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This article presents the core elements of a cross-platform tactile capabilities interface
(TCI) for humanoid arms. The aim of the interface is to reduce the cost of developing
humanoid robot capabilities by supporting reuse through cross-platform deployment.
The article presents a comparative analysis of existing robot middleware frameworks
as well as the technical details of the TCI framework that builds on the existing YARP
platform. Currently, the TCI framework includes robot arm actuators with robot skin
sensors. It presents such hardware in a platform-independent manner, making it possible
to write robot control software that can be executed on different robots through the TCI
frameworks. The TCI framework supports multiple humanoid platforms, and this article
also presents a case study of a cross-platform implementation of a set of tactile protective
withdrawal reflexes that have been realized on both the NAO and iCub humanoid robot
platforms using the same high-level source code.

Keywords: tactile capabilities interface, humanoid robotics, robot skin, protective reflexes, robot software
engineering

1. INTRODUCTION

During the last few decades, robots have been used with success in various domains ranging
from manufacturing (Merzouki et al., 2010), space exploration (Ambrose et al., 2010), and surgery
(McMahan et al., 2011) to mining (Bednarz et al., 2011) and military assistance (Wooden et al.,
2010). Developing robotic software is difficult and time-consuming, especially when the same
functionality must be developed separately for robots with different physical dimensions, hardware
control protocols, mechanical configurations, or actuators and sensors. Even on a single robot, it is
common for low-level components, such as dynamics and servos, to vary due to upgrades during the
robot’s lifetime. The cost of robot software development can be reduced significantly if the software
can be reused across different models and platforms. In general, the main challenges of developing
humanoid robot software aremodeling complexity,modularity, and repeatability.

Humanoid robots are often equipped with a large number of actuators and sensors. The first
difficulty a developer may encounter is to learn these specifications. Even when building a simple
robotic behavior with just handful devices, nevertheless, it may be time consuming for the developer
to work out the correct mappings from the platform-related infrastructure to build an appropriate
behavioral model. For example, a humanoid robot NAO that our research employed has 21 DoF
servos and 648 tactile sensors (see Figure 1), but a withdrawal reflex behavior studied in §4 is only
interested in 5 servos and about 30 taxels. To identify and configure the correct taxels may become
a challenge for the robotic behavior engineer.

From the perspective of the software engineering, modularity is also important in humanoid
robot. Currently, humanoid robot projects are usually requiring intensive collaboration among
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FIGURE 1 | (A,B) illustrate iCub and NAO robots, respectively. Their equipped robotic skin is highlighted. The TCI framework presented in this article was evaluated
on both platforms and both on the real robots and in simulations.

different specialists. Developers may use diverse programming
languages, operating systems, or even computing hardware. Thus,
the need to separate functions into reusable modules has been
increasingly growing, so people can just focus on smaller-scaled
problems. Without a cross-platform interface, however, it makes
communication and integration difficult as it typically triggers
extra work to facilitate the interaction between the separate com-
ponents and thus makes modularity difficult to achieve. Shared
generic interfaces can make robotic software more extensible and
reduce the couplings among modules. They can also facilitate
the development by supporting multiple operating systems and
programming languages.

After the development of a behavior for a specific robot, soft-
ware engineers are commonly interested in transferring the same
behavior to other types of robot. As a matter of fact, behavioral
transfer is not easy to achieve and the repeatability of humanoid
robotics is sometimes criticized for being difficult to reproduce
outside of their original laboratories (Anderson and Thomaz,
2010). The main reason making repeatability difficult is the hard-
ware differences among the humanoid robots. The cost of directly
migrating a platform-specific solution to a new type of robot
is high without a decent generic interface, because a developer
needs to figure out the geometric transformations and adjust high-
level behavioral parameters correspondingly. By doing this, the
repeatability of the behavior is broken and so it becomes obscure
to verify and compare the effectiveness of the same behavior on
the new robot.

The work presented in this article goes beyond traditional
robot middleware platform by attempting to hide all platform-
specific details from developers and, thus, allow them to produce
reusable cross-platform behaviors via an abstract interface. The
interface focuses on interpreting abstract information for different
native different robot armswith different physiologies. This article
presents results in developing a cross-platform tactile capabilities
interface (TCI) that aims to improve the reusability of humanoid
robot software and hardware. The results presented are limited to
humanoid arms but includes a standardization of both actuators
and tactile sensors that covers a large area of a robotic arm.

The research presented is directly motivated by our experi-
ences from developing cross-platform software during the FP7
ROBOSKIN project (Cannata et al., 2012). Our research involved
different humanoid robots, including the NAO and iCub robots
(see Figure 1). During the research, the main challenges were
to develop generic robot capabilities. In particular, we devel-
oped prototype algorithms for one robot platform and later re-
implemented them on others. The objective of TCI is to facilitate
such transfers of robot capabilities by providing a generic inter-
face that is practical for a range of different humanoid robots.
Our approach aims to enable the developers working on cross-
platform capabilities, in particular protective withdrawal reflexes,
to focus on controlling an abstract, platform-independent robotic
component through a set of abstracted interfaces. TCI consists
of generic actuator interfaces and generic robot skin interfaces.
It acts as an interpreter translating the messages between the
cross-platform algorithms and the platform-specific layers of the
actual robots. High-level algorithms then become reusable and
extensible, and new robots can be supported by providing them
with support for TCI.

In §2, related concepts, systems, and literature are reviewed.
The theories and methods for promoting robot software reusabil-
ity are discussed, and a selection of robot middleware platforms
compared. §3 presents the architecture implementing our inter-
face and discusses its design. The TCI specifics of the arm actu-
ators and the arm skin sensors are presented in §3.1 and §3.2,
respectively. This is followed by a case study of how TCI was
used to support a cross-platform implementation of a humanoid
robot protective arm withdrawal reflexes in §4. Conclusions are
made in § 5.

2. RELATED WORK

A humanoid robot system commonly consisted of a set of layered
modules. Low-level modules focus on solving hardware-related
preprocessing and reasoning problems, such as localization and
sensory data fusion, whereas high-level ones are making cognitive
behavioral decisions based on the high-level states produced by
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mother modules. To develop a generic software for controlling
multiple type of humanoid robots is usually difficult, and the key
problem is to design a high-level robot behavior that can be easily
deployed on different robots.

Machine learning (ML) algorithms can be one possible solu-
tion, which provides a generic way of giving different robots the
same capabilities, even in the absence of a detailed understanding
of the underlying specifications or kinematics model. The core
philosophy of ML is data driven; it focuses on the mappings
from a robotic action to the corresponding feedback. Instead of
directly solving transformation problems, ML undertakes a train-
ing process to understand the outcomes of actions. During the
training, it continuingly changes action with an aim of achieving a
certain behavior on a robot. Such approaches include learning the
kinematics and dynamics of a generic robotic arm (Atkeson, 1989;
Caligiore et al., 2010), generic trajectory tracking using neural
control (Martins et al., 2008), and high-level humanoid behaviors
such as learning biped locomotion (Huang et al., 2001; Ma and
Cameron, 2009a,b, 2011).

The training processes of the ML approaches can be time
consuming both in terms of acquiring and processing training
data. The learning results may also be unreliable without per-
formance guarantees, as sometimes the results are represented
in the form of an implicit neural network, making users diffi-
cult to verify behavioral effectiveness. However, in reality, robot
developers are not completely accessible to the specifications of a
new robot. Instead, they are commonly interested inmodel-driven
approaches that directly translate actuator and sensor data to a
new platform. More importantly, the translation should be better
processed in real time without waiting for the learning phase to
complete. ML approaches, therefore, have disadvantages in real-
time data processing. Compared with ML approaches, even hard-
coded solutions can be implemented quicker and can sometimes
provide reliable performance across a problem space.

In order to improve the reusability of hard-coded transfor-
mations, we have proposed the cross-platform tactile capabilities
interface (TCI). This is a model-driven approach consists of a
set of standardized representations and functions for humanoid
actuators and tactile sensors. We have realized the interface for
the humanoid arms of iCub and NAO robots.

This section reviews related approaches to increase the reusabil-
ity of robot software and hardware. Currently, there are sev-
eral popular robot middleware platforms, and their features are
discussed and compared in §2.2. Since TCI provides a generic
platform not only for tactile sensors but also for the actuators
using them, this section also includes the kinematics features of
the middleware. TCI uses YARP (Yet Another Robot Platform)
(Metta et al., 2006) as its middleware platform because it was
already been supported on several humanoid robots. YARP also
supports a wide range of networking protocols that can be flexibly
deployed in diverse circumstances. Technical details of YARP will
be further discussed in this section.

2.1. The Reusability of Robotic Software
Robot software reusability can be achieved by decomposing
robot functions into modules connected to each other within
a shared middleware framework. A middleware framework

typically provides a fundamental infrastructure for module inter-
action including abstractions for sensors and actuators, so that
different abstract modules are not restricted to specific robot
hardware or operating systems, but can be instantiated bymultiple
specific solutions. With the help of such middleware, supple-
mental tools, such as behavioral abstraction composition appli-
cations, can also be provided in order to promote reusability
further.

2.1.1. Modularity
In software engineering, modularity implies that software is bro-
ken down into a number of simpler modules. High modularity
means more modules and less coupling, i.e., dependency among
them. At the other end of the spectrum, monolithic approaches
implement all the required tasks within a single program. Design-
ing reusable software involves finding the best trade-off between
too much modularity, which can be wasteful, and too little, which
limits reusability (Brugali and Scandurra, 2009). A monolithic
approach must include all the aspects of robot control, from low-
level messaging to high-level algorithms. This approach includes
solving platform-specific issues and, as a consequence, reusability
is difficult to achieve. On the other hand, too much modularity
can also reduce reusability. Practically, it is time consuming to
integrate a large number of modules, and maintaining and docu-
mentingmanymodules also demands a large amount of resources.
With the balanced level of modularity, the high-level modules
can focus on cross-platform capabilities using abstract interfaces.
The low-level modules are then responsible for translating the
abstract representations and algorithms to platform-specific data
and instructions.

2.1.2. Middleware and Toolkits
In order to promote modularity, much effort has been made
to create shared robot middleware for different robots. Middle-
ware platforms typically provide a communications framework for
robot software modules, supporting both low-level control and
high-level algorithms. Middleware typically also aims to reduce
infrastructure-level programming and promote the development
of reusable robotmodules. This can be done through standardized
interfaces, drivers for diverse hardware, and supporting multi-
ple programming languages. The last point is often achieved by
basing module communication on cross-platform communica-
tion technologies, such as TCP/IP sockets, supported by most
programming languages.

Standardized data representations and control and communi-
cation interfaces allow middleware platforms to also provide a
number of development toolkits for speeding up development
and debugging. These toolkits can comprise visualization tools
to display data, such as playercam (from Player) that remotely
monitors camera images, a graphical user interface (GUI) that
manages the modular processes and their connections, such as
yarpmanager (from YARP), and a utility to query and inspect
code trees and find dependencies, such as rospack (from ROS).
Abstraction mechanisms, such as Rosbridge (Crick et al., 2012),
can further increase reusability by allowing third-party tools, e.g.,
the image processing library (IPL) and the OpenCV library to be
accessed from within reusable robot modules. A detailed analysis
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of the specific features of a selection of popular middleware
platforms is presented in §2.2.

2.1.3. Behavior Abstraction and API Standardization
Another mechanism that increases the reusability of robot soft-
ware is behavior abstraction. Complex robotic tasks are easier to
achieve if they can be decomposed into a hierarchy of capabilities
or behaviors. In cases where such decomposition is possible, sub-
behaviors constitute potential reusable modules, leaving high-
level deliberative decision-making mechanism, such as planning
to focus on scheduling abstract behaviors, rather than handling
a higher number of low-level actions directly. Such behavioral
decomposition has been widely used in various AI systems (Maes,
1991; Stone and McAllester, 2001; Nesnas et al., 2006), espe-
ciallymulti-agent systems (MAS) where cooperative behaviors are
needed (Stone, 2000; Ma, 2011). It has also been successful in
learning scenarios.

Abstract robot behaviors need to present standard data struc-
tures and application programming interfaces (APIs) in order
to be used by high-level decision processes. The task descrip-
tion language (TDL)1 is a C++ library that provides syntactic
support for behavioral decomposition, synchronization, and exe-
cution monitoring. TDL reduces the difficulties of maintaining
task-level behaviors, and it has been successfully used in several
mobile robot projects, including CLARAty (Nesnas et al., 2006),
a reusable platform for NASA’s robots. Another similar example
is the humanoid motion planner that is designed for humanoid
robots in the Joint French-Japanese Robotics Lab (JRL) (Yoshida
et al., 2005). The motion planner uses hierarchical architecture to
control multiple reusable dynamic tasks such as path planning,
gait generation, and collision checking.

2.2. Robot Middleware
Robot middleware platforms provide abstract platforms for robot
software. They promote software modularity by providing tools
that support flexible communication between different robot
components, including communication between distributed pro-
cesses. Most robot middleware uses networking packages to con-
nect modules, making modules platform independent. Allowing
distributed modules also means that modules can be executed on
different processors, potentially under different operating systems
and stored on diverse media.

YARP (Yet Another Robot Platform)2 is a robot middleware
platform designed for humanoid robots. It is a lightweight open-
source platform derived from University of Genova andMIT, and
it supports many mainstream programming languages, such as
C++, Matlab, Python, JAVA, Perl, and L. It connects modules
using various protocols, such as TCP, UDP, UDP multicast, and
HTTP. A YARP-based system is a peer-to-peer network of port
objects, where each object has read and write ports to receive
and send data streams, respectively. One of the advantages of
YARP is its synchronization mechanism. A write port can choose
whether to wait for all its read ports before or after each update
step. From the perspective of a developer of high-level behaviors,

1TDL is available at http://www.cs.cmu.edu/~tdl/
2YARP is available at http://eris.liralab.it/yarp

a kinematic chain, such as a robotic arm or leg, is implemented
using a PolyDriver class. Modules based on this class can be read
from and written to using an ordered vector of values based on
the kinematic joint angles. The low-level limits of an actuator,
however, are not effectively managed by the framework, e.g.,
YARP does not check the velocity limits of a servo before sending
a command. It may even break the servo.

ROS (Robot Operating System)3 takes slightly different mes-
saging approach. Instead of using read and write ports it employs
a publish–subscribe mechanism (Quigley et al., 2009). Nodes are
computational processes, which communicate with each other
by passing messages. A node sends messages by publishing it to
a given topic, and nodes subscribe to selected topics to receive
messages. ROS is also written in C++ but supports other pro-
gramming languages as well, including Python, Octave, and LISP.
In terms of communication, ROS supports the TCP and UDP
protocols. In ROS, a kinematic chain is presented as an actuator
array, where actuator properties are also defined such as velocity
and torque limits. Actuator channels can be subscribed separately
or manipulated at the same time by sending vectors of joint angles
in a particular order.

The OROCOS (Open Robot Control Software) project (Bruyn-
inckx, 2001; Bruyninckx et al., 2003) is different from YARP and
ROS in that it does not emphasize communication between robot
components. Instead, it focuses on toolkit libraries for solving
common problems encountered by industrial robots. OROCOS
is designed for a single robot, and it is not suitable for multi-
robot systems where different robots need to cooperate with
each other (Namoshe et al., 2008). Based on the GPL license,
OROCOS is composed of four C++ libraries: a Kinematics and
Dynamics Library (KDL) that solves real-time kinematics and
dynamics problems, a Bayesian Filtering Library (BFL) that pro-
vides generic filtering functions such as Kalman Filter and Particle
Filter, and two supporting libraries that couple robotic compo-
nents with each other using debugging tools, i.e., Component
Library (OCL) and Real-Time Toolkit (RTT). Originally, ORO-
COS only supported C++, but libraries have been integrated to
connect OROCOS to other robotic middleware such as YARP
and ROS. Through this mechanism, other languages are indi-
rectly supported. The advantage of the OROCOS libraries is that
they implement dynamics algorithms independently of platforms
using a predefined abstraction and formalization of the underlying
platform hardware, such as the kinematics.

Other robot middleware platforms include the Player/Stage
Project4 and LCM (Lightweight Communications and Marshal-
ing).5 The Player/Stage Project (Gerkey et al., 2003) consists of
Player, a robot device server with standardized interface to sen-
sors and actuators, and Stage, a 2D multi-robot simulator. Player
provides a network interface to a variety of robot and sensor
hardware, and many Player-based applications have been adapted
for use under ROS. Player can be regarded as a cut-down version
of YARP in that it only supports reliable TCP protocols with-
out advanced synchronizing mechanism. In particular, in Player,

3ROS is available at http://www.ros.org
4Player/Stage project is available at http://playerstage.sourceforge.net
5LCM is available at http://lcm-proj.github.io/

Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 174

http://www.cs.cmu.edu/~tdl/
http://eris.liralab.it/yarp
http://www.ros.org
http://playerstage.sourceforge.net
http://lcm-proj.github.io/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Ma and Dahl Tactile Capabilities Interface for Robots

device interfaces are not buffered. Compared to Player, LCM is a
relatively new library that aims to provide a low-latency message
passing system for real-time robotics applications. Comparing
to ROS, LCM showed notably better transmission efficiency by
leveraging its UDP multicast infrastructure (Huang et al., 2010).
With regards to representing a kinematic chain, the original Player
does not support chained actuators. Instead, each actuator has
to be used on its own, and it is up to the client application
to keep track of any kinematic relations. Similarly, LCM is a
lightweight platform for sharing information efficiently. It also
does not natively support the management of kinematic chains.

Table 1 compares the properties of different robot middleware
platforms in terms of network protocols, communication mech-
anisms, and open-source licenses. Although the number of the
robotic devices in YARP is not as great as in ROS, YARP supports
a greater number of humanoid robots. Player is a popular platform
for wheeled robots, especially in the navigation domain. However,
it is rarely used for humanoid robot control. Therefore, the work
presented in this article has adopted YARP as themiddleware plat-
form due to its better support for humanoid robots and network
communication.

The aforementioned frameworks provide general-purpose
mechanisms to design and implement concurrent and distributed
software robot components. However, in the particular domain of
robot skin area, these frameworksmay have problem in processing
tactile sensory data. Robot skin often contains a large scale of
taxels, which will cause latency for the frameworks to handle a
huge volume of data. To solve this problem, Skinware, a frame-
work designed for the large-scale skin, was proposed recently
(Youssefi et al., 2014, 2015a,b). Skinware especially emphasizes
on real-time tactile data processing and minimizes the latency
for concurrent queries. It provides a unified interface to access
information originating from heterogeneous robot skin systems
and assures portability among different robot skin solutions.

Different from the Skinware, TCI proposed in this article
focuses on solving geometrical transformations of the taxels and
providing online actuator translations for tactile-based behaviors.

TABLE 1 | A comparison of popular robot middleware platforms, including
the supported humanoid robot platforms, communication protocols, and
interaction models.

Platform Humanoid robots Protocols Model License

YARP NAO, iCub, Babybot,
Obrero, Domo, COG,
Kismet, and BERT2
KASPAR

TCP, UDP, UDP
multicast HTTP,
and QNet

R/W LGPL

ROS NAO, Romeo, Reddy,
and Kondo KHR

TCP and UDP P/S BSD

OROCOS Robonaut TCP C/S
ORB
SRB

GPL

Player – TCP R/W GPL

LCM – UDP multicast P/S LGPL

The license under which they are published is also included.
R/W, read/write; P/S, publish/subscribe; C/S, client/server; ORB, object request broker;
SRB, service request broker.

Real-time data processing and latency analysis is not the focus
of our work. Currently, even with the help of the aforemen-
tioned robotic middleware, it is still difficult to directly repre-
sent a generic kinematic chain of an arm for multiple humanoid
robots. This is due to the fact that different robots use different
reference systems for angles and speeds and also due to their
different kinematics. Listing 1 demonstrates the different code
implementing the same reflex motion (see Figures 6C,D) on the
iCub (Gamez et al., 2012) and NAO humanoid robots through
YARP. For the right arm, NAO has 6 DoF while iCub has 16.
The iCub robot also has more low-level limits, e.g., for damp-
ing and speed. The two extracts of code introduce difficulties
for maintainability and reusability because each robot arm has
a unique initial position tuple and unique coordinate systems.
These differences introduce extra costs when it comes to sup-
porting multiple humanoid platforms, even for simple generic
motions. This problem is addressed by the TCI, which forces arms
to be represented in the form of abstracted five DoF, disregarding
the DoF it actually has. The interface is presented in detail in this
article.

3. THE CROSS-PLATFORM TACTILE
CAPABILITIES INTERFACE

One way of reducing the cost of developing cross-platform
humanoid behaviors is to provide a generic interface that allows
developers to reuse the same code for different robots. Since the
robot control process is bidirectional, a generic robotic interface
at least consists of two functions: incoming sensor abstraction and
outgoing actuator abstraction. The differences in robot control
software for various robots platforms stem from hardware issues,
such as different physical dimension and mechanical configura-
tion, as well as from software issues, such as platform-specific
speed and angle units and servo-indexing mechanism.

Different humanoid platforms also have different schemas for
joint indexing, as can be seen from the code provided in Listing 1.
Whenmigrating high-level code, it is up to the developer to figure
out how to transfer abstract motions to the target robot. The
problem is that this transfer is robot specific and, as a result, a
different transfer is required for each robot that is to be supported,
accommodating their unique joint indexing or naming. TCI pro-
vides a generic representation of humanoid robot arms, including
joint control, joint position data, and kinematic chain information
and data from robot skin sensors covering large areas of the arm.
Such standardization promotes robotic reusability by hiding the
low-level differences between specific robot platforms. In order to
implement the interface, other platforms must be represented in
a way that conforms to the specified data and command formats,
e.g., a robot using log-encoded joints must provide a translation
layer to convert the generic interface commands into platform-
specific commands. Similarly, it must provide a translation layer
converting the platform-specific data format to the format used by
our interface.

In TCI, the DoF of a generic arm is fixed. All arms are repre-
sented by 5 DoF with indices from 0 to 4, always referring to the
shoulder pitch/roll/yaw and the elbow pitch/yaw. Our interface
enforces such a referencing standard even when the underlying
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LISTING 1 | YARP-based code for NAO and iCub implementations of a single reflex motion.

/**** NAO robot ****/
const int DOF = 6;
double StiffnessArr[DOF]={0.8, 0.8, 0.8, 0.8, 0.8, 0.8};
double ReflexArr[DOF]={1.19, −1.10, 2.07, 0.04, 0.0, 0.0};
double MIN[DOF]={−2.09, −0.31, −2.09, −1.54, −1.82, 0.0};
double MAX[DOF]={2.09, 1.33, 2.09, −0.03, 1.82, 1.00};
pos− >SetStiffness(StiffnessArr);
for (int i=0; i<DOF; i++){

StiffnessArr[i]=CheckLimits(MIN[DOF], ReflexArr[i], MAX[DOF]);
}
pos− >positionMove(ReflexArr);
/**** iCub robot ****/
const int DOF = 16;
double StiffnessArr[DOF]={0.4, 0.4, 1, 0.2, 0.2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
double DampingArr[DOF]={0.03, 0.03, 0, 0.01, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double SpeedArr[DOF]={20, 20, 0, 20, 40, 0, 0, 50, 50, 50, 50, 50, 50, 50, 50, 50};
double ReflexArr[DOF]={−16.1, 83.3, 0, 15.5, −59, −0.45, 0, 0.3, 50, 24, 90, 5, 90, 16, 90, 115};
double MIN[DOF]={−90, 15, −30, 15, −90, −90, −20, 0, 10, 0, 0, 0, 0, 0, 0, 0};
double MAX[DOF]={10, 95, 50, 105, 90, 0, 40, 60, 90, 90, 180, 90, 180, 90, 180, 270};
SetStiffness(StiffnessArr);
SetDamping(DampingArr);
SetSpeed(SpeedArr);
for (int i=0; i<DOF; i++){

StiffnessArr[i]=CheckLimits(MIN[DOF], ReflexArr[i], MAX[DOF]);
}
pos− >positionMove(ReflexArr);

platform is missing a particular DoF, e.g., no elbow yaw, or has
extra DoF. Our interface also standardized the kinematic chain
information, using a fixed grounding point, fixed units, ranges,
and signs to represent angles and distances.

For the skin sensor data, rather than providing information
related to indexed touch-sensitive transistors known as “taxels,”
our interface uses a spatial reference framework where a taxel is
represented as a point in space, defined relatively to the under-
lying kinematics. Our implementations of the TCI translate the
messages between the abstract high-level representations and the
specifics of the individual robot representations in real time. This
frees a developer from the tedious task of repeatedly resolving the
low-level configuration differences.

In practice, developers need an interface to be flexible. Generic
capabilities that can be potentiallymigrated to different robots can
be implemented using our abstract interface. However, it is com-
mon tomix the generic capabilities with platform-specific capabil-
ities making use of platform-specific sensors and actuators. In our
layered architecture, presented in Figure 2, the platform-specific
API is available through YARP. The complete architecture consists
of four layers. Layer L1 is the low-level robotic controller layer.
This is the lowest layer that a module can access and contains the
hardware specific APIs. Layer L2 is the YARP middleware layer,
which provides the communicative platform for modules to send
commands and transfer data. This layer also includes the YARP
converters that connect specific platforms to the YARP frame-
work, e.g., NaoYarp6 is a YARP interface for the NAO humanoid
platform that wraps up the official NaoQi interface using YARP
ports. Our abstract humanoid arm interface forms layer L3, which
contains two core interfaces, the actuator interface, i.e., the arm

6The NaoYarp software can be found at https://github.com/cbm/NaoYARP
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FIGURE 2 | The layered architecture of TCI. L1 and L2 are the low-level
robotic controller layers and the YARP middleware layer, respectively. The
tactile capabilities interface is defined in L3, which is followed by L4 that
consists of reusable cross-platform capabilities.

kinematic chain, and the skin interface. These interfaces are pre-
sented in detail in §3.1 and §3.2, respectively. Our architecture also
provides platform-specific information and calculations through
modules, such as forward kinematics (FK) and inverse kinematics
(IK), and technologies that have been extensively discussed by
Diaz-Calderon et al. (2006). The run-time availability of platform-
specific data, such as the kinematics, would allow the integration
of our abstract interface and generic libraries such as OROCOS.
We aim to include a querying mechanism in future versions of
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our interface in order to enable the use of third-party libraries
in the implementation of platform-independent capabilities. In
the top layer, L4, high-level capabilities use our abstract inter-
face to achieve generic tasks, such as withdrawal reflexes, gesture
reproduction, and other robotic learning activities.

3.1. The Generic Actuator Interface
The configuration of the actuators of humanoid robots varies
dramatically even when they are located on the same kinematic
chain of a humanoid part. Practically, each actuator has some
unique properties such as speed limits, position limits, initial
position, axes, and stiffness settings.

A humanoid robot is usually designed with a specific domain
of research in mind, e.g., the iCub robot supports research on
cognitive representations for control of the robot head, arms, and
hands. On the other hand, NAO robots are designed for locomo-
tive behaviors in research domains such as robot football. As a
result, corresponding robot parts on different platforms often have
different features, including different degrees of freedom (DoF)
and different sequencing of the individual DOF on a kinematic
chain. The robot head for example has six DoF on the iCub but
only two on the NAO. Similarly, the robot arm has sixteen DoF
on the iCub but only six on the NAO.

Currently, our implementation relies on XML to specify the
platform-specific elements of the actuator and skin interfaces.
The generic actuator interface consists of a vector of abstract
robot parts. Each part is accessible to the high-level compo-
nents at runtime, providing platform-specific information in a
standardized generic format. This unified interface reduces the
development complexity for high-level modules by allowing them
to focus on the key actuators and ignore any redundant ones that
are not needed within a module. In the XML configuration file,
the platform-specific information must be presented in terms of
the defined number of actuators, axes, and initial positions. As
our first attempt, each generic actuator is considered as a linear
transformation, e.g., a specific abstract actuator, GS maps to a
specific destination servo DS. The transformation can be defined
as in equation (1). Nevertheless, our interface is not limited to
this transformation. Other controls, such as transformation in
Cartesian space, can also be configured using XML. However,
the implementation of other kinematics models will be further
evaluated in our future work.

GS = γDS+ σ (1)

In equation (1), γ is the transform factor and σ is the trans-
form displacement. Thus, a complex robot part can be generically
defined as a vector of generic actuators, each of which is a trans-
formation to a specific destination servo. This representation is
formalized in equation (2).

GenericPart =
⟨
GSi|ni=1

⟩
=

⟨(
γiDSmapping(i) + σi

)∣∣n
i=1

⟩
(2)

This is the configurations of a vector of servos, and the other
properties of a kinematic chain, such as length information,
are defined elsewhere. The difference of the limb lengths also
affects the position of the end-effector position for given angles.

LISTING 2 |An example of the XML configuration file of a generic robot part.
It defines an abstracted head part with 2 generic servos mapping from the robot
part called icub_head. The generic servo 1 is transformed from the destination servo
2 with predefined transform properties and servo limits. The initial position of each
generic servo vector is also configured.

<Generic_Robot_Part>icub_head</Generic_Robot_Part>
<generic_servo_number>2</generic_servo_number>
<generic_servo id="1">

<destination_servo_id>2</destination_servo_id>
<transform_factor>1.00</transform_factor>
<transform_displacement>0.00</transform_displacement>
<stiffness>1.00</stiffness>
<damping>0.00</damping>
<speed>20.00</speed>

</generic_servo>
......

<initial_positions>
<servo type="deg" destination_servo_id>="0" pos="−2.00"/>
<servo type="deg" destination_servo_id>="1" pos="15.00"/>

</initial_postions>

For position-based behaviors, inverse kinematics and forward
kinematics modules (see Figure 2) are used to calculate the low-
level angles. The servos that make up one generic robot part are
not necessarily from the same destination robot part; this feature
gives users more flexibility to design robot parts properly. An
example of the XML configuration file of a generic robot can be
found in Listing 2. The generic servo 1 is transformed from the
destination servo 2 with γ= 1 and σ= 0.

The XML configuration file contains not only the underlying
data needed for controlling the real servos but also the information
necessary to support a run-time reconstruction of the kinematic
chain, e.g., TCI can provide a YARP device that gives run-time
access to the Denavit–Hartenberg parameters as well as servo-
specific information such as angle and velocity limits. Such a
device facilitates the use of generic code that uses third-party
libraries for generic computations such as inverse kinematics (IK)
calculations (Diaz-Calderon et al., 2006).

3.2. The Generic Robot Skin Interface
A robotic skin sensor is a tactile sensor that gives a robot the
“sense of touch” over large areas of its surface. Recently, Dahiya
et al. (2010) have extensively compared more than 30 robotic
tactile sensors in terms of their transduction method, number
of taxels, range of force, and force sensitivity. Though there is
no standardized representation of robot skin sensors, they can
be regarded as a set of taxels (tactile pixels), where each taxel is
located on the same continuous surface and each taxel is able
to report, in real time, the force of any contacts. Our interface
assumes that the different skin sensors represented have the same
level of sensitivity. If this is the case, their readings may be nor-
malized in interface implementation layer, L3, in Figure 2. Our
interface, as presented here, is not yet sophisticated enough to
cover skin sensors with different sensitivity.

One of the main difficulties in creating a generic interface
for robot skin sensors has been the identification of a generic
representation of a geometric model of the surface on which
the taxels are located. Without such a model, it is difficult to
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reconstruct accurately and reliably the relative position and prox-
imity of taxels across the surface of the robot. Although other
information, such as the number of taxels, may also be useful,
in practice, we have found that many high-level behaviors nor-
mally do not require such information and so we can achieve an
acceptable performance level using only spatial taxel coordinates.
An example of a generic high-level behavior based on two skins
with different number of taxels and different taxel distributions
are illustrated in § 4.1.

Tomake practical use of the taxel data, it is commonly necessary
to relate this spatial information to the underlying kinematic
chain, making it obvious where a taxel is located in relation
to the robot’s body, e.g., on the upper left arm. The generic
robotic skin interface maps individual taxels to points in space
relative to elements in the kinematic chain, abstracting away any
underlying platform-specific taxel-indexing mechanisms as well
as any related connectivity information. The abstract spatial taxel
information removes any platform-specific representations and
provides a skin representation that can support the implementa-
tion of cross-platform capabilities. An example of the forearm skin
of the iCub robot represented using the TCI 3-dimensional spatial
skin model is presented in Figure 3, where each small blue dot is a
taxel on the skin. Our work leveraged the existing work of spatial
calibration to generate the skin model, in the joint research (Prete
et al., 2011; Denei et al., 2015).

In some cases, the three-dimensional position information of
each taxel of the robot skin sensors is not available to support
the calculations that are needed to present the taxels using the
spatial coordinates required by the generic skin interface. In this
case, it is time consuming and inaccurate tomanually measure the
precise 3D positions for all the taxels and instead they have to be
approximated.

In our experience, for a taxel t, the displacement along the
limb and the transverse angle of the taxel location relative to
the limb orientation are typically more important than its distance
from the central axis of the limb. As a consequence, we have
approximated the spatial distribution of the taxels on the NAO
robot skin using truncated cone. Given the estimated dimensions
of the truncated cone, our 3D skin model can approximate the

FIGURE 3 | An example of 3-dimensional generic robotic skin model:
the forearm skin of iCub.

real taxel distribution. As a consequence, in order to support
a TCI representation of the NAO skin sensors, the position Pt
of a taxel t is modeled as a vector <xi, θ, rt> formalized in
equation (3).

SKIN =
⟨
Pt|nt=1

⟩
=

⟨
⟨xt, θt, rt⟩|nt=1

⟩
(3)

In equation (3), the value xt represents the displacement of
the taxel along the central axis of the element of the kinematic
chain on which it is located. The value θt represents the dis-
placement angle within the transverse plane relative to the ori-
entation of the element, along which the taxel is located. The
value rt represents the distance (radius) from the central axis at
which the taxel is located. With this taxel model, a generic robot
skin sensor can be approximated and represented within the TCI
framework. The truncated cone model is presented graphically in
Figure 4.

Our truncated cone representation has the added benefit that
the radius rt need not be explicitly represented but can be cal-
culated from the displacement xt. As a consequence, we end up
with the approximated skin representation SKIN given in equation
(4). Admittedly, this model has its limitations on a robot with
complex tactile surface where multiple curvatures are present.
More investigations are needed as our future work.

SKIN =
⟨
Pt|nt=1

⟩
=

⟨
⟨xt, θt⟩|nt=1

⟩
(4)

4. A TCI CASE STUDY: HUMANOID
TACTILE WITHDRAWAL REFLEXES

In the previous sections we presented the TCI architecture and
its two core interfaces, the Generic Actuator Interface and the
Generic Robot Skin Interface. This section presents the application
of the TCI framework to the design and the implementation of a
cross-platform tactile withdrawal reflex for humanoid robots. The
behavior was realized and demonstrated on two physical robots,
the iCub and the NAO.

Robotic tactile withdrawal reflexes aim to improve the safety
of human–robot interaction by reducing the potential for harm
to humans and robots. Safe-path planning, padding, compliant
limbs, and withdrawal reflexes all contribute at strategic point in

 x

 θ

 T

 O

FIGURE 4 | The simplified model of generic robotic skin. The shape of
the skin is arbitrarily approximated as a truncated cone.
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time to improve safety and increase the scope for the application
of human robots in unstructured human environments.

Based on a new robot skin sensor that covers large areas
of a robot (Schmitz et al., 2011) and information about the
mechanisms supporting human withdrawal reflexes, Dahl and
Paraschos (2012) proposed a force–distance reflex model for
humanoid robots. This model represents the reflex motion as
a base motions moderated by two discount factors: the force
of the impact and the distance between the stimulus and the
center of the closest reflex receptive field (RRF). The RRFs will
be discussed in details in §4.1. The base motions for the robot
withdrawal reflexes were established through a set of experiments
capturing reflexmotions fromhumans using amotion capture suit
(Dahl and Palmer, 2010). In our previous research, withdrawal
reflex data was obtained using five stimulation locations on the
upper and lower arm (four on the lower arm and one on the
upper arm).

4.1. The Force–Distance Reflex Model
The force–distance (FD) reflex model is inspired by the concept
of reflex receptive fields (RRFs), where each reflex has a trigger in
the form of a continuous area on the surface of the skin, within
which stimulation will provoke a reflex motion. The strongest
response, i.e., the largest motion, is produced when the stimulus
is in the center of the field. The strength of the response is
gradually reduced as the distance between the stimulation point
and the center of the field increases. The edge of the field acts
as a threshold, beyond which no motion is triggered. In addition
to being sensitive to the location of the stimulus, the size of the
response under the FD model is also sensitive to the intensity of
the stimulus, i.e., its force. The force–distancemodel is formalized
in equation (5).

θi,j =

{
ϕFiψdiΘi,j if di < ri and Fi > δf

0 otherwise
(5)

The FD reflex model is essentially a set of mappings from
tactile stimulus to robotic reflex motions. Each mapping i defines
the radius ri of a circular receptive field centered at location Ci.
The actual reflex motion θi,j is a vector of angle displacements,
which is a moderation of a vector of base angle displacementsΘi,j.
The base angle displacements were obtained by analyzing reflex
motions captures from the human subjects. They are discounted
by two factorsϕ andψ, respectively, corresponding to the stimulus
force F and the stimulus distance d to the center Ci. Simulation
of a location, not covered by a receptive field, will not trigger a
response.

Using the tactile capabilities interface, the FD reflex model
can be made generic by representing the values involved using
values and structures available in the generic robotic skin
model discussed in §3.2 and the Generic Actuator Interface pre-
sented in § 3.1.

Reproducing the reflex motions θi,j using the tactile capabil-
ities interface required us to calculate the stimulation distance
d using the generic spatial taxel model. The FD reflex model,
rewritten using this representation, is presented in equation (6).

§ 4.2 discusses, in detail, the implementation of the robotic
reflexes under TCI.

θi,j =

{
ϕF̄iψ |P̄i − Ci|Θi,j if |P̄i − Ci| < ri and F̄i > δf

0 otherwise

|P̄i − Ci| = |⟨x, r sin θ, r cos θ⟩ − ⟨xi, ri sin θi, ri cos θi⟩| (6)

In equation (6), P̄i denotes the position of the center of the
pressure and F̄i is the average force of the triggered taxels Ci of
the receptive field and the stimulus point P̄i. In practice, as taxels
are close to each other, a stimulation typically triggers multiple
taxels simultaneously. For a stimulation with n triggered taxels,
Ft and Pt are the force and the position of a taxel t, respectively.
P̄i is the center of the stimulation weighted by the force of the
triggered taxels. Similarly, F̄i is the average taxel force weighted
by the distance to P̄i. The position of the center of the pressure P̄i
and the average force F̄i are formalized in equation (7).

P̄i =

n∑
t=1

Ft · Pt
n∑

t=1
Ft

, F̄i =

n∑
t=1

Ft · (2ri − |Pt − P̄i|)
n∑

t=1
(2ri − |Pt − P̄i|)

(7)

In equation (7), 2ri denotes the diameter of the receptive circle,
which is the maximum geometrical distance for which a tactile
stimulation can produce a response.

4.2. The Implementation of the
Robotic Reflexes
This section presents the implementations of the force–distance
reflex model on two real robot platforms, NAO and iCub using
the tactile capabilities interface. The problem of using the same
reflexmodule on two different robots to establish the same robotic
withdrawal reflex motions is discussed in detail. A NAO robot
is a 4.5-kg, 58-cm tall humanoid robot designed and manufac-
tured by Aldebaran Robotics. It has 21 DoF (for the RoboCup
edition) and is equipped with a range of sensors including two
cameras, sonars, touch sensors, and accelerometers. An iCub
is a 1-m high humanoid robot test-bed for research on cogni-
tive robot behaviors. The robot is open source both in terms
of the hardware design and the software resources. An iCub
has 53 DoF and weighs around 22 kg. Both the NAO and iCub
robots used for the work presented here were equipped with
robot skin sensors developed under our previous joint research
(Cannata et al., 2012). The robot reflexes were implemented and
evaluated on both the simulated and the real robots. The FD
model implementation on the iCub is illustrated in Figure 5.
The blue dots are taxels of the forearm skin. When stimula-
tions occur within receptive fields, i.e., the four circular red
areas, the Reflexmodule produces the generic withdrawal actions.
The actions are further translated to iCub specific commands
by TCI. According to the FD model (equation (6)), iCub does
not response to the stimulations located outside of the receptive
fields. Similarly, the FD model on the real NAO is illustrated in
Figure 1B.
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Using the layered structure presented in Figure 2, the FD reflex
model was implemented as a Reflex module located in layer L4.
The actual robots APIs in layer L1 send raw tactile data to the
YARP interface in layer L2. Within the TCI structures in layer
L3, the Skin Interfacemodule translates the raw skin data into the
abstract spatial representation presented in §3.2.

The high-level Reflex module uses the abstracted skin data
to calculate the moderated reflex motion θi,j using equation (6).
Correspondingly, controlling the specific actuators is the reverse

FIGURE 5 | An example of the 3D receptive fields of iCub forearm
using generic robotic skin interface. The blue dots are the taxels, and the
four circular areas are receptive fields.

FIGURE 6 | The generic robotic reflexes produced and executed by the same Reflex module through TCI. Two stimulations are simulated on the NAO and
iCub robots, respectively. Images (A,B) illustrate the reflexes from the stimulations located on the bottom of the forearms, while stimulations illustrated in images
(C,D) are inside of the forearms.

process. The reflex motion θi,j found by the layer L4 module is,
sent down to the generic actuator interface located in layer L3
which again translates the generic motion to platform-specific
commands. The YARP layer, L2, further translates the high-level
commands to the actual actuators on the specific robot in the
bottom layer, L1. Figure 6 illustrates the robot reflexes produced
by the same Reflex module being executed on simulated NAO
and iCub robots through TCI. Two stimulations are simulated on
the bottom and inside parts of the forearms of the two robots,
respectively.

5. CONCLUSION AND FUTURE WORK

This article presented a cross-platform tactile capabilities inter-
face (TCI) for development of humanoid tactile capabilities.
TCI promotes reuse of high-level modules by providing abstract
hardware-independent representations of humanoid robot sen-
sors and actuators. These representations allow control software
to focus on the platform-independent elements of the control
algorithms, delegating the translation of these abstracted repre-
sentations to platform-specific commands, to the lower levels of
the TCI infrastructure. The literature related to generic interfaces
and current approaches to improve robot software reusability was
reviewed in §2. As an important method to promote reusability,
the state-of-the-art robotic middleware platforms are compared.
In §3, a layered architecture for reusable generic robotic modulars
was proposed, where TCI is used as an “interpreter” between
high-level modules and YARP. TCI contains two core interfaces,
a generic actuator interface (§3.1), which solves the configura-
tion differences of the low-level actuators, and a generic robotic
skin interface (§3.2) that abstracts the skin data. The article has
presented the case study of generic humanoid tactile withdrawal
reflexes. The force–distance (FD) reflex model is extended so as
to be used under the TCI framework. The FD model has been
implemented, and the same module was used to control two
different real robots, the NAO and the iCub robots, equipped
with different skin sensors. Experiments show that generic reflex
motions have been successfully realized under TCI both in simu-
lated environments and on real robots.
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The tactile capabilities interface is our first attempt at develop-
ing a cross-platform humanoid robot interface. Currently, only
position-based actuator control is implemented and evaluated,
although the framework is ready to integrate other types of actua-
tor controls such as velocity control and torque control. Another
limitation of our interface is that it does not provide an abstrac-
tion for tactile force. This is because in the study case, both the
platforms used the same type of the tactile sensors and so the
intensity representations are identical. Extra transformations will
be needed if the comparison of the forces is required.

Our aim for the future work is to further investigate other
control methods and other parts of common humanoid robots
in the TCI framework. Also, the integration of forward and
inverse kinematics is to be addressed. This feature will remove
the requirement for platform-specific kinematics calculations if
more sophisticated behaviors are needed. Recently, some research
on defecting the direction of tactile force has also been proposed

(Fumagalli et al., 2012; Stassi et al., 2014), and this could also
become an extension to our current interface.
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