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We describe our software system enabling a tight integration between vision and control 
modules on complex, high-DOF humanoid robots. This is demonstrated with the iCub 
humanoid robot performing visual object detection and reaching and grasping actions. 
A key capability of this system is reactive avoidance of obstacle objects detected from 
the video stream while carrying out reach-and-grasp tasks. The subsystems of our 
architecture can independently be improved and updated, for example, we show that 
by using machine learning techniques we can improve visual perception by collecting 
images during the robot’s interaction with the environment. We describe the task and 
software design constraints that led to the layered modular system architecture.

Keywords: humanoid robots, software framework, robotic vision, eye–hand coordination, reactive reaching, 
machine learning

1. inTrODUcTiOn

In the last century, robots have transitioned from science fiction to science fact. When interacting 
with the world around them robots need to be able to reach for, grasp, and manipulate a wide range 
of objects in arbitrary positions. Object manipulation, as this is referred to in robotics, is a canonical 
problem for autonomous systems to become truly useful. We aim to overcome the limitations of 
current robots and the software systems that control them, with a focus on complex bi-manual 
robots. It has previously been suggested that better perception and coordination between sensing 
and acting are key requirements to increase the capabilities of current systems (Kragic and Vincze, 
2009; Ambrose et al., 2012). Yet with the increasing complexity of the mechanical systems of modern 
robots programing these machines can be tedious, error prone, and inaccessible to non-experts. 
Roboticists are increasingly considering learning over time to “program” motions into robotic 
systems. In addition, continuous learning increased the flexibility and provides the means for self-
adaptation, leading to more capable autonomous systems. Research in artificial intelligence (AI) 
techniques has led to computers that can play chess on a level good enough to win against (and/or 
tutor) the average human player (Sadikov et al., 2007). Robotic manipulation of chess pieces on a 
human-level of precision and adaptation is still beyond current systems.

The problem is not with the mechanical systems. Sensory feedback is of critical importance for 
acting in a purposeful manner. For humans particularly, vision is an important factor in the develop-
ment of reaching and grasping skills (Berthier et al., 1996; McCarty et al., 2001). The essential challenge 
in robotics is to create a similarly efficient perception system. For example, NASA’s Space Technology 
Roadmap is calling for the development of autonomously calibrating hand-eye systems enabling 
successful off-world robotic manipulation (Ambrose et al., 2012). This ability is fundamental for 
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humans and animals alike, leading to many experimental studies 
on how we perform these actions (Posner, 1989; Jeannerod, 1997). 
The process is still not fully understood but basic computational 
models for how humans develop their reaching and grasping 
skills during infancy exist (Oztop et al., 2004). Where 14-month-
old infants can imitate and perform simple manipulation skills 
(Meltzoff, 1988), robots can only perform simple, pre-programed 
reaching and grasping in limited scenarios. Our ability to adapt 
during motion execution to changing environments is lacking in 
robots right now. Yet this adaptation is important as even if the 
environment can be perceived precisely, it will not be static in 
most (interesting) settings.

Coming back to the chess example, for an autonomous system 
to pick up a chess piece, it needs to be able to perceive the board, 
detect the right piece, and locate the position accurately, before 
executing a purposeful motion that is safe for the robot and its 
environment. These sub-problems have turned out to be much 
harder than expected a few decades ago. With the progress in 
mechanical design, motion control, and computer vision, it is 
time to revisit the close coupling between those systems to create 
robots that perform actions in day-to-day environments.

1.1. Motion and action: interacting with 
the environment
In the chess example, even if the state of the board and its loca-
tion are known perfectly, moving a certain chess piece from one 
square to another without toppling other pieces is a non-trivial 
problem. Children, even at a very young age, have significantly 
better (more “natural,” smoother) hand movements than almost 
all currently available humanoid robots. In humans, the develop-
ment of hand control starts at an early age, albeit clumsily, and 
the precision grasp is not matured until the age of 8–10  years 
(Forssberg et al., 1991). Even after manipulation skills have been 
learnt, they are constantly adapted by a perception–action loop 
to yield desired results during action execution. Vision and action 
are closely integrated in the human brain. Various specializations 
develop also in the visual pathways of infants related to extracting 
and encoding information about the location and graspability of 
objects (Johnson and Munakata, 2005).

To enable robots to interact with objects in unstructured, 
cluttered environments, a variety of reactive approaches have 
been investigated. These quickly generate control commands 
based on sensory input – similar to reflexes – without sampling 
the robot’s configuration space and deliberately searching for a 
solution (Khatib, 1986; Brooks, 1991; Schoner and Dose, 1992). 
Generally such approaches apply a heuristic to transform local 
information (in the sensor reference frame) to commands sent 
to the motors, leading to fast, reflex-like obstacle avoidance. 
Reactive approaches have become popular in the context of 
safety and human-robot interaction (De Santis et  al., 2007; 
Dietrich et al., 2011) but are brittle and inefficient at achieving 
global goals. A detailed model of the world enables the planning 
of coordinated actions. Finding a path or trajectory is referred 
to as the path planning problem. This search for non-colliding 
poses is generally expensive and increasingly so with higher DOF. 
Robots controlled this way are typically slow and appear cautious 

in their motion execution. These reactive approaches started to 
appear in the 1980s as an alternative to the “think first, act later” 
paradigm. Current robotic systems operate in a very sequential 
manner. After a trajectory is planned, it is performed by the robot, 
before the actual manipulation begins. We aim to move away 
from such brittle global planner paradigms and have these parts 
overlap and have continuous refining based on visual feedback. 
The framework provides quick and reactive motions, as well as, 
interfaces to these for so higher-level agents or ‘‘opportunistic’’ 
planners can control the robot safely.

Once the robot has moved its end-effector close enough to 
an object, it can start to interact with it. In recent years, good 
progress has been made in this area thanks to the development 
of robust and precise grippers and hands and the improvement 
of grasping techniques. In addition, novel concepts of “grippers” 
appeared in research, including some quite ingenious solutions, 
such as the granular gripper (Brown et al., 2010). As alternative 
to designing a grasping strategy, it may be possible to learn it 
using only a small number of real-world examples, where good 
grasping points are known, and these could be generalized or 
transferred to a wide variety of previously unseen objects (Saxena 
et al., 2008). An overview of the state of research in robot grasping 
is found in Carbone (2013). Our framework provides an interface 
to “action repertoires.” In one of the examples later on, we show 
how we use a simple grasping module that is triggered when the 
robot’s end-effector is close to a target object. While vision may 
be suitable for guiding a robot to an object, the very last phase of 
object manipulation – the transition to contact – may require the 
use of sensed forces.

1.2. robotic Vision: Perceiving the 
environment
For a robot to pick a chess piece, for example, finding the chess 
board and each of the chess pieces in the camera image or even 
just to realize that there is a chess board and pieces in the scene 
is critical. An important area of research is the development of 
artificial vision systems that provide robots with such capabili-
ties. The robot’s perception system needs to be able to determine 
whether the image data contain some specific object, feature, or 
activity. While closely related to computer vision, there are a few 
differences mainly in how the images are acquired and how the 
outcome will provide input for the robot to make informed deci-
sions. For example, visual feedback has extensively been used in 
mobile robot applications for obstacle avoidance, mapping, and 
localization (Davison and Murray, 2002; Karlsson et  al., 2005). 
Especially in the last decade, there has been a surge of computer 
vision research. A focus is put on the areas relevant for object 
manipulation1 and the increased interest in working around and 
with humans.

Robots are required to detect objects in their surround-
ings even if they were previously unknown. In addition, we 
require them to be able to build models so they can re-identify 

1 In recent years, various challenges have emerged around this topic, such as the 
Amazon Picking Challenge and RoboCup@Home.
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FigUre 1 | During a stereotypical manipulation task, object detection is a hard but critical problem to solve. These images collected during our 
experiments show the changes in lighting, occlusions, and pose of complex objects. (Note: best viewed in color) We provide a framework that allows for the easy 
integration of multiple, new detectors (Leitner et al., 2013a).
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and memorize them in the future. Progress has been made 
on detecting objects  –  especially when limiting the focus on 
specific settings  –  the interested reader is referred to current 
surveys (Cipolla et al., 2010; Verschae and Ruiz-del Solar, 2015). 
A solution for the general case, i.e., detecting arbitrary objects 
in arbitrary situations, is elusive though (Kemp et  al., 2007). 
Environmental factors, including changing light conditions, 
inconsistent sensing, or incomplete data acquisition seem to be 
the main cause of missed or erroneous detection (Kragic and 
Vincze, 2009) (see also the environmental changes in Figure 1). 
Most object detection applications have been using hand-crafted 
features, such as SIFT (Lowe, 1999) or SURF (Bay et al., 2006), or 
extensions of these for higher robustness (Stückler et al., 2013). 
Experimental robotics still relies heavily on artificial landmarks 
to simplify (and speed-up) the detection problem, though there 
is recent progress specifically for the iCub platform (Ciliberto 
et al., 2011; Fanello et al., 2013; Gori et al., 2013). Many AI and 
learning techniques have been applied to object detection and 
classification over the past years. Deep-learning has emerged 
as a promising technology for extracting general features from 
ever larger datasets (LeCun et al., 2015; Schmidhuber, 2015). An 
interface to such methods is integrated in our framework and 
has been applied to autonomously learn object detectors from 
small datasets (only 5–20 images) (Leitner et al., 2012a, 2013a; 
Harding et al., 2013).

Another problem relevant to eye–hand coordination is 
estimating the position of an object with respect to the robot 
and its end-effector. “Spatial Perception,” as this is known, is 
a requirement for planning useful actions and build cohesive 
world models. Studies in brain- and neuro-science have uncov-
ered trends on what changes, when we learn to reason about 
distances by interacting with the world, in contrast how these 
changes happen is not yet clear (Plumert and Spencer, 2007). In 
robotics, to obtain a distance measure multiple camera views 
will provide the required observations. Projective geometry and 
its implementation in stereo vision systems are quite common 
on robotic platforms. An overview of the theory and techniques 
can be found in Hartley and Zisserman (2000). While projec-
tive geometry approaches work well under carefully controlled 
experimental circumstances, they are not easily transferred to 

robotics applications though. These methods are falling short 
as there are either separately movable cameras (such as in the 
case of the iCub, which can be seen in the imprecise out-of-
the-box localization module (Pattacini, 2011)) or only single 
cameras available (as with Baxter). In addition, the method 
needs to cope with separate movement of the robot’s head, gaze, 
and upper body. A goal for the framework was also to enable 
the learning of depth estimation from separately controllable 
camera pairs, even on complex humanoid robots moving about 
(Leitner et al., 2012b).

1.3. integration: sensorimotor 
coordination
Although there exists a rich body of literature in computer vision, 
path planning, and feedback control, wherein many critical sub-
problems are addressed individually, most demonstrable behav-
iors for humanoid robots do not effectively integrate elements 
from all three disciplines. Consequently, tasks that seem trivial 
to humans, such as picking up a specific object in a cluttered 
environment, remain beyond the state-of-the-art in experimental 
robotics. A close integration of computer vision and control is of 
importance, e.g., it was shown that to enable a 5 DOF robotic arm 
to pick up objects just providing a point-cloud generated model of 
the world was not sufficient to calculate reach and grasp behaviors 
on-the fly (Saxena et al., 2008). The previously mentioned work 
by Maitin-Shepard et  al. (2010) was successful, manipulating 
towels due to a sequence of visually guided re-grasps. “Robotics, 
Vision, and Control” (Corke, 2011) puts the close integration 
of these components into the spotlight and describes common 
pitfalls and issues when trying to build systems with high levels 
of sensorimotor integration.

Visual Servoing (Chaumette and Hutchinson, 2006) is a com-
monly used approach to create a tight coupling of visual percep-
tion and motor control. The closed-loop vision-based control can 
be seen as a very basic level of eye–hand coordination. It has been 
shown to work as a functional strategy to control robots without 
any prior calibration of camera to end-effector transformation 
(Vahrenkamp et al., 2008). A drawback of visual servoing is that 
it requires the robust extraction of visual features; in addition, 
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the final configuration of these features in image space needs to 
be known a priori.

Active vision investigates how controlling the motion of the 
camera, i.e., where to look at, can be used to create additional 
information from a scene. (Welke et  al., 2010), for example, 
presented a method that creates a segmentation out of multiple 
viewpoints of an object. These are generated by rotating an object 
in the robot’s hand in front of its camera. These exploratory 
behaviors are important to create a fully functioning autonomous 
object classification system and are highlighting one of the big 
differences between computer and robotic vision.

Creating a system that can improve actions by using visual 
feedback, and vice versa improve visual perception by performing 
manipulation actions, necessitates a flexible way of representing, 
learning, and storing visual object descriptions. We have devel-
oped a software framework for creating a functioning eye–hand 
coordination system on a humanoid robot. It covers quite distinct 
areas of robotics research, namely machine learning, computer 
vision, and motion generation. Herein, we describe and showcase 
this modular architecture that combines those areas into an inte-
grated system running on a real robotic platform. It was started as 
a tool for iCub humanoid but thanks to its modular design it can 
and has been used with other robots, most recently on a Baxter 
robot as well.

1.3.1. Robotic Systems Software Design and Toolkits
Current humanoid robots are stunning feats of engineering. 
With the increased complexity of these systems, the software 
to run these machines is increasing in complexity as well. In 
fact, programing today’s robots requires a big effort and usu-
ally a team of researchers. To reduce the time needed to setup 
robotics experiments and to stop the need to repeatedly invent 
the wheel, good system level tools are needed. This has led to 
the emergence of many open source projects in robotics (Gerkey 
et  al., 2003; van den Bergen, 2004; Metta et  al., 2006; Jackson, 
2007; Diankov and Kuffner, 2008; Fitzpatrick et al., 2008; Quigley 
et al., 2009). State-of-the art software development methods have 
also been translated into the robotics domain. Innovative ideas 
have been introduced in various areas to promote the reuse of 
robotic software “artifacts,” such as components, frameworks, 
and architectural styles (Brugali, 2007). To build more general 
models of robot control, robotic vision and their close integration 
robot software needs to be able to abstract certain specificities 
of the underlying robotic system. There exists a wide variety of 
middleware systems that abstract the specifics of each robot’s sen-
sors and actuators. Furthermore, such systems need to provide 
the ability to communicate between modules running in parallel 
on separate computers.

ROS (Robot Operating System) (Quigley et al., 2009) is one 
of the most popular robotics software platforms. At heart, it is a 
component-based middleware that allows computational nodes 
to publish and subscribe to messages on particular topics, and 
to provide services to each other. Nodes communicate via “mes-
sages,” i.e., data blocks of pre-defined structure, and can execute 
a networked distributed computer system and the connections 
can be changed dynamically during runtime. ROS also contains a 
wider set of tools for computer vision (OpenCV and point-cloud 

library PCL), motion planning, visualization, data logging and 
replay, debugging, system startup as well as drivers for a mul-
titude of sensors, and robot platforms. For the iCub YARP (Yet 
Another Robotics Platform) (Metta et al., 2006) is the middleware 
of choice. It is largely written in C++ and uses separately running 
code instances, titled “modules.” These can be dynamically and 
flexibly linked and communicate via concise and pre-defined 
messages called “bottles,” facilitating component-based design. 
There is a wide range of other robotic middleware systems 
available, such as ArmarX (Vahrenkamp et al., 2015), OROCOS 
(Soetens, 2006), and OpenRTM (Ando et al., 2008), all with their 
own benefits and drawbacks, see (Elkady and Sobh, 2012) for a 
comprehensive comparison.

The close integration of vision and control has been addressed 
by VISP (Visual Servoing Platform) developed at INRIA 
(Marchand et  al., 2005). It provides a library for controlling 
robotic systems based on visual feedback. It contains a multitude 
of image processing operations, enabling robots to extract useful 
features from an image. By providing the desired feature values, 
a controller for the robot’s motion can be derived (Hutchinson 
et al., 1996; Chaumette and Hutchinson, 2006). The framework 
presented here is building on these software systems to provide 
a module-based approach to tightly integrate computer vision 
and motion control for reaching and grasping on a humanoid 
robot. The architecture grew naturally over the last few years 
and was initially designed for the iCub and, hence, used YARP. 
While there exists also a “bridge” component in YARP allowing 
it to communicate with ROS topics and nodes, it was easy to port 
it to ROS and Baxter. Furthermore, there is currently a branch 
being developed aimed to be fully agnostic to the underlying 
middleware.

2. The eYe–hanD FraMeWOrK

The goal of our research is to improve the autonomous skills of 
humanoid robots by providing a library giving a solid base of 
sensorimotor coordination. To do so, we developed a modular 
framework that allows to easily run and repeat experiments on 
humanoid robots. To create better perception and motion, as 
well as a coordination between those, we split the system into 
two subsystems: one focusing on action and the other one on 
vision (our primary sense). To deal with uncertainties, various 
machine learning (ML) and artificial intelligence (AI) techniques 
are applied to support both subsystems and their integration. We 
close the loop and perform grasping of objects, while adapting 
to unknown, complex environments based on visual feedback, 
showing that combining robot learning approaches with 
computer vision improves adaptivity and autonomy in robotic 
reaching and grasping.

Our framework, sketched in Figure 2A, provides an integrated 
system for eye–hand coordination. The Perception (green) and 
Action (yellow) subsystems are supported by Memory (in blue) 
that enables the persistent modeling of the world. Functionality 
has grown over time and the currently existing modules that have 
been used in support of eye–hand coordination framework for 
cognitive robotics research (Leitner, 2014, 2015) are as follows:
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FigUre 2 | (a) Overview of the common subsystems for a functional eye–hand coordination on humanoid robots. In broader terms, one can separate the (visual) 
perception side (in green) from the action side (yellow). In addition to these, a memory subsystem (blue) allows to build-up an action repertoire and a set of object 
models. (B) The presented framework herein consists of a modular way of combining perception tasks, encapsulated in the icVision subsystem [green, as in (a)], 
with the action side and a world model, represented by the MoBeE subsystem (in yellow and blue). In addition, agents can interface these systems to generate 
specific behaviors or to learn from the interaction with the environment (see Results). To allow portability, the system uses a communication layer and a robot 
abstraction middleware, e.g., ROS or YARP.
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•	 Perception: Object Detection and Identification: as mentioned 
above, the detection and identification of objects is a hard 
problem. To perform object detection and identification, we 
use a system called icVision. It provides a modular approach 
for the parallel execution of multiple object detectors and 
identifiers. While these can be hard-coded (e.g., optical flow 
segmentation of moving object, or simple color thresholding), 
the main advantage of this flexible system is that it can be 
interfaced by a learning agent (sketched in Figure 2B). In our 
case, we have successfully used Cartesian Genetic Programing 
for Image Processing (CGP-IP) (Harding et  al., 2013) as an 
agent to learn visual object models in both a supervised and 
unsupervised fashion (Leitner et  al., 2012a). The resulting 
modules perform specific object segmentation of the camera 
images.

•	 Perception: Object Localization: icVision also provides a module 
for estimating the location of an object detected by multiple 
cameras – i.e., the two eyes in the case of the iCub. In this case, 
again the flexibility of the perception framework allows for 
a learning agent to predict object positions with a technique 
based on genetic programing and an artificial neural network 
estimators (Leitner et al., 2012b). These modules can be easily 
swapped or run in parallel, even on different machines.

•	 Action: Collision Avoidance and Motion Generation: MoBeE is 
used to safeguard the robot from collisions both with itself and 
the objects detected. This is implemented as a low-level inter-
face to the robot and uses virtual forces based on the robot 
kinematics to generate the robot’s motion. A high-level agent 
or planner can provide the input to this system (more details 
in the next section).

•	 Memory: World Model: In addition to modeling the kinematics 
of the robot to MoBeE also keeps track of the detected object 
in operational space. It is also used as a visualization for the 
robot’s current belief state by highlighting (impeding) colli-
sions (see Section 2.2).

•	 Memory: Action Repertoire: a light-weight, easy-to-use, one-
shot grasping system is used. It can be configured to perform 
a variety of grasps, all requiring to close the fingers in a coor-
dinated fashion. The iCub incorporates touch sensors on the 
fingertips, but due to the high noise, we use the error reported 
by the PID controllers of the finger motors to know when they 
are in contact with the object.

Complex, state-of-the art humanoid robots are controlled by 
a distributed system of computers most of which are not onboard 
the robot. On the iCub (and similarly on Baxter), an umbilical 
provides power to the robot and a local-area-network (LAN) 
connection. Figure 3 sketches the distributed computing system 
used to operate a typical humanoid robot: very limited on-board 
computing, which mainly focuses on the low-level control and 
sensing, is supported by networked computers for computational 
intensive tasks. The iCub, for example, employs an on-board 
PC104 controller that communicates with actuators and sensors 
using CANBus. Similarly, Baxter has an on-board computing 
system (Intel i7) acting as the gateway to joints and cameras. 
More robot-specific information about setup and configuration, 
as well as the code base, can be found on the iCub and Baxter Wiki 
pages,2 where researchers, from a large collection of research labs 
using the robot, contribute and build up a knowledge base.

All the modules described communicate with each other 
using a middleware framework (depicted in Figure  2B). The 
first experiments were performed on the iCub; therefore, the first 
choice for the middleware was YARP. A benefit of using a robotic 
middleware is that actuators and sensors can be abstracted, i.e., 
the modules that connect to icVision and MoBeE do not require to 
know the robot specifics. Another benefit of building on existing 
robotics middleware is the ability to distribute modules across 

2 iCub Wiki URL: http://wiki.icub.org Baxter Wiki URL: http://api.rethinkrobotics.
com
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FigUre 3 | a sketch of the computing setup we used to operate the 
iCub at the iDsia robotics lab. The pc104 handles the on-board data 
processing and controls the motors via CAN-bus. The icubServer is 
running the YARP server and is the router into the IDSIA-wide network and 
the internet. Dedicated computers for vision (icubVision) and collision 
avoidance (MoBeeBox) are used.
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multiple computers. In our setup, the various computational 
tasks were implemented as nodes, which were then distributed 
throughout the network of computers. For the experiments 
on the iCub, a separate computer was used to run multiple 
object detection modules in parallel, while another computer 
(MoBeEBox) performed the collision avoidance and visualizing 
the world model. During the development of new modules, an 
additional user PC was connected via Ethernet to run and debug 
the new modules. Component-level abstraction using middle-
ware increases portability across different robotic systems. For 
example, running MoBeE with different robot arms is easily done 
by simply providing the new arm’s kinematic model as an XML 
file. Transferring to other middleware systems is also possible, 
though a bit more intricate. We have ported various parts of the 
architecture to ROS-based modules allowing to interact with 
ROS-based robots, such as Baxter.

Humanoid robots, and the iCub in particular, have a high DOF, 
which allows for complex motions. To perform useful actions, 
many robots need to be controlled in unison requiring robust 
control and planning algorithms. Our framework consists of an 
action subsystem, which in turn contains collision avoidance and 
grasping capabilities.

2.1. Object Detection and localization 
Modules: icVision
Our humanoid robot should be able to learn how to perceive and 
detect objects from very few examples, in a manner similar to 
humans. It should have the ability to develop a representation that 
allows it to detect the same object again and again, even when the 
lighting conditions change, e.g., during the course of a day. This is 
a necessary prerequisite to enable adaptive, autonomous behav-
iors based on visual feedback. Our goal is to apply a combination 
of robot learning approaches, artificial intelligence, and machine 
learning techniques, with computer vision, to enable a variety of 
proposed tasks for robots.

icVision (Leitner et al., 2013c) was developed to support cur-
rent and future research in cognitive robotics. This follows a “pas-
sive” approach to the understanding of vision, where the actions 

of the human or robot are not taken into account. It processes 
the visual inputs received by the cameras and builds (internal) 
representations of objects. This computation is distributed over 
multiple modules. It facilitates the 3D localization of the detected 
objects in the 2D image plane and provides this information 
to other systems, e.g., a motion planner. It allows to create 
distributed systems of loosely coupled modules and provides 
standardized interfaces. Special focus is put on object detection 
in the received input images. Figure 4 shows how a simple red 
detection can be added as a separate running module. Specialized 
modules, containing a specific model, are used to detect distinct 
patterns or objects. These specialized modules can be connected 
and form pathways to perform, e.g., object detection, similarly to 
the hierarchies in the visual cortex. While the focus herein is on 
the use of single and stereo camera images, we are confident that 
information from RGB-D cameras (such as the Microsoft Kinect) 
can be easily integrated.

The system consists of different modules, with the core module 
providing basic functionality and information flow. Figure  5 
shows separate modules for the detection and localization and 
their connection to the core, which abstract the robot’s cameras 
and the communication to external agents. These external agents 
are further modules and can do a wide variety of tasks, for exam-
ple, specifically test and compare different object detection or 
localization techniques. icVision provides a pipeline that connects 
visual perception with world modeling in the MoBeE module 
(dashed line in Figure  5). By processing the incoming images 
from the robot with a specific filter for each “eye,” the location of 
the specific object can be estimated by the localization module 
and then communicated to MoBeE (Figure 6 depicts the typical 
information flow).

2.2. robot and World Modeling for 
collision avoidance: MoBee
MoBeE (Modular Behavior Environment for Robots) is at the 
core of the described framework for eye–hand coordination. It is 
a solid, reusable, open-source3 toolkit for prototyping behaviors 
on the iCub humanoid robot. MoBeE represents the state-of-the-
art in humanoid robotic control and is similar in conception 
to the control system that runs DLR’s Justin (De Santis et  al., 
2007; Dietrich et al., 2011). The goal of MoBeE is to facilitate the 
close integration of planning and motion control (sketched in 
Figure  2B). Inspired by Brooks (1991), it aims to embody the 
planner, provide safe and robust action primitives, and perform 
real-time re-planning. This facilitates exploratory behavior using 
a real robot with MoBeE acting as a supervisor preventing col-
lisions, even between multiple robots. It consists of three main 
parts all implemented in C++: a kinematic library with a visuali-
zation, and a controller, running in two separate modules. These 
together provide the “collision avoidance” (yellow) and “world 
model” (blue) as depicted in Figure 2A. Figure 5 shows the con-
nections between the various software entities required to run the 
full eye–hand coordination framework. MoBeE communicates 

3 URL: https://github.com/kailfrank/MoBeE
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FigUre 4 | little coding is required for a new module to be added as filter to icVision. This shows a simple red filter being added. The image acquisition, 
connection of the communication ports, and cleanup are all handled by the superclass.

7

Leitner et al. Framework for Eye–Hand Coordination

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 26

with the robot and provides an interface to other modules. One 
of these is the perception side icVision.

In its first iteration, MoBeE provided virtual feedback for a 
reinforcement learning experiment. This was necessary as most 
current robotic systems lack a physical skin that would provide 
sensory information to perform reflexive motions. It was intended 
to enforce constraints in real time while a robot is under the 
control of any arbitrary planner/controller. This led to a design 
based on switching control, which facilitated experimentation 
with pre-existing control modules. A kinematic model is loaded 
from an XML file using “Zero Position Displacement Notation” 
(Gupta, 1986).

When the stochastic or exploratory agent/controller (light gray 
at the top in Figure 5) does something dangerous or undesirable, 
MoBeE intervenes. Collision detection is performed on the loaded 
kinematic robot model consisting of a collection of simple geom-
etries to form separate body parts (see Figure 7). These geom-
etries are created as C++ objects that inherit functionality from 
both the fast geometric intersection library and the visualization 
in OpenGL. The joint encoders provided by the robot abstraction 
layer are used to calculate collisions, i.e., intersecting body parts. 
In the first version, this collision signal was used to avoid colli-
sions by switching control, which was later abandoned in favor 
of a second-order dynamical system (Frank, 2014). Constraints, 
such as impeding collisions, joint limits, or cable lengths, can be 

addressed by adding additional forces to the system. Due to the 
dynamical system, many of the collisions encountered in practice 
no longer stop the robot’s action, but rather deflect the requested 
motion, bending it around an obstacle.

MoBeE continuously mixes control and constraint forces to 
generate the robot motion in real time and results in smoother, 
more intuitive motions in response to constraints/collisions 
(Figure 8). The effects of sensory noise are mitigated passively 
by the controller. The constraint forces associated with collisions 
are proportional to their penetration depth; in the experimenta-
tion, it was observed that the noise in the motor encoder signal 
has a minimal effect on collision response. The sporadic shallow 
collisions, which can be observed when the robot is operating 
close to an obstacle, such as the other pieces of a chess board, 
generate tiny forces that only serve to nudge the robot gently away 
from the obstacle. MoBeE in addition can be used for adaptive 
roadmap planning (Kavraki et al., 1996; Stollenga et al., 2013), the 
dynamical approach means that the planner/controller is free to 
explore continuous spaces, without the need to divide them into 
safe and unsafe regions.

The interface for external agents is further simplified by allow-
ing to subscribe to specific points of interest in the imported 
models (seen in yellow in Figure 7). These markers can be defined 
both on static or moving objects or the robots. The marker posi-
tions or events, such as the body part being in a colliding pose, 
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FigUre 5 | The framework described consists of multiple software entities (indicated by cogwheels), all connected via a communication layer, such 
as YarP or rOs. The provided robot abstraction is used by the main modules. On the perception side, icVision processes the incoming camera images in its core 
module and sends them to (possibly multiple) separately running detection filters. Another separate entity is performing the localization based on the detected 
objects and robot’s pose. The icVision Core also provides interfaces for agents to query for specific objects or agents that learn object representations (such as a 
CGP-IP based learner). The interface also provides the objects location to MoBeE. There a world model is created by calculating the forward kinematics from the 
incoming joint positions. The same entity performs the collision avoidance between separate body parts or the objects that have been detected by icVision. The 
controller is independent and translates the virtual forces created by MoBeE or provided by higher level planning agents into motor commands.
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are broadcast via the interface allowing connected agents to react, 
e.g., to trigger a grasp primitive. More details about the whole 
MoBeE architecture and how it was used for reach learning can be 
found in Frank (2014). Additionally, we have published multiple 
videos of our robotic experiments while using MoBeE foremost: 
“Toward Intelligent Humanoids.”4

2.3. action repertoire: leOgrasper 
Module
Robotic grasping is an active and large research area in robotics. 
A main issue is that in order to grasp successfully the pose of the 
object to be grasped has to be known quite precisely. This is due 
to the grasp planners required to plan the precise placement and 
motion of each individual “finger” (or gripper). Several methods 
for robust grasp planning exploit the object geometry or tactile 
sensor feedback. However, object pose range estimation intro-
duces specific uncertainties that can also be exploited to choose 
more robust grasps (Carbone, 2013).

A different approach is used in our implementation that does 
use a more reactive approach. Grasp primitives are triggered 
from MoBeE, which involve the controlling the five digit iCub 
hand. These primitives consist of target points in joint space to be 
reached sequentially during grasp execution. Another problem 

4 Webpage: http://Juxi.net/media/ or direct video URL: http://vimeo.com/51011081

is to realize when to stop grasping. The iCub has touch sensors 
on the palm and finger tips. To know when there is a successful 
grasp, these sensors need to be calibrated for the material in use. 
Especially for objects as varied as plastic cups, ceramic mugs, and 
tin cans, the tuning can be quite cumbersome and leads to a lower 
signal-to-noise ratio. We decided to overcome this by using the 
errors from the joint controllers directly. This approach allows 
to provide feedback whether a grasp was successful or not to a 
planner or learning system.

LEOGrasper is our light-weight, easy-to-use, one-shot grasp-
ing system for the iCub. The system itself is contained in one 
single module using YARP to communicate. It can be triggered 
by a simple command from the command line, network, or as in 
our case from MoBeE. The module can be configured for multiple 
grasp types, these are loaded from a simple text file, containing 
some global parameters (such as the maximum velocity) as well as 
the trajectories. Trajectories are specified by providing positions 
for each joint individually, containing multiple joints per digit as 
well as abduction, spread, etc. on the iCub. We provide power and 
pinch grasp and pointing gestures. For example, to close all digits 
in a coordinated fashion, at least two positions need to be defined, 
the starting and end position (see Figure 9). For more intricate 
grasps, multiple intermediate points can be provided. The robot’s 
fingers are controlled from the start point to each consecutive 
point, when an open signal is received. For close, the points 
are sent in reverse order.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://Juxi.net/media/
http://vimeo.com/51011081


FigUre 6 | To provide information about the 3D location of an object 
to MoBeE, the following is performed: at first, camera images are 
received by the core from the hardware via a communications layers. 
The images are split into channels and made available to each individual 
icVision filters that is currently active. These then perform binary 
segmentation for a specific object. The objects (center) location in the image 
frame, (u,v) is then communicated to a 3D localization module. Using the joint 
encoder values and the object’s location in both eyes, a location estimate is 
then sent to the MoBeE world model (Leitner et al., 2013a).
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LEOGrasper has been used extensively in our robotics lab 
and selected successful grasps are shown in Figure  10.5 The 

5 Source code available at: https://github.com/Juxi/iCub/ 

existing trajectories and holding parameters were tuned through 
 experimentation; in the future, we aim at learning these primi-
tives using human demonstrations or reward signals.

3. MeThOD OF inTegraTing acTiOn 
anD VisiOn: aPPlYing The 
FraMeWOrK

The framework has been extensively used over the last few years 
in our experimental robotics research. Various papers have been 
published during the development of the different subsystems and 
their improvements. Table 1 provides an overview. MoBeE can be 
pre-loaded with a robot model using an XML file that describes 
the kinematics based on “Zero Position Displacement Notation” 
(Gupta, 1986). Figure 11 shows a snippet from the XML describ-
ing the Katana robotic arm. In addition a pre-defined, marked-up 
world model can be loaded from a separate file as well. This is 
particularly useful for stationary objects in the world or to restrict 
the movement space of the robot during learning operations.

Through the common interface to MoBeE object properties 
of each object can be modified, through an RPC call, following 
YARP standard and is accessible from the command line, a 
webpage, or any other module connecting to it. These objects are 
placed in the world model by either loading from a file at start-up 
or during runtime by agents, such as the icVision core. Through 
the interface an object can also be set as an obstacle, which means 
repelling forces are calculated, or as a target, which will attract the 
end-effector. In addition, objects can be defined as ghosts, leading 
to the object being ignored in the force calculation.

As mentioned earlier on, previous research suggests that 
connections between motor actions and observations exist in the 
human brain and describes their importance to human develop-
ment (Berthier et  al., 1996). To interface and connect artificial 
systems performing visual and motor cortex-like operations on 
robots will be crucial for the development of autonomous robotic 
systems. When attempting to learn behaviors on a complex 
robot, such as the iCub or Baxter, state-of-the-art AI and control 
theories can be tested (Frank et al., 2014) and shortcomings of 
these learning methods can be discovered (Zhang et al., 2015) and 
addressed. For example, Hart et al. (2006) showed that a devel-
opmental approach can be used for a robot to learn to reach and 
grasp. We developed modules for action generation and collision 
avoidance and their interfaces to the perception side. By having 
the action and motion side tightly coupled, we can use learning 
algorithms that require also negative feedback. We can create this 
without actually “hurting” the robot.

3.1. example: evolving Object Detectors
We previously developed a technique based on Cartesian Genetic 
Programing (CGP) (Miller, 1999, 2011) allowing for the auto-
matic generation of computer programs for robot vision tasks, 
called Cartesian Genetic Programming for Image Processing 
(CGP-IP) (Harding et al., 2013). CGP-IP draws inspiration from 
previous work in the field of machine learning and combines it 
with the available tools in the image processing discipline, namely 
in the form of OpenCV functions. OpenCV is an open-source 
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FigUre 9 | Defining a grasp in LEOGrasper is simple: defining a start 
and end position in joint space is all that is required. The open 
command will revert the hand into the start state (left), close will attempt to 
reach the end state (right). For more complex grasps intermediate states can 
be provided.

FigUre 7 | a scene of the iCub avoiding an object (inset) during one of our experiments (leitner et al., 2014b) and its corresponding visualization of 
the MoBeE model. Red body parts are highlighting impeding collisions with either another body part (as in the case of the hip with the upper body) or an object in 
the world model (hand with the cup). (See video: https://www.youtube.com/watch?v=w_qDH5tSe7g).

FigUre 8 | The virtual forces created by the dynamical system within 
MoBeE. It continuously mixing control and constraint forces (orange vectors) 
to generate the robot motion in real time. It results in a smoother, more 
intuitive motions in response to constraints/collisions (dashed green line). To 
calculate the force, the distance of the object to the hand in its coordinate 
frame CSHand is used. MoBeE handles the transformation from the 
coordinate systems of the cameras (CSR/CSL) to the world frame CSWorld 
and CSHand.
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framework providing a mature toolbox for a variety of image 
processing tasks. This domain knowledge is integrated into 
CGP-IP allowing to quickly evolve object detectors from only a 
small training set – our experiments showed that just a handful 
of (5–20) images per object are required. These detectors can then 
be used to perform the binary image segmentation within the 
icVision framework. In addition, CGP-IP allows for the segmen-
tation of color images with multiple channels, a key difference to 
much of the previous work focusing on gray scale images. CGP-IP 
deals with separate channels and splits incoming color images 

into individual channels before they can be used at each node 
in the detector. This leads to the evolutionary process selecting 
which channels will be used and how they are combined.

CGP-IP manages a population of candidates, which consists 
of individual genes, representing the nodes. Single channels are 
used as inputs and outputs of each node, while the action of each 
node is the execution of an OpenCV function. The full candidate 
can be interpreted as a computer program performing a sequence 
of image operations on the input image. The output of each can-
didate filter is a binary segmentation. GPs are supervised, in the 
sense that a fitness will need to be calculated for each candidate. 
For scoring each individual, a ground truth segmentation needs 
to be provided. A new generation of candidates is then created 
out of the fittest individuals. An illustrative example of a CGP-IP 
candidate is shown in Figure  12. CGP-IP can directly create 
C# or C++ code from these graphs. The code can be executed 
directly on the real hardware or pushed as updates to existing 
filter modules running within icVision. CGP-IP includes classes 
for image operations, the evolutionary search and the integration 
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TaBle 1 | Overview of experiments facilitated by parts of the architecture 
presented herein.

experiment description Framework reference

Autonomous object detection icVision, CGP-IP Leitner et al. (2012a, 2013b)
Multi robot collision avoidance MoBeE (vSkin) Leitner et al. (2012b,c)
Safe policy learning MoBeE (vSkin) Pathak et al. (2013)
Object detection and 
localisation

icVision Leitner et al. (2013a)

Spatial perception learning MoBeE, icVision Leitner et al. (2013d)
Learning object detection CGP-IP Leitner et al. (2013e)
Humanoid motion planning MoBeE Stollenga et al. (2013)
Reinforcement learning for 
reaching

MoBeE Frank et al. (2014)

Improving vision through 
interaction

Full system Leitner et al. (2014a)

Reactive reaching and grasping Full system Leitner et al. (2014b)
Cognitive and developmental 
robots

Full system Leitner (2015)

FigUre 10 | The iCub hand during grasp execution with a variety of objects, including tin cans, tea boxes, and plastic cups (leitner et al., 2014b).
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with the robotic side through a middleware. Currently, we are 
extending the C# implementation to run on various operating 
systems and be integrated into a distributed visual system, such 
as DRVS (Chamberlain et al., 2016).

CGP-IP allows not just for a simple reusable object detection 
but also provides a simple way of learning these based on only 
very small training sets. In connection with our framework, 
these data can be collected on the real hardware and the learned 
results directly executed. For this, an agent module was designed 
that communicates with the icVision core through its interface. 
Arbitrary objects are then placed in front of the robot and 
images are collected while the robot is moving about. The col-
lected images are then processed by the agent and a training set 
is created. With the ground truth of the location known, so is 
the location of the object in the image. A fixed size bounding 
box around this location leads to the ground truth required to 
evolve an object detector. This way the robot (and some prior 
knowledge of the location) can be used to autonomously learn 

object detectors for all the objects in the robot’s environment 
(Leitner et al., 2012a).

3.2. example: reaching While avoiding  
a Moving Obstacle
The inverse kinematics problem, i.e., placing the hand at a given 
coordinate in operational space, can be performed with previously 
available software on the iCub, such as the existing operational 
space controller (Pattacini, 2011) or a roadmap-based approach 
(Stollenga et  al., 2013). These systems require very accurate 
knowledge of the mechanical system to lead to precise solu-
tions, requiring a lengthy calibration procedure. These systems 
also tend to be brittle when change in the robot’s environment 
requires adapting the created motions.

To overcome this problem, the framework, as described above, 
creates virtual forces based on the world model within MoBeE to 
govern the actual movement of the robot. Static objects in the 
environment, such as, e.g., the table in front of the robot, can be 
added directly into the model via an XML file. Once in the model, 
actions and behaviors are adapted due to computed constraint 
forces. This way we are able to send arbitrary motions to our sys-
tem, while ensuring the safety of our robot. Even with just these 
static objects, this has been shown to provide an interesting way 
to learn robot reaching behaviors through reinforcement (Pathak 
et al., 2013; Frank et al., 2014). The presented system has the same 
functionality also for arbitrary, non-static objects.

For this after the detection in both cameras, the object’s loca-
tion is estimated and updated in the world model. The forces 
are continually recalculated to avoid impeding collisions even 
with moving objects. Figure 7 shows how the localized object 
is in the way of the arm and the hand. To ensure the safety of 
the rather fragile fingers, a collision sphere around the end-
effector was added – seen in red, indicating a possible collision 
due to the sphere intersecting with the object. The same can 
be seen with the lower arm. The forces push the intersecting 
geometries away from each other, leading to a movement of the 
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FigUre 12 | example illustration of a cgP-iP genotype, taking three input channels of the current image. A sequence of OpenCV operations is then 
performed before thresholding occurs to produce a binary segmented output image.

FigUre 11 | (left) The XMl files used to describe the kinematics of the Katana arm. (Right) Visualization of the same XML file in MoBeE.
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end-effector away from the obstacle. Figure 13 shows how the 
robot’s arm is “pushed” aside when the cup is moved close to 
the arm, therefore avoiding a non-stationary obstacle. It does 
so until the arm reaches its limit, then the forces cumulate and 
the end-effector is “forced” upwards to continue avoiding the 
obstacle. Similarly the reaching behaviour is adapted while the 
object is moved. Without an obstacle, the arm starts to settle 
back into its resting pose q*. By simply sending a signal through 
the interface the type of the object within the world model can 
be changed from obstacle into target. This leads to the 
calculated forces now being attracting not repelling. MoBeE 
also allows to trigger certain responses when collisions occur. 
In the case when we want the robot to pick-up the object, we 
can activate a grasp subsystem whenever the hand is in the close 
vicinity of the object. We are using a prototypical power grasp 
style hand-closing action, which has been used successfully in 
various demos and videos.6 Figure 10 shows the iCub success-
fully picking up (by adding an extra upwards force) various 
objects using our grasping subsystem, executing the same 

6 See videos at: http://Juxi.net/media/ 

action. Our robot frameworks are able to track multiple objects 
at the same time, which is also visible in Figure 7, where both 
the cup and the tea box are tracked. By simply changing the 
type of the object within MoBeE, the robot reaches for a certain 
object while avoiding the other.

3.3. example: improving robot Vision by 
interaction
The two subsystems can further be integrated for the use of 
higher level agents controlling the robot’s behavior. Based on the 
previous section, the following example shows how an agent can 
be used to learn visual representations (in CGP-IP) by having a 
robot interact with its environment. Building on the previously 
mentioned evolved object detectors, we extended the robot’s 
interaction ability to become better at segmenting objects. 
Similar to the experiment by Welke et  al. (2010), the robot 
was able to curiously rotate the object of interest with its hand. 
Additional actions were added for the robot to perform, such as 
poke, push, and a simple viewpoint change by leaning left and 
right. Furthermore, a baseline image dataset is collected, while 
the robot (and the object) is static. In this experiment, we wanted 
to measure the impact of specific actions on the segmentation 
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FigUre 13 | The iCub’s arm is controlled by MoBeE to stay in a non-colliding pose of the moving obstacle and the table by using reactive virtual 
forces. (See video: https://www.youtube.com/watch?v=w_qDH5tSe7g).
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performance. After the robot performed one of the four pre-
programed actions, a new training set was collected, which con-
tains the images from the static scenario and the images during 
action execution. While more data mean generally better results, 
we could also see that some actions were leading to better results 
than others. Figure  14 shows visually how the improvement 
leads to better object segmentation, in validation images. On the 
left is the original camera image, in the middle the segmentation 
performed by an evolved filter solely based on the “static scene 
baseline,” and on the right is the segmentation when integrating 
the new observations during a haptic exploration action.

By providing a measurable improvement, the robot can select 
and perform the action yielding the best possible improvement 
for a specific detector. Interaction provides robots with a unique 
possibility (compared to cameras) to build more accurate and 
robust visual representations. Simple leaning actions change the 
camera viewpoint sufficiently to collect a different dataset. This 
does not just help with separating geometries of the scene but also 
creates more robust and discriminative classifiers. Active scene 
interaction by e.g., applying forces to objects enables the robot to 
start to reason about relationships between objects, such as “are 
two objects (inseparably) connected,” or, find out other physical 
properties, like, “is the juice box full or empty,” We are planning 
to add more complex actions and abilities to learn more object 
properties and have started to investigate how to determine an 
object’s mechanical properties through interaction and observa-
tion (Dansereau et al., 2016).

4. DiscUssiOn

Herein, we present our modular software framework applied in 
our research toward autonomous and adaptive robotic manipula-
tion with humanoids. A tightly integrated sensorimotor system, 
based on subsystems developed over the past years, enables a basic 
level of eye–hand coordination on our robots. The robot detects 
objects, placed at random positions on a table, and performs a 
visually guided reaching before executing a simple grasp.

Our implementation enables the robot to adapt to changes in 
the environment. It safeguards complex humanoid robots, such 
as the iCub, from unwanted interactions – i.e., collisions with the 
environment or itself. This is performed by integrating the visual 
system with the motor side by applying attractor dynamics based 
on the robot’s pose and a model of the world. We achieve a level 
of integration between visual perception and actions not previ-
ously seen on the iCub. Our approach, while comparable to visual 
servoing, has the advantage of being completely modular and the 
ability to take collisions (and other constraints) into account.

The framework has grown over recent time and has been used 
in a variety of experiments mainly with the iCub humanoid robot. 
It has since then been ported in parts to work with ROS with the 
aim of running pick and place experiments on Baxter; the code 
will be made available on the authors webpage at: http://juxi.net/
projects/VisionAndActions/. The overarching goal was to enable 
a way of controlling a complex humanoid robot, which combines 
motion planning with low-level reflexes from visual feedback. 
icVision provides the detection and localization of objects in the 
visual stream. For example, it will provide the location of a chess 
board on a table in front of the robot. It can also provide the 
position of chess pieces to the world model. Based on this, an 
agent can plan a motion to pick up a specific piece. During the 
execution of that motion, MoBeE calculates forces for each chess 
piece, attracting for the target piece, repelling forces for all the 
other pieces. These forces are updated whenever a new object (or 
object location) is perceived, yielding a more robust execution 
of the motion due to a better coordination between vision and 
action.

The current system consists of a mix of pre-defined and 
learned parts, in the future, we plan to integrate further machine 
learning techniques to improve the object manipulation skills of 
robotic systems. For example, learning to plan around obstacles, 
including improved prediction and selection of actions. This will 
lead to a more adaptive, versatile robot, being able to work in 
unstructured, cluttered environments. Furthermore, it might be 
of interest to investigate an even tighter sensorimotor coupling, 
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http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://juxi.net/projects/VisionAndActions/
http://juxi.net/projects/VisionAndActions/


FigUre 14 | segmentation improvements for two objects after interaction. On the left, the robot’s view of the scene. The middle column shows the first 
segmentation generated from the “static scene baseline.” The last column shows the improved segmentation after learning continued with new images collected 
during the manipulation of the object.
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e.g., by working directly in the image space – similar to image-
based visual servoing approaches (Chaumette and Hutchinson, 
2006)  –  this way avoiding to translate 2D image features into 
operational space locations.

In the future, we are aiming to extend the capabilities to allow 
for the quick end-to-end training of reaching (Zhang et al., 2015) 
and manipulation tasks (Levine et  al., 2015), as well as, easy 
transition from simulation to real-world experiments. We are 
also looking at developing agents that interface this framework 
to learn the robot’s kinematics and adapt to changes occurring 
due to malfunction or wear, leading to self calibration of a robot’s 
eye–hand coordination.
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