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A software and control architecture for a humanoid robot is a complex and large proj-
ect, which involves a team of developers/researchers to be coordinated and requires 
many hard design choices. If such project has to be done in a very limited time, i.e., 
less than 1 year, more constraints are added and concepts, such as modular design, 
code reusability, and API definition, need to be used as much as possible. In this work, 
we describe the software architecture developed for Walk-Man, a robot participant 
at the Darpa Robotics Challenge. The challenge required the robot to execute many 
different tasks, such as walking, driving a car, and manipulating objects. These tasks 
need to be solved by robotics specialists in their corresponding research field, such as 
humanoid walking, motion planning, or object manipulation. The proposed architecture 
was developed in 10 months, provided boilerplate code for most of the functionalities 
required to control a humanoid robot and allowed robotics researchers to produce their 
control modules for DRC tasks in a short time. Additional capabilities of the architecture 
include firmware and hardware management, mixing of different middlewares, unreliable 
network management, and operator control station GUI. All the source code related to 
the architecture and some control modules have been released as open source projects.

Keywords: software architecture, humanoid robot, modular design, Drc challenge, teleoperation, robotic 
middlewares, emergency response

1. inTrODUcTiOn

In this paper, we describe the design decisions and the resulting software architecture of the Walk-
Man robot, developed for the participation to the DARPA Robotics Challenge (DRC).

The goal of the DRC was to develop robots (not necessarily humanoid) capable to operate in a 
disaster scenario and to perform tasks, such as search and rescue, usually done by humans. During 
the challenge, the robot was required to perform different tasks, such as walk, drive a car, grasp and 
use objects, open doors, and rotate valves. The operator was located far from the robot, without 
line-of-sight, and not necessarily with a high bandwidth connection to the robot, so that direct 
teleoperation was not possible and a semi-autonomous approach was required. Thus, the operator 
was responsible for choosing the order and the timing of commands to solve the DRC tasks, depend-
ing on the level of autonomy of the robot. For example, the main task of opening a door might be 
handled by the operator with the following actions: reach the door handle, grasp it, turn and finally 
release it, or just with a single command: “open that door.”
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The Walk-Man team was composed by engineers and 
 technicians with different background and fields of expertise 
ranging from compliant manipulation, walking pattern gen-
eration, control, to artificial vision. Each contribution have been 
integrated in the software architecture thanks to the proposed 
design so that also non-experts in software engineering and code 
development were able to develop dedicated modules. This choice 
has avoided the necessity of training the whole team and, hence, 
reduced the time effort. In this paper, we use the terms “software 
users” and “control module developers” interchangeably to refer 
to the users of the software architecture we developed. Our design 
choices are motivated by the needs of such users, and they aim 
to maximize the output of any developer through a well-tailored 
software infrastructure, inter-process communication facilities, 
and shared libraries with various tools.

While some of our implementation decisions may not apply 
to large long-term projects, we followed many principles that are 
in common with the state of the art of robotic software develop-
ment: specifically, we adopted a component-based approach that 
focuses on modularity to support code reuse and rapid develop-
ment (Brugali and Shakhimardanov, 2010), for example, with 
similar requirements in the ROS ecosystem refer to Coleman 
et al. (2014) and Walck et al. (2014).

Following the standard approach of YARP (Metta et  al., 
2006) and ROS (Quigley et al., 2009) middlewares, we decided 
to build a distributed network of applications (nodes), so 
that each different process is independent and users can have 
more freedom when developing their own modules. To save 
development time and to focus on the specific tasks for the 
DRC, we relied as much as possible on software components 
available within existing frameworks. A first design choice has 
been the development of a Generic YARP Module (GYM) to 
provide a set of libraries for control purpose both to enhance 
code reuse and to have a common interface to manage the 
modules execution flow.

We decided to adopt the YARP middleware for the develop-
ment of our software architecture, and in particular for the design 
of the software interface between the robot hardware and the 
nodes related to motor control. This choice was motivated by our 
direct expertise in the development of YARP and because YARP 
has proved to be quite reliable in experimental settings (Hammer 
and Bäuml, 2013). In addition, YARP provides functionalities 
for setting channel prioritization using QoS and different com-
munication protocols. These features, at the time of writing, are 
not yet available with ROS (although the upcoming version of 
ROS will provide similar functionalities with the adoption of 
Data Distribution Service at the transport layer).

To get advantage of the large codebase available in the ROS 
ecosystem, we designed a mixed architecture that integrates ROS 
nodes. In the final architecture, ROS was used in the high-level 
operator GUI and for the 3D perception. The operator graphic 
interface is a fundamental component of the architecture, it allows 
the remote control of the robot by enriching the pilot awareness 
with the data coming from the robot. The single components of 
the GUI inherit basic functionalities from a Generic Widget, i.e., 
the graphical interface of a GYM.

Similar works have been developed by teams participating in 
the DRC Trials, such as Johnson et al. (2015) and Yi et al. (2015), 
and Hebert et  al. (2015). Most of these works have a custom 
 low-level communication library, or middleware, which ensures a 
real-time control loop and a high level inter-process communica-
tion system (such as ROS, Orocos, OpenRTM, and PODO). Given 
the requirements on the network bandwidth imposed by DARPA, 
a custom manager was used to connect the operator control sta-
tion to the robot computer, usually using TCP and UDP protocols 
without any abstraction layer, with two middleware servers (e.g., 
RosCores) in the operator station and the robot. The same solu-
tion has been adopted by the Walk-Man team whose architecture 
is based both on ROS and YARP that did not properly handle 
unreliable channels at the time of the DRC. Indeed, centralized 
servers are limiting for unreliable networks, and a custom bridge 
communicating with different reliable networks (robot, pilot 
station, etc.) using a TCP/UDP protocol is required. To cope 
with such problems, a custom network bridge that handles both 
protocols with a custom, optimized serialization of messages has 
been developed.

The aim of this paper is to describe the software with par-
ticular attention on how the proposed architecture helped the 
Walk-Man team and, in turn, how the team feedback affected the 
architecture design. The main contributions of this paper are as  
follows:

•	 a generic module template that captures a development pattern 
of robot control modules, avoiding the need to write the same 
boilerplate code multiple times in each module,

•	 an hybrid communication middleware architecture that 
includes ROS and YARP, along with a custom bridge used 
to handle both unreliable networks and environments with 
multiple nameserver (i.e., roscore and yarpserver), and

•	 the integration of the generic module template into the oper-
ator GUI, which is developed as a generic reconfigurable GUI 
capable of adapting to the DRC tasks as well as to future demos 
and lab projects.

The source code for the software described in this work 
can be found here: https://gitlab.robotology.eu/groups/
walkman-drc

1.1. robot Platform
The Walk-Man robot (see Figure 1) is a humanoid robot with 
33 DoFs, each actuated by an electric series elastic actuator 
whose design is described in Negrello et al. (2015). Each motor 
is controlled by its own electronic board at a frequency of 1 kHz. 
These boards are connected to a shared ethercat network with 
1 Gb bandwidth, used to send and receive joint position refer-
ence, along with other information such as temperatures, torques, 
and PID values. Five additional electronic boards in the ethercat 
network provide readings from the robot IMU and the four Force/
Torque sensors, located in the wrists and ankles. A control pc with 
a quad-core i7-3612 runs the control software and is configured 
as the ethercat master.

Finally, a Multisense SL head, which contains a stereocamera 
and a LIDAR, is connected through its own 1 Gb network to a 
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FigUre 1 | The Walk-Man robot and the main network configuration.
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vision pc, with the same hardware components as the control pc. 
An external pilot pc is connected through a wireless network to 
the control pc and vision pc.

The operating system on all the computers is Ubuntu 14.04 
modified with Xenomai, all the code is written in C++ except 
for the firmware, which uses a subset of C. See Figure 2 for an 
overview of the hardware and networks. It is worth mentioning 
that the whole robotic platform has been assembled for the first 
time 4 months prior of the DRC. As a consequence, all the motion 
control software tests on the hardware have been delayed until few 
weeks before the DRC. On the other hand, at the time of assembly, 
the proposed architecture was in an advanced stage of develop-
ment and testing. Such asynchronous development of software 
control algorithms and the architecture has led to the necessity of 
a highly flexible and modular implementation of the latter.

1.2. Design choices Overview
In this section, the strategies used to design the Walk-Man soft-
ware architecture. A complete software stack has been built for the 
DRC consisting in a custom firmware, control modules tackling 
different tasks, a remote pilot graphical interface, and the whole 
architecture to manage and connect the different applications.

Due to the limited time constraint (around 10 months) and the 
variety of programing skills among our robotics researchers, our 
design choices were oriented to:

•	 avoid code duplicates and enhance code reuse;
•	 provide common shared C++ classes and utilities to the 

software users;
•	 ease and speed up the production of significant code by hiding 

code complexity in simple APIs;
•	 fast testing and debugging leveraging on simulators.

Following these principles, our core developers focused on 
low level interfaces, middleware management, and network and 
performance optimization.

We devised a layered component-based architecture, where 
each task of the DRC is handled by a single control module 
and modules interact with the hardware and each other 
through well-defined APIs. Once a rough and primitive API 
was defined, modules could be developed in parallel; in the 
meantime, shared functionalities could be improved under the 
hood of the high level control software without requiring code 
changes.

The YARP middleware has been chosen to obtain an 
abstraction layer for the hardware of the robot (sensors and 
motors) together with the set of interfaces. This abstraction 
layer allows to write code that can seamlessly interface to 
simulators or to the real robot (either remotely through the 
network or on the same machine using inter process com-
munication). The initial phase of the development focused on 
the implementation of this abstraction layer for the simulated 
robot in Gazebo (Hoffman et al., 2014). This allowed to start 
performing experiments early on during the project. The same 
interface was implemented on the real robot allowing to trans-
fer the code developed on the simulator with only minimal 
parameters changes.

2. sOFTWare archiTecTUre

The Walk-Man architecture has been organized into four software 
layers (see Figure 3).

•	 The top layer is the operator control unit, named pilotInterface.
•	 A network bridge connects the pilot to the robot, where vari-

ous control and perception modules form another layer.
•	 An hardware abstraction layer remotizes the robot hardware 

and provides to the control modules a set of shared libraries 
(GYM) used to interact with the remote driver, called Ethercat 
Master.

•	 The lowest layer is represented by the firmware running in 
embedded boards, each controlling one actuator.

2.1. Firmware-ethercat
At the lowest level, each joint of Walk-Man is controlled by a 
PID position loop in a distributed embedded electronic system 
with one board per joint. Our main aim was to have a hard 
real-time loop in the firmware: the execution time of each 
firmware function was measured and tuned so that a 1  kHz 
loop could be implemented. In the software architecture, we 
developed for the Coman platform, the communication from 
the control pc to each board was performed on an ethernet 
BUS using a combination of UDP and TCP packets. The lack 
of synchronization between boards led to conflicts and conse-
quent packets loss with UDP and delays with TCP protocols. 
We decided to move to an ethercat implementation, which 
allows synchronized communication and, therefore, much 
better control on the data traveling on the BUS. In particular, 
we measured the maximum number of bytes that each board 
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FigUre 4 | Dimension of various packet fields (bytes).

FigUre 3 | complete view of the software architecture.

FigUre 2 | Walk-Man network.
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could handle at 1 kHz and defined a standard packet size with 
standard information, as shown in Figure 4.

This standard packet definition is an example of the various 
interfaces between software levels that will be described in this 
work and that allow software decoupling and testing.
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FigUre 5 | as an example, during the Drc driving task three modules 
were using joint readings at 250, 10, and 1 hz, one required torques 
and temperatures at 10 hz, two were controlling the joints at  
250 and 10 hz.

FigUre 6 | Detailed low level software stack, including robot 
hardware abstractions and a whole-body class used by the generic 
Yarp Module.
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2.2. ethercat Master – YarP
In the real robot, the hardware manager runs on the control pc 
and is called Ethercat Master. It manages Ethercat slaves (i.e., the 
electronic boards), keeps them synchronized, and sends/receives 
position references in real-time.

The Master can be seen as a hardware robot driver, which 
handles low level communication and exposes a simpler and 
asynchronous API to the higher levels. Writing real-time code 
requires expertise that were not available in all the software 
developers. Therefore, a separation between the Master and 
the modules implementing higher-level behaviors has been 
introduced. This separation was achieved through the YARP mid-
dleware using the remotization functionalities that it provides 
for the robot abstraction layer. Usually, developers write software 
that communicates with the Master through the network; this 
has been achieved using asynchronous communication with 
the YARP middleware. This decoupling was beneficial because 
it allows stopping and starting modules without interfering with 
the Master. More importantly, it prevents modules that behave 
erratically to affect the real-time performance of the Master.

The Master creates an input and output YARP port for each 
control module and for each type of information required by 
them. In Figure 5, the modules running during the DRC driving 
task are reported together with communication frequencies.

2.3. hardware/simulation  
abstraction layer
The Ethercat-Master exposes the robot sensors and actuators 
in a YARP network by remotizing the robot with a set of YARP 
communication channels (this is achieved in YARP using special 
objects called network wrappers). An additional set of libraries, 
named WholeBodyInterface, hides YARP channels from control 
modules, and relieves the developers from the bureaucracy 
required to prepare and parse the messages to and from the robot. 

The composition of the YARP wrapper in the Ethercat-Master 
and the whole-body libraries realizes a two-tier Habstraction 
Layer (HAL) for the robot. This abstraction layer between the 
hardware driver and the control modules allowed us to easily 
switch between simulation and the real robot, since the Gazebo 
plug-ins for the Walk-Man robot implements exactly the same 
YARP classes and interfaces as the Master (see Figure 6).

In the simulation case, the Gazebo Plugin substitutes the HAL 
standalone application and it is fully compatible with the same 
set of shared libraries.

The two-tier abstraction layer implements a whole-body 
interface on top of the robot interface defined by YARP. The main 
difference between the two layers is that the latter separates joints 
in kinematic chains and implements interfaces for individual sen-
sors; for practical reasons, the logical separation of the kinematic 
chains at this level is subject to fluctuations (for example, it affects 
how joint states are broadcast on the network). The whole-body 
interface groups all joints and associated sensors in a single kin-
ematic chain. The advantage of this separation is that it exposes 
to the user the whole-body interface, which is stable because it is 
defined solely by the number of joints of the robot.

As an extreme example, 15  days before the DRC, we had to 
intentionally break the functions responsible for moving the robot 
joints. To reduce resource usage (and reduce jitter due to CPU 
overload), we changed how joints are grouped and transmitted on 
the network; all the required changes affected the YARP abstraction 
layer and remain limited to the implementation of the whole-body 
interface. All the user code remained untouched. The simula-
tion, the real robot, and all the control modules were updated in  
just 2 days.
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FigUre 7 | structure of the generic YarP Module, with inputs and outputs from/to the pilot and the ethercatMaster.
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As suggested by Johnson et  al. (2015), we fully understand 
(and wish) that in a long-term project APIs must not be modified, 
especially few days before the demo. However, we are convinced 
that, in a research environment APIs may need to be changed in 
critical moments, and the proposed approach is a way to mitigate 
the effect of such changes.

Finally, an advantage of this two-layer architecture is that it 
separates control modules from the middleware. This will allow 
to change the communication layer (i.e., the middleware) without 
affecting the control code.

2.4. generic control Module Template
A control module software can be summarized as a sense-compute-
move loop, where sense receives all the inputs from the robot, the 
inputs are used by compute in order to implement the control law 
of the module. Finally, move sends to the robot the newly computed 
desired position of the joints. In reality, developers usually spend 
a part of development effort into initialization code: i.e., reading 
control parameters, starting the communication facilities, reading a 
description of the robot kinematics, and so on. We provided explicit 
support for this implementation pattern in the Generic YARP 
Module (GYM). The GYM has been designed as a C++ abstract 
class that provides a common and standard way to execute these 
initialization steps, along with a sense and move default implementa-
tion that provide boilerplate code required to initialize the YARP 
remotization interfaces. The source code of GYM can be found here: 
https://github.com/robotology-playground/GYM

GYM functions handle all the required YARP communica-
tion between a module, the Master, and the PilotInterface, effec-
tively hiding YARP communication mechanisms and classes. 
GYM was iteratively improved driven by the effort to remove 
duplicated code across modules and based on the team feedback 
(10 developers) which helped revising the specifications and 
debugging.

Our experience showed that the adoption of GYM reduced 
duplicated code significantly. In addition GYM provides another 
separation between the code and the middleware. In fact, a 
Generic ROS Module is currently in development and complies 
with the GYM API, so that any module using GYM could also be 
used in the ROS system.

GYM is organized in two threads: a watchdog running at 1 Hz 
and a main control loop running in a range of frequencies between 

100 and 500 Hz (Figure 7). Developers can write their own code 
inside the control loop function run(), they also have access to a 
set of helper function providing a standard kinematic description 
of the robot based on the robot URDF. The watchdog thread is not 
customizable and listens for standard commands from the pilot, 
through one of the standard communication interfaces (switch 
interface) described in the next section.

The GYM C++ class that needs to be inherited by the user has 
the following signature:

class generic_thread
{
public:

/**
 * @brief custom initialization function: called before 

    run(),
 * must be overrided by sub-classes
 */

  virtual bool custom_init()=0;

  virtual bool custom_pause(){
   return true;

}

virtual bool custom_resume(){
    return true;

}

/**
* @brief loop function, called at the desired
* frequency read from configuration file
*/

  virtual void run(){}

};

Notice that the user can override the default (empty) imple-
mentation of pause and resume functions so that he can take 
the required actions in order to save and resume the state of his 
own control module. Instead, to keep different modules organ-
ized in a similar structure, the init function was required to be 
implemented by the user and to contain all the initialization code. 
Moreover, with this approach, executables could be started in any 
moment, while the pilot kept the possibility of choosing when a 
module was going to be initialized and connected to the rest of 
the running software.
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FigUre 8 | state machine of the gYM.

7

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

In order to show some of the GYM library functions, we report 
a simple run implementation:

virtual void run()
{

//get the command from the pilot
  command_interface.getCommand(cmd);

//evolve the state machine accordingly to the received 
   command
  current_state=sm.evolve_state_machine 
   (current_state,cmd);

//get updated joint values
  vector q_sensed,q_des;
  robot.sensePosition(q_sensed);

//compute desidered joint values in a control law function
  q_des=control_law(q_sensed,current_state);

//move the joints
  robot.move(q_des);

//set the status to be streamed back to the pilot
  status_interface.setStatus(current_state);

}

The variable robot is provided by GYM and is used to interact 
with the hardware with simple functions such as sensePosition 
and move.1

Examples of what a complex implementation may do is to use 
multiple state machines depending on the cmd values, to read or 
ignore commands from the user, to selectively avoid sensing or 
moving the robot while planning a complex movement, or even 
to evolve a state machine automatically without requiring user 
commands.2

2.4.1. Communication Interfaces
One of the features implemented in GYM code is a set of commu-
nication interfaces between the module and the pilot: Command, 
Status, Warning, and Switch. These interfaces in their default 
implementation send through the network an array of characters; 
the Command and Status interfaces support the addition of a 
custom data serializer that can be implemented by the user in 
order to send any type of data.

The Command Interface is used to send commands to the robot 
related to the precise task being executed, such as “go_straight 10” 
to make the robot walk for 10 meters or “set_valve 0.5 0 0.1 0 0 0 1 
Waist” to set the valve data for the turning valve task with respect 
to the Waist robot reference frame.

The Status Interface is used to send back to the pilot any 
information the developer considers necessary to understand 
the internal state of the control module, such as “turning valve,” 
“walking,” “ready.”

1 For the complete list of the helper functions, see https://github.com/robotology-
playground/idynutils/blob/whole_robot_wrapper/src/RobotUtils.cpp 
2 For some GYM real modules, please see https://gitlab.robotology.eu/walkman-
drc/drc_drive/blob/master/src/drc_drive_thread.cpp or https://gitlab.robotology.
eu/walkman-drc/gaze_control/blob/whole_robot/src/gaze_control_thread.cpp 

The Warning Interface is an advanced interface that can be 
used in dangerous situations (e.g., when the balancing is com-
promised) to raise warning states in which the robot can assume a 
particular behavior (e.g., blocking every movement), from which 
specific actions can be performed to restore a safe state. The main 
differences between this interface and the Status are the priority 
of the data in the communication between control pc and pilot 
pc, and the different visualization in the pilotInterface, where 
Warning messages are red (see Section 2.7).

The Switch Interface is used to send the following commands 
to each module: start, pause, resume, stop, and quit. Since some 
of these commands are critical, they cannot be overridden with 
different implementations: modules are allowed to re-implement 
only pause and resume functions. This approach guarantees that 
any bug or misbehavior of the code running inside a GYM does 
not propagate to the whole system, since a module can always 
be forced to stop by the pilot with a stop command. Note that, 
differently from pause, the stop command does not activate any 
soft exiting procedure. For example, trying to stop the walking 
module while the robot is dynamically walking may result in a 
fall: if the pilot wants to stop the robot from walking and avoid 
falling, he should send the pause command to the current walk-
ing module, which in turn, depending on the robot status, should 
either stop immediately (double stance phase) or finish the cur-
rent step phase and put both feet on the ground. Manipulation 
modules are safer in this sense since the robot is usually stable 
when moving its arms, nevertheless, a pause procedure should 
still be implemented as it allows the module to save its internal 
state and resume it later. Thus, the stop is used to quit a module 
when it is no longer needed, or to force-quit a module that is not 
controlling the robot but could be stuck in a loop due to bugs.

2.4.2. State Machine
The behavior of the GYM state machine is reported in Figure 8. 
Except for the special states Constructor and Destructor, there 
are three available states. The unique state accessible from the 
Constructor is Running through the start command. From this 
state, the module can be put into Paused state using the pause 
command or stopped (i.e., put into Stopped state using the com-
mand stop). From the Paused state, the module can be switched 
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to the Running one by the resume command or can be stopped. 
Once the module is in the Stopped state, it can be only started 
(i.e., put into Running state through the command start). The 
Destructor state is accessible from every state sending the quit 
command. Changes of state are triggered by the watchdog thread 
in response to a message from the Switch Interface.

In the Running state, the internal control module loop is 
executed, the robot can receive the commands and send the state. 
The Paused state is used to freeze the internal control module 
loop so that, once resumed, the last command is executed. In the 
Stopped state, the internal control module loop is exited, as the 
program is closed, but it can be restarted again using the Switch 
Interface. To develop this state machine, we have been inspired 
by the OROCOS (Bruyninckx, 2001) Component Lifecycle 
StateMachine.

A generic representation of a control module using the GYM 
template together with the related widget is depicted in Figure 9.

2.5. control Modules
Thanks to the GYM classes and functions, our team managed 
to focus on the core development of each DRC task in very 
short time (e.g., the module used to drive was developed in 
10 working days by one single developer). It is worth noting 
that, although the perception module is not a proper control 
module, since it does not send references to the robot joints, 
it has been developed using the GYM template. This module 
uses ROS drivers to acquire data from the Multisense SL head 
and the standard command/status/switch interfaces to interact 
with the pilot. We will now describe the main components of a 
GYM Module, using the module designed for the driving task 
as an example.

The underlying structure of every control module is composed by:

•	 an Inverse Kinematics solver;
•	 a Finite State Machine (FSM); and
•	 a trajectory generation library,

and resembles the structure of a hybrid control architecture 
with discrete states associated with continuous control laws. 
For example, the state machine for the driving module is shown 
in Figure  10. The principle of the module is the following: a 
message arrives through the command interface and depend-
ing on the message information, a different transition event is 
triggered, which may result in a change of state. After a new 
state transition, a new trajectory is created for one or more end-
effectors. During the control loop, a portion of the trajectory 
is sent to the Inverse Kinematics solver, which computes the 
correspondent portion of joint displacement to be sent to the 
robot. Modules related to manipulation tasks uses a WholeBody 
Inverse Kinematics library by Rocchi et  al. (2015), while the 
module related to walking uses a different strategy and Inverse 
Kinematics inspired by Kryczka et  al. (2015). Indeed, we 
decide to give freedom to the control module developers, so 
that they could use the control laws and IK approaches that 
they were more familiar with. Two control modules, based on 
the proposed architecture, are described in detail in Ajoudani 
et al. (2014) (for the valve task) and Lee et al. (2014) (for the 
door task).

2.5.1. Finite State Machine
In order to cope with complex tasks, a Finite State Machine is 
used to switch between different actions of the robot. Once the 
operator receives the new status from the status interface, he 
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can send a message through the command interface to change 
the module state accordingly to the structure of the FSM. As an 
example, referring to the driving task and the FSM reported in 
Figure 10, once the pilot receives the information that the status 
“reach” has been achieved, he can send the “approach” command. 
Many transitions are not possible because they would result in an 
incoherent behavior of the robot, such as moving a hand away 
from the wheel while still grasping it. Every state corresponds to 
a specific action or to a waiting state.

2.5.2. Trajectory Generator Library
The trajectory generator library consists of a set of trajectories of 
two types: linear and circular. The linear trajectories are created 
via fifth-order polynomials, interpolating from the initial and 
final positions. On the other hand, the circular trajectories are 
parameterized on the angle of rotation: the polynomial inter-
polates from the initial to the final angular displacement of the 
trajectory. The library provides a C++ class that can be initialized 
with the desired type of trajectory. The API methods allow to set 
the trajectory parameters, get an arbitrary point of the trajectory, 
and reset the generator to start a new trajectory.

2.6. Unreliable channel Management
Our robot is used with two common types of network configura-
tion between the pilot pc and the robot. The first setup is similar 
to a lab environment, where the network is fully operational and 
the bandwidth is at least 100 Mb/s. The second one is inspired by a 
realistic disaster scenario, where a wireless network is discontinu-
ously working and the average bandwidth is less than 1 Mb/s. It is 
desirable to have most of the software architecture independent 
from the network capabilities, in particular the code running in 
control modules and in the pilot interface should not require 
any changes depending on the network. Both YARP and ROS 
use centralized servers for naming look-up (respectively called 
yarpserver and roscore).

When working in the first configuration, we used a single 
yarpserver and roscore so that modules can communicate 
directly with each other; there are no networking issues from 
pilot to robot.

In the real-world scenario, a direct communication may 
result in frequent disconnections and the centralized YARP/
ROS servers may not be able to recover from such disconnec-
tions. Thus, a strong division between pilot pc and the robot has 
been proposed, with two pairs of roscore/yarpserver running, 
respectively, on the pilot pc and the control pc, splitting modules 
into a robot subsystem and a pilot subsystem. The two subsystems 
are bridged using a network manager that transparently intercon-
nects modules between the two. The developed network manager 
behaves as a two-way bridge between the pilot pc and the robot, 
it is completely transparent to the processes it connects, meaning 
that there is no way for the processes to understand if they are 
communicating through a bridge or directly. Our bridge is devel-
oped as a pair of processes, running on two different computers, 
called BridgeSink (in the sender pc) and BridgeSource (in the 
receiver pc). The Boost Asio library (Kohlhoff, 2003) was used to 
abstract UNIX sockets and obtain an asynchronous behavior in 
the communications.

For the sake of clarity, we introduce an example of the bridge 
transparency capabilities. Consider two PCs (PC1 and PC2) with 
one module each (Module Alice and Module Bob, respectively). 
In the first scenario, Module Alice on PC1 is sending info to 
Module Bob on PC2 using YARP through a direct connection 
(i.e., disabled bridge), Alice will try to connect to Bob and will 
find a YARP port PB in the remote PC2, while Bob will listen from 
Alice’s remote YARP port PA in PC1.

In a second scenario the bridge is enabled, and it reproduces 
the port PB in PC1 and the port PA in PC2 so that Alice will 
actually connect to a local (in PC1) YARP port faking PB that 
is provided by the BridgeSink process running on PC1. On the 
other hand, Bob will listen from a local(PC2) YARP port fak-
ing PA provided by the BridgeSource running on PC2. Finally, 
BridgeSink and BridgeSource will internally transfer informa-
tion from PC1 to PC2.

For network management purposes, the proposed bridge uses 
heuristics whose most important options are the bridge channel 
protocol (UPD or TCP) and the middleware (YARP or ROS). It 
is worth noting that the only unsupported combination is a TCP-
ROS bridge, since ROS data would saturate the channel.
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In Figure 11, we report the location (motor PC, vision PC, 
pilot PC) where the various programs are executed, focusing on 
the TCP/UDP bridge role.

2.6.1. TCP Bridge
Recall that YARP is used for all the communications between pilot 
pc and control pc, i.e., starting and stopping modules, modules 
status, modules commands. Those data are relatively small (see 
Table 1) and have high priority; thus, they are usually transmit-
ted through a TCP channel. The bridge is heavily optimized to 
reduce the data overhead, such as TCP or YARP headers. It uses 
a configuration file to know which module should be redirected 
through the bridge, and associates with each module port an 8-bit 

identifier that is used as a header. An example of the configuration 
file is shown below:

<modules>
<module name=”walking” id=”0”/>
<module name=”drc_valve” id=”2”/>
<module name=”drc_drive” id=”4”/>
<module name=”drc_wall” id=”5”/>
<module name=”drc_door” id=”6”/>
<module name=”gaze_control” id=”7”/>
<module name=”temperature” id=”8”/>
<module name=”drc_plug” id=”11”/>

</modules>

<!– –IDs are unique and shared between modules and custom 
    modules, do not overlap!!– –>

<custom_modules>
<module name=”encoder_bridge” id=”9”>
  <connection port_to_open=”/command:i” 
  source_port=”/command:o” target_port=”/command:i”

    location=”robot” direction=”robot_to_pilot”/>
  <connection port_to_open=”/switch:i” 
  source_port=”/switch:o” target_port=”/switch:i”

   location=”pilot” direction=”pilot_to_robot”/>
</module>
  <module name=”walking_publish” id=”12”>
  <connection port_to_open=”/command:i” 
  source_port=”/command:o” target_port=”/command:i”

   location=”robot” direction=”robot_to_pilot”/>
</module>

</custom_modules>
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Note that standard GYM modules are handled automatically, 
while custom modules require some more information. Indeed, 
they offer more configurability and allow for port renaming.

All the communications requested during T seconds are 
packed in a single TCP packet using the 8-bit identifier to keep 
the original header information. In the case where a port pro-
duces multiple packets, they are all dropped except the last one. 
This effectively reduces the frequency of streaming port, while 
maintains intact pilot commands.

T is chosen depending on the network bandwidth and delay, in 
the DRC it was set to 0.5 s. This leaves almost 50% of the channel 
free to be used, e.g., to send commands from the PilotInterface to 
the robot modules or to start a ssh shell in the control pc.

2.6.2. UDP Bridge
ROS perception-related data and other streaming information 
from the robot require low latency. For this type of informa-
tion, it makes little sense to implement a reliable transport that 
requires retransmission when packets are loss. Lost data become 
obsolete and it is much better to read new messages than require 
re-transmission. For this reason, it is preferable to use UDP  
protocol.

Since PointClouds and RGB Images are usually larger than the 
UDP packet size, they need to be split and reconstructed. This is 
usually done automatically by the UDP protocol implementation, 
but if a single packet is lost, the whole data are dropped.

Our bridge avoids this problem by splitting point clouds 
and images into smaller ones, each representing a 3D or 2D 

sub-region of the original data, so that each one is a standalone 
pointcloud/image contained into a UDP packet (1500 bytes). 
By using timestamps, the original data are reconstructed in 
the pilot pc. This choice results in a delay in the visualization, 
since BridgeSource waits to receive as many data pieces as 
possible in an amount of time δt. In the DRC, the parameter 
δt was set to 0.4  s, which ensured receiving more than 90% 
of the original point cloud with a delay that was visible by 
the pilot but not critical since there was no teleoperation 
involved.

All the module statuses, the robot temperatures, and encoder 
readings (YARP based) are also sent in the UDP channel at a 
different (higher) frequency than the TCP one.

2.7. Pilot interface
To remotely control Walk-Man, a GUI, called Pilot Interface (PI), 
has been developed. We followed a modular approach, using Qt 
libraries and ROS libRViz for 3D rendering (Kam et al., 2015). 
Every DRC task has a dedicated widget and can be used stan-
dalone. Moreover, we also developed widgets that allow interac-
tion with the 3D representation of the environment and widgets 
for monitoring the robot state.

Using our approach, the operator could monitor the environ-
ment and the robot status and could make correct decisions to 
perform the tasks. Figure 12 shows a screenshot of the PI during 
the driving task.

Following the approach adopted for the GYM, we developed 
the Generic Widget (GW) so that every control module widget 
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has the same basic features. In particular, the GW has already the 
capability to send messages to the Switch Interface and receive 
information from the Status Interface (see Figure 13).

For the sake of clarity, the driving task widget is reported in 
Figure 14. On the top of the widget, there is the Switch/Status 
Interface-related buttons, the rest is divided into three parts. On 
the left, we put the buttons to set the steering wheel position and 
place the hand on it, together with the buttons to adjust the posi-
tion of the foot dedicated to the throttle. In the center, there are 
the buttons to rotate the steering wheel, while sliders are used to 
help the pilot understanding the current steering wheel position. 
Finally, on the right, we placed the button for the throttle. In this 
case, the operator can specify the duration and the amount of 
throttle.

In contrast to the other DRC teams, we managed the interac-
tion between the robot and the pilot from the motion planning 
perspective. In fact, our pilots did not explicitly ask and check 
for a motion plan before the execution started. Instead, the pilots 
completely relied on the correct on-board open-loop Cartesian 
generation and kinematic inversion, and checked only the result-
ing robot position at the end of the execution. This approach was 
a viable choice thanks to the structural compliance of the robot 
joints, which handles small unexpected forces from outside, such 
as the effect of pushing a door with the arm. Moreover, with its 
soft and adaptable design, the robot hand can grasp an object 
with a large position/orientation error, it can even hit a surface 
with its finger without breaking them, and finally it can keep its 
grasping capabilities even with some broken fingers. With these 
premises, it is clear that a collision with the environment or a 
wrong placement of the end-effector with respect to the object do 
not affect the result of the task. If the robot hand misses the grasp 

or hits a surface, the operator will simply move the arm back 
and try again. The use of the Warning Interface to inform the 
operator of external forces or robot instability further improved 
our strategy.

An early work describing the initial design of the Pilot Interface 
is in Settimi et al. (2014). In the months between this preliminary 
work and the DRC, many features such as the Generic Widget 
have been added. The pilot was given the possibility to activate 
advanced modes, where commands, usually hidden, are shown 
and all the buttons are enabled (the pilot knew that this mode 
was risky, but it might be needed to override safety behavior in 
an unexpected situation).

Based on the forgiveness design principle an implementation of 
the Qt:QPushButton named QtTimedButton has been provided: 
after the click, a countdown of 3  s is displayed on the button 
before sending the command; the command can be stopped by 
re-clicking on it (this is used for dangerous commands to undo 
erroneous or undesired clicks).

To improve the pilot awareness of the robot state, we intro-
duced a tab dedicated to the status, showing temperatures of the 
boards, torques of the motors, and battery level (see Figure 15) 
together with the modules statuses and warning messages. 
A logging utility for commands sent to the robot and statues 
received has been added, the visual data from the robot is logged 
as well in order to be able to completely reproduce and analyze 
the events.

Configuration files give the user the possibility to customize 
the displayed widgets. In the Darpa Robotic Challenge, three 
pilots with three different PCs were in the pilot station, each one 
being focused on different critical aspects: execution of the tasks, 
perception of the environment, and robot status.
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3. resUlTs: The Drc eXPerience

The first important test of the proposed architecture has been 
the DRC. Later, other 4 official occasions have occurred between 
September and November 2015 during which both the hardware 
and software Walk-Man platforms have been tested. Regarding the 
DRC, the team got 2 out of 8 points in the competition (consisting 
in 2 runs) for the accomplishment of the drive and door tasks. Team 
strategy was to get a penalty in time and avoid the egress of the 
vehicle task. The dimension of the DRC door has obliged the pilot 
to enter the indoor scenario walking sideways. The cameras on the 
Walk-Man head could not provide an accurate vision feedback to 
compute footstep poses and the irregularity of the terrain made 
the robot falling after the door was crossed in one of the two runs. 
During another run issues with the battery and the electronic power 
management forced the team to accept another time penalty to 
reset the robot and unfortunately the time left for the run was over.

3.1. software components analysis
The components running on the robot were a set of control 
modules, the network bridge, a point cloud grabber, multiple 
webcam grabbers, and the hardware abstraction layer, with ROS 
and YARP nameservers. In particular, the control modules were 
paused and resumed when needed, in order to avoid multiple 
modules controlling the same joints at the same time. On the 
other hand, on the pilot computers, multiple pilot interfaces and 
the network bridge were running, along with ROS and YARP 
nameservers. The data flows inside the robot computers were very 
simple: all the control modules were connected to the bridge (and 
consequently to the pilot) and to the hardware abstraction layer. 
The perception modules were only sending data to the pilot, while 
the hardware abstraction layer was connected to the ethercat 
network and received data from the control modules. Finally, all 
the pilot GUIs were connected to the bridge (and consequently to 
the control modules on the robot) and to each other.

During the drive task, the driving control module was acti-
vated along with the previous listed modules. After the reset, 
the driving module was stopped, while the walking module was 
enabled; and the latter was paused and resumed multiple times 
during the door task in order to allow the door control module 
to open the door. Indeed, as mentioned, the ethercat master is 
able to receive inputs from different modules at the same time, 
and since walking and door modules operate on the same joints, 
they could not be run together, although they were both needed 
to execute the task.

The gaze control module was instead active all the time, this 
way the perception pilot could watch around and place virtual 
markers in the 3D visualization window. The window was seen 
and used by all the pilots on their respective computers thanks to 
the distributed structure of the pilot interface.

The software components used for networking were the first 
to be tested during the rehersal of the DRC, and performed 
in a stable and deterministic way. The setup of the bridge was 
straightforward; during the simulated DRC outdoor mode, the 
pilot interface received all the information published by the robot, 
each data at its own designed frequency. Instead, during the simu-
lated indoor mode the TCP channel kept providing critical data, 
and UDP started to provide pieces of point clouds and images at 
random times, as expected.

In the competition, we did not have the chance to test the 
indoor mode, but in the outdoor part, the pilots faced multiple 
resets, including complete power-offs of the on-board computer. 
Once restarted, the bridge automatically re-established all the 
YARP and ROS connections, showing the power of its transpar-
ent behavior.

During the days before the competition, multiple pilot GUI 
configurations were used to test the robot components.

For example, the developers of the walking control 
modules used a single computer with a GUI configuration 
having few status widgets and only one control widget (the 
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walking one) to tune their controller parameters, while the 
driving test required two pilots, one controlling the gaze and 
the other using the driving module to steer the wheel and 
accelerate.

Finally, the pilot checking the robot and network status could 
add another computer and another GUI during the tests when-
ever he needed to.

In the 5 days of tests inside the DRC garage, we experienced a 
single crash of one GUI, probably due to a graphic driver error. 
After the crash, it was sufficient to start again the GUI with the 
same configuration and both ROS and YARP middleware allowed 
to reconnect the GUI and the robot with no issues.

The GUI design helped pilots avoiding errors and parallel-
izing tasks. The QtTimedButton safety feature, which was never 
needed during trainings, has been exploited for the first and only 
time during the DRC. During a locomotion phase, the robot was 
positioning itself sideways with respect to the door; the pilot sent 
a command to the Walk-Man robot to rotate on the spot. The 
locomotion expert in the pilot room suddenly figured out that 
rotating on the spot in that particular inclined terrain could lead 
to a fall, if an extra stabilization procedure was not used, and he 
alerted the main pilot. Since the button related to the rotate on 
the spot command is a QtTimedButton, and the 3-s safety time 
window was not expired, the pilot was able to re-click the button 
and stop the sending of the command. This prevented the robot 
from falling in that situation.

The start/stop feature of GYM and the capability of modules 
to initialize in any robot configuration was used by the pilots a 
couple of times when they were no longer sure about the module 
status, e.g., after an unexpected network problem that discon-
nected the TCP safe channel (an issue of the DRC network).

As we already pointed out, the use of multiple pilots and a 
distributed interconnected architecture between their computers 
represented a remarkable choice. The advantages were demon-
strated during various moments of the challenge, especially in 
the cooperation between the main pilot and the perception one. 
Indeed, the main pilot delegated to the perception pilot, among 
other duties, the superimposition of 3D objects to the scene in the 
manipulation tasks (e.g., grabbing the steering wheel or the door 
handle) and the continuous checking of the robot surroundings to 
decide how to avoid collisions and what to do during the driving. 
Thus, the main pilot could just focus on the correct execution of 
the various control sub-tasks required by each DRC task, reduc-
ing the amount of stress and consequently the error probability.

3.2. beyond Drc
As mentioned, the Walk-Man platform has been used in several 
occasions after the DRC verifying its simple usage and longevity. 
A first example of a lab experiment is the development of a visual 
servoing manipulation task to improve robot autonomy. This 
work uses both a perception ROS module and a manipulation 
GYM module, which was successfully developed in few days 
thanks to the code and tasks already available.

During Eurathlon 2015 and IROS15, the Walk-Man robot 
performed various exhibitions. The executed tasks were walk-
ing, door opening, and valve turning. The walking and door task 

performed as during the DRC, in a stable and repeatable fashion. 
It was the first time that the valve task was publicly shown 
outside the lab and outdoor. The task performed very well and 
multiple times, demonstrating its reliability and robustness to 
positioning errors.

The last exhibition of the robot has been in Rome for the 
Maker Faire Rome 2015: in this occasion the robot had to break 
a band to inaugurate the event and then greet the audience. We 
were enough confident in the behavior of the hardware abstrac-
tion layer that a colleague located in another city developed the 
band breaking task in the Gazebo simulator and then sent the 
code to the Istituto Italiano di Tecnologia labs in order to have it 
tested on the hardware. The code worked on the real robot out 
of the box.

Another relevant aspect of this demo has been the use of a sin-
gle pilot. This was required due to limited space on the stage and 
the necessity of a quick setup. By using a reconfigured lighter pilot 
interface, the pilot, who was the one responsible for the  status of 
the robot during the DRC, was able to manage every aspect, from 
the communication to the successful execution of the task.

4. DiscUssiOn

The Walk-Man architecture has proven to be functional and 
robust in several different occasions and environments (indoor/
outdoor challenges, labs experiments for research). Even during 
the architecture development, no particular criticality has been 
encountered to make us deviate from the original design. Three 
main factors have contributed to the chosen architecture design: 
limited time for implementation, heterogeneity of expertise of 
code users, and no prior availability of the hardware and, hence, 
lack of tested control laws.

Solutions adopted to cope with those factors, and discussed in 
this paper, have worked properly in any occasion the platform has 
been used. Even though not all the choices were a priori optimal, 
they have proven to work properly in our particular case. We will 
now discuss the outcomes of some of those choices starting from 
those made to overcome the strict time deadlines.

The most striking example of the effort done in avoiding 
the boilerplate code, together with the use of GYM, is the DRC 
driving module. Indeed, it was developed in a very small amount 
of time by a master student (i.e., non-expert code developer), 
which managed to control the gas pedal and to steer the wheel 
in less than 2 weeks. The module was then refined and tested for 
a week by two developers of the team and eventually used in the 
challenge.

It is well known that the design of a modular architecture does 
not always come for free, requiring significant time effort. Indeed, 
each software layer requires its own API to interface with others, 
and dedicated maintenance and update. Nevertheless, our team 
could have never been able to develop and change the modules 
without such APIs: the few main issues (e.g., multi-threading 
issues, network bridge incompatibility with custom YARP ports) 
encountered during the few months before the competition have 
been solved in a small amount of time without compromising or 
delaying the work of other software users.
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An unintuitive and apparently wrong practice, in case of 
complex hardware and software platforms, such as Walk-Man, 
is the arbitrary choice in critical components implementations as 
we did for the network bridge. Indeed, non-architecture develop-
ers were not informed at all of the inner structure of the bridge. 
Although this in principle may lead to errors or integration issues, 
the alternative approach of discussing the design of the bridge 
among all the team members was prohibitive and required too 
much time. After the bridge implementation, each of the few 
issues emerged was solved jointly with the involved people.

Usually, in large companies and in organized open-source 
projects, coding quality standards, style, and procedures are man-
datory and adopted by the whole team. Such approach requires 
dedicated advanced training and hence time. In our case, the team 
was formed on purpose for the DRC by including researchers of 
different groups with different expertise and standards. In similar 
situations, we strongly suggest to let every programmer choose 
his programing style and control approaches designing a flex-
ible architecture to support the different users. Our  architecture 
reflects this need by not enforcing any specific control algorithm 
in the modules implementation, so that developers were free to 
read just the sensors and to control the joints they required to 
achieve their specific tasks. As an example, control approaches 
could range from open-loop joint-space trajectories to inverse 
dynamics using a combination of force-torque, joint torques, and 
IMU measurements.

Another solution to cope with short time, which should not 
be underestimated, is the human pilot capabilities and improve-
ments thanks to training. In particular, there was a trade-off 
between the effort required from the pilots during the challenge 
and the software development effort required to offload them 
from some tasks. As an example, we decided to skip the develop-
ment of an artificial vision system for automatic object detection 
and recognition, and trained the perception pilot in order to be 
very fast and accurate in those tasks. We also noticed that, in the 
short time, accustom the pilot to each module’s behavior pays off 
as much as an improvement in the module code or control law. 
Note that this solution cannot be used successfully in every situa-
tion. For example, in case on untrained pilots or in high complex 
tasks (e.g., teleoperated balancing), the only possible approach is 
the use of a dedicated control software.

For example, our architecture requires tens of modules to be 
running at the same time across multiple computers, and the 
modules starting order may become complex to maintain. After 
the first tests with the whole architecture running, we noticed 
that lot of pilot effort had to be put in starting the modules in 
the right order. We decided to reduce such requirements as 
much as possible, and finally ended up with only the ROS and 
YARP nameservers to be started before all the other modules. 
We believe that the effort to provide asynchronous starting order 

is compensated whenever the architecture complexity increases 
up to the point where the pilots can no longer manage the order.

While the whole architecture has demonstrated to work 
properly, some useful utilities were not integrated and left to 
each developer preferences. In particular, multiple different 
logging utilities in each module were storing information useful 
for debugging purposes both on the robot and on the pilot PCs. 
Some pieces of the stored information were sent commands, 
status of the robot, point clouds, failures, and warnings from the 
control modules. Although these logging utilities were custom 
designed and simple in their capabilities, they provided enough 
information to speed up the unavoidable debugging process. 
Their helpfulness prompted us to include, in future architecture 
updates, a generic logging class integrated in each module with 
the same style of GYM and GW.

To conclude, the architecture structure and implementation 
did not affect any task during the DRC, and did not impose any 
constraint on the control strategies implemented in each task 
module. Few main issues (e.g., multi-threading issues, network 
bridge incompatibility with custom YARP ports) were detected 
during the months before the competition, and they were solved 
in a small amount of time without affecting or compromising 
the software developers work. Indeed, the future progressive 
improvements planned by all the team members mostly relate 
to the perception modules providing artificial vision and object 
tracking, a walking module capable of reflex-style reactions to 
terrain irregularities and an increased automatic error handling in 
manipulation modules in order to provide single-click complete 
task execution improving robot autonomy. On the other hand, 
the architecture general structure is widely accepted by team 
members and will require very few changes. The main features to 
be added are hard real-time support and a Matlab-EthercatMaster 
interface.
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