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1 Invenia Labs, Cambridge, UK, 2 London Institute of Mathematical Sciences, London, UK, 3 Department of Computer
Science, University College London, London, UK

In this paper, we investigate the application of non-local graph entropy in evolving and
dynamical graphs. The measure is based upon the notion of Markov diffusion on a graph
and relies on the entropy applied to trajectories originating at a specific node. In particular,
we study the model of reinforcement–decay graph dynamics, which leads to scale-free
graphs. We find that the node entropy characterizes the structure of the network in the
two parameter phase–space describing the dynamical evolution of the weighted graph.
We then apply an adapted version of the entropy measure to purely memristive circuits.
We provide evidence that meanwhile in the case of DC voltage, the entropy based on
the forward probability is enough to characterize the graph properties; in the case of AC
voltage generators, one needs to consider both forward- and backward-based transition
probabilities. We provide also evidence that the entropy highlights the self-organizing
properties of memristive circuits, which re-organizes itself to satisfy the symmetries of
the underlying graph.1

Keywords: graphs with memory, graph entropy, memristors, symmetry

1. INTRODUCTION

The theory of complex networks has found applications in many fields across the natural sciences.
Until recently, most of the studies performed in complex networks concerned static graphs. Prefer-
ential attachment (Albert and Barabasi, 2002) is the most well-known mechanism for constructing
scale-free networks, and it concerns in fact with a specific type of graphs’ growth in order to
explain the properties of realistic, well-known networks (rich-gets-richer phenomenon). Scale-free
networks are defined by the distribution P(k) of the degrees of connectivity, which obeys a power
law P(k≫ 1)≈ k−ρ, with k being the number of connections of a given node. The exponent ρ is
typically in the range between 2 and 3; moreover, many realistic networks turn out being also small
world (Watts and Strogatz, 1998; Albert and Barabasi, 2002; Caldarelli, 2007; Barrat et al., 2009;
Newman, 2010; Estrada, 2011).

Several models, in which preferential attachment is an emergent property, have been proposed
in the physics literature (Kleinberg, 1998; Dorogovtsev et al., 2002; Saramaeki and Kaski, 2004;
Evans and Saramaeki, 2005; Ikeda, 2008; Chrysafis and Cannings, 2009; Li et al., 2010), and inspired
both by ants and memristors, we proposed a model of dynamical graphs in which two competing
mechanisms take place: a graph “evaporation” (or decay) and a reinforcement process due to the
diffusion of particles on the graph. In this model, memory is represented by non-Markovianity, as
the reinforcement process changes the particles’ hopping probabilities.

1Part of this work was presented at the 7th workshop on Guided Self-Organization, Freiburg, Germany (2014) and at the
Symposium on Complexity, Computation and Criticality in Sydney (2015).
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Recently, the interest has shifted toward the understanding of
dynamical phenomena of graphs. In this article, we present new
results on a class of dynamical models that gives rise to scale-free
graphs bymeans ofwhatwe callmemory.Memory is an ubiquitous
and necessary requirement to give rise to complex phenomena
in plenty of contexts. The main result obtained in Caravelli et al.
(2015) is that the interplay between random growth of the graph,
decay of the links, and their strengthening performed by random
walkers hopping over them leads to the generation of scale-free
graphs. Thus, although themodel is local (in the sense of evolution
rules which are local on the graph), it is a non-local one from
the temporal point of view. Interestingly, real condensed-matter
systems show some degree of memory in their response func-
tions (e.g., its resistance) when subject to external perturbations
(Di Ventra and Pershin, 2013a). Similarly, a memory mechanism
is used as an optimization procedure by ants in order to find the
shortest path, by reinforcing with pheromones the most walked
paths (Schweitzer et al., 1997; Buhl et al., 2004) and has been
shown to be employed by networks of memristors (resistors with
memory) (Chua, 1971; Strukov et al., 2008) to solve optimization
problems such as the maze (Pershin and Di Ventra, 2011) or other
shortest path problems (Pershin and Di Ventra, 2013). Recently,
it has been argued that several “hard” problems can be solved in
polynomial time using memristors (Traversa et al., 2015).

In the case of dynamical graphs, it is hard (if not impossible) to
characterize with only a few parameters the topological properties
of the dynamics, in particular if the rules of evolution are non-
local, as for instance in the case of memristors. Following this
line of thought, we tentatively study the properties of the resulting
graph using a measure of graph entropy introduced in Caravelli
(2014). This measure of graph entropy is based on the idea that
for the case of graphs, in order to give a non-local characterization
of a node based on the macroscopic connectivity properties, one
needs to consider higher order loops in the network. In the present
paper, we provide evidence that for the specific case of two specific
dynamical graph models, such as the reinforcement–decay and
memristive circuit models, the evolution properties can be to
some extent characterized by a non-local graph entropy.

The use of non-local information theoreticmeasures is inspired
by the macroscopic notions of entropy introduced in Lindgren
(1988) and Lloyd and Pagels (1988) and applied to the Markov
chain transition probabilities based on dynamical graphs. If M
denotes the Markov transition matrix, one can define the (local)
entropy of a state i as:

S(i) = −
∑
j

Mij log(Mij), (1)

withMij being the Markov operator. The transition matrixM can
be derived from a graph Γ, given an element-wise non-negative
adjacency matrix A, by normalizing over rows or columns. From
the point of view of graph theory, equation (1) is completely local.
In order to account for non-local effects, such entropy necessitates
an extension to account non-local (global) effects, such as loops.
Similar ideas were also considered in the information theory
community (eEkroot) and in the complex networks community
(Braunstein et al., 2006; Anand andBianconi, 2009). In the present
paper, we consider the extension considered in Caravelli (2014),

which relies on the definition of Markov probabilities not on the
local diffusion probability at a node but on the probability of
trajectories originated at a specific node.

The paper is organized as follows. In Section 2.1, we provide the
algorithm for the toy model of reinforcement–decay introduced
in a previous work, and give further arguments for its robust-
ness. In Section 2.2, we introduce linear memristors and their
dynamical behavior. In Section 2.3, we recall the graph entropy
measure later used to analyze the properties of dynamical graphs.
We then apply the graph entropy in Sections 3.1 and 3.2 for the
reinforcement–decay model andmemristive circuits, respectively.
Conclusions follow.

2. MATERIALS AND METHODS

2.1. Reinforcement–Decay Dynamical
Graphs
In this section, we recall the graph evolution model introduced
in Caravelli et al. (2015) in order to study a simplified dynamics
mimicking systems of ants (reinforcing walkers) and as a toy
model for studying graphs with memory.

Model – The algorithm to dynamically modify the graph is
based upon the following steps:

(a) Initialization: we start with a weighted random graph of N0
nodes. The weights are drawn with constant probability in
[0,1], and P≤N0 particles are randomly placed.

After initialization, a cycle of the algorithm consists of the steps
of Hopping, Strengthening/Decay, and Growth:

(b) Hopping: we let the particles hop between nodes i and j with
probability pij proportional to the link strength pij =Aij/ΣjAij,
where Aij is the weighted adjacency matrix of the graph.

(c) Strengthening/Decay: all the links hopped on by the particles
in the last L steps are reinforced by γ. Links with strength
less than threshold Ld decrease their strength by α, with
probability pd, and are removed when they reach a negative
weight.

A critical ingredient to obtain scale-free graphs was shown
to be:

(d) Growth: at this step, a newnode is added (andwith probability
pp a new particle is placed on it). The new node connects to
each of the previously existing nodes with probability pnl, here
chosen to be one, and with random weights with constant
probability in [0,1].

Thememory feature of thismodel lays in the non-Markovianity
of the particles hopping. Each time, a particle hops on an existing
link this is reinforced, and thus the probability of hopping on it
afterward increases.We note that the decay process competes with
the reinforcing one. The interplay between these two phenomena
has been shown to lead to a critical growth of the effective graph,
obtaining asymptotic degree distributions, which are scale free.
The observation that the growth of the graph is a crucial step for
scale-free degree distribution is made by imposing the growth to
stop at a certain maximum number of nodes Nc. After the growth
stops, it is observed that graph properties change abruptly, and
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the scale-free degree distribution is lost. The reinforcement–decay
graph evolution is a rich-gets-richer mechanism and was inspired
by traveling ants leaving an evaporating track of pheromones; also
memristors have similar dynamical properties. As described in the
Appendix of Caravelli et al. (2015), the observation of the scale-
free degree distribution law can be made precise in the statistical
sense and derived analytically. Here, we provide the background,
giving further arguments of why the algorithm is robust.

It is easy to argue that the degree ks of the node s has an effective
evolution equation of the form:

ks(t+ 1) = ks(t)− αks(t) + ps
N∑
i=1

wsi, (2)

where wsi are independent random variables drawn from a con-
stant probability distribution P(x)= 1, and ps = 2ρ/N to match
the evolution obtained in Caravelli et al. (2015). We note that for
N≫ 1, due to the central limit theorem, we have that

∑N
i=1 wsi ≈

N (N2 ,
√

N√
12 ), where 1/12 is the variance of the distribution, and

N
2

is its mean. This implies that in the large N limit, we can describe
the evolution of the degree of the graph as a stochastic differential
equation of the form:

dks(t) =
(
ps
N
2
− αks(t)

)
dt+ psσ̃dWt, (3)

where dWt is an effective Wiener differential, and where we
defined σ̃ =

√
N√
12 , and introduced dks(t)= ks(t+ 1) – ks(t).

Using standard formulae for the mean and the variance, we can
thus write the compact effective equation, and replacing the right
scaling ps → 2ρ/N to account for the linear growth of the degree:

dks(t) = (ρ− αks(t)) dt+
2ρ
N σ̃dWt

= (ρ− αks(t)) dt+
ρ√
3N

dWt (4)

The stochastic differential equation of equation (4) of the same
form as the one obtained in Caravelli et al. (2015), but with the
addition of a stochastic term. We note that equation (4) is a
stochastic differential equation of the form:

dk = (ak+ c)dt+ (bk+ d)dWt, (5)

for the function k(t), where the constants are given by

a = −α (6)
b = 0 (7)
c = ρ (8)

d =
ρ√
3N

. (9)

If we define the function Φt given by,

Φt(t,Wt) ≡ exp
(
(a− b2/2)t+ bWt

)
= exp (−αt) , (10)

the solution of the differential equation of equation (4) is given by
Kloeden and Platen (1999):

ks(t) = Φt

(
k0s + (c− bd)

∫ t

0
Φ−1

s ds+ d
∫ t

0
Φ−1

s dWs

)
= e−αt

(
k0s + ρ

∫ t

0
eαsds+ ρ√

3N

∫ t

0
eαsdWs

)
= e−αt

(
k0s + ρ

eαt − 1
α

+
ρ√
3N

∫ t

0
eαsdWs

)
(11)

where k0s represents the initial condition. Using the fact that
⟨
∫ t I(s)dWs⟩Wt = 0 for all smooth and deterministic processes
I(s), we obtain the solution as a function of t:

⟨ks(t)⟩Wt
= e−αt

(
k0s + ρ

eαt − 1
α

)
. (12)

The constant k0s can be related to the node s using the boundary
conditions at a certain initial time t0. It is easy to evaluate the
variance of this process at time t, being given by the stochastic
term. Using the Itô isometry formula, we note that Var[ks(t)] =
ρ2

3N
∫ t
0 e2αsds = ρ2

3N
(e2αt−1)

2α . This solution is the same as the one
obtained in Caravelli et al. (2015), which was confirmed bymeans
of numerical simulations and exhibiting very robust scale-free
distributions under parameter perturbations. The robustness can
be explained observing that the variance of the process scales
as 1/N. This implies that the larger the graph, the smaller the
deviation from the asymptotic distribution.

2.2. Memristive Circuits
A memristor can be thought simply as a dynamical resistance,
which depends on an internal state variable. The internal variable,
the “memory,” satisfies a dynamical law, which depends either on
the applied voltage or on the current.Memristors are passive com-
ponents, which perform analog computation: computing inmem-
ory is in fact one of the newly formed paradigms in which novel
non-Turing computational scenarios involve memory elements,
which store and process information in the same physical loca-
tion (Di Ventra and Pershin, 2013b). Although this new form of
computation could, in principle, be performed using CMOS tech-
nology, the most promising and energy-effective implementation
relies upon the use of memristive, memcapacitive, and memin-
ductive units (Di Ventra et al., 2009). These components can find
a plethora of applications in electronics for building bio-inspired
circuitry aimed at performing neuromorphic computation.

One of the interesting features of memristors is that these
can be used both in analog or digital mode and in combination
with CMOS components (Di Ventra and Pershin, 2013a). Several
applications have been found for memristors, such as their use in
memcapacitive neural networks, and the possibility of performing
logical operations directly within memory using memelements.
This latter feature is of particular interest to solve the long-
standing vonNeumann bottleneck problem ofmodern computers
and solve NP-hard problems in polynomial time (Traversa et al.,
2015). Being these passive component, the use of memelement for
low energy dissipating circuits is a further appealing feature.
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Memristive components are involved in the solution of
optimization problems. It is thus of paramount importance to
know how fast circuits made of memristor reach an asymptotic
equilibrium configuration of the memristances. This implies that
studying the emergence of the solution of an optimization prob-
lem can be thought as a relaxation phenomenon. Thus, this prob-
lembecomes a typical thermalization problem in non-equilibrium
statistical physics. In this paper, we will try to infer global, non-
local properties of the dynamics of memristive circuits using
insights, which arose in the context of network theory.

A memristive component can be described by the following set
of equations

V(t) = R(w, t)I(t), (13)
ẇ = f(w, I), (14)

where I(t) is the current in the memristor at time t, V(t) is the
applied voltage, R is memristance, which depends on the state of
the system and can vary in time, w is a set of n state variables
describing the internal state of the system, and f is a continuous
n-dimensional vector function.

For the present paper, we consider the case of a linear memris-
tor of the HP-type (Strukov et al., 2008), which can be described
by the equations:

V(t) = R(w, t)I(t) (15)

ẇ = pµRon

2d2
I = p

β
RonI (16)

R(w, t) = Ron(1− w(t)) + Roffw(t)
= Ron[1+ (r− 1)w(t)], (17)

where p=± 1 and represents the polarity of the memristor, Ron
is the limiting resistance when the memristor is in the conducting
phase, and Roff is the resistance in the insulating phase; we defined
r = Roff

Ron
, usually assumed to satisfy the relation r≫ 1.2

This is the simplest model proposed in the literature, but more
realistic ones include state decay. In fact, realistic physical models
include also an extra term proportional to the weight (Ohno et al.,
2011; Avizienis et al., 2012; Carbajal et al., 2015). The simplest
way to include such decay is to extend the dynamics for internal
parameter dynamics equation with a linear term which produces
an exponential decay. The extended equation takes the form:

ẇ =
p
β
RonI+ αw. (18)

where α represents the decay parameter. Assuming for instance
that I is constant asymptotically, dynamically one obtains a fixed
point in the internal memory parameter, w(∞) ∝ I, which can
be different from the boundary values w= 0, 1. If α> 0, in the
absence of external current the memristor decays to obtain the
boundary resistance value Roff.

2We use here the convention where Ron corresponds to w= 0 and Roff to w= 1.
Thus the memristors considered here have switched polarity with respect to those
studied by Strukov et al. (2008). Thismodel is dynamically not equivalent to the one
in Strukov et al. (2008) because of the switched polarity. However, the two models
are related by the linear transformation w′ = 1 − w, which preserves the position
of the boundary values of the internal parameters.

A network of pure memristors satisfies the laws of standard,
linear circuit theory. Given in fact a generic network of resistances,
the circuit voltages and currents satisfy the constraints given by:

v⃗ = R̂ (w(t)) i⃗+ s⃗ (19)

Ĝ⃗i = 0 (20)

where the first equation represents simply the relation between
the voltage on each branch k of the network vk, the current in
that branch ik, the eventual voltage sources sk, and each resistance.
The matrix Ĝ simply implements the conservation of currents at
each node, which can be thought as a constraint. For the case of
memristors, the matrix R̂, and each diagonal element contains
the resistance of each memristor at time t, Rkk(t)≡Rk(wk(t)).
If the memristors are of the HP type, then one has to intro-
duce also an equation for the internal memory parameters
ẇk(t) = f(wk, Ik), and impose that constraints on their domain,
e.g., 0≤wk(t)≤ 1.

In this paper, we study the specific network configuration,
made of L layers and which can be defined recursively. Each layer
k contains 2k memristors connected in triangles, representing
thus a tree. The node at the top of the network is connected to
one side of the voltage generator, and those at the bottom are
connected to the other one and all connected to the ground. We
consider this specific graph due to its many symmetries (i.e.,
intuitively we expect that nodes on each layer should have the
same properties and current configurations for instance) and for
the sake of simplicity, since its implementation can be easily made
recursive.3

2.3. Graph Entropy
We recall the network entropy measure introduced in Caravelli
(2014). The goal is to obtain a graph entropy, based on theMarkov
transition probability on a graph, which is able to characterize
nodes individually.

Given a graph represented by an elementwise non-negative
adjacency matrix A, the Markov forward (backward) transition
probabilities can be derived using Mij =

Aij∑
Aij

(
Mij =

Aij∑
j Aji

)
.

As we will see shortly, the entropy is based upon the notion of
probability applied to a particular trajectory in the set of states
of a Markovian discrete dynamics and originating at a particular
state. Given a the Markovian transition probabilities between two
states (nodes of the graph), it is possible to derive the probability of
certain trajectoriesγ, here denoted as M̃(γ).Wedenote{γk

i}the set
of trajectories of length k and originating at i. For instance, if the
path is given by γ= {i, j, k}, the probability of that trajectory will
be given by M(γ)=MijMjk. Since

∑
{γk

i }
M̃(γk

i ) =
∑

j1,j2,··· ,jk
M̃({i, j1, · · · , jk}) = 1 ∀ k, it is easy to see that ({γk

i }), M̃({γk
i })

is a probability space. We note that M̃(γk
i ) is a node-dependent

quantity, is non-local, and can be interpreted as a probability
measure over the space of walk of fixed length originated at
a node.

3The author is happy to disclose the code made to generate these simulations upon
request.
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Since the goal is to introduce an entropy over such probabil-
ity space, we note that the first possibility for such an entropy
is given by:

(k+1S⃗)i = −1
k
∑
{γk

i }

M̃(γ) log
(
M̃(γ)

)
; (21)

However, due to the Cesáro mean rule, in the limit k→∞
the entropy becomes independent of the initial node i. Although
this quantity, while being important, does not provide a measure
which differentiates the nodes. An alternative normalization has
thus to be considered.

As shown in Caravelli (2014), interesting properties arise if
one chooses a different and multiplicative normalization. We
introduce the following normalization:

k+1S⃗ϵ = −ϵk−1 ∑
{γk

i }

M̃(γ) log
(
M̃(γ)

)
, (22)

where M̃(γ) is the probability associatedwith the trajectory γ. The
parameter ϵ can be chosen arbitrarily, but in order to guarantee
convergence in the limit k→∞, it is necessary to impose ϵ< 1.
We note that evaluating the entropy from equation (21) is com-
putationally hard, as it involves the evaluation of an exponential
number of trajectories of length k. Thankfully, such entropy satis-
fies a recursion relation in terms of the Markov transition matrix
M, 1S⃗, and the parameter ϵ< 1,

k+1S⃗ϵ = ϵk
(

M
ϵk−1

kS⃗+ 1S⃗
)
. (23)

If we write down all the terms, recursively, we find the more
compact formula,

k+1S⃗ϵ =
k∑

n=0
ϵnMn 1S⃗, (24)

and realizing that we can take the limit k→∞ safely, we obtain a
closed expression:

∗S⃗ϵ =
1

I− ϵM
1S⃗, (25)

which is finite for all values of ϵ< 1, is a fixed point of equation
(23), and can be interpreted as a non-local notion of entropy. We
note that now each node can have different values of the entropy
depending on the structure of the Markov transition matrix M.
The strength of equation (25) is that it is now easier to evaluate
the entropy, rather than equation (22). This advantage comes
however at the price of a free parameter ϵ, that can be given an
a posteriori interpretation if we consider this as a probability over
the space trajectories. Using this interpretation, the average length
of a trajectory becomes

⟨k⟩ =
∞∑
k=1

ϵkk =
ϵ

(1− ϵ)2
, (26)

which can be inverted for any ⟨k⟩> 0, for ϵ(⟨k⟩). In this paper,
we consider ϵ such that ⟨k⟩=N, the total number of nodes of the

networks. In general, the limit ϵ→ 0 recovers the node entropy
considered in other works, as for instance in Pershin and Di
Ventra (2013), of which ours can be considered as a non-local
extension. We will study this extended notion of graph entropy
to characterize the dynamics of memristive circuits.

It is worth discussing explicitly few properties of the entropy
of equation (25). We observe first that the limit limϵ→1

∗S⃗ϵ is
unbounded. This is due to the fact that the Perron root of aMarkov
chain is 1 and that thus the resolvent of the operator does not exist.
However, equation (22) for finite k is indeed bounded from above
by ϵk−1 k log(N), which is the extreme value of the entropy for
finite k, corresponding to a complete graphwithN nodes.We note
that this entropy goes to infinity in the limit k→∞ if and only
if ϵ≥ 1. If we set ⟨k⟩=N, we can obtain an approximate upper
bound for the fixed point entropy of every node by inverting for
ϵ (N) in equation (26), and given by

∗S / 21−NN
(
2N+

√
4N+ 1+ 1
N

)N−1

log(N), (27)

which is, for N≫ 1, of the order of Smax ≈N log(N), which
unsurprisingly depends in a non-linear way on the total number
of nodes. This means that the maximum of the entropy is not well
behaved in the thermodynamic limit (N→∞), as Smax/N does
not exist. As a general feature of entropic measures, observing a
decrease in graph entropy implies that some structure is being
generated dynamically, rather than converging toward a random
configuration. As a last comment, we note that this definition
does not lead to a unique definition of transition probability when
the network is directed. In this case, one can define the forward
probability, as the one used above, or the backward probability.
For a directed adjacency matrix, one has the in-degree and the
out-degree, defined as diagonal matrices,

Din
ii =

∑
j

Aij, (28)

Dout
ii =

∑
j

Aji, (29)

and thus one has two definitions of transition probabilities:

Mf = (Dout)
−1A, (30)

Mb = (Din)
−1AT. (31)

Both these definitions will be used in the following.
The entropy introduced in this section contains topological

informations about the graph flows. Thus, it has the advantage of
being non-local and with support on the nodes of the graph.

3. RESULTS

3.1. Toy Diffusion Model
We analyze the topological properties of evolving graphs under
the reinforcement–decay model using the graph entropy of
Section 2.3.

In particular, we simulate the system for various values of the
two main parameters: the particles creation probability pp and
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FIGURE 1 | Evaluation of the mean entropy as a function of time in the reinforcement–decay model. The growth of the graph stops at T= 500, and
afterward, the network converges to a stable graph. Left: dynamical entropy for varying particle creation probability. Right: dynamical entropy for varying Decay
probability.

the decay probability pd. We plot the values of the entropy as a
function of time in Figure 1. These were obtained after averaging
over 30 simulations, for fixed parameters γ= 0.1, Ld = 1. At each
time step, the strength of links is decreased with probability pd
of a value γ, which we set to γ= 0.1. The graph grows at each
time step up to a maximum number of nodes Nc, here chosen
to be 500, and then the links which did not reach the critical
stable value “evaporate.” The new link parameter pnl is set to 0.1
in the simulations. For each new node, a new particle is added to
the graph at the new node with probability pp. The growth halts
artificially to observe how the graph evolves afterward, and to see
the behavior of the entropy. In Figure 1, we show the evolution of
the graph entropy for varying pd and pp.

As a first comment, we note that as the graph grows the mean
graph entropy, defined as ⟨S⟩ = 1

N
∑N

i=1 (
∗Sϵ)i (i.e., the average

over the nodes), grows as well. Although, the mean of the entropy
does not have a thermodynamical interpretation, this gives a
succinct graphical representation of the outcome. The growth is
in general due to both the decrease in the number of nodes and
to the lack of structure due to the random growth. In addition, we
stress the important effect of the decay, which competes with the
reinforcing of hopping particles. Meanwhile decay decreases the
amount of order, particles create structure. We note that after the
growth stops, the entropy decreases to a stable value. This implies
that the effect of decay is of creating “structure” by removing most
of the unstable links.

Notably, we observe that for each set of parameters, the graph
entropy curve takes different values, both during the growth and
after. This implies that such graph entropy measure is enough to
characterize the asymptotic state of the graph in the simulations,
we have performed. We note that the non-local graph entropy is
changing both in the case in which we vary the decay probability
parameter, as in Figure 1 (left), and for the case in which we vary
the particle creation probability, as in Figure 1 (right). Thus, in all

the performed simulations, the average entropy per node is indeed
characterizing the parameter space.

3.2. Purely Memristive Circuits
In the previous section, we observed that the non-local
graph entropy provides characterizes the dynamics of the
reinforcement–decay model. We thus use the entropy to study
the dynamics of purely memristive circuits.

In order to apply the entropy to the case of memristive circuits,
we consider the following mapping between a flow on a network
and a stochastic matrix. Given a network with a unique directed
edge between two nodes, we introduce the matrix Iij, given by
the flow of currents between nodes (i, j), and defined as a matrix
which is elementwise non-negative. For each couple of nodes
(i, j) connected by a resistance or memristance, only one of the
elements of Iij or Iji are non-zero, depending on the directionality
of the current. Since I is a non-negative matrix, we can obtain a
stochastic matrix by normalizing by rows (columns), obtaining Ĩ,
satisfying

∑
j Ĩij = 1

(∑
i Ĩij = 1

)
. A notion of entropy on the

set of currents was introduced in Pershin and Di Ventra (2013)
in order to study the self-organizing properties of memristive
circuits. Here, we intend to extend this analysis to understand
non-local spatial properties using the graph entropy measure of
the previous section.

In order to simulate the dynamical evolution of the memristive
circuits, in the present paper, we use nodal analysis (Horowitz
and Hill, 1989) to solve for the currents at each time step, and
a Runge–Kutta 4 method to implement the dynamics. We then
construct the Markov matrix from the resulting currents and
calculate the node entropy dynamically.

A particular feature we aim to explore is the role of symme-
try. As previously described in Figure 2 we show the triangular
network with L= 3 layers, which can be easily generalized to a
higher number of layers. In each layer, there are both horizontal
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memristors closing on a triangular mesh, and vertical memristors
connecting to a new layer. For a triangular network with L layers,
there are 3∗(2L − 1) memristors to simulate. In the last layer,
the horizontal memristors are not placed, as these have zero
voltage difference applied to them due to the connection to the
ground. Let us consider first the case in which there is no state
decay, α= 0, and in which all the polarities of the memristors are
aligned alike p= 1. In particular, we simulate homogeneousmem-
ristors parameters, with Ron = 100Ω, Roff = 16000Ω, µ= 10−3,
d= 10−11, and with a time step given by dt= 10−2 s= cs andwith
constant external voltage V = 20.

As a first example, we consider the case L= 4 under the forcing
of an AC voltage generator, with V(t)= 20 sin (10t). In Figure 3
(left panel), we show the entropy evolution for each node (top)

FIGURE 2 | Memristive circuit defined recursive as on a tree and made
of L layers. The nodes in the bottom layer are connected to the ground.

FIGURE 3 | Evolution of the node entropy for AC and DC voltage, measured in centiseconds for random initial conditions for L=4. Left: evolution of the
entropy for the tree graph of Figure 2 when an AC voltage is applied to the network with V= 20 sin(10 t) volts. Right: entropy evolution for the tree graph of Figure 2
for a DC voltage V= 50V.

and the applied voltage (bottom), for a random initialization of
the memristors state. It is easy to see that the negative and positive
voltage sides of the generator correspond to different phases of
the circuit. In fact, the node entropy changes dramatically and
periodically with time, following the change of currents signs. The
case of a DC generator is shown in Figure 3 (right panel) for an
initial random configuration. Interestingly, from the entropy we
can identify the four different entropy layers.We note that initially
being each memristor randomly initialized, each node has differ-
ent entropy level. Dynamically, however, the non-local entropy
measure is sensitive to changes to far nodes of the network, as it
can be easily observed. Each entropy level reaches an asymptotic
value which depends on the layer only. The fourth layer has zero
value for each node. This is given to the fact that each node is
connected to the ground, and only a unique current is connected
to each node.

A similar behavior is observed also for the case of a higher
number of layers, as shown in Figure 4 for the cases L= 5, 6, and
7. Few peculiar things can be noted. The first observation is that
the number of layers is equal to the number of asymptotic levels
of the entropy, and the number of nodes with that level of entropy
corresponds exactly with the number of nodes in that layer (for
the L-th layer, there are 2L−1 nodes). Moreover, we note that the
time it takes for the entropy to reach its asymptotic value increases
with the number of layers. Visually, one can observe that it is≈20 s
for L= 4, 30 s for L= 5, ≈60 s for L= 6 and ≈120 s for L= 7.
This is confirmed in Figure 5 by calculating the histogram of the
asymptotic entropy value for the cases L= 4, 5, 6, 7.

We observed numerically that, independently of the initial
condition, the thermalization time increased with the number of
layers; we define the thermalization time as the time it takes to
the entropy to reach its asymptotic and stable value. Specifically,
heuristically we observed that if the frequency of the generator in
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FIGURE 4 | Graph Entropy for the tree circuit of Figure 2 for L=5 (top), L=6 (bottom left), and L=7 (bottom right), in the case of DC generator, with
V0 =20V. The initial configurations are chosen at random. We observe the emergence of L layers of entropy, showing that the system self-organized in order for the
nodes in each layers to have equal entropy.

FIGURE 5 | Histograms of the asymptotic entropy values for L=4, 5, 6, 7. We observe that the maximum entropy increases, and that the number of values on
each level grows as 2L.

the ACmode is longer than the inverse of twice the thermalization
time, then in the negative voltage part of the generator, the node
entropy becomes zero. This is shown for instance in Figure 6

for the case of L= 4, L= 5, and L= 6, and where the frequency
has been tuned to be larger than the observed thermalization
time. In the negative side of the generator, the system can be
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FIGURE 6 | Node entropy based on forward probability for the case of L=4, L=5, and L=6 networks, for a single instance from random initial
configuration of the memristors. The frequency has been tuned to let the system thermalize in the upside of the voltage generator. We see that in the negative
part of the voltage generator, the entropy becomes zero.

FIGURE 7 | We show the difference between the node entropy
measure based on forward probability (left) and backward probability
(right) in the case of AC controlled memristive circuits. If the frequency
is lower than the inverse of the half thermalization time, then the entropy is
zero in the negative voltage part of the generator, as the left plot shows. In
this case, one has to use backward probabilities.

described by, instead of the forward probabilities, by the backward
probabilities, implying that the stochastic matrix is derived from
the transpose of the current matrix Iij. The difference is shown
in the plot of Figure 7, which illustrates that the positive voltage
of the generator is characterized by the forward probabilities
matrix, but the negative side is characterized by the backward
probabilities.

Our analysis has important implications. In particular, we
observe that asymptotically the memristive circuit considered
here converges to a state which respects the symmetry of the
network. The fact it converges to a specific value, although sur-
prisingly unique and robust, can be thought as a feature of
the dynamical system. Moreover, since it starts from random

configuration of the memristors, this implies that the symmetry-
respecting state is a robust attractor of the system and with a large
basin of attraction. We also observe the network rearranges itself
in order to make superfluous some of the memristances. It is easy
in fact to realize that since the nodes in a layer must be equal, the
memristances arranged horizontally and belonging to the same
layer are connected to nodes of equal voltage. This implies that
no current is flowing in these memristances.

An extension of the model above can be made to account
for both state decay and different polarities. In order to check
whether the state is truly symmetry respecting, we simulate for the
case L= 4 with the polarity assigned at random and with equal
probability. In the top row of Figure 8, we show the case with
aligned polarities for V = 50 Volts.

In Figure 8 (top left), we show the case without state decay for
constant V = 50V, α= 0, for comparison with the case α= 0.5,
which is shown in Figure 8 (top right). In general, we observe that
both state decay and switched polarities remove the symmetry-
respecting properties of the dynamics.

The bottom row of Figure 8 shows the case with randomly
assigned polarities, both for the cases without (bottom left,α= 0)
and with (bottom right, α= 0.5) state decay. The difference with
the top left picture is notable. Both in the cases with switched
polarities and decay, the network symmetry is lost, as now each
memristor can have two different polarities.

However, a careful analysis shows that this not true for all
values of the decay constant, as we see in Figure 9. We observe
that the state decay does not modify the asymptotic value of the
entropy for small values (α≈ 0.01) and large values (α≈ 100)
of the decay constant; although the behavior of the resistances
is different in the two cases, as we show in Figure 9 (left and
right). We observe however the dynamics of the entropy is clearly
different, showing that the two models are inequivalent. The case
of intermediate (α≈ 1) values of the decay constant are shown in
Figure 9 (center), a dependence on the initial condition is present.
In general, in this case the resistances converge either to Ron and
Roff asymptotically, and the entropy is observed to take different
values from those observed for α= 0.
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FIGURE 8 | Comparison between simulations without state decay and aligned polarities (top left), only state decay α=0.5 (top right), randomized
polarities (bottom left), and randomized polarities with state decay (bottom right). The input voltage is V0 = 50V. The plots were obtained from plotting all
the results from 100 Monte Carlo simulations with similar dynamical parameters but where the initial states have been randomized.

To conclude, we provide a sensitivity analysis of the graph
entropy as a function of the applied voltage in the case of aDCgen-
erator, no state decay and aligned polarities. In Figure 10, we plot
the asymptotic entropy values for each node in the case L= 5 (left)
and the derivative with respect to the voltage (right). The plots
have been obtained after a Monte Carlo and averaged over 100
initial random initialization of thememristor internal parameters.
Wenote that there is a value of the voltage applied by the generator,
which we identify as Vc, after which the asymptotic entropy does
not change. Although we stress that the actual value ofVc depends
on the parameters characterizing thememristors, after varying the
parameters we find a similar behavior. In Figure 10 (right), we
see that the derivative of the entropy becomes zero at Vc ≈ 150V.
Further analysis, beyond the scope of this paper, is required to
understand whether this transition presents any form of critical
behavior.

4. DISCUSSION

In this paper, we applied the entropy measure introduced in
Caravelli (2014) to study the dynamics of evolving graphs with
memory. In particular, we studied the toy model introduced in
Caravelli et al. (2015), inspired by evaporating ant pheromone
trails, a process known to be able to solve problems as finding the
shortest path between their nest and food. The pheromone track
has a characteristic decay time but is reinforced every time by ants.

We have also applied the non-local entropy measure to the case of
purememristive circuits (Chua, 1971; Strukov et al., 2008). A local
version of the entropy used in this paper was in fact introduced in
Pershin and Di Ventra (2013) to study the self-organization prop-
erties of memristors. This non-local extension can be thought of
as the centrality operator applied to the local definition of entropy
of a node in a graph and depends on an external constant which
controls the amount of non-locality. We fixed this parameter to
allow loops large enough to enclose all the nodes in the network.
This also fixes the maximum entropy one can expect from a node,
and we have provided a formula for this extreme value.

The evolution of the node entropy was studied numerically
both for the reinforcement–decay model and for the case of
memristive circuits in a tree-like structure. We considered these
two models and their relaxation to the asymptotic entropy val-
ues for each node. Although our results not being of general
character, we have observed that the non-local entropy measure
studied here characterizes the asymptotic graph structure. For
the case of the reinforcement-decay case, we have found that for
the entropy distinguishes dynamically different evolutions with
different parameters.

The same analysis has been performed for the case of memris-
tive circuits, and applied to the specific case of tree-like structures
which can be defined recursively, and shown in Figure 4. In fact,
in general the entropy reveals that the memristive circuit self-
organizes, reaching a configuration in which each node in the
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FIGURE 9 | Left: evolution of the resistances and the entropy for various values of the decay parameter α and for input V =50V. Left column: case with
α= 0. We see that the resistances take different final values, but that the entropy converges to some specific values. Central column: case with α= 0.5. For this
intermediate value of α, we observe that some memristances decay to the Roff value, meanwhile some resistances flow to the Ron state. In this case, we observe that
the entropy can take different values. Right column: for α= 100, all resistances quickly converge to the Roff value. However, we observe an analogous entropy
configuration to the one of the case α= 0.

FIGURE 10 | Left: average Node entropy evaluated from a Monte Carlo simulations over 100 instances, for L=5 layers. The voltage is varied from V= 60
to V= 150 in steps of 10 V. Right: plot the derivative of the entropy with respect to the input voltage. We observe that for large values of the voltage, the derivative
converges to zero. Multiple simulations have shown that the value of V where the derivative crosses zero is not universal, but indeed depends on the parameters
used for the memristors.

k-th layer has the same entropy. We distinguished the case of AC
and DC controlled circuits. In the case of AC circuits, we have
noted that there are two regimes: the one in which the frequency is
larger or smaller than the inverse of half the thermalization time.
If the frequency in the AC-controlled circuit is low enough, the

circuit thermalizes, and in the negative voltage side of the sinusoid
the entropy of the network becomes zero. We have shown this
is an artifact of the entropy, and that it is necessary to consider
both forward and backward probabilities in the definition of the
Markov transition matrix.
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An observed feature is that the network re-organizes to respect
the graph symmetries. We observed that this statement is true
as long as the assigned polarities are aligned and one does not
consider the effect of state decay. We considered the case in which
the polarities of the memristors were chosen at random, and the
dynamics of the internal parameter has been extended to consider
state decay. In both cases, the symmetry of the graph is destroyed,
and thus, one observes that the asymptotic entropy configuration
can take any value depending on the initial condition. This has
been observed to be true only for values of the decay constant of
order one, but for small values, the self-organizing properties of
memristors persist.

We have shown that in general the asymptotic level of the
entropy for each node depends, in the DC case, on the volt-
age applied. We have seen that if the voltage is high enough,
the entropy converges to a fixed value. This value changes
depending on the parameter of the model, and thus is not
universal. The analysis of this phenomenon goes beyond the
scope of this paper, and will be analyzed in future works, but
shows that the entropy considered in this paper has interesting
properties.

The findings of this article suggest that non-local measures of
self-organization are not only useful at compressing information
about the properties of graphs which are changing dynamically,
but that these can provide several insights about the dynamics
itself. We should stress that these findings cannot be made general
(i.e., to graphs and model other than the one studied), and they
turn out being only descriptive, rather than predictive. However,

we believe that the graph entropy studied here does provide
a compact way of obtaining information about the network to
classify the dynamics. The entropy values considered here scale
linearly in the number of nodes N, although in principle, the
number of dynamical variables scale quadratically inN. For graphs
in which the number of edges is much larger than the number of
nodes, thismight allow for instance the use of heatmaps to classify
and study the type of dynamics.

In much more general terms, our study provides a connection
between self-organization, non-locality, and entropy-based mea-
sures.We thus hope ourworkwill motivate further theoretical and
experimental studies along these directions.
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