
May 2016 | Volume 3 | Article 251

Original research
published: 10 May 2016

doi: 10.3389/frobt.2016.00025

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Giuseppe Carbone,

University of Cassino and
South Latium, Italy

Reviewed by:
Paolo Boscariol,

University of Udine, Italy
Matthias Rolf,

Oxford Brookes University, Japan

*Correspondence:
Mirko Ferrati

mirko.ferrati@gmail.com

Specialty section:
This article was submitted

to Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 26 November 2015
Accepted: 12 April 2016
Published: 10 May 2016

Citation:
Ferrati M, Settimi A, Muratore L,

Cardellino A, Rocchi A,
Mingo Hoffman E, Pavan C,
Kanoulas D, Tsagarakis NG,

Natale L and Pallottino L (2016)
The Walk-Man Robot Software

Architecture.
Front. Robot. AI 3:25.

doi: 10.3389/frobt.2016.00025

The Walk-Man robot software
architecture
Mirko Ferrati1*, Alessandro Settimi1,2, Luca Muratore2, Alberto Cardellino3,
Alessio Rocchi2, Enrico Mingo Hoffman2, Corrado Pavan1, Dimitrios Kanoulas2,
Nikos G. Tsagarakis2, Lorenzo Natale3 and Lucia Pallottino1

1 Centro di Ricerca “E. Piaggio”, University of Pisa, Pisa, Italy, 2 Department of Advanced Robotics (ADVR), Istituto Italiano di
Tecnologia, Genova, Italy, 3 Department of Robotics, Brain and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia,
Genova, Italy

A software and control architecture for a humanoid robot is a complex and large proj-
ect, which involves a team of developers/researchers to be coordinated and requires
many hard design choices. If such project has to be done in a very limited time, i.e.,
less than 1 year, more constraints are added and concepts, such as modular design,
code reusability, and API definition, need to be used as much as possible. In this work,
we describe the software architecture developed for Walk-Man, a robot participant
at the Darpa Robotics Challenge. The challenge required the robot to execute many
different tasks, such as walking, driving a car, and manipulating objects. These tasks
need to be solved by robotics specialists in their corresponding research field, such as
humanoid walking, motion planning, or object manipulation. The proposed architecture
was developed in 10 months, provided boilerplate code for most of the functionalities
required to control a humanoid robot and allowed robotics researchers to produce their
control modules for DRC tasks in a short time. Additional capabilities of the architecture
include firmware and hardware management, mixing of different middlewares, unreliable
network management, and operator control station GUI. All the source code related to
the architecture and some control modules have been released as open source projects.

Keywords: software architecture, humanoid robot, modular design, Drc challenge, teleoperation, robotic
middlewares, emergency response

1. inTrODUcTiOn

In this paper, we describe the design decisions and the resulting software architecture of the Walk-
Man robot, developed for the participation to the DARPA Robotics Challenge (DRC).

The goal of the DRC was to develop robots (not necessarily humanoid) capable to operate in a
disaster scenario and to perform tasks, such as search and rescue, usually done by humans. During
the challenge, the robot was required to perform different tasks, such as walk, drive a car, grasp and
use objects, open doors, and rotate valves. The operator was located far from the robot, without
line-of-sight, and not necessarily with a high bandwidth connection to the robot, so that direct
teleoperation was not possible and a semi-autonomous approach was required. Thus, the operator
was responsible for choosing the order and the timing of commands to solve the DRC tasks, depend-
ing on the level of autonomy of the robot. For example, the main task of opening a door might be
handled by the operator with the following actions: reach the door handle, grasp it, turn and finally
release it, or just with a single command: “open that door.”

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00025&domain=pdf&date_stamp=2016-05-10
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00025
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:mirko.ferrati@gmail.com
https://doi.org/10.3389/frobt.2016.00025
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00025/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00025/abstract
http://loop.frontiersin.org/people/263464/overview
http://loop.frontiersin.org/people/313658/overview
http://loop.frontiersin.org/people/313660/overview
http://loop.frontiersin.org/people/63742/overview
http://loop.frontiersin.org/people/36032/overview
http://loop.frontiersin.org/people/321390/overview

2

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

The Walk-Man team was composed by engineers and
 technicians with different background and fields of expertise
ranging from compliant manipulation, walking pattern gen-
eration, control, to artificial vision. Each contribution have been
integrated in the software architecture thanks to the proposed
design so that also non-experts in software engineering and code
development were able to develop dedicated modules. This choice
has avoided the necessity of training the whole team and, hence,
reduced the time effort. In this paper, we use the terms “software
users” and “control module developers” interchangeably to refer
to the users of the software architecture we developed. Our design
choices are motivated by the needs of such users, and they aim
to maximize the output of any developer through a well-tailored
software infrastructure, inter-process communication facilities,
and shared libraries with various tools.

While some of our implementation decisions may not apply
to large long-term projects, we followed many principles that are
in common with the state of the art of robotic software develop-
ment: specifically, we adopted a component-based approach that
focuses on modularity to support code reuse and rapid develop-
ment (Brugali and Shakhimardanov, 2010), for example, with
similar requirements in the ROS ecosystem refer to Coleman
et al. (2014) and Walck et al. (2014).

Following the standard approach of YARP (Metta et al.,
2006) and ROS (Quigley et al., 2009) middlewares, we decided
to build a distributed network of applications (nodes), so
that each different process is independent and users can have
more freedom when developing their own modules. To save
development time and to focus on the specific tasks for the
DRC, we relied as much as possible on software components
available within existing frameworks. A first design choice has
been the development of a Generic YARP Module (GYM) to
provide a set of libraries for control purpose both to enhance
code reuse and to have a common interface to manage the
modules execution flow.

We decided to adopt the YARP middleware for the develop-
ment of our software architecture, and in particular for the design
of the software interface between the robot hardware and the
nodes related to motor control. This choice was motivated by our
direct expertise in the development of YARP and because YARP
has proved to be quite reliable in experimental settings (Hammer
and Bäuml, 2013). In addition, YARP provides functionalities
for setting channel prioritization using QoS and different com-
munication protocols. These features, at the time of writing, are
not yet available with ROS (although the upcoming version of
ROS will provide similar functionalities with the adoption of
Data Distribution Service at the transport layer).

To get advantage of the large codebase available in the ROS
ecosystem, we designed a mixed architecture that integrates ROS
nodes. In the final architecture, ROS was used in the high-level
operator GUI and for the 3D perception. The operator graphic
interface is a fundamental component of the architecture, it allows
the remote control of the robot by enriching the pilot awareness
with the data coming from the robot. The single components of
the GUI inherit basic functionalities from a Generic Widget, i.e.,
the graphical interface of a GYM.

Similar works have been developed by teams participating in
the DRC Trials, such as Johnson et al. (2015) and Yi et al. (2015),
and Hebert et al. (2015). Most of these works have a custom
 low-level communication library, or middleware, which ensures a
real-time control loop and a high level inter-process communica-
tion system (such as ROS, Orocos, OpenRTM, and PODO). Given
the requirements on the network bandwidth imposed by DARPA,
a custom manager was used to connect the operator control sta-
tion to the robot computer, usually using TCP and UDP protocols
without any abstraction layer, with two middleware servers (e.g.,
RosCores) in the operator station and the robot. The same solu-
tion has been adopted by the Walk-Man team whose architecture
is based both on ROS and YARP that did not properly handle
unreliable channels at the time of the DRC. Indeed, centralized
servers are limiting for unreliable networks, and a custom bridge
communicating with different reliable networks (robot, pilot
station, etc.) using a TCP/UDP protocol is required. To cope
with such problems, a custom network bridge that handles both
protocols with a custom, optimized serialization of messages has
been developed.

The aim of this paper is to describe the software with par-
ticular attention on how the proposed architecture helped the
Walk-Man team and, in turn, how the team feedback affected the
architecture design. The main contributions of this paper are as
follows:

•	 a generic module template that captures a development pattern
of robot control modules, avoiding the need to write the same
boilerplate code multiple times in each module,

•	 an hybrid communication middleware architecture that
includes ROS and YARP, along with a custom bridge used
to handle both unreliable networks and environments with
multiple nameserver (i.e., roscore and yarpserver), and

•	 the integration of the generic module template into the oper-
ator GUI, which is developed as a generic reconfigurable GUI
capable of adapting to the DRC tasks as well as to future demos
and lab projects.

The source code for the software described in this work
can be found here: https://gitlab.robotology.eu/groups/
walkman-drc

1.1. robot Platform
The Walk-Man robot (see Figure 1) is a humanoid robot with
33 DoFs, each actuated by an electric series elastic actuator
whose design is described in Negrello et al. (2015). Each motor
is controlled by its own electronic board at a frequency of 1 kHz.
These boards are connected to a shared ethercat network with
1 Gb bandwidth, used to send and receive joint position refer-
ence, along with other information such as temperatures, torques,
and PID values. Five additional electronic boards in the ethercat
network provide readings from the robot IMU and the four Force/
Torque sensors, located in the wrists and ankles. A control pc with
a quad-core i7-3612 runs the control software and is configured
as the ethercat master.

Finally, a Multisense SL head, which contains a stereocamera
and a LIDAR, is connected through its own 1 Gb network to a

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://gitlab.robotology.eu/groups/walkman-drc
https://gitlab.robotology.eu/groups/walkman-drc

FigUre 1 | The Walk-Man robot and the main network configuration.

3

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

vision pc, with the same hardware components as the control pc.
An external pilot pc is connected through a wireless network to
the control pc and vision pc.

The operating system on all the computers is Ubuntu 14.04
modified with Xenomai, all the code is written in C++ except
for the firmware, which uses a subset of C. See Figure 2 for an
overview of the hardware and networks. It is worth mentioning
that the whole robotic platform has been assembled for the first
time 4 months prior of the DRC. As a consequence, all the motion
control software tests on the hardware have been delayed until few
weeks before the DRC. On the other hand, at the time of assembly,
the proposed architecture was in an advanced stage of develop-
ment and testing. Such asynchronous development of software
control algorithms and the architecture has led to the necessity of
a highly flexible and modular implementation of the latter.

1.2. Design choices Overview
In this section, the strategies used to design the Walk-Man soft-
ware architecture. A complete software stack has been built for the
DRC consisting in a custom firmware, control modules tackling
different tasks, a remote pilot graphical interface, and the whole
architecture to manage and connect the different applications.

Due to the limited time constraint (around 10 months) and the
variety of programing skills among our robotics researchers, our
design choices were oriented to:

•	 avoid code duplicates and enhance code reuse;
•	 provide common shared C++ classes and utilities to the

software users;
•	 ease and speed up the production of significant code by hiding

code complexity in simple APIs;
•	 fast testing and debugging leveraging on simulators.

Following these principles, our core developers focused on
low level interfaces, middleware management, and network and
performance optimization.

We devised a layered component-based architecture, where
each task of the DRC is handled by a single control module
and modules interact with the hardware and each other
through well-defined APIs. Once a rough and primitive API
was defined, modules could be developed in parallel; in the
meantime, shared functionalities could be improved under the
hood of the high level control software without requiring code
changes.

The YARP middleware has been chosen to obtain an
abstraction layer for the hardware of the robot (sensors and
motors) together with the set of interfaces. This abstraction
layer allows to write code that can seamlessly interface to
simulators or to the real robot (either remotely through the
network or on the same machine using inter process com-
munication). The initial phase of the development focused on
the implementation of this abstraction layer for the simulated
robot in Gazebo (Hoffman et al., 2014). This allowed to start
performing experiments early on during the project. The same
interface was implemented on the real robot allowing to trans-
fer the code developed on the simulator with only minimal
parameters changes.

2. sOFTWare archiTecTUre

The Walk-Man architecture has been organized into four software
layers (see Figure 3).

•	 The top layer is the operator control unit, named pilotInterface.
•	 A network bridge connects the pilot to the robot, where vari-

ous control and perception modules form another layer.
•	 An hardware abstraction layer remotizes the robot hardware

and provides to the control modules a set of shared libraries
(GYM) used to interact with the remote driver, called Ethercat
Master.

•	 The lowest layer is represented by the firmware running in
embedded boards, each controlling one actuator.

2.1. Firmware-ethercat
At the lowest level, each joint of Walk-Man is controlled by a
PID position loop in a distributed embedded electronic system
with one board per joint. Our main aim was to have a hard
real-time loop in the firmware: the execution time of each
firmware function was measured and tuned so that a 1 kHz
loop could be implemented. In the software architecture, we
developed for the Coman platform, the communication from
the control pc to each board was performed on an ethernet
BUS using a combination of UDP and TCP packets. The lack
of synchronization between boards led to conflicts and conse-
quent packets loss with UDP and delays with TCP protocols.
We decided to move to an ethercat implementation, which
allows synchronized communication and, therefore, much
better control on the data traveling on the BUS. In particular,
we measured the maximum number of bytes that each board

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 4 | Dimension of various packet fields (bytes).

FigUre 3 | complete view of the software architecture.

FigUre 2 | Walk-Man network.

4

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

could handle at 1 kHz and defined a standard packet size with
standard information, as shown in Figure 4.

This standard packet definition is an example of the various
interfaces between software levels that will be described in this
work and that allow software decoupling and testing.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 5 | as an example, during the Drc driving task three modules
were using joint readings at 250, 10, and 1 hz, one required torques
and temperatures at 10 hz, two were controlling the joints at
250 and 10 hz.

FigUre 6 | Detailed low level software stack, including robot
hardware abstractions and a whole-body class used by the generic
Yarp Module.

5

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

2.2. ethercat Master – YarP
In the real robot, the hardware manager runs on the control pc
and is called Ethercat Master. It manages Ethercat slaves (i.e., the
electronic boards), keeps them synchronized, and sends/receives
position references in real-time.

The Master can be seen as a hardware robot driver, which
handles low level communication and exposes a simpler and
asynchronous API to the higher levels. Writing real-time code
requires expertise that were not available in all the software
developers. Therefore, a separation between the Master and
the modules implementing higher-level behaviors has been
introduced. This separation was achieved through the YARP mid-
dleware using the remotization functionalities that it provides
for the robot abstraction layer. Usually, developers write software
that communicates with the Master through the network; this
has been achieved using asynchronous communication with
the YARP middleware. This decoupling was beneficial because
it allows stopping and starting modules without interfering with
the Master. More importantly, it prevents modules that behave
erratically to affect the real-time performance of the Master.

The Master creates an input and output YARP port for each
control module and for each type of information required by
them. In Figure 5, the modules running during the DRC driving
task are reported together with communication frequencies.

2.3. hardware/simulation
abstraction layer
The Ethercat-Master exposes the robot sensors and actuators
in a YARP network by remotizing the robot with a set of YARP
communication channels (this is achieved in YARP using special
objects called network wrappers). An additional set of libraries,
named WholeBodyInterface, hides YARP channels from control
modules, and relieves the developers from the bureaucracy
required to prepare and parse the messages to and from the robot.

The composition of the YARP wrapper in the Ethercat-Master
and the whole-body libraries realizes a two-tier Habstraction
Layer (HAL) for the robot. This abstraction layer between the
hardware driver and the control modules allowed us to easily
switch between simulation and the real robot, since the Gazebo
plug-ins for the Walk-Man robot implements exactly the same
YARP classes and interfaces as the Master (see Figure 6).

In the simulation case, the Gazebo Plugin substitutes the HAL
standalone application and it is fully compatible with the same
set of shared libraries.

The two-tier abstraction layer implements a whole-body
interface on top of the robot interface defined by YARP. The main
difference between the two layers is that the latter separates joints
in kinematic chains and implements interfaces for individual sen-
sors; for practical reasons, the logical separation of the kinematic
chains at this level is subject to fluctuations (for example, it affects
how joint states are broadcast on the network). The whole-body
interface groups all joints and associated sensors in a single kin-
ematic chain. The advantage of this separation is that it exposes
to the user the whole-body interface, which is stable because it is
defined solely by the number of joints of the robot.

As an extreme example, 15 days before the DRC, we had to
intentionally break the functions responsible for moving the robot
joints. To reduce resource usage (and reduce jitter due to CPU
overload), we changed how joints are grouped and transmitted on
the network; all the required changes affected the YARP abstraction
layer and remain limited to the implementation of the whole-body
interface. All the user code remained untouched. The simula-
tion, the real robot, and all the control modules were updated in
just 2 days.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 7 | structure of the generic YarP Module, with inputs and outputs from/to the pilot and the ethercatMaster.

6

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

As suggested by Johnson et al. (2015), we fully understand
(and wish) that in a long-term project APIs must not be modified,
especially few days before the demo. However, we are convinced
that, in a research environment APIs may need to be changed in
critical moments, and the proposed approach is a way to mitigate
the effect of such changes.

Finally, an advantage of this two-layer architecture is that it
separates control modules from the middleware. This will allow
to change the communication layer (i.e., the middleware) without
affecting the control code.

2.4. generic control Module Template
A control module software can be summarized as a sense-compute-
move loop, where sense receives all the inputs from the robot, the
inputs are used by compute in order to implement the control law
of the module. Finally, move sends to the robot the newly computed
desired position of the joints. In reality, developers usually spend
a part of development effort into initialization code: i.e., reading
control parameters, starting the communication facilities, reading a
description of the robot kinematics, and so on. We provided explicit
support for this implementation pattern in the Generic YARP
Module (GYM). The GYM has been designed as a C++ abstract
class that provides a common and standard way to execute these
initialization steps, along with a sense and move default implementa-
tion that provide boilerplate code required to initialize the YARP
remotization interfaces. The source code of GYM can be found here:
https://github.com/robotology-playground/GYM

GYM functions handle all the required YARP communica-
tion between a module, the Master, and the PilotInterface, effec-
tively hiding YARP communication mechanisms and classes.
GYM was iteratively improved driven by the effort to remove
duplicated code across modules and based on the team feedback
(10 developers) which helped revising the specifications and
debugging.

Our experience showed that the adoption of GYM reduced
duplicated code significantly. In addition GYM provides another
separation between the code and the middleware. In fact, a
Generic ROS Module is currently in development and complies
with the GYM API, so that any module using GYM could also be
used in the ROS system.

GYM is organized in two threads: a watchdog running at 1 Hz
and a main control loop running in a range of frequencies between

100 and 500 Hz (Figure 7). Developers can write their own code
inside the control loop function run(), they also have access to a
set of helper function providing a standard kinematic description
of the robot based on the robot URDF. The watchdog thread is not
customizable and listens for standard commands from the pilot,
through one of the standard communication interfaces (switch
interface) described in the next section.

The GYM C++ class that needs to be inherited by the user has
the following signature:

class generic_thread
{
public:

/**
 * @brief custom initialization function: called before

 run(),
 * must be overrided by sub-classes
 */

 virtual bool custom_init()=0;

 virtual bool custom_pause(){
 return true;

}

virtual bool custom_resume(){
 return true;

}

/**
* @brief loop function, called at the desired
* frequency read from configuration file
*/

 virtual void run(){}

};

Notice that the user can override the default (empty) imple-
mentation of pause and resume functions so that he can take
the required actions in order to save and resume the state of his
own control module. Instead, to keep different modules organ-
ized in a similar structure, the init function was required to be
implemented by the user and to contain all the initialization code.
Moreover, with this approach, executables could be started in any
moment, while the pilot kept the possibility of choosing when a
module was going to be initialized and connected to the rest of
the running software.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology-playground/GYM

FigUre 8 | state machine of the gYM.

7

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

In order to show some of the GYM library functions, we report
a simple run implementation:

virtual void run()
{

//get the command from the pilot
 command_interface.getCommand(cmd);

//evolve the state machine accordingly to the received
 command
 current_state=sm.evolve_state_machine
 (current_state,cmd);

//get updated joint values
 vector q_sensed,q_des;
 robot.sensePosition(q_sensed);

//compute desidered joint values in a control law function
 q_des=control_law(q_sensed,current_state);

//move the joints
 robot.move(q_des);

//set the status to be streamed back to the pilot
 status_interface.setStatus(current_state);

}

The variable robot is provided by GYM and is used to interact
with the hardware with simple functions such as sensePosition
and move.1

Examples of what a complex implementation may do is to use
multiple state machines depending on the cmd values, to read or
ignore commands from the user, to selectively avoid sensing or
moving the robot while planning a complex movement, or even
to evolve a state machine automatically without requiring user
commands.2

2.4.1. Communication Interfaces
One of the features implemented in GYM code is a set of commu-
nication interfaces between the module and the pilot: Command,
Status, Warning, and Switch. These interfaces in their default
implementation send through the network an array of characters;
the Command and Status interfaces support the addition of a
custom data serializer that can be implemented by the user in
order to send any type of data.

The Command Interface is used to send commands to the robot
related to the precise task being executed, such as “go_straight 10”
to make the robot walk for 10 meters or “set_valve 0.5 0 0.1 0 0 0 1
Waist” to set the valve data for the turning valve task with respect
to the Waist robot reference frame.

The Status Interface is used to send back to the pilot any
information the developer considers necessary to understand
the internal state of the control module, such as “turning valve,”
“walking,” “ready.”

1 For the complete list of the helper functions, see https://github.com/robotology-
playground/idynutils/blob/whole_robot_wrapper/src/RobotUtils.cpp
2 For some GYM real modules, please see https://gitlab.robotology.eu/walkman-
drc/drc_drive/blob/master/src/drc_drive_thread.cpp or https://gitlab.robotology.
eu/walkman-drc/gaze_control/blob/whole_robot/src/gaze_control_thread.cpp

The Warning Interface is an advanced interface that can be
used in dangerous situations (e.g., when the balancing is com-
promised) to raise warning states in which the robot can assume a
particular behavior (e.g., blocking every movement), from which
specific actions can be performed to restore a safe state. The main
differences between this interface and the Status are the priority
of the data in the communication between control pc and pilot
pc, and the different visualization in the pilotInterface, where
Warning messages are red (see Section 2.7).

The Switch Interface is used to send the following commands
to each module: start, pause, resume, stop, and quit. Since some
of these commands are critical, they cannot be overridden with
different implementations: modules are allowed to re-implement
only pause and resume functions. This approach guarantees that
any bug or misbehavior of the code running inside a GYM does
not propagate to the whole system, since a module can always
be forced to stop by the pilot with a stop command. Note that,
differently from pause, the stop command does not activate any
soft exiting procedure. For example, trying to stop the walking
module while the robot is dynamically walking may result in a
fall: if the pilot wants to stop the robot from walking and avoid
falling, he should send the pause command to the current walk-
ing module, which in turn, depending on the robot status, should
either stop immediately (double stance phase) or finish the cur-
rent step phase and put both feet on the ground. Manipulation
modules are safer in this sense since the robot is usually stable
when moving its arms, nevertheless, a pause procedure should
still be implemented as it allows the module to save its internal
state and resume it later. Thus, the stop is used to quit a module
when it is no longer needed, or to force-quit a module that is not
controlling the robot but could be stuck in a loop due to bugs.

2.4.2. State Machine
The behavior of the GYM state machine is reported in Figure 8.
Except for the special states Constructor and Destructor, there
are three available states. The unique state accessible from the
Constructor is Running through the start command. From this
state, the module can be put into Paused state using the pause
command or stopped (i.e., put into Stopped state using the com-
mand stop). From the Paused state, the module can be switched

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://github.com/robotology-playground/idynutils/blob/whole_robot_wrapper/src/RobotUtils.cpp
https://github.com/robotology-playground/idynutils/blob/whole_robot_wrapper/src/RobotUtils.cpp
https://gitlab.robotology.eu/walkman-drc/drc_drive/blob/master/src/drc_drive_thread.cpp
https://gitlab.robotology.eu/walkman-drc/drc_drive/blob/master/src/drc_drive_thread.cpp
https://gitlab.robotology.eu/walkman-drc/gaze_control/blob/whole_robot/src/gaze_control_thread.cpp
https://gitlab.robotology.eu/walkman-drc/gaze_control/blob/whole_robot/src/gaze_control_thread.cpp

FigUre 9 | a control module generic infrastructure.

8

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

to the Running one by the resume command or can be stopped.
Once the module is in the Stopped state, it can be only started
(i.e., put into Running state through the command start). The
Destructor state is accessible from every state sending the quit
command. Changes of state are triggered by the watchdog thread
in response to a message from the Switch Interface.

In the Running state, the internal control module loop is
executed, the robot can receive the commands and send the state.
The Paused state is used to freeze the internal control module
loop so that, once resumed, the last command is executed. In the
Stopped state, the internal control module loop is exited, as the
program is closed, but it can be restarted again using the Switch
Interface. To develop this state machine, we have been inspired
by the OROCOS (Bruyninckx, 2001) Component Lifecycle
StateMachine.

A generic representation of a control module using the GYM
template together with the related widget is depicted in Figure 9.

2.5. control Modules
Thanks to the GYM classes and functions, our team managed
to focus on the core development of each DRC task in very
short time (e.g., the module used to drive was developed in
10 working days by one single developer). It is worth noting
that, although the perception module is not a proper control
module, since it does not send references to the robot joints,
it has been developed using the GYM template. This module
uses ROS drivers to acquire data from the Multisense SL head
and the standard command/status/switch interfaces to interact
with the pilot. We will now describe the main components of a
GYM Module, using the module designed for the driving task
as an example.

The underlying structure of every control module is composed by:

•	 an Inverse Kinematics solver;
•	 a Finite State Machine (FSM); and
•	 a trajectory generation library,

and resembles the structure of a hybrid control architecture
with discrete states associated with continuous control laws.
For example, the state machine for the driving module is shown
in Figure 10. The principle of the module is the following: a
message arrives through the command interface and depend-
ing on the message information, a different transition event is
triggered, which may result in a change of state. After a new
state transition, a new trajectory is created for one or more end-
effectors. During the control loop, a portion of the trajectory
is sent to the Inverse Kinematics solver, which computes the
correspondent portion of joint displacement to be sent to the
robot. Modules related to manipulation tasks uses a WholeBody
Inverse Kinematics library by Rocchi et al. (2015), while the
module related to walking uses a different strategy and Inverse
Kinematics inspired by Kryczka et al. (2015). Indeed, we
decide to give freedom to the control module developers, so
that they could use the control laws and IK approaches that
they were more familiar with. Two control modules, based on
the proposed architecture, are described in detail in Ajoudani
et al. (2014) (for the valve task) and Lee et al. (2014) (for the
door task).

2.5.1. Finite State Machine
In order to cope with complex tasks, a Finite State Machine is
used to switch between different actions of the robot. Once the
operator receives the new status from the status interface, he

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

idlestart ready reach approach grasp

rotate

ungrasp

move away

wheel data

wheel data

reach (p) approach grasp

rotate(µ)

ungrasp

rotate(µ)

move away

approach

FigUre 10 | Finite state Machine of the drive task (wheel management only).

9

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

can send a message through the command interface to change
the module state accordingly to the structure of the FSM. As an
example, referring to the driving task and the FSM reported in
Figure 10, once the pilot receives the information that the status
“reach” has been achieved, he can send the “approach” command.
Many transitions are not possible because they would result in an
incoherent behavior of the robot, such as moving a hand away
from the wheel while still grasping it. Every state corresponds to
a specific action or to a waiting state.

2.5.2. Trajectory Generator Library
The trajectory generator library consists of a set of trajectories of
two types: linear and circular. The linear trajectories are created
via fifth-order polynomials, interpolating from the initial and
final positions. On the other hand, the circular trajectories are
parameterized on the angle of rotation: the polynomial inter-
polates from the initial to the final angular displacement of the
trajectory. The library provides a C++ class that can be initialized
with the desired type of trajectory. The API methods allow to set
the trajectory parameters, get an arbitrary point of the trajectory,
and reset the generator to start a new trajectory.

2.6. Unreliable channel Management
Our robot is used with two common types of network configura-
tion between the pilot pc and the robot. The first setup is similar
to a lab environment, where the network is fully operational and
the bandwidth is at least 100 Mb/s. The second one is inspired by a
realistic disaster scenario, where a wireless network is discontinu-
ously working and the average bandwidth is less than 1 Mb/s. It is
desirable to have most of the software architecture independent
from the network capabilities, in particular the code running in
control modules and in the pilot interface should not require
any changes depending on the network. Both YARP and ROS
use centralized servers for naming look-up (respectively called
yarpserver and roscore).

When working in the first configuration, we used a single
yarpserver and roscore so that modules can communicate
directly with each other; there are no networking issues from
pilot to robot.

In the real-world scenario, a direct communication may
result in frequent disconnections and the centralized YARP/
ROS servers may not be able to recover from such disconnec-
tions. Thus, a strong division between pilot pc and the robot has
been proposed, with two pairs of roscore/yarpserver running,
respectively, on the pilot pc and the control pc, splitting modules
into a robot subsystem and a pilot subsystem. The two subsystems
are bridged using a network manager that transparently intercon-
nects modules between the two. The developed network manager
behaves as a two-way bridge between the pilot pc and the robot,
it is completely transparent to the processes it connects, meaning
that there is no way for the processes to understand if they are
communicating through a bridge or directly. Our bridge is devel-
oped as a pair of processes, running on two different computers,
called BridgeSink (in the sender pc) and BridgeSource (in the
receiver pc). The Boost Asio library (Kohlhoff, 2003) was used to
abstract UNIX sockets and obtain an asynchronous behavior in
the communications.

For the sake of clarity, we introduce an example of the bridge
transparency capabilities. Consider two PCs (PC1 and PC2) with
one module each (Module Alice and Module Bob, respectively).
In the first scenario, Module Alice on PC1 is sending info to
Module Bob on PC2 using YARP through a direct connection
(i.e., disabled bridge), Alice will try to connect to Bob and will
find a YARP port PB in the remote PC2, while Bob will listen from
Alice’s remote YARP port PA in PC1.

In a second scenario the bridge is enabled, and it reproduces
the port PB in PC1 and the port PA in PC2 so that Alice will
actually connect to a local (in PC1) YARP port faking PB that
is provided by the BridgeSink process running on PC1. On the
other hand, Bob will listen from a local(PC2) YARP port fak-
ing PA provided by the BridgeSource running on PC2. Finally,
BridgeSink and BridgeSource will internally transfer informa-
tion from PC1 to PC2.

For network management purposes, the proposed bridge uses
heuristics whose most important options are the bridge channel
protocol (UPD or TCP) and the middleware (YARP or ROS). It
is worth noting that the only unsupported combination is a TCP-
ROS bridge, since ROS data would saturate the channel.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Table 1 | bandwidth usage from the robot to the Pilot, not including TcP
overhead, assuming T = 1.

From robot number Dimension
(bit)

Total
(bit/s)

info

Joint IDs 33 8 264 Robot state
Joint encoders 33 16 528 Robot state
Joint toques 33 8 264 Robot state
Board temperatures 7 16 112 Seven joints per second
Module statuses 5 16 80 Dictionary-based

compression
Overhead fixed 1 512 512 Serialization overhead
Overhead variable 10 64 640 Serialization overhead
Total – – 2400

FigUre 11 | system Pcs connections and interactions.

10

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

In Figure 11, we report the location (motor PC, vision PC,
pilot PC) where the various programs are executed, focusing on
the TCP/UDP bridge role.

2.6.1. TCP Bridge
Recall that YARP is used for all the communications between pilot
pc and control pc, i.e., starting and stopping modules, modules
status, modules commands. Those data are relatively small (see
Table 1) and have high priority; thus, they are usually transmit-
ted through a TCP channel. The bridge is heavily optimized to
reduce the data overhead, such as TCP or YARP headers. It uses
a configuration file to know which module should be redirected
through the bridge, and associates with each module port an 8-bit

identifier that is used as a header. An example of the configuration
file is shown below:

<modules>
<module name=”walking” id=”0”/>
<module name=”drc_valve” id=”2”/>
<module name=”drc_drive” id=”4”/>
<module name=”drc_wall” id=”5”/>
<module name=”drc_door” id=”6”/>
<module name=”gaze_control” id=”7”/>
<module name=”temperature” id=”8”/>
<module name=”drc_plug” id=”11”/>

</modules>

<!– –IDs are unique and shared between modules and custom
 modules, do not overlap!!– –>

<custom_modules>
<module name=”encoder_bridge” id=”9”>
 <connection port_to_open=”/command:i”
 source_port=”/command:o” target_port=”/command:i”

 location=”robot” direction=”robot_to_pilot”/>
 <connection port_to_open=”/switch:i”
 source_port=”/switch:o” target_port=”/switch:i”

 location=”pilot” direction=”pilot_to_robot”/>
</module>
 <module name=”walking_publish” id=”12”>
 <connection port_to_open=”/command:i”
 source_port=”/command:o” target_port=”/command:i”

 location=”robot” direction=”robot_to_pilot”/>
</module>

</custom_modules>

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 12 | The pilot interface.

11

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

Note that standard GYM modules are handled automatically,
while custom modules require some more information. Indeed,
they offer more configurability and allow for port renaming.

All the communications requested during T seconds are
packed in a single TCP packet using the 8-bit identifier to keep
the original header information. In the case where a port pro-
duces multiple packets, they are all dropped except the last one.
This effectively reduces the frequency of streaming port, while
maintains intact pilot commands.

T is chosen depending on the network bandwidth and delay, in
the DRC it was set to 0.5 s. This leaves almost 50% of the channel
free to be used, e.g., to send commands from the PilotInterface to
the robot modules or to start a ssh shell in the control pc.

2.6.2. UDP Bridge
ROS perception-related data and other streaming information
from the robot require low latency. For this type of informa-
tion, it makes little sense to implement a reliable transport that
requires retransmission when packets are loss. Lost data become
obsolete and it is much better to read new messages than require
re-transmission. For this reason, it is preferable to use UDP
protocol.

Since PointClouds and RGB Images are usually larger than the
UDP packet size, they need to be split and reconstructed. This is
usually done automatically by the UDP protocol implementation,
but if a single packet is lost, the whole data are dropped.

Our bridge avoids this problem by splitting point clouds
and images into smaller ones, each representing a 3D or 2D

sub-region of the original data, so that each one is a standalone
pointcloud/image contained into a UDP packet (1500 bytes).
By using timestamps, the original data are reconstructed in
the pilot pc. This choice results in a delay in the visualization,
since BridgeSource waits to receive as many data pieces as
possible in an amount of time δt. In the DRC, the parameter
δt was set to 0.4 s, which ensured receiving more than 90%
of the original point cloud with a delay that was visible by
the pilot but not critical since there was no teleoperation
involved.

All the module statuses, the robot temperatures, and encoder
readings (YARP based) are also sent in the UDP channel at a
different (higher) frequency than the TCP one.

2.7. Pilot interface
To remotely control Walk-Man, a GUI, called Pilot Interface (PI),
has been developed. We followed a modular approach, using Qt
libraries and ROS libRViz for 3D rendering (Kam et al., 2015).
Every DRC task has a dedicated widget and can be used stan-
dalone. Moreover, we also developed widgets that allow interac-
tion with the 3D representation of the environment and widgets
for monitoring the robot state.

Using our approach, the operator could monitor the environ-
ment and the robot status and could make correct decisions to
perform the tasks. Figure 12 shows a screenshot of the PI during
the driving task.

Following the approach adopted for the GYM, we developed
the Generic Widget (GW) so that every control module widget

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 14 | Driving task dedicated widget.

FigUre 13 | generic Widget switch and status interface. The red led turns green if the module is running, displaying the relative status description.

12

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

has the same basic features. In particular, the GW has already the
capability to send messages to the Switch Interface and receive
information from the Status Interface (see Figure 13).

For the sake of clarity, the driving task widget is reported in
Figure 14. On the top of the widget, there is the Switch/Status
Interface-related buttons, the rest is divided into three parts. On
the left, we put the buttons to set the steering wheel position and
place the hand on it, together with the buttons to adjust the posi-
tion of the foot dedicated to the throttle. In the center, there are
the buttons to rotate the steering wheel, while sliders are used to
help the pilot understanding the current steering wheel position.
Finally, on the right, we placed the button for the throttle. In this
case, the operator can specify the duration and the amount of
throttle.

In contrast to the other DRC teams, we managed the interac-
tion between the robot and the pilot from the motion planning
perspective. In fact, our pilots did not explicitly ask and check
for a motion plan before the execution started. Instead, the pilots
completely relied on the correct on-board open-loop Cartesian
generation and kinematic inversion, and checked only the result-
ing robot position at the end of the execution. This approach was
a viable choice thanks to the structural compliance of the robot
joints, which handles small unexpected forces from outside, such
as the effect of pushing a door with the arm. Moreover, with its
soft and adaptable design, the robot hand can grasp an object
with a large position/orientation error, it can even hit a surface
with its finger without breaking them, and finally it can keep its
grasping capabilities even with some broken fingers. With these
premises, it is clear that a collision with the environment or a
wrong placement of the end-effector with respect to the object do
not affect the result of the task. If the robot hand misses the grasp

or hits a surface, the operator will simply move the arm back
and try again. The use of the Warning Interface to inform the
operator of external forces or robot instability further improved
our strategy.

An early work describing the initial design of the Pilot Interface
is in Settimi et al. (2014). In the months between this preliminary
work and the DRC, many features such as the Generic Widget
have been added. The pilot was given the possibility to activate
advanced modes, where commands, usually hidden, are shown
and all the buttons are enabled (the pilot knew that this mode
was risky, but it might be needed to override safety behavior in
an unexpected situation).

Based on the forgiveness design principle an implementation of
the Qt:QPushButton named QtTimedButton has been provided:
after the click, a countdown of 3 s is displayed on the button
before sending the command; the command can be stopped by
re-clicking on it (this is used for dangerous commands to undo
erroneous or undesired clicks).

To improve the pilot awareness of the robot state, we intro-
duced a tab dedicated to the status, showing temperatures of the
boards, torques of the motors, and battery level (see Figure 15)
together with the modules statuses and warning messages.
A logging utility for commands sent to the robot and statues
received has been added, the visual data from the robot is logged
as well in order to be able to completely reproduce and analyze
the events.

Configuration files give the user the possibility to customize
the displayed widgets. In the Darpa Robotic Challenge, three
pilots with three different PCs were in the pilot station, each one
being focused on different critical aspects: execution of the tasks,
perception of the environment, and robot status.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 15 | status widget. (a) On the left, the different modules status is reported, and the warning message are reported next. On the bottom, the battery
percentage is represented by a horizontal bar. (b) Two human-like displays show the temperature and torque of every board.

13

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

3. resUlTs: The Drc eXPerience

The first important test of the proposed architecture has been
the DRC. Later, other 4 official occasions have occurred between
September and November 2015 during which both the hardware
and software Walk-Man platforms have been tested. Regarding the
DRC, the team got 2 out of 8 points in the competition (consisting
in 2 runs) for the accomplishment of the drive and door tasks. Team
strategy was to get a penalty in time and avoid the egress of the
vehicle task. The dimension of the DRC door has obliged the pilot
to enter the indoor scenario walking sideways. The cameras on the
Walk-Man head could not provide an accurate vision feedback to
compute footstep poses and the irregularity of the terrain made
the robot falling after the door was crossed in one of the two runs.
During another run issues with the battery and the electronic power
management forced the team to accept another time penalty to
reset the robot and unfortunately the time left for the run was over.

3.1. software components analysis
The components running on the robot were a set of control
modules, the network bridge, a point cloud grabber, multiple
webcam grabbers, and the hardware abstraction layer, with ROS
and YARP nameservers. In particular, the control modules were
paused and resumed when needed, in order to avoid multiple
modules controlling the same joints at the same time. On the
other hand, on the pilot computers, multiple pilot interfaces and
the network bridge were running, along with ROS and YARP
nameservers. The data flows inside the robot computers were very
simple: all the control modules were connected to the bridge (and
consequently to the pilot) and to the hardware abstraction layer.
The perception modules were only sending data to the pilot, while
the hardware abstraction layer was connected to the ethercat
network and received data from the control modules. Finally, all
the pilot GUIs were connected to the bridge (and consequently to
the control modules on the robot) and to each other.

During the drive task, the driving control module was acti-
vated along with the previous listed modules. After the reset,
the driving module was stopped, while the walking module was
enabled; and the latter was paused and resumed multiple times
during the door task in order to allow the door control module
to open the door. Indeed, as mentioned, the ethercat master is
able to receive inputs from different modules at the same time,
and since walking and door modules operate on the same joints,
they could not be run together, although they were both needed
to execute the task.

The gaze control module was instead active all the time, this
way the perception pilot could watch around and place virtual
markers in the 3D visualization window. The window was seen
and used by all the pilots on their respective computers thanks to
the distributed structure of the pilot interface.

The software components used for networking were the first
to be tested during the rehersal of the DRC, and performed
in a stable and deterministic way. The setup of the bridge was
straightforward; during the simulated DRC outdoor mode, the
pilot interface received all the information published by the robot,
each data at its own designed frequency. Instead, during the simu-
lated indoor mode the TCP channel kept providing critical data,
and UDP started to provide pieces of point clouds and images at
random times, as expected.

In the competition, we did not have the chance to test the
indoor mode, but in the outdoor part, the pilots faced multiple
resets, including complete power-offs of the on-board computer.
Once restarted, the bridge automatically re-established all the
YARP and ROS connections, showing the power of its transpar-
ent behavior.

During the days before the competition, multiple pilot GUI
configurations were used to test the robot components.

For example, the developers of the walking control
modules used a single computer with a GUI configuration
having few status widgets and only one control widget (the

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

14

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

walking one) to tune their controller parameters, while the
driving test required two pilots, one controlling the gaze and
the other using the driving module to steer the wheel and
accelerate.

Finally, the pilot checking the robot and network status could
add another computer and another GUI during the tests when-
ever he needed to.

In the 5 days of tests inside the DRC garage, we experienced a
single crash of one GUI, probably due to a graphic driver error.
After the crash, it was sufficient to start again the GUI with the
same configuration and both ROS and YARP middleware allowed
to reconnect the GUI and the robot with no issues.

The GUI design helped pilots avoiding errors and parallel-
izing tasks. The QtTimedButton safety feature, which was never
needed during trainings, has been exploited for the first and only
time during the DRC. During a locomotion phase, the robot was
positioning itself sideways with respect to the door; the pilot sent
a command to the Walk-Man robot to rotate on the spot. The
locomotion expert in the pilot room suddenly figured out that
rotating on the spot in that particular inclined terrain could lead
to a fall, if an extra stabilization procedure was not used, and he
alerted the main pilot. Since the button related to the rotate on
the spot command is a QtTimedButton, and the 3-s safety time
window was not expired, the pilot was able to re-click the button
and stop the sending of the command. This prevented the robot
from falling in that situation.

The start/stop feature of GYM and the capability of modules
to initialize in any robot configuration was used by the pilots a
couple of times when they were no longer sure about the module
status, e.g., after an unexpected network problem that discon-
nected the TCP safe channel (an issue of the DRC network).

As we already pointed out, the use of multiple pilots and a
distributed interconnected architecture between their computers
represented a remarkable choice. The advantages were demon-
strated during various moments of the challenge, especially in
the cooperation between the main pilot and the perception one.
Indeed, the main pilot delegated to the perception pilot, among
other duties, the superimposition of 3D objects to the scene in the
manipulation tasks (e.g., grabbing the steering wheel or the door
handle) and the continuous checking of the robot surroundings to
decide how to avoid collisions and what to do during the driving.
Thus, the main pilot could just focus on the correct execution of
the various control sub-tasks required by each DRC task, reduc-
ing the amount of stress and consequently the error probability.

3.2. beyond Drc
As mentioned, the Walk-Man platform has been used in several
occasions after the DRC verifying its simple usage and longevity.
A first example of a lab experiment is the development of a visual
servoing manipulation task to improve robot autonomy. This
work uses both a perception ROS module and a manipulation
GYM module, which was successfully developed in few days
thanks to the code and tasks already available.

During Eurathlon 2015 and IROS15, the Walk-Man robot
performed various exhibitions. The executed tasks were walk-
ing, door opening, and valve turning. The walking and door task

performed as during the DRC, in a stable and repeatable fashion.
It was the first time that the valve task was publicly shown
outside the lab and outdoor. The task performed very well and
multiple times, demonstrating its reliability and robustness to
positioning errors.

The last exhibition of the robot has been in Rome for the
Maker Faire Rome 2015: in this occasion the robot had to break
a band to inaugurate the event and then greet the audience. We
were enough confident in the behavior of the hardware abstrac-
tion layer that a colleague located in another city developed the
band breaking task in the Gazebo simulator and then sent the
code to the Istituto Italiano di Tecnologia labs in order to have it
tested on the hardware. The code worked on the real robot out
of the box.

Another relevant aspect of this demo has been the use of a sin-
gle pilot. This was required due to limited space on the stage and
the necessity of a quick setup. By using a reconfigured lighter pilot
interface, the pilot, who was the one responsible for the status of
the robot during the DRC, was able to manage every aspect, from
the communication to the successful execution of the task.

4. DiscUssiOn

The Walk-Man architecture has proven to be functional and
robust in several different occasions and environments (indoor/
outdoor challenges, labs experiments for research). Even during
the architecture development, no particular criticality has been
encountered to make us deviate from the original design. Three
main factors have contributed to the chosen architecture design:
limited time for implementation, heterogeneity of expertise of
code users, and no prior availability of the hardware and, hence,
lack of tested control laws.

Solutions adopted to cope with those factors, and discussed in
this paper, have worked properly in any occasion the platform has
been used. Even though not all the choices were a priori optimal,
they have proven to work properly in our particular case. We will
now discuss the outcomes of some of those choices starting from
those made to overcome the strict time deadlines.

The most striking example of the effort done in avoiding
the boilerplate code, together with the use of GYM, is the DRC
driving module. Indeed, it was developed in a very small amount
of time by a master student (i.e., non-expert code developer),
which managed to control the gas pedal and to steer the wheel
in less than 2 weeks. The module was then refined and tested for
a week by two developers of the team and eventually used in the
challenge.

It is well known that the design of a modular architecture does
not always come for free, requiring significant time effort. Indeed,
each software layer requires its own API to interface with others,
and dedicated maintenance and update. Nevertheless, our team
could have never been able to develop and change the modules
without such APIs: the few main issues (e.g., multi-threading
issues, network bridge incompatibility with custom YARP ports)
encountered during the few months before the competition have
been solved in a small amount of time without compromising or
delaying the work of other software users.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

15

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

An unintuitive and apparently wrong practice, in case of
complex hardware and software platforms, such as Walk-Man,
is the arbitrary choice in critical components implementations as
we did for the network bridge. Indeed, non-architecture develop-
ers were not informed at all of the inner structure of the bridge.
Although this in principle may lead to errors or integration issues,
the alternative approach of discussing the design of the bridge
among all the team members was prohibitive and required too
much time. After the bridge implementation, each of the few
issues emerged was solved jointly with the involved people.

Usually, in large companies and in organized open-source
projects, coding quality standards, style, and procedures are man-
datory and adopted by the whole team. Such approach requires
dedicated advanced training and hence time. In our case, the team
was formed on purpose for the DRC by including researchers of
different groups with different expertise and standards. In similar
situations, we strongly suggest to let every programmer choose
his programing style and control approaches designing a flex-
ible architecture to support the different users. Our architecture
reflects this need by not enforcing any specific control algorithm
in the modules implementation, so that developers were free to
read just the sensors and to control the joints they required to
achieve their specific tasks. As an example, control approaches
could range from open-loop joint-space trajectories to inverse
dynamics using a combination of force-torque, joint torques, and
IMU measurements.

Another solution to cope with short time, which should not
be underestimated, is the human pilot capabilities and improve-
ments thanks to training. In particular, there was a trade-off
between the effort required from the pilots during the challenge
and the software development effort required to offload them
from some tasks. As an example, we decided to skip the develop-
ment of an artificial vision system for automatic object detection
and recognition, and trained the perception pilot in order to be
very fast and accurate in those tasks. We also noticed that, in the
short time, accustom the pilot to each module’s behavior pays off
as much as an improvement in the module code or control law.
Note that this solution cannot be used successfully in every situa-
tion. For example, in case on untrained pilots or in high complex
tasks (e.g., teleoperated balancing), the only possible approach is
the use of a dedicated control software.

For example, our architecture requires tens of modules to be
running at the same time across multiple computers, and the
modules starting order may become complex to maintain. After
the first tests with the whole architecture running, we noticed
that lot of pilot effort had to be put in starting the modules in
the right order. We decided to reduce such requirements as
much as possible, and finally ended up with only the ROS and
YARP nameservers to be started before all the other modules.
We believe that the effort to provide asynchronous starting order

is compensated whenever the architecture complexity increases
up to the point where the pilots can no longer manage the order.

While the whole architecture has demonstrated to work
properly, some useful utilities were not integrated and left to
each developer preferences. In particular, multiple different
logging utilities in each module were storing information useful
for debugging purposes both on the robot and on the pilot PCs.
Some pieces of the stored information were sent commands,
status of the robot, point clouds, failures, and warnings from the
control modules. Although these logging utilities were custom
designed and simple in their capabilities, they provided enough
information to speed up the unavoidable debugging process.
Their helpfulness prompted us to include, in future architecture
updates, a generic logging class integrated in each module with
the same style of GYM and GW.

To conclude, the architecture structure and implementation
did not affect any task during the DRC, and did not impose any
constraint on the control strategies implemented in each task
module. Few main issues (e.g., multi-threading issues, network
bridge incompatibility with custom YARP ports) were detected
during the months before the competition, and they were solved
in a small amount of time without affecting or compromising
the software developers work. Indeed, the future progressive
improvements planned by all the team members mostly relate
to the perception modules providing artificial vision and object
tracking, a walking module capable of reflex-style reactions to
terrain irregularities and an increased automatic error handling in
manipulation modules in order to provide single-click complete
task execution improving robot autonomy. On the other hand,
the architecture general structure is widely accepted by team
members and will require very few changes. The main features to
be added are hard real-time support and a Matlab-EthercatMaster
interface.

aUThOr cOnTribUTiOns

MF, LM, AS, AR, EMH, AC, DK, CP, and LN worked on the
design of the global architecture and on the network. LM, MF,
AR, EMH, AC, and NT designed and developed GYM and the
HAL. AS and CP developed the operator control station GUI and
many control modules. LP and NT coordinated and advised other
authors on all the aspects of this work.

acKnOWleDgMenTs

This work is supported by the European commission project
Walk-Man EU FP7-ICT no. 611832. The authors would like
to thank Stefano Cordasco and Alessio Margan for their work
on the design and implementation of electronic boards and
firmware.

reFerences

Ajoudani, A., Lee, J., Rocchi, A., Ferrati, M., Hoffman, E. M., Settimi, A., et al.
(2014). “A manipulation framework for compliant humanoid coman: appli-
cation to a valve turning task,” in Humanoid Robots (Humanoids), 2014 14th
IEEE-RAS International Conference on (Madrid: IEEE), 664–670.

Brugali, D., and Shakhimardanov, A. (2010). Component-based robotic engi-
neering (part II): systems and models. IEEE Robot. Autom. Mag. 17, 100–112.
doi:10.1109/MRA.2010.935798

Bruyninckx, H. (2001). “Open robot control software: the orocos project,” in
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, Vol. 3 (Seoul: IEEE), 2523–2528.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1109/MRA.2010.935798

16

Ferrati et al. The Walk-Man Robot Software Architecture

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 25

Coleman, DT., Sucan, IA., Chitta, S., and Correll, N. (2014). Reducing the barrier to
entry of complex robotic software: a moveit! case study. J. Software Eng. Robot.
5, 3–16.

Hammer, T., and Bäuml, B. (2013). “The highly performant and realtime deter-
ministic communication layer of the aRDx software framework,” in 16th
International Conference on Advanced Robotics, ICAR 2013 (Montevideo).

Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015).
Mobile manipulation and mobility as manipulation design and algorithms of
RoboSimian. J. Field Robot. 32, 255–274. doi:10.1002/rob.21566

Hoffman, E. M., Traversaro, S., Rocchi, A., Ferrati, M., Settimi, A., Romano, F., et al.
(2014). “Yarp based plugins for gazebo simulator,” in Modelling and Simulation
for Autonomous Systems: First International Workshop, MESAS 2014, Vol. 8906
(Rome: Springer), 333.

Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al.
(2015). Team IHMC’s lessons learned from the DARPA robotics challenge
trials. J. Field Robot. 32, 192–208. doi:10.1002/rob.21571

Kam, H. R., Lee, S.-H., Park, T., and Kim, C.-H. (2015). Rviz: a toolkit for real
domain data visualization. Telecommun. Syst. 60, 337–345. doi:10.1007/
s11235-015-0034-5

Kohlhoff, C. (2003). Boost. Asio. Available at: http://www.boost.org/doc/libs/1
Kryczka, P., Kormushev, P., Tsagarakis, N., and Caldwell, D. G. (2015). “Online

regeneration of bipedal walking gait optimizing footstep placement and
timing,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS
2015) (Hamburg).

Lee, J., Ajoudani, A., Hoffman, E. M., Rocchi, A., Settimi, A., Ferrati, M., et al.
(2014). “Upper-body impedance control with variable stiffness for a door open-
ing task,” in Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International
Conference on (Madrid: IEEE), 713–719.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 43–48.

Negrello, F., Garabini, M., Catalano, M. G., Malzahn, J., Caldwell, D. G., Bicchi, A.,
et al. (2015). “A modular compliant actuator for emerging high performance

and fall-resilient humanoids,” in 2015 IEEE-RAS 15th International Conference
on Humanoid Robots (Seoul: IEEE), 414–420.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros:
an open-source robot operating system,” in ICRA Workshop on Open Source
Software, Vol. 3 (Kobe: IEEE-RAS).

Rocchi, A., Hoffman, E. M., Caldwell, D. G., and Tsagarakis, N. G. (2015). “Opensot:
a whole-body control library for the compliant humanoid robot coman,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference on
(Seattle: IEEE), 6248–6253.

Settimi, A., Pavan, C., Varricchio, V., Ferrati, M., Hoffman, E. M., Rocchi,
A., et al. (2014). “A modular approach for remote operation of humanoid
robots in search and rescue scenarios,” in Modelling and Simulation for
Autonomous Systems: First International Workshop, MESAS 2014, Vol.
8906 (Rome: Springer), 192.

Walck, G., Cupcic, U., Duran, T. O., and Perdereau, V. (2014). A case study of
ROS software re-usability for dexterous in-hand manipulation. J. Software Eng.
Robot. 5, 36–47.

Yi, S.-J., McGill, S. G., Vadakedathu, L., He, Q., Ha, I., Han, J., et al. (2015). Team
THOR’s entry in the DARPA robotics challenge trials 2013. J. Field Robot. 32,
315–335. doi:10.1002/rob.21555

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Ferrati, Settimi, Muratore, Cardellino, Rocchi, Mingo Hoffman,
Pavan, Kanoulas, Tsagarakis, Natale and Pallottino. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1002/
rob.21566
http://dx.doi.org/10.1002/
rob.21571
http://dx.doi.org/10.1007/s11235-015-0034-5
http://dx.doi.org/10.1007/s11235-015-0034-5
http://www.boost.org/doc/libs/1
http://dx.doi.org/10.1002/rob.21555
http://creativecommons.org/licenses/by/4.0/

	The Walk-Man Robot Software Architecture
	1. Introduction
	1.1. Robot Platform
	1.2. Design Choices Overview

	2. Software Architecture
	2.1. Firmware-Ethercat
	2.2. Ethercat Master – YARP
	2.3. Hardware/Simulation
Abstraction Layer
	2.4. Generic Control Module Template
	2.4.1. Communication Interfaces
	2.4.2. State Machine

	2.5. Control Modules
	2.5.1. Finite State Machine
	2.5.2. Trajectory Generator Library

	2.6. Unreliable Channel Management
	2.6.1. TCP Bridge
	2.6.2. UDP Bridge

	2.7. Pilot Interface

	3. Results: The DRC Experience
	3.1. Software Components Analysis
	3.2. Beyond DRC

	4. Discussion
	Author Contributions
	Acknowledgments
	References

