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Automatic design is a promising approach to the design of control software for robot 
swarms. In an automatic design method, the design problem is cast into an optimization 
problem and is addressed using an optimization algorithm. In this article, we review stud-
ies in which automatic design methods are successfully applied. In particular, we focus 
our attention on how automatic methods are empirically assessed. An apparent issue 
that emerges from our review is that a solid, well-established, and consistently applied 
empirical practice is still missing. For example, studies that propose new methods and 
ideas do not typically provide any comparison with existing ones. We maintain that the 
lack of a proper empirical practice hinders the progress of the domain. In this article, 
we pursue two goals: we highlight the notable achievements in the automatic design 
of control software for robot swarms and we discuss the challenges to be overcome to 
establish a proper empirical practice for the domain.
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1. iNTRODUCTiON

In swarm robotics, a large number of robots are deployed to accomplish a mission that is beyond the 
capabilities of a single robot (Dorigo et al., 2014). Because a single robot is not able to accomplish 
the mission on its own, the robots must cooperate. A robot swarm operates in a self-organized 
and distributed manner: there is no leader and coordination is obtained via interaction between 
the individual robots. Moreover, a robot swarm does not rely on any external infrastructure: each 
individual robot acts on the basis of local information obtained through its sensors or provided by 
neighboring robots via local communication.

Although the literature describes a number of robot swarms that have been developed and 
demonstrated, a reliable engineering approach to the design of control software for robot swarms is 
still at dawn (Brambilla et al., 2013). Typically, designers proceed by trial and error, guided only by 
their intuition and experience. Some effort has been made recently to overcome this problem and 
a number of principled manual methods have been proposed [e.g., see Hamann and Wörn (2008), 
Kazadi et al. (2009), Berman et al. (2011), Werfel et al. (2014), Brambilla et al. (2015), Reina et al. 
(2015), and Lopes et al. (2016)]. Although interesting and promising results have been obtained, we 
are far from a generally applicable solution.

Automatic methods are a promising alternative. In an automatic method, the problem of design-
ing the control software for a robot swarm is cast into an optimization problem: the different design 
choices define a search space that is explored using an optimization algorithm. Most of the automatic 
methods proposed so far belong to the framework of evolutionary robotics (Nolfi and Floreano, 2000). 
Traditionally in evolutionary robotics, the control software is based on artificial neural networks and 
is optimized automatically via an evolutionary algorithm, following a process inspired by natural 
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evolution. As discussed in Section 2, evolutionary robotics has 
been successfully adopted to design robot swarms that perform 
various tasks. The results achieved show that automatic design is 
a viable and promising approach to design the control software 
of robot swarms.

Unfortunately, the pioneering achievements registered so far 
are to be considered as somehow isolated contributions, rather 
than the incremental acquisitions of an established and mature 
science.1 With few exceptions, studies that introduce new auto-
matic design methods and ideas do not provide any comparison 
with previously introduced ones. Indeed, a solid, well-established, 
and consistently applied practice for the empirical assessment 
and comparison of automatic design methods is still missing.

We are convinced that the lack of a proper empirical practice 
hinders the progress of the research on the automatic design 
of control software for robot swarms. We contend that a well-
established empirical practice that encourages comparisons 
would properly promote the best ideas proposed so far, would 
help to focus on promising directions, and would attract further 
researchers and investments to the domain.

With this article, we pursue two objectives. In Section 2, we 
highlight studies that present notable achievements in the domain 
of the automatic design of control software for robot swarms. We 
devote particular attention to the empirical approach adopted to 
assess new proposals. In Section 3, we discuss some challenges 
that the research community should overcome to transform the 
current research on the automatic design of control software for 
robot swarms into a mature science.

2. ACHieveMeNTS

In automatic design, the problem of designing the control 
software is cast into an optimization problem. In other terms, 
an automatic design method uses an optimization algorithm to 
search the design space. This space comprises all the instances of 
control software that the method can possibly produce. The goal 
of the optimization algorithm is to find an instance of control 
software that maximizes an appropriate performance measure. 
Automatic design methods can be divided into two classes: off-
line and on-line methods.

2.1. Off-Line Methods
In off-line methods, the design process takes place in a pre-
liminary, dedicated phase: the design phase. The design phase 
occurs and terminates before the robot swarm is deployed in its 
operational environment. Within the design process, an off-line 
method evaluates a relatively large number of different instances 
of control software. Typically, the evaluation of an instance of 
control software is performed via a computer-based simulation. 
Simulation offers two main benefits: (i) it enables a faster-than-
real-time evaluation and (ii) prevents the robots from being dam-
aged by a possibly low-quality instance of the control software.

Evolutionary robotics (Nolfi and Floreano, 2000) is the most 
studied automatic design approach in swarm robotics. Typically, 

1 We use the notion of mature science as defined by Kuhn (1962).

in evolutionary robotics an evolutionary algorithm is used to 
optimize the parameters and possibly the structure of a neural 
network that takes as an input sensor readings and returns 
actuation commands. Originally, evolutionary robotics was suc-
cessfully applied in single robot scenarios. The adoption of the 
evolutionary robotics approach in swarm robotics goes under 
the name of evolutionary swarm robotics (Trianni, 2008). In 
the following, we present a number of notable achievements in 
evolutionary swarm robotics. For comprehensive reviews of the 
(single-robot) evolutionary robotics literature, we refer the reader 
to Bongard (2013), Doncieux and Mouret (2014), Trianni (2014), 
and Silva et al. (2016).

Most of the notable works in evolutionary swarm robotics 
share a set of common characteristics: (1) the swarms produced 
are behaviorally homogeneous, that is, all the robots of the swarm 
execute identical copies of the same control software. (2) The 
objective function that is optimized during the design process is 
globally and centrally evaluated, that is, it is computed consider-
ing the performance of the swarm as a whole. (3) The optimiza-
tion algorithm adopted within the design process is a classical 
evolutionary algorithm that features elitism, recombination, and 
mutation. (4) The size of the population ranges from 50 to 200 
individuals, with 100 individuals as the most common value. 
(5)  The number of performance assessments for each instance 
of the control software ranges from 3 to 100, with 10 as the most 
common value. Each assessment differs from the others in the 
initial conditions  –  i.e., position of the robots and characteris-
tics of the environment. (6) To take into account stochasticity, 
different independent runs of the evolutionary algorithm are 
performed. The most common number of independent runs is 
ten. (7)  Unfortunately, the assessment of the obtained control 
software, in reality, is not always performed. Many studies present 
results in simulation only. When robot experiments are per-
formed, they are often only isolated demonstrations rather than 
a structured empirical analysis aimed at producing statistically 
significant results.

Since the introduction of evolutionary swarm robotics, most 
of the research effort aimed at showing the feasibility of the 
approach and investigating whether a particular collective behav-
ior can be obtained via artificial evolution. Quinn et al. (2003) 
were the first to adopt the evolutionary approach in the context 
of swarm robotics. The authors obtained a coordinated motion 
behavior by using an evolutionary algorithm to optimize control 
software based on a neural network. Robot experiments were 
performed with three Khepera robots. More than a decade after 
the publication of this work, some aspects of the experimental 
design might appear unusual. For example, the performance of 
each instance of control software produced within the design 
process was assessed via 60 evaluations. In the final stage of the 
design process, the number of evaluations was increased to 100. 
At the end of the design process, 10 different instances of control 
software were tested in robot experiments. The very best instance 
was tested through 100 runs. Following this seminal work, a 
number of robot swarms designed via evolutionary robotics have 
been described in the literature. For instance, Christensen and 
Dorigo (2006) showed how to use evolution to obtain a swarm 
of robots that is able to perform hole-avoidance and phototaxis 
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at the same time. The study includes a comparison between three 
different evolutionary algorithms: a classical evolutionary algo-
rithm, evolutionary strategy, and a co-evolutionary genetic algo-
rithm. For each algorithm, 20 independent runs were performed. 
Evolutionary strategy yielded the best performance. The best 
instance of control software produced by evolutionary strategy 
was tested in experiments performed with a group of three s-bot 
robots. Under a similar setting, Baldassarre et al. (2007) obtained 
coordinated motion with a swarm of four physically connected 
s-bot robots. The best instance of control software obtained 
across 20 independent runs of the design process was tested on 
a group of four s-bot robots. In the experiments performed by 
the authors, the control software obtained via computer-based 
simulations performed well in reality without the need of any 
adjustment. Moreover, the same control software performed well 
also when the robots had to navigate on rough terrains. Hauert 
et al. (2008) used evolutionary robotics to obtain the control soft-
ware for a swarm of aerial robots that are required to establish a 
wireless communication network. Experiments were performed 
in simulation only. Trianni and Nolfi (2009) studied the design 
of a self-organizing behaviors via evolution. The experimental 
analysis was performed mostly in simulation and involved 20 
independent runs of the design process. The best instance of 
control software obtained across the 20 runs was tested on groups 
of two and three s-bot robots. Waibel et al. (2009) investigated 
the influence on performance of different selective pressures 
(individual and collective) and different team compositions 
(homogeneous and heterogeneous swarms). The experimental 
analysis was conducted on three different variants of a foraging 
task. For each variant, four different combinations of selective 
pressures and team compositions were tested via 20 independent 
runs of the design process. Experiments were conducted both 
in simulation and with ten Alice robots. Ferrante et  al. (2015) 
used a method based on grammatical evolution (Ferrante et al., 
2013) to evolve task specialization in a robot swarm. In particular, 
the authors highlighted the environmental conditions that are 
necessary for task specialization to emerge. Experiments were 
performed in simulation only.

Recently, the research in evolutionary swarm robotics has been 
influenced by the current trends in evolutionary computation. 
The studies on novelty search and multi-objective optimization are 
worthy of mention. Novelty search (Lehman and Stanley, 2011) is 
an approach to evolutionary computation that promotes diversity 
instead of performance. Results indicate that novelty search is 
robust to issues that affect the classical evolutionary approach, 
including premature convergence and stagnation. Gomes et  al. 
(2013) introduced novelty search in the context of swarm robot-
ics. They used novelty search to automatically develop control 
software for aggregation and resource sharing. The study includes 
a comparison with a classical evolutionary approach and with a 
hybrid approach that combines a classical approach and novelty 
search. Experiments were conducted in simulation only.

Multi-objective optimization focuses on problems in which 
multiple, possibly conflicting objectives are to be optimized. In 
evolutionary robotics, multi-objective optimization might be of 
interest in two contexts: (i) the problem is naturally formulated as 
a multi-objective problem. For example, the task is composite and 

the robots are required to accomplish multiple sub-tasks, each 
associated with a performance measure (Capi, 2007). (ii) The 
designer wishes to promote a specific property that can be char-
acterized via a measurable quantity. For example, the designer 
wishes to increase the chance that the obtained control software 
works properly in reality (Koos et  al., 2013b), enforce a low 
complexity of the control software produced by the optimization 
process (Teo and Abbass, 2004, 2005), or increase the robustness 
against hardware failures and environmental variability (Koos 
et  al., 2013a; Lehman et  al., 2013). Trianni and López-Ibáñez 
(2015) were the first to study the application of multi-objective 
optimization in the context of evolutionary swarm robotics. They 
presented results on two swarm robotics tasks: flocking and an 
idealized version of the stick-pulling experiment. Experiments 
were conducted in simulation only.2

A number of notable studies depart from the classical evo-
lutionary robotics tradition by adopting (i) control software 
architectures other than monolithic neural networks and/or (ii) 
optimization algorithms other than evolutionary computation. 
In particular, some authors studied the possibility of using an 
optimization algorithm to fine-tune a parametric control archi-
tecture that features only a small set of parameters. Hecker et al. 
(2012) obtained a foraging behavior by using artificial evolution 
to optimize the parameters of a probabilistic finite state machine. 
Experiments were conducted with a group of three custom-made 
two-wheeled robots. The objects to be retrieved were emulated 
via RFID tags placed on the ground. The tags could be sensed 
by the robots via an onboard RFID reader. Gauci et al. (2014a) 
obtained an object clustering behavior by using evolutionary 
strategy to optimize a simple control architecture that features 
six parameters. The simplicity of the control architecture arises 
from the fact that the control architecture controls the speed of 
the two wheels of the robot exclusively based on the readings of 
a single three-state line-of-sight sensor. The line-of-sight sensor 
indicates whether the robot faces (i) another robot, (ii) an object 
to cluster, or (iii) neither of them. On the robot, the line-of-
sight sensor was implemented using the frontal camera and a 
color detector that recognizes robots that are green and objects 
that are red. Experiments were conducted with a group of five 
e-puck robots. Ten independent runs of the design process were 
performed in simulation. For each run, the best instance of con-
trol software obtained was tested in reality. Gauci et al. (2014b) 
optimized the same control architecture via exhaustive search to 
obtain self-organized aggregation. In this second study, no object 
is present in the environment and the line-of-sight sensor can 
be, therefore, in only two states: it indicates whether the robot 
faces (i) another robot or (ii) not. Due to the even simpler control 
architecture adopted in this second study, the design space counts 
only 194,481 different instances of control software that can be 
possibly generated. The reduced size of the design space allows 
for exhaustive search in simulation. Experiments were conducted 
with a group of forty e-puck robots: the best performing instance 
of control software found via exhaustive search was tested 30 
times on the robots.

2 The authors presented results also on a single-robot task.
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Other authors proposed the adoption of a modular control 
architecture: the control software is obtained by combining 
modules obtained either via manual or automatic design. Duarte 
et  al. (2014a) presented an approach based on the hierarchical 
decomposition of complex behaviors into simpler behaviors that 
can be generated either manually or via evolutionary robotics. 
The simple behaviors are then combined using high-level neural 
networks. The approach was illustrated in simulation only, on 
an object retrieval task. The results indicate that the approach 
outperforms the classical, monolithic evolutionary approach. 
Similarly, Duarte et  al. (2014b) used hierarchical decomposi-
tion to obtain control software for a patrolling task. The control 
software comprises low-level behaviors (go to waypoint, patrol, 
pursue intruder) and one module that arbitrates the low-level 
behaviors. The low-level behaviors were implemented as neural 
networks and were obtained via evolution. The arbitrator was 
manually written. The resulting system was tested in simulation 
only. The downside of the approach is that hierarchical decom-
position is task dependent and has to be performed manually 
by the designer. In a successive study, the authors designed via 
artificial evolution control software for a swarm of ten aquatic 
robots (Duarte et al., 2015; Christensen et al., 2016). The task to 
be performed by the swarm comprised four different sub-tasks: 
homing, dispersion, clustering, and area monitoring. The aggre-
gated control software was obtained by sequentially combining 
the instances of control software developed for each sub-task. 
Experiments were performed in a 330 m × 190 m waterbody next 
to the Tagus river in Lisbon, Portugal. The results show that the 
control software produced via the proposed method crosses the 
reality gap nicely.

Another modular approach that has been recently proposed 
is AutoMoDe (Francesca et al., 2014). In AutoMoDe, the control 
software is a probabilistic finite state machine that is automati-
cally synthesized by combining pre-existing, task-independent 
modules. In Francesca et al. (2014), Vanilla, a first implementa-
tion of AutoMoDe, was tested on two different tasks: aggregation 
and foraging. In a set of experiments conducted with a swarm 
of twenty e-puck robots, Vanilla outperformed a classical evo-
lutionary swarm robotics method. In Francesca et  al. (2015), 
Chocolate, a second implementation of AutoMoDe, was intro-
duced. Chocolate differs from Vanilla in the fact that it adopts a 
more powerful optimization algorithm. Chocolate was compared 
against Vanilla and human designers on five tasks. The experi-
mental analysis performed on twenty e-puck robots showed that 
the control software produced by Chocolate outperforms the one 
produced by Vanilla and by the human designers who partici-
pated in the study.

2.2. On-Line Methods
In on-line methods, the design process takes place when the robot 
swarm has been already deployed in its operational environment. 
The apparent advantage of on-line methods over off-line meth-
ods is that on-line methods can benefit from the availability of 
information on the actual operational environment that would 
be unavailable at off-line design time. Moreover, one could expect 
that an on-line method can cope with changes in operating 
conditions and adapt to contingencies. In other words, on-line 

methods aspire to produce a design that is more tailored to the 
specific mission than the one produced by an off-line method. 
On the downside, on-line methods are likely constrained to a 
reduced search space with respect to off-line methods because 
of two main reasons: (i) as the design process is performed by 
the robots themselves while they are operational, computational 
resources and time are limiting factor and (ii) candidate design 
that are potentially dangerous for the robots should be a priori 
removed from the search space to avoid jeopardizing the mission. 
Moreover, in a realistic on-line setting, the design process is fully 
distributed on the robots and cannot count on any centralized 
entity to measure performance and guide the search, as it can in 
an off-line setting. The design process is, therefore, constrained to 
use performance indicator that can be evaluated in a distributed 
and local way. Whether on-line methods are more or less effective 
than off-line methods, which are the features of a mission that 
are better handled by on-line or off-line methods, and whether 
on-line and off-line methods can be effectively combined are 
empirical questions that require further research to be answered 
convincingly.

In the works on the on-line automatic design of control 
software for robot swarms, we can highlight some typical char-
acteristics: (1) each robot of the swarm explores a portion of the 
search space. Typically, each robot evaluates asynchronously a 
subpopulation of instances of control software and keeps track 
of their performance. (2) The robots exchange information to 
co-ordinate the search process. Although the way in which infor-
mation is exchanged varies from work to work, a typical feature 
is that best performing instances of control software are shared 
between the robots. These instances are typically modified using 
mutation by the sender or by the receiver and become part of the 
subpopulation of instances explored by the receiver. (3) Robot 
swarms are de facto behaviorally heterogeneous, that is, at any 
given moment each robot executes a different instance of control 
software. This does not necessarily exclude that the robots can 
eventually converge to executing the same instance of control 
software. (4) As each robot of the swarm is required to evaluate 
instances of control software, the objective function must be 
computable relying only on information that is locally available 
to the robot. This restricts the class of tasks that are tackled in 
the literature (and that can be possibly tackled) using the on-line 
approach. The tasks that can be tackled appear to be simpler and 
less diverse than those that are tackled in the off-line approach. 
(5) Unfortunately, experiments in reality are not always per-
formed. Some studies present results in simulation only. We can 
identify four different ways in which experiments are performed: 
a. experiments are conducted in simulation only; b. the design of 
the control software is conducted in simulation and then a subset 
of the best instances of control software are tested on the robots 
(during the test the robots do not perform on-line design); c. the 
design of the control software is conducted partly in simulation 
and partly on the robots. The obtained control software is tested 
on the robots; and d. the design of the control software is con-
ducted exclusively on the robots. The obtained control software 
is tested on the robots.

One of the first studies proposing an on-line method for multi-
robot systems was published by Parker (1996, 1997). The author 
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proposed L-ALLIANCE, a behavior-based control architecture 
that allows the on-line optimization of some internal parameters 
of the control software. No robot experiment is described in the 
articles in which the method is introduced. Matarić (2001) sur-
veyed various behavior-based control architectures that allow the 
on-line optimization of parameters. Lee and Arkin (2003) applied 
learning momentum (Clark et al., 1992) to a multi-robot system. 
The task that they considered is an abstraction of capture-the-
flag. Experiments were performed in simulation only.

A number of significant studies on on-line automatic design 
belong to the embodied evolution approach (Watson et al., 1999, 
2002). In embodied evolution, an evolutionary algorithm that 
is in charge of optimizing the control software is executed in a 
distributed way. The computation is performed by the robots of 
the swarm while they are situated in the operational environment. 
Watson et al. (1999, 2002) developed a multi-robot system that is 
able to achieve phototaxis via embodied evolution. In this system, 
each robot broadcasts a mutated version of the best instance of 
control software it obtained, with a probability that is a function of 
its performance. Experiments were conducted with eight custom-
made two-wheeled robots. To overcome the limited duration of 
the batteries and to grant a sufficient amount of time to the design 
process, robots were connected to a power source using special 
hardware that makes contact with an electrified floor. Similarly, 
Usui and Arita (2003) applied embodied evolution to design a 
simple obstacle avoidance behavior on six Khepera robots. The 
study includes a comparison between a group of robots that 
exchange the best performing instances of control software 
they found and a group that does not. The results indicate that 
exchanging control software is beneficial. As in Watson et  al. 
(2002), the limited duration of the batteries was overcome using 
special hardware that provides a continuous power supply; in 
this case, a pantograph that makes constant contact with an 
overhead power line. Bianco and Nolfi (2004) proposed a method 
that allows robots to share their internal configuration via self-
assembly. The method was tested in simulation only. König and 
Mostaghim (2009) departed from the classical approach based 
on neural networks, by proposing a control architecture based on 
finite state machines optimized on-line via embodied evolution. 
The tasks considered were gate passing and collision avoidance. 
The experiments were conducted in simulation only.

A few studies were devoted to the investigation of fundamental 
scientific questions concerning the relationship between and the 
combination of learning and evolution. Wischmann et al. (2007) 
studied the relationship between learning and embodied evolu-
tion in a predator–prey scenario. Experiments were performed 
in simulation only. Elfwing et al. (2011) investigated the combi-
nation of reinforcement learning and embodied evolution in a 
survival scenario. Experiments were conducted in simulation and 
the control software obtained was then evaluated on two Cyber 
Rodent robots. The authors followed a hybrid procedure: the 
design was conducted in simulation using initially a group of four 
robots and then a group of two. The resulting control software was 
eventually tested on the two Cyber Rodent robots.

More recent studies shifted the focus back to the develop-
ment of effective on-line design methods. Bredeche et al. (2012) 
proposed MEDEA, a framework for onboard evolution of control 

software based on neural networks. In MEDEA, robots are able 
to adapt to environmental conditions. The experimental analysis 
was performed on two tasks (survival and two suns) using twenty 
e-puck robots. Some precautions were taken in the definition of 
the experiments: (i) to reach convergence within the duration of 
the batteries, experiments were conducted using a small search 
space; (ii) to allow the exchange of solutions between robots, 
a reliable local communication was emulated via Wi-Fi and 
information provided by a tracking system. Haasdijk et al. (2014) 
introduced a multi-objective variant of MEDEA called MONEE. 
MONEE allows a swarm of robots to adapt their behavior to the 
environment and to a given task at the same time. Experiments 
were performed in simulation only. Silva et al. (2015) introduced 
odNEAT, a variant of real-time NEAT (Stanley and Miikkulainen, 
2002) for the online and decentralized optimization of robot 
control software. Experiments on three multi-robot tasks (aggre-
gation, navigation with obstacle avoidance, and phototaxis) were 
performed in simulation only.

A number of studies presented on-line design methods based 
on distributed implementations of particle swarm optimization 
(Pugh and Martinoli, 2009). Here, we mention only two recent 
studies. We refer the reader to Di Mario et al. (2015) for a more 
extensive review of the relevant literature. Di Mario and Martinoli 
(2014) applied distributed particle swarm optimization to the 
onboard optimization of control software for obstacle avoidance. 
The method was tested on a swarm of eight Khepera III robots. 
The experiments were performed in three different settings: (i) 
the control software was designed in simulation and then tested 
on the robots; (ii) the control software was designed and tested 
on the robots; and (iii) the control software was designed partly 
in simulation and partly on the robots, to be eventually tested on 
the robots. In a similar study, Di Mario et al. (2015) presented 
OCBA, a noise-resistant particle swarm optimization algorithm 
for the on-line automatic design of robot control software. In this 
case, the on-line adaptation was performed in simulation. The 
resulting control software was then tested on a swarm of four 
Khepera III robots.

3. CHALLeNGeS

Although a number of promising methods for the automatic 
design of control software for robot swarms have been presented 
and discussed so far, a consolidated literature on the topic is still 
missing. In some sense, we could (somehow provocatively) argue 
that the state of the art in the automatic design of control software 
for robot swarms is undefined and is yet to be properly identified. 
As we have seen in Section 2, with the exception of a few rare cases, 
published studies do not produce comparisons between different 
methods. Moreover, the vast majority of the articles in which 
interesting automatic design methods have been introduced were 
tailored to answer scientific questions that do not directly belong 
in automatic design. For example, an important share of the 
articles devoted to evolutionary robotics were tailored to answer 
scientific questions related to the plausibility of biological models 
or the justification of animal behaviors in evolutionary terms. 
These questions are clearly extremely fascinating and relevant in 
absolute terms. Nonetheless, in many cases, these questions have 
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unfortunately shadowed the core questions of the research on the 
automatic design of control software for robot swarms. Indeed, 
some key questions are hardly addressed in the current literature: 
Which automatic method is the best under which conditions? How 
general is method X? How well does method X perform on different 
tasks? Which features of a task pose problems to method X? How 
well does a swarm produced by method X cross the reality gap? 
Questions of this nature are in our opinion fundamental for the 
development of a mature science. In particular, the development 
of a solid, well-established, and consistently applied empirical 
practice to assess and compare methods is of paramount impor-
tance. Within the field of artificial intelligence, domains that 
rightfully qualify as mature science greatly invested in the 
development of a proper empirical practice. Think, for example, 
of machine learning and heuristic optimization  –  for example, 
evolutionary computation, particle swarm optimization, and ant 
colony optimization. In these domains, virtually all published 
articles propose an extensive experimental analysis and all newly 
proposed ideas are thoroughly compared empirically against the 
established state of the art. Moreover, in these domains, it is com-
mon to share benchmark problems, datasets, implementations, 
and results.

It is our contention that the research on the automatic design 
of control software for robot swarms cannot significantly pro-
gress further unless the research community endows itself with 
a strong, common empirical practice. Comparisons between 
different design methods should play a much more prominent 
role. At every moment in time, the research community should be 
mindful of what is the best method for a given problem, what is 
the relative performance of the available methods, and which are 
the relative strengths and weaknesses of each existing method. In 
other words, the state of the art should be precisely defined and 
every new proposed method should be compared with it.

In the following, we discuss four main issues to be addressed 
in order to define an empirical practice that is appropriate for the 
automatic design of control software for robot swarms.

3.1. Reference Model
To be meaningful, a comparison of design methods must be per-
formed under the same conditions for all methods under analysis. 
It appears obvious that all methods must be given the same 
resources: computation time, memory, simulator and simulation 
models, number and kind of CPUs, operating system, hardware 
infrastructure, etc. It appears also obvious that the different 
design methods under analysis must be requested to produce 
control software for the same robotic platform. This last require-
ment is less trivial than one might think. Indeed, we became 
convinced that simply stating which platform is considered in a 
study is not sufficient to guarantee that all methods under analysis 
operate under the same conditions. We argue that a more formal 
approach is needed: a reference model for the platform considered 
should be explicitly defined. The reference model should formally 
define the sensors and the actuators that the control software can 
access along with the relative value ranges and, possibly, noise 
models. Ideally, the control software produced by the automatic 
design methods under analysis should interact with the platform 
hardware via a common API. This prevents that the experimenter 

introduces a bias by allowing a method to access resources or 
information that is not available to other methods or to use them 
in a more creative and profitable way.

3.2. Precise Definition
An automatic design method should be precisely defined so 
as to enable the reproducibility of its results. In particular, an 
automatic design method should be univocally identified by a 
name, should be clearly defined in all its parts, and should prop-
erly pinpoint the reference model(s) to which it can be applied. 
Ideally, an implementation should be made publicly available. 
This would guarantee that an automatic design method can be 
used by researchers other than those who originally proposed it, 
and can be, therefore, included in objective comparative studies 
performed by third parties. By studying the literature presented 
in Section 2, we realized that, excluding very few cases, automatic 
design methods proposed so far have been tested in a single study 
by authors who introduced them. In each study, excluding very 
few exceptions, researchers either present an original design 
method or develop a variant of a previously presented one. It is 
extremely rare in the literature that an automatic design method is 
used “as is” in multiple subsequent studies on different tasks – i.e., 
without undergoing any ad hoc, manual, per-task modification. 
Moreover, we are not aware of any case in which an automatic 
design method is included in a study performed by a third party. 
We find particularly revealing the fact that automatic design 
methods are not typically given a name by their proponents: it 
does not make much sense to name a method that is supposed to 
live within the time span of a single research study. We are quite 
sure that researchers would name the methods they propose if 
there were a concrete expectation for them to be included in sub-
sequent studies and applied to several tasks, possibly by a third 
party. The fact that a method is typically tested on a single task 
in the original paper in which it is proposed makes it impossible 
to apprise its qualities as an automatic method. In particular, it 
makes it impossible to apprise whether the method is an ad hoc 
solution for the single task considered or it is general enough and 
able to address a class of tasks. Clearly, a method that applies to a 
single task and needs to be manually re-instantiated and/or fine-
tuned to be applied to another task cannot legitimately qualify 
as an automatic method. To serve the purpose of the research 
on the automatic design of control software for robot swarm, 
its experimental practice should take the above considerations 
into account. In particular, it should prescribe that an automatic 
design method is tested on multiple tasks without undergoing 
any ad hoc, manual, per-task modification. Moreover, each newly 
proposed method should be compared with those that have been 
previously proposed so that a clear picture of the state of the art 
is always available to the community. Independent evaluations 
performed by third parties would be extremely valuable.

3.3. Benchmarks
Another important issue that should be addressed by the com-
munity concerns the tasks on which automatic design methods 
should be tested and compared. A convincing and informative 
experimental analysis should ideally be based on a large set of 
different tasks. It should eventually allow the experimenter to 
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make conclusions on the ability of the design methods under 
analysis to produce control software for a generic task of inter-
est. Obviously, whether a task can be possibly performed by a 
swarm of robots depends on the capabilities of the robots, as 
formally characterized by the reference model. In other terms, 
a reference model implicitly determines the class of tasks that 
can be performed by a swarm of robots conforming to the refer-
ence model itself. An informative comparison should be based 
on a representative subset of tasks sampled from this class. We 
are convinced that the definition of publicly available datasets 
of benchmark tasks would be highly beneficial for the research 
on the automatic design of control software for robot swarms 
and would significantly speed up its progress. Each benchmark 
task should specify its target platform(s) via a reference model. 
At each moment in time, the research community should have 
access to an up-to-date record of the performance yielded by 
each automatic design method that has been tested on each 
benchmark task. In this respect, having names that univocally 
identify design methods is paramount. It could be convenient to 
conceive programs that automatically generate benchmark tasks 
within a class. For example, consider a program that generates 
instances of a search and retrieve task by randomly sampling, 
according to appropriately defined probability distributions: (i) 
size and shape of the environment, (ii) number and position of 
the obstacles, (iii) number and the positions of the targets, (iv) 
initial placement of the robots, and (v) position of the safe area to 
which retrieved targets should be carried. Such a program could 
be used to generate multiple sets of tasks, all sharing the same 
statistical properties. The experimenter could obtain two disjoint 
sets: one to be used to automatically design control software, and 
one to be used to test it.

The definition of benchmark tasks to be used by the whole 
research community could be based on widely used and com-
mercially available robots. Indeed, some platforms have been 
considered a de facto standard by many research labs for years. 
For example, the Khepera and the e-puck have been adopted 
in a large share of swarm robotics studies. More recently, the 
kilobot is becoming popular and the Thymio appears to meet all 
the requirements to become widely adopted in swarm robotics 
research. As an alternative, standard benchmark tasks could be 
implemented via remote controlled labs [e.g., see Zeiger et al. 
(2009), Kulich et  al. (2013), Casini et  al. (2014), and Casan 
et al. (2015)]. For example, imagine a confined area in which 
a robotic arm can position obstacles and objects as remotely 
specified by the experimenter. A robot swarm could then act 
in the area operated by the control software to be tested. The 
robotic arm would be in charge of placing the robots at desired 
initial positions for each run and of recharging them when 
needed.

Clearly, we do not wish to go so far as to state that all the 
research in swarm robotics should be performed on standard 
benchmarks and be based on the aforementioned platforms 
or via remote controlled labs. Indeed, research on previously 
unexplored tasks and the development of original custom-made 
robots are essential elements for the advancement of the domain. 
Yet, we are deeply convinced that routinely testing new proposals 
on standard benchmarks and common platforms is the only way 

to consolidate results and to enable an ordered and structured 
accumulation of knowledge.

3.4. Robot experiments
A crucial aspect that has been often overlooked in the literature 
is the ability of a design method to overcome the reality gap, 
that is, the unavoidable difference between the models used in 
computer-based simulations and reality. The reality gap is an 
issue that is particularly relevant when studying off-line auto-
matic design methods. Indeed, one of the major challenges for 
an off-line design method is to use computer-based simulations 
to design control software that once installed on the robots will 
behave as expected. Ideally, the robot swarm should behave in 
reality as its simulated counterpart. Unfortunately, this chal-
lenge is far from being overcome. Potentially, the reality gap is 
an issue also in the study of on-line methods as a large share of 
the research work on these methods relies on computer-based 
simulations. Due to the reality gap, automatic design methods 
(either on-line or off-line methods) cannot be properly assessed 
only via simulations, at least in this historical moment. We are 
firmly convinced that robot experiments should have a much 
more prominent role in the research on the automatic design 
of control software for robot swarms. They should be the core 
of the whole empirical practice in the domain. Increasing the 
prominence of robot experiment has unfortunately a downside: 
it raises the cost of research. Yet, we are convinced that, at least in 
this phase of the development of the domain, robot experiments 
are indispensable and their cost unavoidable. It is common in 
many domains that researchers need costly resources to preform 
their studies. For example, research in particle physics and in 
observational astronomy require having access to a collider and 
a telescope, respectively. These resources are expensive – much 
more than a robot swarm. Most research groups do not own them 
and need to get access to those shared by other groups. Even those 
that do own the resources, often are not fully satisfied with them 
and need to get access to alternative resources owned by other 
groups. Indeed, each collider and telescope is different (energy 
range, resolution, location, etc.) and researchers often need to 
access more than one of them to confirm observations or to 
calibrate their methods and tools. It is, therefore, customary that 
these resources are shared in the context of international coop-
eration programs. Although the domains of particle physics and 
observational astronomy are deeply different in many respects 
from swarm robotics, we are convinced that the mechanisms 
used to share resources within these two domains could serve as a 
model also for our community. In particular, we envision interna-
tional cooperation programs within the research community that 
investigates the automatic design of control software for robot 
swarms. Research groups could share their resources with partner 
groups so that each participant in the cooperation program can 
test their automatic design methods on different platforms and/
or under different experimental conditions. When the research 
groups own identical robots, they could join their resources and 
perform experiments with a swarm larger than the one they own. 
The collaboration would be the ideal context to compare the dif-
ferent automatic design methods developed by the partners and 
conceive possible cross-fertilizations.
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4. CONCLUSiON

In this article, we reviewed the most notable achievements in the 
automatic design of control software for robot swarms. These 
achievements show that automatic methods are a viable and 
promising approach to the design of control software for robot 
swarms. Unfortunately, the literature on the automatic design of 
control software for robot swarms appears to be scattered and 
composed by isolated contributions: with few exceptions, no 
comparison between design methods are provided and new ideas 
and methods are not properly assessed against a well-established 
state of the art. It is our contention that the lack of an empirical 
practice hinders the progress of the domain.

In the body of the article, we highlighted four issues that 
need to be addressed to establish a proper empirical practice 
for the automatic design of control software for robot swarms: 
(i) every study that proposes or applies an automatic design 
method should clearly define a reference model for the robotic 
platform considered. (ii) Every automatic design method should 
be precisely defined in all its parts and parameters, and univo-
cally identified by a name. (iii) Libraries of standard benchmarks 

should be defined and adopted by the community for assessing 
newly proposed methods and ideas. (iv) Robot experiments 
should be the ultimate way to assess methods for the automatic 
design of control software for robot swarms and should be an 
essential element of any research study in the domain.

We are convinced that a solid, well-established, and consist-
ently applied empirical practice would allow the community to 
promote the best ideas proposed so far, to focus on promising 
directions, and to attract further researches and investments to 
the domain of the automatic design of control software for robot 
swarms.
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