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Técnico, Universidade de Lisboa, Lisbon, Portugal

In this paper, we describe a novel approach to obtain automatic adaptation of the robot
body schema and to improve the robot perceptual and motor skills based on this body
knowledge. Predictions obtained through a mental simulation of the body are combined
with the real sensory feedback to achieve two objectives simultaneously: body schema
adaptation and markerless 6D hand pose estimation. The body schema consists of a
computer graphics simulation of the robot, which includes the arm and head kinematics
(adapted online during the movements) and an appearance model of the hand shape
and texture. The mental simulation process generates predictions on how the hand will
appear in the robot camera images, based on the body schema and the proprioceptive
information (i.e., motor encoders). These predictions are compared to the actual images
using sequential Monte Carlo techniques to feed a particle-based Bayesian estimation
method to estimate the parameters of the body schema. The updated body schema will
improve the estimates of the 6D hand pose, which is then used in a closed-loop control
scheme (i.e., visual servoing), enabling precise reaching. We report experiments with the
iCub humanoid robot that support the validity of our approach. A number of simulations
with precise ground-truth were performed to evaluate the estimation capabilities of the
proposed framework. Then, we show how the use of high-performance GPU programing
and an edge-based algorithm for visual perception allow for real-time implementation in
real-world scenarios.

Keywords: humanoid robot, internal learning model, visual control, simulation, body schema

1. INTRODUCTION

Humans develop body awareness through an incremental learning process that starts in early infancy
(von Hofsten, 2004), and probably even prenatally (Joseph, 2000). Such awareness is supported
by a neural representation of the body that is constantly updated with multimodal sensorimotor
information acquired during motor experience and that can be used to infer the limbs’ position in
space and guide motor behaviors: a body schema (Berlucchi and Aglioti, 1997).

In particular, during the first months of life, infants spend a considerable amount of time
observing their own hands while moving (Rochat, 1998). Specific experiments in which babies
were laying supine in the dark, with the head turned to one side, show voluntary arm control
to bring the hand within the cone of light emitted by a narrow beam, so to make it visible (Van
der Meer, 1997). These early behaviors might support an initial visual-proprioceptive calibration
of the eye-hand system, which is required to perform reaching movements effectively later on.
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Indeed, while until 4months reaching movements seem not to
exploit any visual feedback, as trajectory correction is absent
(Bushnell, 1985; von Hofsten, 1991), from 5months vision is used
to correct the hand pose during the movement (Mathew and
Cook, 1990), with performance that improves incrementally (Ash-
mead et al., 1993). However, after 9months, this visual guidance
almost disappears, as children become able to plan a proper hand
trajectory at the movement onset (Lockman et al., 1984). Accord-
ing to Bushnell (1985), this decline of visually guided reaching is
fundamental for the further cognitive development of the infant,
as it frees a big portion of visual attention that can be, thus, devoted
to perceive and learn other aspects of the experienced situations.

Interestingly, these observations suggest that an internal model
might have been learned through sensorimotor experience during
the first months, and later exploited for improved motion control.
Indeed, general theories of human motor learning and control
claim that forward and inverse internal models of the limbs are
learned andmaintained updated in the cerebellum (Wolpert et al.,
1998). While inverse models are used to compute the muscle acti-
vations required to perform a desired movement, forward models
can be used to simulatemotor behaviors and to predict the sensory
outcomes of specificmovements (Miall andWolpert, 1996). These
predictions are exploited in different ways: for example, they are
combined with the actual sensory feedback through Bayesian
integration to improve the estimation of the current state of the
system (Körding and Wolpert, 2004).

Moreover, according to Sober and Sabes (2005), humans use
visual and proprioceptive signals to estimate the position of the
arm during the planning of reaching movements. The combina-
tion of these two feedback sources is dependent not only on the
task but also on the content of the visual information, suggesting
a strategy to minimize the predictive error. The brain chooses the
best combination to reduce the influence of the noise present in
the feedback signals.

Clearly, endowing artificial agents with similar capabilities is a
major challenge for cognitive robotics, and it paves the way for the
next generation of autonomous humanoid robots that will have to
operate alongside humans in unstructured environments.

Fundamental tasks like grasping objects while avoiding obsta-
cles and self-collisions require an accurate representation of the
body schema. For example, think about an apparently simple task
like taking a coffeemug and give it to a humanwithout spilling out
the content: a precise estimation and control of the end-effector
pose are of paramount importance both to first approach the
mug and grasp it and to continuously control its pose during the
movement.

The robots employed in very structured environment (e.g.,
industrial robots) might not need to use vision for similar tasks
(i.e., the objects are already in known positions), or might use
images coming from cameras that are fixed in the environment.
In these cases, a calibration of the system performed during occa-
sional maintenance operations is typically enough to guarantee
the repeatability of the movements. Instead, humanoid robots are
complex systems with many moving parts, including the cam-
eras providing the visual inputs, which are typically located in a
moving head: for this kind of systems, a continuous online re-
calibration is needed to assure the accuracy of visually guided

movements. Moreover, robot vision in unstructured environ-
ments is more challenging because of the unpredictable nature of
the image background: strategies to cope with this kind of visual
feedback are, therefore, required.

Our objective in this paper is to perform continuous online
adaptation of an analytical internal model of the robot (i.e., the
robot body schema) using multimodal sensory information (i.e.,
vision and proprioception), and to exploit the updated model to
facilitate the estimation of the 6D pose of the robot end-effector
(i.e., the hand palm).

Some works have been proposed in the literature to address the
body schema adaptation problem (See Related Work). However,
most of them rely on artificial markers to visually identify the
robot end-effector, and use local optimization method for the
model adaptation. Our method goes further by using natural
visual cues (marker-free solution) and a global estimation
approach based on sequential Monte Carlo methods for the
model adaptation.

We apply ourmethod to the iCub humanoid robot (Metta et al.,
2010), depicted in Figure 1. Instead of learning an internal model
from scratch, we exploit a computer graphics (CG) model of the
robot that includes the CAD kinematics [provided within the
YARP/iCub software framework as described in Pattacini (2011)]
and an appearance model of the hand shape and texture. This
model is adapted in real-time during reaching movements using
data from the motor encoders and from the cameras located
in the robot eyes. The model adaptation consists in estimating
a set of joint offsets to be added to the CAD kinematics to
better describe the real robot. The model is a forward model,
and it can be directly used to make forward predictions. In our
approach, we use the model and the encoders measurements to
make predictions (i.e., visual hypotheses) about how the hand
should appear in the robot cameras; the predictions are combined
with the actual visual information using Bayesian techniques (i.e.,
sequential Monte Carlo) to estimate the 6D pose of the end-
effector (3D position and 3D orientation) and to calibrate the
model kinematics. Moreover, the model can be used to make
inverse predictions, which are required for movement control.
In particular, we implement both feedforward control (open-
loop), based on inverse kinematics computation, and feedback
control (closed-loop), using the pseudo-inverse of themodel Jaco-
bian and the estimated pose of the end-effector as the feedback
signal.

We report experiments both in simulation, with the iCub
dynamic simulator (Tikhanoff et al., 2008), and with the real iCub
humanoid robot. The real-time implementation on the real robot
is made possible by two techniques: GPU programing, to achieve
faster computation, and an edge-based metric to compare the
visual hypothesis with the actual visual perception. This is essen-
tial to improve robustness in real-world scenes, with a natural
non-structured background.

Our solution draws inspiration from human development and
learning, as: (i) the internal model is updated online based on
the visual feedback of the hand, as infants seem to do between
4 and 8months of age and (ii) the estimation of the pose of the
end-effector results from the Bayesian integration of the sensory
(visual) feedback and the predictions made by the internal model,
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FIGURE 1 | The iCub humanoid robot uses its internal mental simulation to imagine (generate synthetic images of) the hand pose in real time. By
comparing the generated images (̂yi) to the ones obtained through stereo vision (y), it simultaneously achieves better hand pose estimation and automatic calibration
of the internal model.

a strategy that seems to characterize human perception as well, as
described in Körding and Wolpert (2004).

The rest of the paper is organized as follows. In Section “Related
Work,” we report the related work in robotics and we highlight
our contribution more specifically. Then in Section “Proposed
Method,” we formulate the problem and our proposed solution.
We provide details on the body schema implementation, on the
robotic platform used and on the error metrics employed (see
Experimental Setup) and we present experimental results in sim-
ulation and with the real robot (see Results). Then, in Section
“Discussion,” we discuss the proposed method and the results
achieved. Finally, in Section “Conclusion and Future Work,” we
draw our conclusions and sketch the future work.

2. RELATED WORK

Reaching for objects and manipulating them is a crucial behav-
ior in both humans and robots. While the classical approach in
robotics is to rely on analyticalmodels formotion control, humans
learn such models from motor experience.

A number of works have proposed computational models to
acquire these abilities through learning, without relying on any
explicit model (Reinhart and Steil, 2009; Ciancio et al., 2011;
Caligiore et al., 2014; Peniak and Cangelosi, 2014).

An alternative approach is to learn a model from sensorimotor
data, and use the model for control. Such a model is typically
referred to as “body schema.”

The acquisition and adaptation of a robot body schema has
been a topic of considerable attention [see, for example, Hoffmann
et al. (2010) for a review up to the year 2010]. Learning (or
adapting) the body schema of a humanoid robot can be seen
also as a calibration problem, in which the goal is to align the
reference frame located in the eyes, where visual information
about the environment is obtained, with the one centered in the
hand (i.e., eye-hand calibration). Clearly, in order to accurately

perform reaching and grasping actions a good calibration of these
reference frames is required.

Since the visual estimation of the hand pose is a very chal-
lenging task, a way to simplify the calibration problem is to use
a marker to visually detect the end-effector (i.e., the robot hand,
in the humanoid case). For instance, the method used by Birbach
et al. (2012) requires 5min of data acquisition during specific
robot movements with a special marker in the robot wrist. It
optimizes offline some parameters of the kinematic chain (angle
offsets and elasticity) of an upper humanoid torso using non-
linear least squares.

Online solutions have been studied, for example, in Ulbrich
et al. (2009) and Jamone et al. (2012), in which visual markers are
used to easily detect the hand position. The inclusion of additional
parts into the kinematic chain (i.e., tools) has been considered as
well in Jamone et al. (2013a,b).

In general, the adoption of a learning-by-doing strategy, in
which a model is learned online during the execution of a goal-
driven movement (goal-directed exploration (Jamone et al., 2011)
or goal babbling (Rolf, 2013)), has been shown to improve learning
performances, for example, by reducing the time required for con-
vergence.Moreover, it allows to learn not only forwardmodels but
also inversemodels, including, for example, the inverse kinematics
of a redundant robot system (Rolf et al., 2010; Damas et al., 2013).

Although visual servoing techniques have been studied since
the early 1980s (Agin, 1980) and a number of advanced solu-
tions have been proposed during the last 30 years (Chaumette
and Hutchinson, 2007), real-time reaching and grasping tasks in
humanoid robots are often performedwithout any visual feedback
of the hand (Saxena et al., 2008; Ciocarlie et al., 2010). Also
according to Bohg et al. (2014), very few methods for grasp-
ing control take advantage of vision to correct the pose of the
robot end-effector. The main reason for this is that the visual
estimation of the pose of the end-effector is difficult to achieve
and computationally expensive; therefore, such visual feedback is
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typically noisy and cannot be obtained at a fast rate. However,
purely open-loop reaching and grasping can hardly be successful,
because the robot models are typically not accurate enough. For
example, in Figueiredo et al. (2012) grasping is performed in
kitchenware objects using a very precise robotic arm; however,
some of the grasping experiments failed due to “contact between
the hand and the object before grasping.” These undesired and
unexpected premature contacts can be mitigated with a visual
servoing approach.

Chaumette and Hutchinson (2006) define visual servoing as
a feedback closed-loop control strategy based on vision. Many
visual servoing applications rely on eye-in-hand frameworks,
where the cameras are attached to the robot end-effector (La Anh
and Song, 2012; Ma et al., 2013). In humanoid robots, the cameras
are placed in the head, and visual servoing can be done with an
eye-to-hand approach (Hutchinson et al., 1996).Most applications
of eye-to-hand visual servoing use markers in the end-effector in
order to estimate its pose.

In Kulpate et al. (2005), the use of a single camera, a landmark
in the hand (a light bulb emitting a red light) and a flat mirror,
improves the estimation of the hand position and orientation. In
Vahrenkamp et al. (2008), a red ball is attached to the robot wrist
to allow for precise grasping using stereo calibrated vision. The
humanoid REEM is used in Agravante et al. (2013) to perform
reaching and grasping with visual feedback, using special markers
on the hand and on the objects; the results show how the reaching
motion planned on the basis of the robot kinematicmodel was not
accurate enough to allow for precise object grasping, and how the
inclusion of a visual servoing component could accommodate for
such inaccuracies.

Marker-free solutions have been explored as well, either for
body schema adaptation or for visual servoing control. The solu-
tion proposed in Ulbrich et al. (2012) is based on the decom-
position of the kinematic chain into smaller segments; then,
both offline and online learning solutions are proposed to learn
the kinematic structure of the robot. Although it seems that
no markers are used, no description is present about how the
end-effector pose is measured. In Fanello et al. (2014), eye-
hand calibration is realized by performing several ellipsoidal arm
movements with a predefined hand posture, tracking the tip of
the index finger in the camera images. Optimization techniques
are employed to learn the transformation between the fingertip
position obtained by the stereo vision and the one computed
from the forward kinematics. Such transformation is then used
to calibrate the kinematics. However, the hand orientation is not
considered.

A marker-less visual servoing strategy can be used if one can
estimate the pose of the robot hand using visual data. This is a
challenging problem per se that has been studied both in Human-
Computer Interaction and in Robotics (see Erol et al. (2007)
for a review up to the year 2007). A few interesting works in
robotics have used machine learning techniques to deal with the
problem of robot hand detection. Leitner et al. (2013) used the
Cartesian Genetic Programming method to learn how to detect
the robot hand inside an image from visual examples. Online
Multiple Instance Learning was used by Ciliberto et al. (2011)
for the same task (detect the robot hand), through the use of

proprioceptive information from the arm joints and visual optic
flow to automatically label the training images. However, in both
works the hand orientation is neglected – only the position of
the hand is learned. The work by Gratal et al. (2011) proposes a
3D-model based approach and an edge based error function to
estimate the pose of the Schunk Dexterous Hand. This method
is similar to ours as they exploit also graphics acceleration tech-
niques and an edge-based approach. However, their optimization
method is based on Virtual Visual Servoing (Comport et al., 2006)
that, being a gradient based method, is prone to converge to
local minima. On the contrary, we propose a sequential Monte
Carlo method that is robust to non-convex/non-gaussian error
functions.

2.1. Our Contribution
This paper extends our previous work on eye-hand adaptation in
a humanoid robot (Vicente et al., 2014) and its GPGPU imple-
mentation (Vicente et al., 2015), by (i) comparing the influence
of the number of particles in the estimation of the pose of the
end-effector; (ii) performing an edge-based likelihood on the
real robotic platform, and (iii) exploiting the derived models for
the closed-loop control of the robot end-effector using visual
feedback.

Our proposed system outperforms the related works described
above by combining a number of features that are, in our opin-
ion, fundamental to obtain an accurate control of goal-directed
movements in humanoid robots. Our method does not use any
special marker in the robot end-effector or in the robot wrist –
it is a marker-free system. We estimate the 6D end-effector pose,
rather than only the position, and we perform this estimation
online during reaching tasks – our method does not require the
execution of specific movements to calibrate the body schema.
Moreover, we exploit the body schema adaptation and the real-
time estimation of the end-effector pose to perform a marker-
free visual servoing control strategy that improves the accuracy
of reaching movements. To the best of our knowledge, a system
that combines these fundamental features and that is successfully
implemented in a real humanoid robot was not yet proposed in
the literature.

3. PROPOSED METHOD

The body schema adaptation can be seen as an internal process
that occurs in the mind of the robot and on the perception of the
self. We focus on the perception of the arms and hands by the
visual system placed in the robot head. This problem is known
in human sciences as eye-hand coordination. In robotics, the
eye-hand coordination relies on computing the transformation
between two reference frames: (i) the eye reference frame and (ii)
the end-effector reference frame. In our case, the first is located in
the center of the left-eye and the latter in the center of the hand
palm (see Figure 2). Moreover, the end-effector pose is defined
as the pose of the hand palm in the eye reference frame. In this
work, we estimate the end-effector pose using vision (left and right
images) and proprioception (encoder readings), and adapt the
initial body schema to reduce themismatches between the internal
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FIGURE 2 | The end-effector’s pose (palm of the hand) is a function of the joints angles. Axis color notation: x-red; y-green; z-blue. (For a more detailed
description visit: http://wiki.icub.org/wiki/ICubForwardKinematics). Best seen in color.

model prediction of the end-effector pose and the observed end-
effector pose. According to the free-energy principle (Friston,
2010), biological agents try to minimize its free energy with the
environment to achieve equilibrium. The free-energy principle
tries to mathematically define how humans and animals optimize
their expectation of the world. Thus, the free-energy measures
the surprise present in perception given a generative model. The
agent can suppress free energy by acting on the world (exciting the
sensory input) or by changing its generative model to compensate
the perception. Moreover, if we see the agent’s body schema as
the hidden state of the generative model, one of the solutions to
achieve the equilibrium is to perform the body schema adaptation,
as proposed in this work.

To achieve this goal, we consider two phases of reaching move-
ments. First, an open-loop ballistic movement drives the end-
effector to the vicinity of the target without visual feedback.
During this period, vision is used to estimate the end-effector
pose and adapt the internal model but the arm controller does
not use this information. Second, a closed-loop control based on
vision drives the robot’s end-effector to the desired final pose,
relative to the target of interest. During this stage, the internal
model continues its adaptation based on vision and the arm
controller used the adapted model to move the arm. In this
section, we describe ourmethodology to address these phases.We
begin by introducing the body schema model of our humanoid
robot. Then, we explain the end-effector’s vision based pose
estimation method during the ballistic movement. Finally, we
describe how to perform the control of the arm using the visual
feedback.

3.1. Body Schema Modeling
Let us consider the problem of estimating the robot’s end-effector
pose in the left camera’s reference frame (an analogous analysis
can be done for the right camera). The real pose (xr) can be rep-
resented by a generic 4 × 4 roto-translation matrix T. Using the
robot kinematics function from the left camera to the hand palm
K (·) and the vector of joint encoder readings θ (see Figure 2), an
estimate of the pose can be obtained by:

T̂kin = K (θ) (1)

However, several sources of error may affect this estimate. Let
us consider the existence of calibration errors (bias). This source
of error can be encoded in many different ways. We propose to
encode it in the robot’s joint space, i.e.,

θr = θ + β (2)

where θr are the real angles; θ are the measured angles; β are
joint offsets representing calibration errors. Given an estimate of
the joint offsets β̂, a better end-effector’s pose estimate can be
computed by:

T̂joint = K
(
θ + β̂

)
. (3)

Another solution is to encode the calibration error in Cartesian
space using a roto-translation matrix defined as:

T̂Cart = K (θ) · T̂ERR (4)

where TERR encodes the calibration errors.
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The generalization of the learned parameters to other parts
of the workspace was analyzed before in Vicente et al. (2015).
We have shown that a parameterization of the error in the body
schema in terms of joint offsets generalizes better to other parts
of the workspace when compared to the non-calibrated case and
to the Cartesian Error modeling, because the dominant sources of
error are actually joint offsets.

Therefore, in this work, the learning process of the internal
model consists in estimating the joint’s offsets (β) in the kinematic
chain [see equation (2)]. Moreover, as we have access to the
proprioceptive feedback (θ), estimating the joint offsets rather
than the absolute joint values is a more effective approach: (i)
the search space is smaller and (ii) we can use the adapted body
schema (learned offsets) in other movements without re-learning
it from scratch.

3.2. State Estimation with Sequential
Monte Carlo Methods
Let x be a generic state vector and y the observation vector. Assum-
ing that y depends stochastically on x at time t1 one can devise a
Bayesian filter to estimate the state x from the observation y. The
Bayesian filter consists of two steps: prediction and update. In the
former, we calculate xt from the previous state xt–1 according to
the following equation:

p(xt|y1:t−1) =

∫
p(xt|xt−1) · p(xt−1|y1:t−1) dxt−1 (5)

where p(xt|xt–1) is the transition probability and p(xt–1|y1:t−1) the
previous estimation of the state at time t− 1. In the second step,
we update the posterior distribution with the last observation:

p(xt|y1:t) = η · p(yt|xt) · p(xt|y1:t−1) (6)

where η is a normalization factor and the probability p(yt|xt) is
called measurement probability.

The particle filter, also known as sequentialMonteCarlo (SMC)
method, is a non-parametric implementation of the Bayes filter,
where we approximate the posterior distribution equation (6) by
a finite number of samples, called particles:

p(xt|y1:t) ≈
M∑

m=1
ω[m]δ(xt − x[m]

t ) ·

( M∑
m=1

ω[m]

)−1

(7)

where M is the number of particles, x[m]
t (with 1<m<M) is one

particle, ω[m] is the weight of particle m and
M∑

m=1
ω[m] = 1. The

three stages of the particle filter are as follows:

1. Prediction: we sample x[m]
t from p(xt|x[m]

t−1) adding these parti-
cles to a temporary set X̄t.

2. Update: we receive a new observation vector, yt, and update
the particle weight or particle likelihood (ω[m]) according to:
ω[m] = p(yt|x

[m]
t ).

1In other words, x and y belong to a generativemodel also known as hiddenMarkov
model.

3. Re-sampling: the particles are sampled according to their
weight: ω[m]. This step is of paramount importance for the
particle filter algorithm to work properly, Thrun et al. (2005)
called it: the “trick” of the algorithm.We replace theM particles
in the temporary set X̄t by another M particles according to
their weights ω[m]. Whereas in the temporary X̄t the particles
were distributed according to equation (5), after this step they
are distributed (approximately) according to the posterior [see
equation (6)].

For further details on Bayes and Particle filters, one can read
Thrun et al. (2005).

3.3. Parameter Estimation with Sequential
Monte Carlo Methods
In spite of being often used to track dynamic states, some modifi-
cations to the sequential Monte Carlo (SMC) methods have been
proposed to estimate static parameters as well. In Kantas et al.
(2009), the authors perform an overview of SMC methods for
parameter estimation. Let, again, x be the initial non-static state
vector and β the static parameter vector. An augmented state is
defined as follows:

xaug = [x β]T (8)

One of the proposed solutions to estimate the parametersβ is to
introduce an artificial dynamics, changing from a static transition
model:

βt = βt−1 (9)

to a slowly time-varying one:

βt = βt−1 + w (10)

where w is an artificial dynamic noise that decreases when t
increases.

3.3.1. Our Formulation
In our particular case, we are interested in the estimation of the
end-effector pose (x) as well as the calibration error parameters
β. We define the augmented state vector at time t as:

Xaug
t = [ vec(K (θt + βt) ) βt]

T (11)

where K(·) is the robots kinematics function [see equation (3)]
and the vector β is composed of the offsets in the kinematics
chain from the camera to the end-effector. To reduce the com-
plexity of the problem, we only consider the angular offsets of
the arm kinematic chain (7 DOF), as the head chain is assumed
to be calibrated, for instance, using the procedure defined in
Moutinho et al. (2012). Alsomiscalibration in the finger joints has
a smaller impact in the observations since they are at the end of the
kinematic chain.

The offsets in equation (11) define the parameter vector,
β= [β1 β2 β3 β4 β5 β6 β7]T, as an unobserved Markov process
where βi is the offset in joint i of the arm assuming an initial
distribution:

p(β0) (12)

According to the general model in equation (10), β is the
vector composed by the offsets in the arm, and the artificial noise
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w ~N (0, K) is a zero mean Gaussian noise with a given diagonal
covariance K = σ2

s I7 and σs is an appropriately defined SD
reflecting the magnitude of the calibration errors.

The first part of the augmented state, K(θt +βt), is determin-
istic given βt since it is based on the robot kinematics function
and the noiseless encoder readings, thus estimating the posterior
distribution of the full state is equivalent to posterior distribution
of the particles:

p(βt|y1:t,θ1:t) ≡ p(xaug
t |y1:t) (13)

We use a SMC method to approximate the posterior distri-
bution defined in equation (13) by a set of random samples
(particles):

Bt :=
{
β
[1]
t ,β

[2]
t ,β

[3]
t , ...,β

[M]
t

}
(14)

where M is the number of particles, β[m]
t (with 1<m<M) is

one state sample, and Bt is the particle set at time t. The a
posteriori density distribution is approximated by the weighted set
of particles:

p(βt|y1:t,θ1:t) ≈
M∑

m=1
ω[m]δ(βt − β

[m]
t ) ·

( M∑
m=1

ω[m]

)−1

(15)

where ω[m] is the weight of particle m, δ(.) is the Dirac delta
function, and the last factor is the normalization factor. In the
beginning of each time step t, all the particles have the same
weight: ω[m] = 1

M . Under the Markov assumption, we can
compute recursively p(βt|y1:t, θ1:t) sampling from the previous
estimation p(βt–1|y1:t–1, θ1:t–1).

The filter has three stages as defined in Section “State estima-
tion with Sequential Monte Carlo Methods”: prediction, update,
and re-sampling:

1. Prediction: we sample β
[m]
t from p(βt|β[m]

t−1), according to the
transition [see equation (10)], in our case β[m]

t = β
[m]
t−1 + w.

2. Update: we receive a new observation vector, yt, and update
the particle weight (ω[m]) according to: ω[m] = p(yt|β

[m]
t ),

i.e., the particle likelihood. Our observation model and
the particle likelihood are defined in Section “Observation
Model.”

3. Re-sampling: the particles are sampled according to their
weight using the systematic re-sampling method (Hol et al.,
2006), which guarantees that a particle with a weight greater
than 1/M is always re-sampled, whereM is the total number of
particles.

3.4. Observation Model
In this section, we address the problem of how to calculate the
measurement probability in equation (6). Themeasurement prob-
ability can also be seen as the particle weight/likelihood after
normalization. Our humanoid robot has two sources of infor-
mation: (i) cameras on the eyes (visual sensing) and (ii) head
and arm encoders (proprioceptive sensing). These two sources of
information are related by the following model:

yt = F(θt + βt) + η (16)

where θt are the encoder readings and βt the actual offsets in
the joints at time step t. The function F(.) encodes the kinematic
structure [see equation (1)], appearance of the robot, the camera’s
intrinsic parameters, and the image rendering model provided
by a computer graphics engine able to generate realistic views
of the robot. The actual observation, yt, is a random variable
that concatenates the images acquired from the left and right
cameras and η an image random noise (due to diverse non-
modeled sources, e.g., specularities, shadows, camera jitter, etc.,
not necessarily Gaussian).

To sample from this model, we use the computer graphics
rendering engine that generates virtual images of the robots cam-
eras for arbitrary values of the vector β and encoder readings θ
(see Figure 3):

ŷ[m]
t = F(θt + β

[m]
t ) (17)

where ŷ[m]
t represents the concatenation of the virtual images in

the left and right cameras of the robot simulator for each generated
hypothesis (particle). The particles can be seen as the multiple
hypotheses generated by the brain while imagining the possible
images consistent with the current state.

From the comparison between the real measurements yt
and the virtual measurements ŷ[m]

t , through a suitable function
g(yt, ŷ

[m]
t ), we can compute the likelihood of β at time t:

l(β[m]
t ) = p(yt|θt,β

[m]
t ) ∝ g(yt, ŷ

[m]
t ) (18)

Wehave defined two different approaches for implementing the
comparison function g(·,·). One is based on the hand’s silhouette
through image segmentation and the other is based on image
contours through edge extraction.

3.4.1. Silhouette Segmentation
In this approach, we use the segmented binary images from the
real and virtual cameras (see Figure 4). To compute the similarity
between the real and virtual binarymasks (silhouettes), we use the
Jaccard coefficients (sJc) (see Cox and Cox (2000) for more detail).
Let R(y) be the real silhouette and R(ŷ) the virtual silhouette. The
Jaccard coefficient is defined as follows:

sJc(y, ŷ) =
# (R(y) ∩ R(ŷ))
# (R(y) ∪ R(ŷ)) (19)

where # denotes the number of pixels in the region.
The numerator term in equation (19) is measuring how similar

and overlaid are the two silhouette regions and the denominator is
normalizing the metric to a range [0,1]. Therefore, we define the
likelihood model as follows:

p(yt|βt,θt) ∝ sJc(yt, ŷt) (20)

In order to apply this approach, we need a good segmentation
of the area of interest in the image. In this work, this is a feasible
approach if one of the following conditions aremet: either the head
of the robot is static and a silhouette can be extracted by back-
ground segmentation methods, or the background is uniformly
colored and a good silhouette can be obtained by color segmen-
tation methods. In case, the head is moving or the background is
cluttered, this approach is not robust and the edge-based method,
described in the following section, is preferred.
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FIGURE 3 | Image generation in the internal mental simulator. The observation is defined as the concatenation of the left and right cameras.

FIGURE 4 | Example of silhouette segmentation. The silhouette is a
binary image (B) extracted from an image of the iCub hand (A) computed by
image segmentation techniques. Results obtained from the iCub simulator.

3.4.2. Edge Extraction Approach
In this approach, the segmentation of the area of interest is not
needed, instead, we exploit the edge information extracted from
images, which is more robust to clutter, thus, more suitable to
realistic environments. For this approach, we compute the average
distance between the edges of the real image to the closest edge
in the virtual image, and denote this quantity d̄. A perfect match
between the real and virtual images will correspond to d̄ = 0
whereas bad matches will correspond to large values of d̄. The
likelihood function is thus defined as:

p(yt|βt,θt) ∝ exp−λedge· d (21)
where λedge is a tuning parameter to control sensitivity in the
distance metric.

To compute d̄, we make use of the distance transform (Borge-
fors, 1986). The distance transform (DT) consists in the appli-
cation of an edge detector to the image (e.g., Canny (1986))
and then, for each pixel, compute its distance to the closest
edge point. This distance has a minimum of 0 pixel and a
maximum of 255 pixel, since the DT result is a 8-bit single-
channel image. In Figure 5, we give an example of the right cam-
era’s image and the corresponding edge and distance transform
images.

Let D(y) be the distance transform of the real images and
E(ŷ[m]) be the edge map of the virtual images (binary image
indicating the edge pixels).

The average distance, d̄[m] for each particle, can be efficiently
computed using the Chamfermatching distance (Borgefors, 1988)
defined as follows:

d̄[m] =
1
k ·

N∑
i=0

E
(
ŷ[m](i)

)
·D (y(i)) (22)

where k is the number of edge pixels in the virtual image, i is an
index that runs over all pixels, andN is the total number of pixels.

3.5. Computing the Parameter Estimate
Although the parameters are represented at each time step as a
distribution approximated by the particles, for practical purposes
we must compute our best guess of the parameter vector β̂. We
use a kernel density estimation (KDE) to smooth the weight of
the particles according to the information of neighbor particles,
and choose the particle with the highest smoothed weight (ω′[i])
as our parameter estimate:

ω′
[i]

= ω[i] + α · 1
M

M∑
m=0

ω[m] · K(β[i],β[m]) (23)

where ω[i] is the particle likelihood, α is a smoothing parameter,
M is the number of particles used in our SMC implementation,
and β[i] is the particle we are smoothing. The sum term is the
influence of the neighbors in the score of particle i. K is a kernel
specifying the influence of one particle in others based on their
distance. We use a Gaussian Kernel in our experiments:

K(β[i],β[j]) =
1√

2π|Σ|
e[−

1
2 (β

[i]−β[j])
T
Σ−1(β[i]−β[j])] (24)

where Σ is the co-variance matrix and |Σ| its determinant.
Since the joints’ offsets (β) are independent of each other, Σ

will be a diagonal matrix:

Σ = σ2
KDE · I7 (25)

where σKDE is the SD in each joint, which we assume equal. This
parameter determines if two particles are close or not. If we have a
high σKDE, all particles will be “close” to each other. On the other
hand, if we have a small σKDE, all particles will be fairly isolated in
the world resulting in ω′[i] ≈ ω[i].

It is worth to note that due to the redundancy in the robot
kinematics (joints space is 7DOF while the end-effector pose is
6DOF) different solutions in the setBt may correspond to the same
target pose. Therefore, the likelihood function l(β) is multimodal
and a particular choice of β̂ will be just one set of offsets that
can explain the end-effector’s appearance in the images. For this
reason, the proposed method with sequential Monte Carlo, which
does not assume any particular distribution of the posterior, is a
suitable parameter estimation approach.
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FIGURE 5 | Example of the computation of the edges and distance transform of the iCub hand in a real environment on the right camera. (A similar
example can be shown for the left camera.) (A) is the input image, (B) shows the edges extraction using Canny, 1986, and (C) the distance transform using
Borgefors, 1986.

3.6. Controlling the End-Effector
In this work, we focus on the control of the arm to obtain a
desired end-effector’s pose using the robot internal body schema.
We have implemented two control modalities: (i) an open-loop
“ballistic” movement and (ii) a closed-loop strategy exploiting
visual feedback.

3.6.1. Open-Loop
The open-loop control is the dominant control mode in robotics
manipulation. It relies on accurate calibration of the robot system
and accurate object sensing. It exploits the inverse kinematics
of the head-arm-hand chain, from the eye to the end-effector
and only uses visual sensing for the initial estimation of the
object/target pose. During arm control, only proprioceptive feed-
back is used. The open-loop control relies on solving the robot’s
inverse kinematics (K−1):

qd = K−1(xd) (26)

where qd is the joints configuration (command) that leads to the
desired end-effector’s pose (xd) and K−1 the inverse kinematics
function.

The trajectory between the initial joints configuration (qi) and
the desired one (qd) is a linear trajectory in the joint space,
performing a movement with a constant velocity according to the
following equation:

qt+1 = qt +
qd − qi
∆t (27)

where qt is the joint command at time t and ∆t is the desired
movement duration.

3.6.2. Closed-Loop
In the closed-loop approach, instead of controlling the position
of the joints, we control the joint velocities q̇ based on visual
feedback.

As mentioned in Section “Related Work,” our problem is an
instance of eye-to-hand visual servoing. Two control modalities
are common in visual servoing approaches: (i) image-based con-
trol, where the arm’s motion is determined by the error between
the current and desired configurations in the image coordinates

or (ii) a position-based approach, where the arm’s motion is
determined by the error between the current and desired 6D poses
of the end-effector. Our approach is a position-based strategy in
an eye-to-hand configuration. See Hutchinson et al. (1996) for a
more detailed taxonomy of visual servoing strategies.

Following the notation in Siciliano and Khatib (2007), the error
(e) to be minimized is defined as follows:

e = xc − xd (28)

where xd is the desired 6D pose of the end-effector and xc the
current.

The relationship between the joint velocities and the time
variation of the 6D pose error is given by:

ė = J(q) · q̇ (29)

where J(q) is the robot Jacobian from the left-eye to the end-
effector reference frame.

If we defined ė = −λ · e (to ensure an exponential decoupled
decreasing error) and invert the robot Jacobian (J(q)) by using
the Moore-Penrose pseudo inverse, we end up with the following
control law:

q̇ = −λ · J†(q) · e (30)

where J†(q) is the pseudo-inverse in the joint angles q.
In our case, as we correct the joint angles on the robot arm, the

control law with the improved robot Jacobian will be:

q̇ = −λ · J†(θ + β̂) · e (31)

where θ are the encoder readings and β̂ the joint offset vector.

4. EXPERIMENTAL SETUP

4.1. Robotic Platform
The iCub (see Figure 1) is a humanoid robot for research in
artificial intelligence and cognition. It has 53motors thatmove the
legs, waist, head, arms, and hands, and it has the average size of a
3-year-old child. It was developed in the context of the EU project
RobotCub (2004–2010) and subsequently adopted by more than
25 laboratories worldwide. Its stereo vision system (cameras in the
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eyeballs), proprioception (motor encoders), touch (tactile finger-
tips and artificial skin), and vestibular sensing (IMU on top of
the head) are important characteristics that allow the study of
autonomy in humanoid robots. The robot is equipped with a
dynamic simulator (Tikhanoff et al., 2008) that can be controlled
using the same software that is used for the real robot. We resort
to this simulator in a number of experiments in order to evaluate
the performance of our approach with precise ground-truth (that
we cannot access on the real robot).

4.2. Body Schema
The body schema can be considered the agent’s knowledge about
the kinematics, posture, and appearance of its body parts. The
body schema is a mental state that includes sensory information
about the self and the world and about the relationships between
the body parts. In this work, we have implemented the iCub’s
body schema on 3D computer graphics engines. Graphics engines
permit an effective generation of mental images of body states
through the knowledge of the kinematic structure of the robot,
and its body appearance. The internal mental simulator projects
the 3D simulated body into the robot vision. In particular, we
are interested in the projection of the arms and hands – the end-
effectors. The capabilities of the internal mental simulator are
similar to the real agent: (i) we can control the end-effector to a
given pose, (ii) it has proprioceptive sensing, thus, we can acquire
the current joint values of the arm and head, and (iii) it has stereo
vision – projecting the 3D world into 2D images.

4.3. Error Metrics
4.3.1. Position and Orientation
In order to evaluate the accuracy of our method, we compute the
Cartesian error (ECartesian) composed of position and orientation
errors between two generic poses, A and B, as:

ECartesian = [do, dp] (32)

The general orientation error (do) is defined as:

do(RA,RB) =

√
|| logm(RT

ARB)||2F
2

180
π

[◦] (33)

where RA and RB are two rotation matrices from the eye reference
frame to the end-effector frame. The principal matrix logarithm,
logm, with the Frobenius norm, (||·||F), implements the usual
distance on the group of rotations. The general position error
between the two different poses is computed by the Euclidean
distance, dp(PA, PB):

dp(PA,PB) =

√
(xA − xB)2 + (yA − yB)

2 + (zA − zB)2 (34)

where PA and PB are 3D Cartesian positions of the end-effector.

4.3.2. Defined Poses
In this work, we define four different poses. The real pose (xr) is
defined as:

xr = [Pr vec(Rr)] (35)

where Rr is the real rotation matrix and Pr the real 3D position.
This pose is the ground-truth data for evaluating the method. In
the simulation experiments, this is the pose with the introduced
artificial offsets. The second pose is the desired pose (xd) which is
the pose that we want to achieve during the reaching task:

xd = [Pd vec(Rd)] (36)

The initial pose (xi) is the initial joint configuration at the
beginning of the reaching movement. Finally, the estimated pose
(xe) that is the robot’s forward kinematics applied to the sumof the
measured joint angles θ (the proprioception) and the estimated β

(or β= 0 when the adaptation is not performed):

xe = [Pe vec(Re)] (37)

4.3.3. Estimation and Reaching errors
The estimation error – Eestimation – is the difference between the
real pose (xr) and the estimated pose (xe) using equations (33)
and (34):

Eestimation = [do(Rr,Re) , dp(Pr,Pe)] (38)

The real reaching error – Erreaching – is defined as the difference
between the desired (xd) and real pose (xr):

Erreaching = [do(Rd,Rr) , dp(Pd,Pr)] (39)

It measures how far the end-effector is from the target pose.
The estimated reaching error – Eereaching – is defined as the

difference between the desired (xd) and estimated pose (xe):

Eereaching = [do(Rd,Re) , dp(Pd,Pe)]. (40)

It represents the robot’s belief on how far its end-effector is from
the target pose.

4.4. Computer Specifications
The experiments were performed in a computer equipped with
an Intel® Xeon® Processor W3503 at 2.4GHz with two cores,
two threads, and a 4-MB memory cache and a NVidia GeForce
GTX 750 with 512 CUDA Cores, a base clock of 1020MHz and
2048MB of memory (RAM).

4.5. Experimental Settings
In this section, we describe the experimental parameters, common
to all the presented results. We initialize the SMC with M= 200
particles, defining p(β0) ~ N (0, Q) [see equation (12)] with a
given diagonal covariance Q=σ2

i I7 and σt = 5°. In all the exper-
iments we started from scratch, i.e., the best estimation at t= 0
is the proprioception of the robot (β= 0). The artificial dynamic
noise is initialized with σs = 4° and it decreases with t by a factor
of 0.8:

σs(t) = σs(t− 1) ∗ 0.8 (41)

where t is the frame index. This value has a lower bound of 0.08°
to allow continuous adaptation.

The kernel density estimation was initialized using a SD of
σKDE = 1° in equation (23) and a neighborhood influence of
α= 500 in equation (25).
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5. RESULTS

In this section, we report the experimental results. We divide
them into two parts: simulations (Section “Simulation Results”)
and real-world evaluations (Section “Real Robot Results”). In the
former, we evaluate quantitatively our method comparing the
body schema adaptation with the ground-truth measurements
and in the latterwe test our approach qualitatively in the real robot.

In Section “Reaching Movement and Body Schema Adapta-
tion,” we show how the online adaptation of the body schema and
the estimation of the pose of the end-effector allow to accurately
reach for a desired pose, using a combined open-loop and closed-
loop control scheme: (i) during the open-loop control (described
in Section “Open-Loop”), the online body schema adaptation
is performed, allowing for better estimation of the end-effector
pose and (ii) during the closed-loop control (described in Section
“Closed-Loop”), the end-effector pose feedback is exploited to
accurately reach for the desired pose.

Then, in Section “Trade-Off between the Number of Parti-
cles and Estimation Accuracy,” we assess the performance of the
internal model estimation procedure, evaluating the relationship
between the number of particles used in the optimization proce-
dure and the accuracy of the estimation.

Finally, in Section “Real Robot Results,” we show the method
working in the real world: the iCub robot performs online adap-
tation of its body schema (i.e., including both arms) and real-
time estimation of the pose of its end-effectors (i.e., both right
and left hands) exploiting visual feedback from its cameras, in an
unstructured environment (i.e., with natural background in the
images).

5.1. Simulation Results
In the simulation experiments, we use the iCub simulator both as
robot and as internal mental simulation. The iCub simulator is a
realistic software that uses ODE (Open Dynamic Engine) for sim-
ulating the motion of rigid bodies and their physical interaction.
It uses the same software and control architecture of the real iCub
robot. In order to consider the iCub simulator a realistic model
of the real robot, we introduce artificial angular offsets in the 7
DOFs of the right arm kinematic chain. We define ETA= [5, 4, 3,
−2, 3,−7, 3]; these offsets have the same order ofmagnitude of the
calibration errors, we typically encounter on the real robot.We use
the same set of offsets in all the simulation experiments, in order
to be able to compare the different results. Therefore, in these
experiments the only difference between the robot and the inter-
nal mental simulation is the set of artificial offset; the goal of the
body schema online adaptation is to compensate for these offsets.

Hand visual perception relies on the silhouette segmentation
approach (described in Section “Silhouette Segmentation”); a
homogeneous white background is located in front of the robot
and the segmentation is performed based on color information.
In general, the silhouette approach is effective in cases where
the segmentation is easy (e.g., with the white background). In
Section “Real Robot Results,” wewillmotivate the use of a different
strategy, the edge-based approach (described in Section “Edge
Extraction Approach”), for the real robot experiments, where we
deal with natural background; such strategy could not, however,

be used in these simulation experiments, because the texture
model of iCub simulator is poor (based on simple cylinders and
cubes of a homogeneous gray color) and too few edges are present
in the images.

5.1.1. Reaching Movement and Body Schema
Adaptation
In this first set of experiments, we have two main objectives: (i)
evaluate the error in the end-effector pose estimation equation
(38) during the movements, and (ii) show the convergence of
the reaching error (real and estimated, equations (39) and (40),
respectively) during the closed-loop control made possible by the
body schema adaptation.

We define a constant duration of the open-loop phase (120
frames) in order to estimate a stable solution for the joint offsets
(β) and we define 50 frames in the close-loop as the maximum
number of frames to acquire during the reaching to the desired
pose xd using visual feedback. The error decaying factor presented
in the closed-loop control section was initialized with the value
λ= 5 [see equation (31)].

Overall, we perform 120 movements with different initial and
final poses in order cover different areas of the working space:
4 different final poses with 10 initial poses, with 3 repetition
of each movement. The results in this section show the mean
and SD over the 120 experiments performed. We initialize our
sequential Monte Carlo implementation with 200 particles and
with β= 0, i.e., we always start the movements with the nominal
non-calibrated model.

In Figure 6, we can see the mean and the SD of the end-
effector pose estimation error during the movements. We show
the error both with the nominal non-calibrated model (without
online adaptation) and with the online adaptation. The algorithm
converges to a good estimation after about 60 frames, improving it
during the last part of themovement. It can be noticed that, in spite
of having constant artificial offsets in the joints (i.e., a constant
source of error), the pose estimation error in the non-calibrated
case (without online adaptation, red dotted line in Figure 6) is not
constant and it depends on the current arm configuration.

In Figure 7, the evolution of the reaching error [see equation
(39)] during the whole movement (open-loop and closed-loop) is
displayed. Both the mean and the variance of the error over the
40 movements are shown. The high variance at the beginning of
themotion is due to different (10) initial poses of the end-effector;
some of them are closer (~60mm) to the target pose than others
(~120mm). During the reachingmovement, this variance reduces
as the arm goes to the different (4) target poses; the variance is due
to different arm configuration with constant artificial joint offsets.

The open-loop part of the movement is planned at the move-
ment onset, based on the non-calibrated model. Therefore, the
reaching error at the end of the open-loop phase is equal to the
pose estimation error with the non-calibrated system (as it can be
seen by comparing the red dotted lines in Figure 6) to the line in
Figure 7 at frame 120, for both position and orientation. Then, the
body schema adaptation performed during the open-loop phase
can be exploited at the onset of the closed-loop phase to obtain
an accurate estimate of the pose of the end-effector; this allows
to consistently reduce the reaching error already at frame 130.
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FIGURE 6 | Estimation error of the end-effector during the open-loop phase: (A) orientation and (B) position.

However, as expected, the error does not converge to 0 because
there is still a residual error in the estimation of the end-effector
pose (that can be appreciated in the blue bold line of the plot in
Figure 6). Figure 8 shows a close-up of the final frames of the
movement. The estimated reaching error (the dotted green line)
converges indeed to 0, indicating that the closed-loop control is
working properly. However, as mentioned above, the real reaching
error (black solid line, same information as in Figure 7) does not
converge, due to the residual estimation errors.

Table 1 reports the exact numerical data related to the plots
in Figures 6 and 7: the pose estimation error at the end of the
open-loop phase (both with and without online adaptation) and
the reaching error (both at the end of the open-loop and at the end
of the closed-loop).

5.1.2. Trade-Off between the Number of Particles and
Estimation Accuracy
To generate particles/images and to compare them online with the
ones obtained fromvisual feedback requires a lot of computational
effort in the two processing units (Central Processing Unit (CPU)
and Graphical Processing Unit (GPU)); therefore, the overall

computational burden increases with the number of particles
used in the SMC method. In order to better understand how the
number of particles influences the accuracy of the estimation, we
performed an extensive evaluation in which several movements
are executed and the body schema adaptation is performed using
different amounts of particles: M= 100; 200; 500; 1000; 2000.
For each value of M, we perform 40 different movements with
different initial and final poses. In each experiment, we maintain
the parameters defined before in Section “Experimental settings”
and we change only the amount of particles used; we performed
the same motions of the right arm with the same visual feedback.
The final end-effector pose estimation errors (mean and SD over
the 40 movements) for each value of M are shown in Figure 9;
then, in Table 2 we report only the mean values, and we compare
them to the non-adaptation case as well. A clear trend can be
noticed, which relates the increase of the number of particles
to the decrease of the estimation error. However, this relation
is non-linear: the slope of the curve is higher in the beginning
and lower in the end. Indeed, the difference between the use
of M= 1000 and M= 2000 is quite small, which suggests that
further increasing the number of particles would not improve
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FIGURE 7 | Real reaching error during the whole movement: (A) orientation and (B) position. The error is the average over 120 experiments: 4 different final
poses, 10 different initial poses and each movement is repeated three times. It can be seen how the closed-loop correction considerably reduces the reaching error.

FIGURE 8 | Real and estimated reaching error in the closed-loop phase: (A) orientation and (B) position. In black (solid), we can see the real reaching error
and, in green (dotted), we can see the estimated reaching error. The latter converges to 0 as expected, proving that the closed-loop control is working properly.
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TABLE 1 | Estimation and real reaching errors in the final poses of each movement: the estimation errors and the real reaching errors of open-loop are
computed at frame 120, in the final pose of the open-loop phase.

Estimation error Real reaching error

Without adaptation With adaptation Open-loop Closed-loop

Mean SD Mean SD Mean SD Mean SD

Orientation error [°] 13.30 3.13 6.14 2.49 13.30 3.15 5.81 2.49
Position error [mm] 43.79 5.40 5.45 2.55 43.79 5.42 5.13 2.57

FIGURE 9 | Comparing the final estimation error (orientation (A) and position (B)) using different amount of particles. The mean value of the error over 40
movements is shown. The accuracy increases with the number of particle used in anon-linear way, and it seems to stabilize after 1000 particles.

TABLE 2 | Trade-off between number of particles and accuracy of the estimation.

No adaptation 100 particles 200 particles 500 particles 1000 particles 2000 particles

Orientation error [°] 14.50 8.48 6.85 5.73 4.50 4.34
Position error [mm] 41.29 8.61 5.35 4.40 3.87 3.09

For each value of the number of particles, we show the average value of the estimation errors over the 40 test movements.

the estimation considerably. Moreover, it can be noticed that the
estimation of the end-effector orientation benefits more of the
increasing number of particles than the estimation of the end-
effector position; this might be an indication that the orientation
is more difficult to estimate.

In Figure 10, we show the temporal evolution of the pose
estimation error during the arm movement in two representative
cases: with M= 200 and M= 2000 particles. Although the orien-
tation and position errors are smaller in the 2000 particles case,
more computation is required with respect to the case with 200
particles (computation takes about 10 times longer). The time
needed to generate and evaluate 200 particles is around 0.8 s per
frame, while for 2000 particles is 7.5 s per frame. In other words,
more time is needed to generate and evaluate the hypotheses and,
therefore, the movement must be slower if we want to acquire the
same number of frames/images.

In summary, there is a trade-off between the accuracy of the
estimation and the computation time for each iteration. In order
to be able to perform the end-effector pose estimation in real-time

in our current computer system, we chose to use M= 200 par-
ticles; this choice allows us to perform the estimation during
reaching movements performed at natural speed (i.e., in the order
of 0.01m/smeasured on the end-effector), with an average estima-
tion error of about 5.35mm in position and 6.85° in orientation.

5.2. Real Robot Results
In the real-world experiments, we use the real iCub as robot
(see Figure 1) and a Unity® computer graphics model as internal
mental simulation.

Unity® is a renowned cross-platform game engine developed by
Unity Technologies that can generate very realistic virtual images.
While the iCub Simulator uses simplified meshes of the robot
external surfaces, our Unity model of the iCub renders the full
CAD model of the robot, thus providing a much better match of
the real robot appearance; in particular, for our experiments, a
good appearance model of the robot hands is crucial. To perform
the internal mental simulation process in real-time, we rely on
GPU programing to achieve faster computation, as described in
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FIGURE 10 | Evolution of the estimation error (orientation (A) and position (B)) for the non-calibrated system and for the system with online estimation
performed with either 200 or 2000 particles. The mean value of the error over 40 movements is shown.

FIGURE 11 | Hierarchical tree with the most important Unity Objects from the shoulder to the fingers.

details in Vicente et al. (2015). Moreover, at each time instant we
render only the robot parts that are visible by the robot cameras
using a shader in the graphics pipeline, instead of rendering the
whole robot appearance. A hierarchical tree of the robot kine-
matics is defined where each node has a reference frame attached
and a pivot point that is used to perform the rotation of this
hierarchical object structure (See Figure 11). In other words, this
tree represents the relationship between the several objects in the
model (i.e., the robot body parts). For instance, the fingers are
coupled with the robot hand, so that if the handmoves, the fingers
will move along with it and update their absolute position in the
world, maintaining the relative pose in the hand reference frame.

In these experiments, we exploit the edge-based approach for
the hand visual perception, described in Section “Edge extraction
approach.” The silhouette approach that we used in the simula-
tion experiments is not suitable in real-world scenarios due to
the non-homogeneous background in the images, which makes
segmentation difficult and noisy.

We maintain the initialization parameters defined in Section
“Experimental Settings” andwe define the tuning parameter of the
edge distance as λedge = 0.01. This results in a higher likelihood
when the distance of the nearest edge is around 1 pixel and a
likelihood close to 0 when the distance reaches its maximum
value (255).
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As a way to evaluate the performance of the method in a real
environment, we have chosen to use the left and right hands and
apply the end-effector pose estimation on both. The goal is to
get the hands close to each other with the index fingers almost
touching. To achieve that the desired poses of the left and right
end-effectors (i.e., the left and right hand palms) are defined with
the same orientations, and with positions that differ only in the
X-axis, of 12 cm; the fingers are slightly bent, so that the fingertips
would touch when the hands are facing each other 12 cm apart.
The target pose was chosen to be close to the center of both
cameras for visualization purposes; however, this method can be
applied in every location of the robot workspace, as long as the
hands are in the field of view of one of the cameras. Therefore,
the results shown are not specific to this target pose and similar
experiments can be performed in any other configuration.

The robot starts from the home position seen in Figure 12.
The left arm moves to the desired pose xd and the target pose

for the end-effector of the right arm is defined to have the same
orientation of the left arm end-effector and a distance in the
perpendicular direction of the palm of 12 cm.

In the first part of the experiment, we control both the left
and the right arms to the desired end-effector poses, with open-
loop control, performing the body schema adaptation and the
estimation of the poses of the end-effectors. In the second part
of the experiment, we control the pose of both end-effectors to
the desired poses with closed-loop control, exploiting the adapted
body schema and the improved pose estimation. In Figure 13,
we show the comparison between the non-calibrated case (after
the open-loop control, top row), where the hands have a distance
from each other of approximately 16 cm and the fingertips are
not aligned, and the adaptation performed using our method
(with the closed-loop control, bottom row), where the hands are
about 12 cm apart and the fingertips are touching each other
(as desired).

FIGURE 12 | Body schema online adaptation performed in the real robot. Images seen by the robot eye cameras Left (A) and Right (B) Cameras and by an
external camera (C) placed in front of the robot. Initial robot configuration.

FIGURE 13 | Body schema online adaptation performed in the real robot. Images seen by the robot eye cameras Left (A,D) and Right (B,E) Cameras and by
external camera (C,F) placed in front of the robot. First row (A–C): the left arm is controlled toward a target end-effector pose and the right arm is controlled toward
the same end-effector pose with a shift of 12 cm, with open-loop control. However, the resulting end-effector poses are not the desired one, due to inaccuracies in
the body schema. Adaptation parameters are estimated during the motion of both arms, and used to update the body schema. Second row (D–F): the pose of both
end-effectors is corrected using the updated body schema and a closed-loop control strategy that exploits the improved pose estimation.
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6. DISCUSSION

We have reported results both in simulation and in the real robot.
The former constitute a quantitative evaluation with respect to
ground-truth data; the latter demonstrate that the system can
be used in the real world successfully. Indeed, in both cases, we
achieve good results showing that both the estimation and reach-
ing errors are decreased. Our approach is biologically inspired as
evidence in neuroscience suggests that the human brain keeps an
updated representation of the body (i.e., a body schema) that is
employed to generate hypotheses of the limbs positions in space,
which are combined with the actual perception of the self in a
Bayesian fashion. Our system outperforms the current state of the
art in the sense that (i) it does not rely on markers on the end-
effector, using the pure visual feedback coming from the robot
stereo cameras, (ii) the body schema adaptation is performed
during reaching movements without a specific adaptation pro-
cedure, and (iii) such adaptation is performed online in real-
time. While the body schema adaptation and pose estimation can
be performed during each reaching movement, the adaptation
parameters obtained during one movement generalize well to
other areas of the workspace. This has been extensively docu-
mented in a previous publication (Vicente et al., 2015), inwhichwe
also show that our choice of parameterization (i.e., offsets in the
arm joints) outperforms other solutions proposed in the literature,
such as the use of offsets in the Cartesian position and orientation
of the end-effector.

In general, the scalability of systems depends on the size of
the search space (i.e., the parameters space). The fact that we
parameterize the model with the joint offsets does not mean that
other sources of error could not be accounted for. In theory, with
a sufficient number of particles (and with a sufficient number of
examples) any kind of error that causes a mismatch between the
kinematic model and the real robot (e.g., unalignment of one joint
axis of rotation, change in the length of one link, change in the
elastic properties of one transmission cable) can be compensated
for, since our sequential Monte Carlo parameter optimization
approach attempts to minimize the prediction error between the
body schema hypothesis and the visual perception. Although a
quantitative analysis of the estimation with different error sources
was not performed in this paper, the encouraging results obtained
on the real robot (where other error sources than joint offsets are
likely to be present) suggest that our system could deal with them.

The results provided in Section “Trade-Off between the Num-
ber of Particles andEstimationAccuracy” show that increasing the
number of particles would lead to better estimation performance;
however, the computational burden would also increase con-
siderably. Interestingly, our architecture for the internal mental
simulation could be easily made parallel to increase the com-
putation speed. In the current system, one computer generates
multiple hypotheses based on a single internal model; the number
of generated hypothesis is the same of the number of particles. The
hypothesis is then compared to the robot visual perception. The
use of a big cluster of computers in which each machine runs an
instance of the internal model and generates only a single hypoth-
esis would considerably reduce the computation time, allowing to
use a high number of particles (at the cost of using a high number
of computers).

Our proposed solution is not robot-dependent, and can be
applied to other robotic platforms in a straightforward manner,
provided that a kinematic and graphical (texture) model of the
robot is available. Clearly, the more the texture model of the robot
is close to the real robot appearance, the better the estimation
performance is expected to be. This is because in our current
solution the appearance of the internal model is not updated
exploiting the visual information gathered by the robot: only the
kinematic structure is adapted based on themismatch between the
internal model predictions and the visual feedback.

7. CONCLUSION AND FUTURE WORK

Wepresented a novel system for simultaneous online body schema
adaptation and end-effector pose estimation implemented on the
iCub humanoid robot. The parameter adaptation is performed
with a sequential Monte Carlo framework during the execution of
reachingmovements.We rely only on the robot embedded sensors
(vision sensing from stereo cameras and proprioception) without
using any special visual marker. Our method draws inspiration
from human perception and learning, as we combine the pre-
diction made by a learned internal model with the actual visual
feedback to improve the perceptual skill of the robot.

Overall, our simulation experiments show that we can reduce
the end-effector pose estimation error considerably with respect
to using the nominal (non-calibrated) robot model (of about eight
times in the end-effector position and 2.2 times in the end-effector
orientation). Moreover, the use of a closed-loop correction after
the initial open-loop reaching motion (during which the body
schema adaptation and pose estimation are performed) allows to
reduce the reaching error of about 8.5 times in position and 2.3
times in orientation.

We demonstrated the applicability of our system to real-world
scenarios by performing a bimanual reaching task with the real
iCub robot, where the combined open-loop and closed-loop con-
trol strategy, made possible by the accurate pose estimation,
allowed to decrease the positioning error of both end-effectors
by 4 cm.

Some possible directions for the future work have been dis-
cussed in Section “Discussion.”Moreover, an interesting improve-
ment to increase the robustness of the edge matching would be to
use also the orientation of the matching edge on the model and
compare its location and orientation with an edge in the realistic
platform sensing information.
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APPENDIX

Pseudo-code
In this appendix, we will give details on the implementations
of some of the modules used in our approach. We show the
pseudo-code of the most important modules developed.

We developed two modules: main module (Algorithm1) and
the internal mental simulation (Algorithm2). In our work, they
communicate via YARP middle-ware.

Themainmodule is responsible for processing the images from
the robot to generate the particles and updated their likelihood.
Moreover, it publishes the estimated β that can be used to correct
the end-effector pose. In the internal mental simulator, we gener-
ate the hypotheses and test them returning the likelihood of each
particle.

ALGORITHM 1 | Main module.

procedure MAIN

for t← 0, MaxFrames do ◃ e.g., MaxFrames= 170
Receive images from the robot cameras
Receive Joint encoders (θ)
yt =Process-Images(RC, LC)
Bt =SMC(Bt−1, yt, θ)
Perform Kernel Density Estimation on set Bt

Publish estimation βt

end for
end procedure

procedure PROCESS-IMAGES(RC,LC)

if Silhouette-based then
Silhouette segmentation
Concatenation of Images – yt

end if
if Edge-based then

Edge Extraction ◃ using (Canny, 1986)
Distance transform ◃ using (Borgefors, 1986)
Concatenation of Images – yt

end if
return yt

end procedure

procedure SMC(Bt−1, yt, θ)
B̂t = Bt = ∅
for m← 1, M do ◃ M is the number of particles

sample β
[m]
t ∼ p(βt|β[m]

t−1)

w[m]
t =Simulator(β[m]

t , yt, θ) ◃ According to w[m]
t = p(yt|β

[m]
t )

B̂t = B̂t + ⟨β[m]
t ,w[m]

t ⟩
end for
for m← 1, M do ◃Re-sampling Stage

draw β
[m]
t with probability ∝ w[m]

t
add β

[m]
t to Bt

end for
return Bt

end procedure

ALGORITHM 2 | Internal mental simulator.

procedure SIMULATOR(β
[m]
t , yt , θ)

Generate pose with β
[m]
t and θ

if Silhouette-based then
Generate binary Images ŷt
w[m]
t = Likelihood-Assessment(ŷt, yt ) ◃ Using GPGPU programing

end if
if Edge-based then
Generate Edge Images ŷt
w[m]
t = Likelihood-Assessment(ŷt, yt ) ◃ Using GPGPU programing

end if
return w[m]

t
end procedure
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