and Dorigo, 2002; Kötzing et al., 2011, 2012) and experimentally (Pellegrini et al.,
2006; Stützle et al., 2012). However, much less work has been done toward the goal of explaining the
impact of problem instance structure and algorithm parameters on performance.

The traveling salesperson problem (TSP) is one of the most famous NP-hard combinatorial
optimization problems. Given a set of n cities {1, . . . , n} and a distance matrix d= (dij), 1≤ i, j≤ n,
the goal is to compute a tour of minimal length that visits each city exactly once and returns to
the origin. The problem is proved to be NP hard as a result of the proof for the Hamiltonian
cycle problem by Karp (2010). It has many real world applications in logistics, scheduling, and
manufacturing. These include classical applications (Lenstra and Rinnooy Kan, 1975), such as
vehicle routing (Applegate et al., 2002), order picking in warehouses (Ratliff and Rosenthal, 1983),
computer wiring (Lenstra and Rinnooy Kan, 1975), overhauling of gas turbine engines (Plante et al.,
1987), drilling of printed circuit boards (Grtschel et al., 1991), and X-ray crystallography (Bland and
Shallcross, 1989), as well as more recent applications, such as genome sequencing (Agarwala et al.,
2000), spacecraft interferometry (Bailey et al., 2000), and vehicle navigator systems.

In early research, problem hardness analysis of TSP is based on only a few features con-
sidering edge cost distribution (Fischer et al., 2005; Ridge and Kudenko, 2008). There, algo-
rithms are typically run on predetermined instances, and runtime or accuracy is measured.
Later on, more sophisticated methods (Smith-Miles et al., 2010; Mersmann et al., 2013;
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Nallaperuma et al., 2013a) are introduced, for instance, gener-
ation. However, a comprehensive analysis of the effects of TSP
instance features and algorithm parameters and their relationship
on ACO performance has not been conducted so far.

We study the potential of feature-based characterization to be
used in automatic algorithm configuration for ACO and consider
the well-known Max–Min Ant System (Stützle and Hoos, 2000)
for the TSP. One important question in the configuration of
ACO algorithms is to what extent pheromone values, heuristic
information, and population size should influence the behavior
of the algorithm – the importance of these components is deter-
mined by the parameters α, ρ (for pheromone values), β (for
heuristic information), and n (number of ants). We first inves-
tigate statistical features of evolved (hard, easy, and in-between)
instances from Nallaperuma et al. (2013b) and their impact on
the appropriate choice of these parameters. Based on this, we
build a prediction model in order to predict the right choice,
for instance, of TSPLIB (Reinelt, 1991). The potential strength
of the prediction model relies on the wide range and on the
diversity of the evolved instances, and on the expressiveness of
selected structural features of problem hardness for algorithm
instances. Our experimental investigations show that the consid-
ered features and evolved instances are well suited to predict an
appropriate choice for setting the parameters, such as α, β, ρ, and
n, of MMAS.

This article is a significant extension the conference version
(Nallaperuma et al., 2014). We expand the feature-based analysis
of MMAS on the TSP that is originally conducted for the two
parameters, α and β (Nallaperuma et al., 2014), for another two
significant MMAS parameters, namely, ρ the pheromone update
strength and n the number of ants. Furthermore, we extend the
preliminary predictionmodel presented in the conference version
(Nallaperuma et al., 2014).

The outline of the paper is as follows. In Section 2, we introduce
the algorithm and the framework of our investigations. In Section
3, we report on easy and hard instances for different parameter
combinations and carry out a feature-based analysis first forα and
β. In Section 4, the analysis is extended to ρ and n. Subsequently,
we use these insights to predict parameters for given instances
from TSPLIB in Section 5, and we finish with some concluding
remarks.

2. Preliminaries

In this section, we discuss the basic ideas about TSP andACO, and
the preliminary work on hard and easy instance generation.

2.1. Traveling Salesperson Problem
Generally, an instance of the TSP consists of a set V = {ν1, . . . ,νn}
of n vertices (depending on the context, synonymously referred to
as points) and a distance function d:V ×V →R≥ 0 that associates
with each pair ν i, ν j. Similarly, in a graph-based representation,
this can be represented by a complete graphG(V, E). The goal is to
find aHamiltonian cycle ofminimum length. AHamiltonian cycle
is a cycle that visits each city exactly once and returns to the origin.
We also use the term tour to denote a Hamiltonian cycle. A candi-
date solution of the TSP is a permutation x:V →V. We sometimes
associate a permutation x with its linear form, which is simply the

length-n sequence [x(1), x(2), . . . , x(n)]. The Hamiltonian cycle
in G induced by a permutation x is the set of n edges

C(x) = {{x(1), x(2)}, {x(2), x(3)}, . . . ,

{x(n − 1), x(n)}, {x(n), x(1)}} .

The optimization problem is to find a permutation x, which
minimizes the fitness function

f(x) =
∑

{u,v}∈C(x)

d(u, v). (1)

ATSP instance is considered to bemetric if its distance function
is in metric space. Metric space satisfies reflexivity, symmetry,
and triangle inequality conditions. A pair (V, d) of a set V and
a function d: V ×V →R≥ 0 is called a metric space if for all ν i,
ν j, νk ∈V the following properties are satisfied:

• d(ν i, ν j)= 0 if and only if ν i = ν j,
• d(ν i, ν j)= d(ν j, ν i)
• d(ν i, νk)≤ d(ν i, ν j)+ d(ν j, νk).

We consider the n cities are given by points ν i(xi,yi), 1≤ i≤ n,
in the plane. For a distance metric Lp, the distance of two points
ν i = (xi,yi) and ν j = (xi,yi) is

dp(vi, vj) =
(
|xi − xj|p + |yi − yj|p

)1/p
.

Within this research, we study the Euclidean TSP, which is
a prominent case of the metric TSP having the distance metric
Euclidean (L2). The first and naive approach to solve the TSP
is based on brute force search. This would take O(n!) time to
solve the TSP. Later on, various improvements on this runtime
have been made using different approaches, such as branch and
cut (Applegate et al., 2002) the iterative heuristic by Lin and
Kernighan (1973) and ant colony optimization (ACO) (Dorigo
and Stützle, 2004). For a general discussion on the state of art of the
TSP, we refer the interested reader to the text book by Applegate
et al. (2007).

2.2. Ant Colony Optimization
Ant colony optimization (ACO) is a recent popular bio-inspired
approach (Dorigo and Stützle, 2004). ACO is inspired by the for-
aging behavior of ants. The general structure of ACO algorithms is
outlined inAlgorithm1. Individual solution tours are constructed
(see Algorithm 2) at each iteration by a set of artificial ants.

ALGORITHM 1 | Outline of Ant Colony Optimization (ACO).

τ (e)←1/|V |, for all e∈E
x*← construct(τ )
update(τ , x*)
while termination condition not met do

for all λ ants do
x← construct(τ )
If f (x)< f (x*) then x← x*
end if

end for
τ ← update(τ , x*)

end while
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ALGORITHM 2 | Construct.

for k= 0 to n – 2 to
R← Σy∈Nkτ(y)α.η(y)β

Choose one neighbor z ∈ Nk where the probability of
selection of any fixed z is pij = τ (z)α. η(z)β

/
R

end for
Let en be the unique edge completing the tour (e1, . . . ,en)
return (e1, . . . ,en ).

These tours are built by visiting each node in a tour sequen-
tially according to a probabilistic formula that takes specific
heuristic information and pheromone trails into account. This
probabilistic formula, called the random proportional rule, spec-
ifies a transition probability pij that an ant currently visit-
ing node i selects node j next in its tour. This probability is
defined as

pij =
[τij]

α[ηij]
β(∑

h∈Nk
[τih]

α[ηih]
β
) (2)

Here, Nk represents the set of nodes that have not yet been
visited by ant k, [τ ih] and [ηih] represent the pheromone trail
intensity and the heuristic information, respectively. Hence,
the parameters, α and β, accordingly adjust the effects of
the pheromone and the heuristic information on the selection
decision.

As above-mentioned, our study is focused on a popular ACO
variant called Max–Min Ant System (MMAS) (Stützle and Hoos,
2000). In the Max–Min Ant System, the pheromone update
is performed after the tour construction of ants according to
τij = (1 − ρ)τij + ∆τ b

ij , where ρ denotes the evaporation
rate and

∆τ b
ij =

{
1/Cb if (i, j) belongs to the best-so-far tour;
0 otherwise.

Here, Cb is the cost of the best-so-far tour (the iteration-best
tour is also sometimes used). Additionally, local search can be
applied upon these constructed solutions to improve them fur-
ther. Pheromone trails inMMAS are bounded betweenmaximum
(τmax) and minimum (τmin) limits. A detailed description of this
algorithm on the TSP can be found in the textbook on ACO
(Dorigo and Stützle, 2004).

2.3. Problem Hardness Analysis
Throughout the history of heuristic optimization, attempts have
been made to analyze ACO algorithm performance theoretically
(Stützle and Dorigo, 2002; Kötzing et al., 2011, 2012) and exper-
imentally (Pellegrini et al., 2006; Stützle et al., 2012). However,
much less work has been done toward the goal of explaining
the impact of the problem instance structure and the algorithm
parameters on performance.

Previously, problem hardness analysis of TSP is based on only
a few features considering edge cost distribution (Fischer et al.,
2005; Ridge and Kudenko, 2008). There, algorithms are typi-
cally run on predetermined instances, and runtime or accuracy

is measured. Later on, more sophisticated methods are intro-
duced for the instance generation. One of the commonly used
approaches is the use of an evolutionary algorithm to evolve
random sets of instances into sets of instances of extreme dif-
ficulties. Recent research of TSP hardness analysis (Smith-Miles
et al., 2010; Mersmann et al., 2013; Nallaperuma et al., 2013a) is
based on this method, and the investigated problem features are
more enriched including several feature groups describing TSP
instances in terms of distances, angles, nearest neighbors, convex
hull, cluster, centroid, minimum spanning tree, etc.

In contrast to the experimental approach, Pellegrini et al.
(2006) proposed an analytical approach to examine parameters
and their impact on the speed of convergence. They have con-
sidered the number of ants, the pheromone evaporation rate,
and the exponents α and β of the pheromone trails, and the
heuristic information in the random proportionate rule. Some
theoretical reasoning was done in order to derive more general
knowledge on the impact of parameters, and arguments were sup-
ported by several experiments. These included running algorithm
instances with varying parameter settings on a set of instances.
However, the authors considered only the runtime, thus, neglect-
ing the actual resulting solution quality. Hence, the impact of
the parameters on the optimality of the solution is missing in
that work.

In current literature, a comprehensive analysis of ACOproblem
features has not been conducted. Therefore, we believe conducting
a comprehensive analysis of problem hardness features based
on the diverse feature set introduced by Smith-Miles and Lopes
(2012) and expanded by Mersmann et al. (2013) will contribute
to ACO research greatly in algorithm design and parameter selec-
tion.Next, wewill discuss existing parameter selection approaches
in ACO and the potential of hardness analysis to be used in
parameter selection.

2.4. Parameter Prediction
The study by Stützle et al. (2012) provides an overview of
existing parameter prediction/tuning approaches for ACO in
two major directions: (1) parameter choosing before running
the algorithm (offline tuning) and (2) adaptation during run-
time (online tuning). Offline tuning is conventionally done
using trial and error methods, which is error prone, and even
any good results achieved cannot necessarily be reproduced.
Later on, some studies have been done using an EA and local
search for offline parameter tuning (Pilat and White, 2002). For
example, the irace package (López-Ibáñez et al., 2011) is an
automatic algorithm configuration package based on the iter-
ative racing and ranking. Some recent work in multi-objective
ant algorithms (López-Ibáñez and Stützle, 2012) used these
techniques, claiming to outperform conventional offline tuning
methods.

One of the sub-categories of online tuning is the prescheduled
parameter adaptation, where parameter values are determined by
a formula before the algorithm is run (Stützle et al., 2012). Alterna-
tively, in adaptive parameter tuning, the parameter modification
scheme is defined as a function of some statistics derived from
the algorithm behavior. Similarly, in search-based adaptation
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schemes, parameter tuning is done by an additional evolutionary
or local search algorithm during runtime.

The comparison of the two techniques (Pellegrini et al., 2010)
on MMAS and TSP claims offline tuning outperformed online
tuning. Nevertheless, current offline parameter configuration
techniques are time consuming and use a lot of computing power,
as they need to run iteratively on the instances we need to tune on.
So far, to the best to our knowledge, none of these approaches have
taken the problem instance structure into consideration when
setting algorithm parameters.

Therefore, we believe that we can provide insights into more
enhanced algorithm configuration through our problem structure
analysis. In contrast to above approaches, we propose to re-use
the results of hardness analysis to feed a learning system, which
is capable of predicting the best parameter configuration for a
new instance. Such a system could instantly propose the best
parameter setting for a given input instance having its hardness
features calculated. The recent studies of Hutter et al. (2013) and
Muñoz et al. (2012) provide ideas on the possibility of more
effective automatic algorithm configuration using both problem
instance features and parameters. We find this insightful with
our approach on ACO to use our resultant instance features
on problem hardness analysis for parameter prediction models.
However, none of the current parameter prediction approaches
have considered the possibility of using an evolved set of
instances.

2.5. Easy and Hard Instance Generation
To evolve easy and hard instances for the ant algorithms, we
use the evolutionary algorithm approach previously studied on
2-opt (Mersmann et al., 2013) and approximation algorithms
(Nallaperuma et al., 2013a) for the TSP. The only difference in
the instance generation process here is that we consider several
algorithm instances with different parameter settings instead of a
single algorithm.

The approximation ratio αA(I) of an algorithm A for a given
instance I is defined as

αA(I) = A(I)/OPT(I)

where A(I) is the tour length produced by algorithm A for the
given instance I, and OPT(I) is the value of an optimal solution
of I. OPT(I) is obtained by using the exact TSP solver Concorde
(Applegate et al., 2002).

3. Features of Hard and Easy Instances
for α and β

3.1. Experimental Setup
For eachACOalgorithm instancewith a specific parameter setting
of α and β, a set of 100 random TSP instances is generated in the
two-dimensional unit square [0,1]2 and placed on a discretized
grid. The evolutionary algorithm runs on them for 5000 gener-
ations in order to generate a set of hard and a set of easy instances.
Each ACO execution is limited to 2 s. The choice of the time
budget is based on experimental observation that this time budget
was sufficient for ACO to converge for the considered instance

sizes. In each iteration, the ACO algorithm is run once on a
single instance, and then, the approximation ratio is calculated.
In separate runs, either a higher approximation ratio is favored to
generate hard instances, or a lower ratio is favored to generate easy
instances. This process is repeated, for instance, of sizes 25, 50, 100,
and 200 with the goal of generating easy and hard instances. The
instance generation is performed on anUnix cluster with 48 nodes
where each node has 48 cores (four AMD 6238 12-core 2.6Ghz
CPUs) and 128GB memory (2.7GB per core).

In this article, we consider 47 instance features including dis-
tances of edge cost distribution, angles between neighbors, nearest
neighbor statistics, mode, cluster, and centroid features, as well
as features representing minimum spanning tree heuristics and of
the convex hull. A detailed description of these features can be
found in the article by Nallaperuma et al. (2013a).

The algorithm parameters considered in this section are the
most popular and critical ones in any ACO algorithm, namely,
the exponents α and β, which represent the influence of the
pheromone trails and heuristic information, respectively.We con-
sider three parameter settings for our analysis: setting 1 represents
default parameters (α = 1, β = 2), and settings 2 and 3 represent
extreme settings with highest and lowest values in a reasonable
range (α = 0, β = 4 and α = 4, β = 0). The general idea behind the
choice is that we have to isolate the conditions to investigate the
effect, which is usually considered in traditional scientific exper-
iments. The rest of the parameters are set in their default values
(ρ = 0.2, ants= 20) as in the original MMAS implementation by
Stützle (2012).

3.2. Feature Analysis
Across all experiments, the distances between cities on the optimal
tour are more uniformly distributed in the hard instances than
in the easy ones. Examples of the hard and the easy instances are
shown in Figure 1. The approximation ratio is very close to 1 for
all generated easy instances, whereas for the hard instances it is
higher, ranging from 1.04 to 1.29.

Our experimental results for the MMAS with the three consid-
ered parameter settings show the following. For the first and the
second parameter settings, the SD of angles of the easy instances
are significantly smaller than the values of the hard instances,
as shown in Figure 2. These values for both the hard and the
easy instances slightly decrease with increasing instance size.

FIGURE 1 | Instance examples.
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FIGURE 2 | Boxplots of the SDs of the angles between adjacent cities on the optimal tour for parameter setting 1 (α=1, β=2) in top, 2 (α=0, β=4) in
middle and setting 3 (α=4, β=0) in bottom.

With increasing instance size, these values change differently for
easy and hard instances. Interestingly, this structural difference is
even obvious to human observers who perceive different “shapes”
for easy/hard and smaller/larger instances. It can be observed that
the shapes of the smaller instances structurally differ from the
respective shapes of larger instances. Generally, the results of the
second parameter setting are similar to those of the first setting.
For example, the SD of angles to the next two nearest neighbors
follows a similar pattern for the second parameter combination
(α = 0, β = 4), as shown in Figure 2. In contrast to the patterns
of the first two parameter settings, the third combination (α = 4,
β = 0) shows an increasing pattern of SD values (with increasing
instance size), whereas these values follow a decreasing pattern
in the case of the second setting (see Figure 2). We have fur-
ther performed Wilcoxon signed rank tests (Wilcoxon, 1945) to
compare the hard and easy instances based on these features for
the considered parameter settings. The results of the statistical
tests as shown in Table 1 verify the visual observations in above
boxplots shown in Figure 2. We form the alternative hypothesis

TABLE 1 | Results of Wilcoxon signed rank tests for the SD of angles of the
easy and hard instances for the three parameter settings.

Parameter setting Test 1 Test 2

W p-Value W p-Value

Parameter setting 1
(α= 1, β = 2)

23,552 0.001064 16,448 0.9989

Parameter setting 2
(α= 0, β = 4)

713 6.029e-08 97 1

Parameter setting 3
(α= 4, β = 0)

168 1 732 7.014e-06

easy> hard (test1), hard> easy (test2), positive rank sums (W) and confidence (p) values
are displayed accordingly.

as easy instances have higher feature values than hard instances
for test 1 and the converse for test 2. The statistically significant
results are indicated by small p-values (<0.002). Results of test 1
support our claim that hard instances have higher feature values
than easy instances for the parameter settings 1 and 2. Similarly,
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FIGURE 3 | Hard and easy classification with two exemplary feature combinations maximum distance to centroid and the number of points inside the
convex hull for parameter setting 2 (α=0, β=4) on the top and SD of the angles and distances parameter setting 3 (α=4, β=0) on the bottom.

the converse is supported from test 2 for the parameter setting 3.
And, we reject the hull hypothesis that they are not different.

The boxplots discussed previously exhibit the individual capa-
bilities of problem features to express the problem hardness. How-
ever, not all the features have the capability to express the problem
hardness individually. Nevertheless, some features in collabora-
tion can classify hard and easy problem instances into separate
clusters (see Figure 3). For all studied parameter settings, such
feature combinations can be found. This implies that problem
features can be used to determine the hardness or easiness of
problem instances for ACO algorithms instantiated with different
parameter settings. Interestingly, the type of the best classifying
feature combinations and their strengths were different for the
three parameter settings. For example, as shown in Figure 3,
the centroid and the convex hull features are the best to classify
hard and easy instances for parameter setting 2 (α = 0, β = 4),
where as the distance and the angle features are dominant in
the classification for parameter setting 3 (α = 4, β = 0). These
results highlight the different impacts of heuristic information (on
centroid and convex hull features) and pheromone information
(on distance and angle features) in determining the hardness
and easiness of problem instance for ACO (i.e., for MMAS in
particular).

3.3. Feature Variation for the Instances with
Intermediate Difficulty
We further study the feature variation, for instance, of inter-
mediate difficulty. In order to do this, it is required to gener-
ate instances with varying difficulty levels in-between the two
extreme difficulties hard and easy. This can be achieved through
morphing, where we create instances with varying difficulty levels
by forming convex combinations of easy and hard instances.
Here, the point matching is done using a greedy strategy where
the points of minimum Euclidian distance are matched. These
matched instances are then used to produce a set of instances with
intermediate difficulty by taking the convex combination based on
the convex combination parameter αc ∈ {0,0.2, . . . ,0.8,1}, where
0 represents hardest instances and 1 easiest. For example, we
show some features for a single ACO setup and the corresponding
approximation ratios in Figure 4.

Generally, for all three considered parameter settings, most
features show similar patterns along the instance difficulty level.
However, there are a few “contrast patterns” (i.e., the feature
is increasing in value over instance difficulty for one parameter
setting and decreasing for another parameter setting) observed
among different parameter settings. For example, the distance
mean and the SD show contrast patterns for the second parameter
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FIGURE 4 | Feature variation with instance difficulty for some exemplary features from distance (top) and minimum spanning tree (bottom) feature
groups for the default parameter setting (α=1, β=2).
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FIGURE 5 | Feature variation with instance difficulty for mean (top) and SD (bottom) of distances for the three parameter settings 1 (top), 2 (middle),
and 3 (bottom).

setting (α = 0, β = 4) from the other two (see Figure 5).Moreover,
we observe that the sharp increasing pattern over the instance
difficulty for the third parameter setting (α = 4, β = 0) has slowed
down for the default parameter setting (α = 1, β = 2), and even
converted to a decreasing pattern for the second setting. This pro-
vides strong evidence on the impact of parameters. Similar con-
trast patterns are observed in the other feature groups as well, such
as the convex hull and nearest neighbor. These contrast patterns
suggest the dependence of problem hardness on the algorithm
parameters. This dependence further indicates that algorithms
with different settings can have complementary problem-solving
capabilities. We believe that such capabilities can provide insights
into automatic parameter configuration. Therefore, we further
investigate these capabilities by comparing the approximation
ratios of the three algorithms achieved on each others’ easy and
hard instances.

3.4. Comparison of the Parameter Settings
As shown in Figure 6, both the second (α = 0, β = 4) and the third
(α = 4, β = 0) parameter settings have obtained worse approxi-
mation ratios for the easy instances of the first parameter setting
(α = 1, β = 2) than the first parameter setting. In the case of the

hard instances, the second parameter setting has achieved better
approximation ratios than the first parameter setting itself. The
outcomes of the other two cross-checks are comparable: given
the hard instances of one algorithm configuration, the other two
settings achieve better results. This is a strong support for our pre-
vious conjecture on the complementary capabilities of different
parameter settings.

The outcomes of running the ACO algorithmwith the first and
the third parameter settings on the easy and hard instances of the
second parameter setting follow a similar pattern to the previous
experiment (see Figure 7). The results of the last comparative
experiment on the instances of the third parameter setting are not
significant that it merely follows the pattern for the first setting
with worse approximation values. In summary, our comparisons
suggest that the first and the second parameter settings comple-
ment each other, performing better on each other’s hard instances.

4. Extending the Analysis for ρ and n

For the analysis of ρ and n, we adhere to the experimental
setup described in the above section. Similarly, we consider
several parameter settings for our analysis based on varying ρ
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FIGURE 6 | Performance of the second (res_aco2) parameter setting (top) and the third (res_aco3) parameter setting (bottom) on the easy (gray) and
hard (black) instances of the first (res_aco1) parameter setting.

FIGURE 7 | Performance of the first (res_aco1) parameter setting (top) and the third (res_aco3) parameter setting (bottom) on the easy (gray) and hard
(black) instances of the second(res_aco2) parameter setting.

and n among feasible values. For one batch of instances, we
keep the ρ fixed to 0.5 and evolved instances for three n val-
ues 5, 25, and 100, whereas in the other batch n is kept fixed
to 25 and ρ is varied among 0.2, 0.5, and 0.8. The general

idea behind the choice is that we have to isolate the condi-
tions to investigate the effect, which is usually considered in
traditional scientific experiments. Similar to the previous exper-
iments, the remaining parameters are set to their default values
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FIGURE 8 | Boxplots of the means and the SDs of the angles between neighbor cities.
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FIGURE 9 | Boxplots of the means (top) and the SDs (bottom) of the distances.
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(α = 1, β = 2) as in the original MMAS implementation by Stützle
(2012). The instance generation is repeated, for instance, sizes 25
and 100.

As shown in the Figure 8, themean angles between the adjacent
cities for the easy instances are a bit higher than for hard instances.
This difference widens with increasing number of ants as depicted
in themiddle rowof the boxplots. In contrast to this, the difference
narrows with increasing ρ for the fixed n= 25.

Figure 9 shows the means and SDs of the distances. For the
fixed n= 25, the mean values of the easy instances are almost
the same for different values of ρ, while the values of the hard
instances vary. For the smallest ρ value (of 0.2), the hard instances
have a higher mean value than easy instances and this difference
decreases with the increasing ρ until 0.5 and the pattern inverts.
Thus, for the largest ρ value (of 0.8), the mean of hard instances
again has a higher value than of the easy instances. This pattern is
reflected in the SDs as well. There, the hard instances initially have
lower values than the easy instances. On the other hand, there is
no significant variation shown over the increasing number of ants
n for either the means or the SDs of distances.

Compared to the significant difference in the feature values of
the easy and hard instances of parameter settings for varyingα and
β this difference is less. This indicates that n and ρ have less effect
on the overall approximation ratio achieved by ACO compared
to the effect from α and β. Nevertheless, the effect exists and
is sufficiently strong to be observed in the current experiments.
Therefore, we further study the capability of the feature data with
varying ρ and n for parameter prediction.

5. Parameter Prediction

In order to build a reliable model, we significantly extend our col-
lection of data gained from the experiments in Section 3. Around
3000 instances (10 instances per each category in hard/easy
instances of size 100, and 144 parameter combinations for α, β

∈ {1,2,3,4}, ρ ∈ 0.2,0.5,0.8, n ∈ 5,25,100) are generated in order to
build our prediction model.

5.1. The First Prediction Model
We build a simple prediction model merely as a proof of concept
that a problem hardness model can be used for ACO parameter
prediction. To achieve this, we use a popular basic technique for
model building. A high-level overview of the model is shown in
Figure 10. Instead of predicting the allegedly optimal parame-
ters, we actually predict the approximation values given the 144
possible parameter combinations. Then, we select among those
combinations the one that achieves the best approximation as the
model’s output. Hence, the actual model construction is based on
the approximation ratio as the dependent variable. Note that a
similar model architecture is used in the recent work of Muñoz
et al. (2012) for the prediction of algorithm performance based
on landscape features and parameters. Note that any kind of
instance set can be used to build a prediction model. However,
a randomly generated or a benchmark instance set would not
cover the full spectrum of difficulty. By evolving two sets of
instances having extreme difficulty levels (hard and easy) and then
generating instances with medium difficulty levels in between by
morphing these hard and easy instances, we generate a diverse

FIGURE 10 | Prediction model 1. It predicts the algorithm performance
based on the problem features ci, 1≤ i≤p and the possible algorithm
parameters θj, 1≤ j≤q.

set of instances that covers the full spectrum of difficulty. This
improves the overall prediction quality.

To build our prediction model, we use the classical pattern
classification technique introduced by Aha et al. (1991), which
is implemented in the Weka data mining framework (Hall et al.,
2009). In the training phase, we feed the generated instances into
this nearest neighbor search-based classifier. As we have seen in
the previous hardness analysis, not all problem features appear to
be significantly different for easy and hard instances. We use the
correlation-based feature subset selection method (Hall, 200) to
select the most important features. These identified features for
the training set are used to build the prediction model together
with the parameter values and the respective approximation ratio.
These are, namely, mean distance to centroid, number of inner
points in the convex hull, distance mean, distance SD, minimum
spanning tree distance SD, nearest neighbor distances mean, and
the nearest neighbor distances median.

After the training phase, the model can reliably predict the
performance for the parameter settings. We choose the parameter
setting with the best predicted performance as the system output.
The performance data for all parameter combinations for each
TSP instance are considered for a statistical test later.

Table 2 shows some predicted approximation ratios of the
model and the actual best approximation ratios. For all instances,
the prediction error is <9% and for more than a half of the
instances this error is even <1%.

The performance predictions can be used to produce the final
output of the prediction system that gives the best parameter
combination, as described in the previous section. Accordingly,
these respective outputs for the considered test set are shown in
Table 3. For the majority of the instances, the best parameter
setting is predicted. In other cases, there exist differences in at
most two parameters, and the predicted setting in these cases is,
in fact, the second best parameter setting.

Although ourmodel cannot produce the best parameter setting
for all instances, the raw approximation values for predicted and
actual performance are very similar. Therefore, we conduct a rank
test to check for any significant difference between the predicted
values.We choose theWilcoxon signed rank test (Wilcoxon, 1945),
as there is no guarantee about the distribution, and the results are
paired as they are based on the TSP instance onwhich the approxi-
mation ratio is obtained. For each TSP instance, the predicted and
actual approximation ratios obtained for all parameter settings are
considered for the test. For the test, we set the hypothesis that
the predicted values are greater than the actual values. For all
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TABLE 2 | Predicted and actual approximation ratios for 26 TSPLIB
instances of size in range 51–264.

Instance name Predicted Actual Error

eil101.tsp 1 1 0
gil262.tsp 1.001 1.002 0.001
kroA200.tsp 1.001 1.027 0.026
kroB200.tsp 1.002 1 −0.002
kroE100.tsp 1.003 1 −0.002
pr107.tsp 1.003 1.04 0.037
pr264.tsp 1.003 1.001 −0.002
rat99.tsp 1.004 1 −0.004
ts225.tsp 1.006 1.093 0.087
bier127.tsp 1.006 1.093 0.086
ch130.tsp 1.006 1 −0.006
eil51.tsp 1.007 1 −0.007
kroA100.tsp 1.008 1.009 0.001
kroB100.tsp 1.009 1 −0.009
kroC100.tsp 1.009 1.003 −0.007
pr124.tsp 1.01 1.008 −0.002
pr76.tsp 1.012 1.009 −0.002
ch150.tsp 1.012 1 −0.012
eil76.tsp 1.013 1.093 0.08
kroA150.tsp 1.013 1.009 −0.004
kroB150.tsp 1.014 1.007 −0.007
kroD100.tsp 1.014 1.073 0.059
lin105.tsp 1.02 1.008 −0.012
pr226.tsp 1.023 1.001 −0.022
rat195.tsp 1.028 1.008 −0.02
st70.tsp 1.019 1.093 0.074

Note that the underlying model is based only on our analysis of instances of size 100.

instances, the resulting p-values are reasonably large, and hence,
the alternative hypothesis is rejected (see Table 4). Thus, we fail
to reject the null hypothesis, meaning that both distributions are
equal.

5.2. More Effective Prediction Models
The initial prediction model discussed above has an implicit lim-
itation. The internal model actually predicts the performance not
the parameters, and hence, it is required to retrieve performance
results for all parameter combinations. This means several calls
are made to the prediction model for a given new instance. If
the parameters can be independently determined, they can be
predicted directly without predicting the performance first. In
the following, we predict the parameters directly and analyze the
results to study the effectiveness of this method.

The key idea of direct parameter prediction is to consider
only the feature values and parameter settings with respect to the
optimal performance. If this is possible, then we can directly map
the feature values or the structure of these problem instances to
the considered parameter values as shown in Figure 11. To obtain
such a data set with optimal performance, we considered a subset
of the instances for which the approximation ratio is exclusively
between 1 and 1.001. The main idea behind this choice is to
extract the input data representing only the optimal parameter
values with respect to a given set of structural features. Such
optimal parameter values are, in fact, the values that resulted in
the optimal approximation ratio for the respective TSP instances.
Hence, the parameter values with respect to the instances with
optimal approximation values represent our input data set. Then, a

TABLE 3 | Predicted and actual parameter settings (α, β, n, and ρ) for 26
TSPLIB instances of size in range 51–264.

Instance name Predicted Actual Comment
α, β, n, ρ α, β, n, ρ

eil101.tsp 1, 3, 25, 0.2 1, 3, 25, 0.2
gil262.tsp 1, 3, 100, 0.2 1, 3, 100, 0.5
kroA200.tsp 1, 3, 100, 0.2 1, 3, 100, 0.5 (Second best)
kroB200.tsp 1, 3, 100, 0.2 1, 3, 100, 0.2
kroE100.tsp 1, 3, 100, 0.2 1, 3, 25, 0.2 (Second best)
pr107.tsp 1, 3, 25, 0.2 1, 3, 25, 0.2
pr264.tsp 1, 3, 100, 0.5 1, 3, 100, 0.2 (Second best)
rat99.tsp 1, 3, 5, 0.2 1, 3, 100, 0.5
ts225.tsp 1, 3, 100, 0.8 1, 3, 100, 0.5 (Second best)
bier127.tsp 1, 1, 100, 0.8 1, 1, 100, 0.8
ch130.tsp 1, 3, 100, 0.2 1, 3, 25, 0.8 (Second best)
eil51.tsp 1, 3, 100, 0.5 1, 3, 100, 0.5
kroA100.tsp 1, 3, 25, 0.2 1, 2, 25, 0.2
kroB100.tsp 1, 3, 100, 0.2 1, 3, 100, 0.5 (Second best)
kroC100.tsp 1, 3, 25, 0.2 1, 2, 25, 0.5 (Second best)
pr124.tsp 1, 3, 100, 0.2 1, 3, 100, 0.2
pr76.tsp 1, 3, 100, 0.8 1, 2, 5, 0.8 (Second best)
ch150.tsp 1, 3, 100, 0.2 1, 2, 100, 0.5 (Second best)
eil76.tsp 1, 3, 100, 0.2 1, 3, 25, 0.5 (Second best)
kroA150.tsp 1, 3, 100, 0.2 1, 2, 25, 0.2 (Second best)
kroB150.tsp 1, 3, 100, 0.2 1, 3, 100, 0.5 (Second best)
kroD100.tsp 1, 3, 100, 0.2 1, 3, 100, 0.5 (Second best)
lin105.tsp 1, 3, 100, 0.2 1, 2, 100, 0.2
pr226.tsp 1, 3, 100, 0.5 1, 3, 100, 0.2 (Second best)
rat195.tsp 1, 3, 25, 0.2 1, 3, 25, 0.5 (Second best)
st70.tsp 1, 3, 25, 0.2 1, 3, 100, 0.5 (Second best)

Note that the underlying model is based only on our analysis of instances of size 100.

TABLE 4 | Results of the Wilcoxon signed rank tests on the predicted and
actual approximation ratios for all parameter combinations of the TSPLib
instances, for the hypothesis “predicted>actual”, positive rank sum (W)
and confidence (p) values are displayed accordingly.

Instance name Rank sum (W value) Confidence (p-value)

bier127.tsp 0 1
kroC100.tsp 4341.5 0.9998
eil51.tsp 10573.5 0.9998
pr76.tsp 21143.5 0.9975
pr124.tsp 22867.5 1
st70.tsp 41244.5 1
kroB100.tsp 66043 0.9997
pr76.tsp 73660.5 1
rat99.tsp 94879.5 1
ch150.tsp 98141 1
pr107.tsp 107786.5 1
lin105.tsp 112806 1
eil76.tsp 120751 1
pr226.tsp 128533.5 1
kroE100.tsp 135379.5 1
kroA100.tsp 175895.5 1
ch130.tsp 183527.5 1
kroD100.tsp 205371.5 1
rat195.tsp 213944 1
eil101.tsp 233754 1
ts225.tsp 247358 1
kroB150.tsp 257580.5 1
kroA150.tsp 276686 1
pr264.tsp 334056 1
kroA200.tsp 382696.5 1
kroB200.tsp 392483.5 1
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FIGURE 11 | Prediction model 2. It predicts the algorithm parameters θj,
1≤ j≤q based on the problem features ci, 1≤ i≤p on optimal performance.

TABLE 5 | Predicted and actual best parameter settings (α, β, n, and ρ) for
26 TSPLIB instances of size in range 51–264 from the prediction model 2a.

Instance name α β n ρ

Actual,
predicted

Actual,
predicted

Actual,
predicted

Actual,
predicted

bier127.tsp 1, 1 1, 2 100, 25 0.8, 0.5
kroC100.tsp 1, 1 3, 2 25, 25 0.2, 0.2
eil51.tsp 1, 1 3, 2 100, 25 0.5, 0.2
pr76.tsp 1, 2 3, 4 100, 25 0.8, 0.5
pr124.tsp 1, 2 3, 4 100, 25 0.2, 0.5
st70.tsp 1, 1 3, 2 25, 25 0.2, 0.5
kroB100.tsp 1, 1 3, 2 100, 25 0.2, 0.8
pr76.tsp 1, 2 2, 4 100, 25 0.2, 0.5
rat99.tsp 1, 1 3, 2 5, 100 0.2, 0.5
ch150.tsp 1, 2 3, 2 100, 25 0.2, 0.5
pr107.tsp 1, 1 3, 2 25, 100 0.2, 0.5
lin105.tsp 1, 2 3, 3 100, 25 0.2, 0.5
eil76.tsp 1, 1 3, 2 25, 25 0.5, 0.2
pr226.tsp 1, 2 3, 1 100, 25 0.5, 0.5
kroE100.tsp 1, 1 2, 3 100, 25 0.2, 0.5
kroA100.tsp 1, 1 3, 2 25, 25 0.2, 0.8
ch130.tsp 1, 1 3, 4 100, 25 0.2, 0.5
kroD100.tsp 1, 1 3, 2 100, 25 0.2, 0.8
rat195.tsp 1, 1 3, 2 25, 100 0.2, 0.5
eil101.tsp 1, 1 3, 4 25, 25 0.2, 0.5
ts225.tsp 1, 1 3, 2 100, 25 0.8, 0.5
kroB150.tsp 1, 1 3, 2 25, 25 0.2, 0.2
kroA150.tsp 1, 1 3, 2 25, 25 0.2, 0.8
pr264.tsp 1, 1 3, 3 100, 25 0.5, 0.5
kroA200.tsp 1, 1 3, 2 100, 100 0.2, 0.5
kroB200.tsp 1, 1 3, 2 100, 100 0.2, 0.5

Note, that the underlying model is based only on our analysis of instances of size 100.

model can be learned to predict optimal parameter values through
supervised learning based on the received optimal parameter
values for the feature values of the problem instances.

Our goal of building a prediction model is to identify the capa-
bility of TSP instance features for parameter prediction of ACO.
Hence, for simplicity, we again consider a model similar to our
previous predictionmodel (seeFigure 10) inwhich a single output
is produced. By combining four such trained models to predict
each parameter, we consider an integrated parameter prediction
model. Hence, to obtain a prediction for a new instance, we invoke
themodel four times, a single call for each separate model.We call
this prediction model 2a.

Our results for predictionmodel 2a indicate that optimal values
for parameters cannot be predicted independently of other param-
eters. This is observed in incorrect predictions for the majority
of the test instances (see Table 5). Compared to the other three

TABLE 6 | Predicted and actual parameter settings (α, β, n, and ρ) for 26
TSPLIB instances of size in range 51–264 from the prediction model 2b.

Instance name α β n ρ

Actual,
predicted

Actual,
predicted

Actual,
predicted

Actual,
predicted

bier127.tsp 1, 1 1, 1 25, 25 0.5, 0.5
kroC100.tsp 1, 1 3, 3 25, 25 0.2, 0.5
eil51.tsp 1, 1 3, 3 100, 100 0.5, 0.5
pr76.tsp 1, 1 3, 3 100, 25 0.8, 0.5
pr124.tsp 1, 1 3, 3 100, 100 0.2, 0.2
st70.tsp 1, 1 3, 3 25, 25 0.2, 0.5
kroB100.tsp 1, 1 3, 3 100, 25 0.2, 0.5
pr76.tsp 1, 1 2, 2 100, 25 0.2, 0.5
rat99.tsp 1, 1 3, 3 5, 25 0.2, 0.5
ch150.tsp 1, 1 3, 3 100, 100 0.2, 0.2
pr107.tsp 1, 1 3, 3 100, 100 0.2, 0.2
lin105.tsp 1, 1 3, 3 100, 100 0.2, 0.2
eil76.tsp 1, 1 3, 3 25, 25 0.5, 0.5
pr226.tsp 1, 1 3, 3 100, 100 0.5, 0.5
kroE100.tsp 1, 1 2, 2 100, 25 0.2, 0.5
kroA100.tsp 1, 1 3, 3 25, 25 0.2, 0.2
ch130.tsp 1, 1 3, 3 100, 100 0.2, 0.2
kroD100.tsp 1, 1 3, 3 100, 25 0.2, 0.5
rat195.tsp 1, 1 3, 3 25, 25 0.2, 0.2
eil101.tsp 1, 1 3, 3 25, 25 0.2, 0.2
ts225.tsp 1, 1 3, 3 100, 100 0.5, 0.5
kroB150.tsp 1, 1 3, 3 25, 25 0.2, 0.2
kroA150.tsp 1, 1 3, 3 25, 25 0.2, 0.5
pr264.tsp 1, 1 3, 3 100, 25 0.5, 0.5
kroA200.tsp 1, 1 3, 3 100, 100 0.2, 0.2
kroB200.tsp 1, 1 3, 3 100, 100 0.2, 0.2

Note that the underlying model is based only on our analysis of instances of size 100.

parameters, the high-prediction precision for parameter α indi-
cates that it is quite independent from the other parameters. To
verify the nature of ACO parameters, we try in the following to
predict each one of the parameters given the other parameters. For
this, we again build four prediction models, where each model is
trained with feature data and the values of all four parameters as
inputs and having each considered parameter as the target. Similar
to the former model, for this model also the features and the
parameter data extracted only from the subset of the instances that
the ACO algorithm obtained near optimal approximation ratio
(almost 1). The predictions made by this model (we call this the
prediction model 2b) are listed in Table 6.

For α and β, the exact correct result is predicted for all the
instances, whereas the exact correct values are predicted for the
majority of the cases for the other two parameters (see Table 6).
The major difference when making a prediction with this model
and the previous model is that this model additionally requires
the optimal values of all the other parameters as the inputs
while the previous model requires only the feature data as the
inputs. The results show that the optimal value for a parameter
can be predicted successfully given the optimal values for the other
parameters, supporting our hypothesis that the ACO parameters
are, in fact, interdependent on each other.

The prediction model 2b is built only as a proof of concept: it is
not practical, since it requires the values of all other parameters as
inputs to predict the optimal value for a given parameter. A prac-
tical model similar to our model 2a should take the dependencies
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among parameters into account internally and predict all param-
eters simultaneously. Building such a model is an interesting
research direction although it is out of the scope of this study,
hence, left as an open problem for future research. Furthermore,
a theoretical analysis of this interdependency among the ACO
parameters is essential, as it would provide a basis for such a novel
prediction model.

As discussed in Section 2, this idea of using instance features
for parameter prediction is rather novel in the ACO context.
There are parameter tuningmethods widely used in ACO context;
however, our approach should be distinguished from tuning. It is
observed that tuning often requires a substantial amount time to
run the algorithm iteratively on a specified instance. In contrast,
our approach requires time to calculate the feature values for
the given TSP instance and to produce the prediction output for
these features set, which is a single pass of the prediction model.
Therefore, this approach is effective compared to a tuning based
approach.

6. Conclusion

In this article, we have studied the problem hardness features of
the TSP and some ACO algorithm parameters, their relationship
and the impact on performance. First, we considered the parame-
tersα andβ that determine the importance of pheromone concen-
tration and heuristic information, respectively. We have further

extended the study to another two important ACO parameters: n
the number of ants and ρ the pheromone update strength. From
the feature-based analysis, it is observed that the effects of the
latter two parameters are less significant compared to that of the
former two. Furthermore, among the studied 47 instance features,
a smaller subset is identified to be strongly correlated with the
problem hardness for the TSP and ACO. Based on these features,
we have built a prediction model to determine the values of the
considered ACO parameters. Our investigations on a wide range
of instances fromTSPLIB show that the instance features allow for
a reliable prediction of well-performing algorithm setups.

Additionally, as a result on the experimentation of the param-
eter prediction, this study provides some clue that there exist
interdependencies among the ACO parameters. This motivates
future work on theoretical analysis to study these dependencies
among ACO parameters. Such a study would be able to provide
deeper insights into ACO algorithm configuration for achieving
an optimal performance.
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