
May 2016 | Volume 3 | Article 291

Review
published: 26 May 2016

doi: 10.3389/frobt.2016.00029

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Andreas Kolling,

University of Sheffield, UK

Reviewed by:
Heiko Hamann,

University of Paderborn, Germany
Yuri Kaszubowski Lopes,

University of Sheffield, UK

*Correspondence:
Mauro Birattari

mbiro@ulb.ac.be

Specialty section:
This article was submitted to

Multi-Robot Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 09 February 2016
Accepted: 02 May 2016
Published: 26 May 2016

Citation:
Francesca G and Birattari M (2016)

Automatic Design of Robot Swarms:
Achievements and Challenges.

Front. Robot. AI 3:29.
doi: 10.3389/frobt.2016.00029

Automatic Design of Robot Swarms:
Achievements and Challenges
Gianpiero Francesca and Mauro Birattari*

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

Automatic design is a promising approach to the design of control software for robot
swarms. In an automatic design method, the design problem is cast into an optimization
problem and is addressed using an optimization algorithm. In this article, we review stud-
ies in which automatic design methods are successfully applied. In particular, we focus
our attention on how automatic methods are empirically assessed. An apparent issue
that emerges from our review is that a solid, well-established, and consistently applied
empirical practice is still missing. For example, studies that propose new methods and
ideas do not typically provide any comparison with existing ones. We maintain that the
lack of a proper empirical practice hinders the progress of the domain. In this article,
we pursue two goals: we highlight the notable achievements in the automatic design
of control software for robot swarms and we discuss the challenges to be overcome to
establish a proper empirical practice for the domain.

Keywords: swarm robotics, collective robotics, automatic design, design methodology, evolutionary robotics

1. iNTRODUCTiON

In swarm robotics, a large number of robots are deployed to accomplish a mission that is beyond the
capabilities of a single robot (Dorigo et al., 2014). Because a single robot is not able to accomplish
the mission on its own, the robots must cooperate. A robot swarm operates in a self-organized
and distributed manner: there is no leader and coordination is obtained via interaction between
the individual robots. Moreover, a robot swarm does not rely on any external infrastructure: each
individual robot acts on the basis of local information obtained through its sensors or provided by
neighboring robots via local communication.

Although the literature describes a number of robot swarms that have been developed and
demonstrated, a reliable engineering approach to the design of control software for robot swarms is
still at dawn (Brambilla et al., 2013). Typically, designers proceed by trial and error, guided only by
their intuition and experience. Some effort has been made recently to overcome this problem and
a number of principled manual methods have been proposed [e.g., see Hamann and Wörn (2008),
Kazadi et al. (2009), Berman et al. (2011), Werfel et al. (2014), Brambilla et al. (2015), Reina et al.
(2015), and Lopes et al. (2016)]. Although interesting and promising results have been obtained, we
are far from a generally applicable solution.

Automatic methods are a promising alternative. In an automatic method, the problem of design-
ing the control software for a robot swarm is cast into an optimization problem: the different design
choices define a search space that is explored using an optimization algorithm. Most of the automatic
methods proposed so far belong to the framework of evolutionary robotics (Nolfi and Floreano, 2000).
Traditionally in evolutionary robotics, the control software is based on artificial neural networks and
is optimized automatically via an evolutionary algorithm, following a process inspired by natural

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00029&domain=pdf&date_stamp=2016-05-26
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00029
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:mbiro@ulb.ac.be
http://dx.doi.org/10.3389/frobt.2016.00029
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00029/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00029/abstract
http://loop.frontiersin.org/people/319261/overview
http://loop.frontiersin.org/people/219071/overview

2

Francesca and Birattari Automatic Design of Robot Swarms

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 29

evolution. As discussed in Section 2, evolutionary robotics has
been successfully adopted to design robot swarms that perform
various tasks. The results achieved show that automatic design is
a viable and promising approach to design the control software
of robot swarms.

Unfortunately, the pioneering achievements registered so far
are to be considered as somehow isolated contributions, rather
than the incremental acquisitions of an established and mature
science.1 With few exceptions, studies that introduce new auto-
matic design methods and ideas do not provide any comparison
with previously introduced ones. Indeed, a solid, well-established,
and consistently applied practice for the empirical assessment
and comparison of automatic design methods is still missing.

We are convinced that the lack of a proper empirical practice
hinders the progress of the research on the automatic design
of control software for robot swarms. We contend that a well-
established empirical practice that encourages comparisons
would properly promote the best ideas proposed so far, would
help to focus on promising directions, and would attract further
researchers and investments to the domain.

With this article, we pursue two objectives. In Section 2, we
highlight studies that present notable achievements in the domain
of the automatic design of control software for robot swarms. We
devote particular attention to the empirical approach adopted to
assess new proposals. In Section 3, we discuss some challenges
that the research community should overcome to transform the
current research on the automatic design of control software for
robot swarms into a mature science.

2. ACHieveMeNTS

In automatic design, the problem of designing the control
software is cast into an optimization problem. In other terms,
an automatic design method uses an optimization algorithm to
search the design space. This space comprises all the instances of
control software that the method can possibly produce. The goal
of the optimization algorithm is to find an instance of control
software that maximizes an appropriate performance measure.
Automatic design methods can be divided into two classes: off-
line and on-line methods.

2.1. Off-Line Methods
In off-line methods, the design process takes place in a pre-
liminary, dedicated phase: the design phase. The design phase
occurs and terminates before the robot swarm is deployed in its
operational environment. Within the design process, an off-line
method evaluates a relatively large number of different instances
of control software. Typically, the evaluation of an instance of
control software is performed via a computer-based simulation.
Simulation offers two main benefits: (i) it enables a faster-than-
real-time evaluation and (ii) prevents the robots from being dam-
aged by a possibly low-quality instance of the control software.

Evolutionary robotics (Nolfi and Floreano, 2000) is the most
studied automatic design approach in swarm robotics. Typically,

1 We use the notion of mature science as defined by Kuhn (1962).

in evolutionary robotics an evolutionary algorithm is used to
optimize the parameters and possibly the structure of a neural
network that takes as an input sensor readings and returns
actuation commands. Originally, evolutionary robotics was suc-
cessfully applied in single robot scenarios. The adoption of the
evolutionary robotics approach in swarm robotics goes under
the name of evolutionary swarm robotics (Trianni, 2008). In
the following, we present a number of notable achievements in
evolutionary swarm robotics. For comprehensive reviews of the
(single-robot) evolutionary robotics literature, we refer the reader
to Bongard (2013), Doncieux and Mouret (2014), Trianni (2014),
and Silva et al. (2016).

Most of the notable works in evolutionary swarm robotics
share a set of common characteristics: (1) the swarms produced
are behaviorally homogeneous, that is, all the robots of the swarm
execute identical copies of the same control software. (2) The
objective function that is optimized during the design process is
globally and centrally evaluated, that is, it is computed consider-
ing the performance of the swarm as a whole. (3) The optimiza-
tion algorithm adopted within the design process is a classical
evolutionary algorithm that features elitism, recombination, and
mutation. (4) The size of the population ranges from 50 to 200
individuals, with 100 individuals as the most common value.
(5) The number of performance assessments for each instance
of the control software ranges from 3 to 100, with 10 as the most
common value. Each assessment differs from the others in the
initial conditions – i.e., position of the robots and characteris-
tics of the environment. (6) To take into account stochasticity,
different independent runs of the evolutionary algorithm are
performed. The most common number of independent runs is
ten. (7) Unfortunately, the assessment of the obtained control
software, in reality, is not always performed. Many studies present
results in simulation only. When robot experiments are per-
formed, they are often only isolated demonstrations rather than
a structured empirical analysis aimed at producing statistically
significant results.

Since the introduction of evolutionary swarm robotics, most
of the research effort aimed at showing the feasibility of the
approach and investigating whether a particular collective behav-
ior can be obtained via artificial evolution. Quinn et al. (2003)
were the first to adopt the evolutionary approach in the context
of swarm robotics. The authors obtained a coordinated motion
behavior by using an evolutionary algorithm to optimize control
software based on a neural network. Robot experiments were
performed with three Khepera robots. More than a decade after
the publication of this work, some aspects of the experimental
design might appear unusual. For example, the performance of
each instance of control software produced within the design
process was assessed via 60 evaluations. In the final stage of the
design process, the number of evaluations was increased to 100.
At the end of the design process, 10 different instances of control
software were tested in robot experiments. The very best instance
was tested through 100 runs. Following this seminal work, a
number of robot swarms designed via evolutionary robotics have
been described in the literature. For instance, Christensen and
Dorigo (2006) showed how to use evolution to obtain a swarm
of robots that is able to perform hole-avoidance and phototaxis

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

3

Francesca and Birattari Automatic Design of Robot Swarms

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 29

at the same time. The study includes a comparison between three
different evolutionary algorithms: a classical evolutionary algo-
rithm, evolutionary strategy, and a co-evolutionary genetic algo-
rithm. For each algorithm, 20 independent runs were performed.
Evolutionary strategy yielded the best performance. The best
instance of control software produced by evolutionary strategy
was tested in experiments performed with a group of three s-bot
robots. Under a similar setting, Baldassarre et al. (2007) obtained
coordinated motion with a swarm of four physically connected
s-bot robots. The best instance of control software obtained
across 20 independent runs of the design process was tested on
a group of four s-bot robots. In the experiments performed by
the authors, the control software obtained via computer-based
simulations performed well in reality without the need of any
adjustment. Moreover, the same control software performed well
also when the robots had to navigate on rough terrains. Hauert
et al. (2008) used evolutionary robotics to obtain the control soft-
ware for a swarm of aerial robots that are required to establish a
wireless communication network. Experiments were performed
in simulation only. Trianni and Nolfi (2009) studied the design
of a self-organizing behaviors via evolution. The experimental
analysis was performed mostly in simulation and involved 20
independent runs of the design process. The best instance of
control software obtained across the 20 runs was tested on groups
of two and three s-bot robots. Waibel et al. (2009) investigated
the influence on performance of different selective pressures
(individual and collective) and different team compositions
(homogeneous and heterogeneous swarms). The experimental
analysis was conducted on three different variants of a foraging
task. For each variant, four different combinations of selective
pressures and team compositions were tested via 20 independent
runs of the design process. Experiments were conducted both
in simulation and with ten Alice robots. Ferrante et al. (2015)
used a method based on grammatical evolution (Ferrante et al.,
2013) to evolve task specialization in a robot swarm. In particular,
the authors highlighted the environmental conditions that are
necessary for task specialization to emerge. Experiments were
performed in simulation only.

Recently, the research in evolutionary swarm robotics has been
influenced by the current trends in evolutionary computation.
The studies on novelty search and multi-objective optimization are
worthy of mention. Novelty search (Lehman and Stanley, 2011) is
an approach to evolutionary computation that promotes diversity
instead of performance. Results indicate that novelty search is
robust to issues that affect the classical evolutionary approach,
including premature convergence and stagnation. Gomes et al.
(2013) introduced novelty search in the context of swarm robot-
ics. They used novelty search to automatically develop control
software for aggregation and resource sharing. The study includes
a comparison with a classical evolutionary approach and with a
hybrid approach that combines a classical approach and novelty
search. Experiments were conducted in simulation only.

Multi-objective optimization focuses on problems in which
multiple, possibly conflicting objectives are to be optimized. In
evolutionary robotics, multi-objective optimization might be of
interest in two contexts: (i) the problem is naturally formulated as
a multi-objective problem. For example, the task is composite and

the robots are required to accomplish multiple sub-tasks, each
associated with a performance measure (Capi, 2007). (ii) The
designer wishes to promote a specific property that can be char-
acterized via a measurable quantity. For example, the designer
wishes to increase the chance that the obtained control software
works properly in reality (Koos et al., 2013b), enforce a low
complexity of the control software produced by the optimization
process (Teo and Abbass, 2004, 2005), or increase the robustness
against hardware failures and environmental variability (Koos
et al., 2013a; Lehman et al., 2013). Trianni and López-Ibáñez
(2015) were the first to study the application of multi-objective
optimization in the context of evolutionary swarm robotics. They
presented results on two swarm robotics tasks: flocking and an
idealized version of the stick-pulling experiment. Experiments
were conducted in simulation only.2

A number of notable studies depart from the classical evo-
lutionary robotics tradition by adopting (i) control software
architectures other than monolithic neural networks and/or (ii)
optimization algorithms other than evolutionary computation.
In particular, some authors studied the possibility of using an
optimization algorithm to fine-tune a parametric control archi-
tecture that features only a small set of parameters. Hecker et al.
(2012) obtained a foraging behavior by using artificial evolution
to optimize the parameters of a probabilistic finite state machine.
Experiments were conducted with a group of three custom-made
two-wheeled robots. The objects to be retrieved were emulated
via RFID tags placed on the ground. The tags could be sensed
by the robots via an onboard RFID reader. Gauci et al. (2014a)
obtained an object clustering behavior by using evolutionary
strategy to optimize a simple control architecture that features
six parameters. The simplicity of the control architecture arises
from the fact that the control architecture controls the speed of
the two wheels of the robot exclusively based on the readings of
a single three-state line-of-sight sensor. The line-of-sight sensor
indicates whether the robot faces (i) another robot, (ii) an object
to cluster, or (iii) neither of them. On the robot, the line-of-
sight sensor was implemented using the frontal camera and a
color detector that recognizes robots that are green and objects
that are red. Experiments were conducted with a group of five
e-puck robots. Ten independent runs of the design process were
performed in simulation. For each run, the best instance of con-
trol software obtained was tested in reality. Gauci et al. (2014b)
optimized the same control architecture via exhaustive search to
obtain self-organized aggregation. In this second study, no object
is present in the environment and the line-of-sight sensor can
be, therefore, in only two states: it indicates whether the robot
faces (i) another robot or (ii) not. Due to the even simpler control
architecture adopted in this second study, the design space counts
only 194,481 different instances of control software that can be
possibly generated. The reduced size of the design space allows
for exhaustive search in simulation. Experiments were conducted
with a group of forty e-puck robots: the best performing instance
of control software found via exhaustive search was tested 30
times on the robots.

2 The authors presented results also on a single-robot task.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

4

Francesca and Birattari Automatic Design of Robot Swarms

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 29

Other authors proposed the adoption of a modular control
architecture: the control software is obtained by combining
modules obtained either via manual or automatic design. Duarte
et al. (2014a) presented an approach based on the hierarchical
decomposition of complex behaviors into simpler behaviors that
can be generated either manually or via evolutionary robotics.
The simple behaviors are then combined using high-level neural
networks. The approach was illustrated in simulation only, on
an object retrieval task. The results indicate that the approach
outperforms the classical, monolithic evolutionary approach.
Similarly, Duarte et al. (2014b) used hierarchical decomposi-
tion to obtain control software for a patrolling task. The control
software comprises low-level behaviors (go to waypoint, patrol,
pursue intruder) and one module that arbitrates the low-level
behaviors. The low-level behaviors were implemented as neural
networks and were obtained via evolution. The arbitrator was
manually written. The resulting system was tested in simulation
only. The downside of the approach is that hierarchical decom-
position is task dependent and has to be performed manually
by the designer. In a successive study, the authors designed via
artificial evolution control software for a swarm of ten aquatic
robots (Duarte et al., 2015; Christensen et al., 2016). The task to
be performed by the swarm comprised four different sub-tasks:
homing, dispersion, clustering, and area monitoring. The aggre-
gated control software was obtained by sequentially combining
the instances of control software developed for each sub-task.
Experiments were performed in a 330 m × 190 m waterbody next
to the Tagus river in Lisbon, Portugal. The results show that the
control software produced via the proposed method crosses the
reality gap nicely.

Another modular approach that has been recently proposed
is AutoMoDe (Francesca et al., 2014). In AutoMoDe, the control
software is a probabilistic finite state machine that is automati-
cally synthesized by combining pre-existing, task-independent
modules. In Francesca et al. (2014), Vanilla, a first implementa-
tion of AutoMoDe, was tested on two different tasks: aggregation
and foraging. In a set of experiments conducted with a swarm
of twenty e-puck robots, Vanilla outperformed a classical evo-
lutionary swarm robotics method. In Francesca et al. (2015),
Chocolate, a second implementation of AutoMoDe, was intro-
duced. Chocolate differs from Vanilla in the fact that it adopts a
more powerful optimization algorithm. Chocolate was compared
against Vanilla and human designers on five tasks. The experi-
mental analysis performed on twenty e-puck robots showed that
the control software produced by Chocolate outperforms the one
produced by Vanilla and by the human designers who partici-
pated in the study.

2.2. On-Line Methods
In on-line methods, the design process takes place when the robot
swarm has been already deployed in its operational environment.
The apparent advantage of on-line methods over off-line meth-
ods is that on-line methods can benefit from the availability of
information on the actual operational environment that would
be unavailable at off-line design time. Moreover, one could expect
that an on-line method can cope with changes in operating
conditions and adapt to contingencies. In other words, on-line

methods aspire to produce a design that is more tailored to the
specific mission than the one produced by an off-line method.
On the downside, on-line methods are likely constrained to a
reduced search space with respect to off-line methods because
of two main reasons: (i) as the design process is performed by
the robots themselves while they are operational, computational
resources and time are limiting factor and (ii) candidate design
that are potentially dangerous for the robots should be a priori
removed from the search space to avoid jeopardizing the mission.
Moreover, in a realistic on-line setting, the design process is fully
distributed on the robots and cannot count on any centralized
entity to measure performance and guide the search, as it can in
an off-line setting. The design process is, therefore, constrained to
use performance indicator that can be evaluated in a distributed
and local way. Whether on-line methods are more or less effective
than off-line methods, which are the features of a mission that
are better handled by on-line or off-line methods, and whether
on-line and off-line methods can be effectively combined are
empirical questions that require further research to be answered
convincingly.

In the works on the on-line automatic design of control
software for robot swarms, we can highlight some typical char-
acteristics: (1) each robot of the swarm explores a portion of the
search space. Typically, each robot evaluates asynchronously a
subpopulation of instances of control software and keeps track
of their performance. (2) The robots exchange information to
co-ordinate the search process. Although the way in which infor-
mation is exchanged varies from work to work, a typical feature
is that best performing instances of control software are shared
between the robots. These instances are typically modified using
mutation by the sender or by the receiver and become part of the
subpopulation of instances explored by the receiver. (3) Robot
swarms are de facto behaviorally heterogeneous, that is, at any
given moment each robot executes a different instance of control
software. This does not necessarily exclude that the robots can
eventually converge to executing the same instance of control
software. (4) As each robot of the swarm is required to evaluate
instances of control software, the objective function must be
computable relying only on information that is locally available
to the robot. This restricts the class of tasks that are tackled in
the literature (and that can be possibly tackled) using the on-line
approach. The tasks that can be tackled appear to be simpler and
less diverse than those that are tackled in the off-line approach.
(5) Unfortunately, experiments in reality are not always per-
formed. Some studies present results in simulation only. We can
identify four different ways in which experiments are performed:
a. experiments are conducted in simulation only; b. the design of
the control software is conducted in simulation and then a subset
of the best instances of control software are tested on the robots
(during the test the robots do not perform on-line design); c. the
design of the control software is conducted partly in simulation
and partly on the robots. The obtained control software is tested
on the robots; and d. the design of the control software is con-
ducted exclusively on the robots. The obtained control software
is tested on the robots.

One of the first studies proposing an on-line method for multi-
robot systems was published by Parker (1996, 1997). The author

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

5

Francesca and Birattari Automatic Design of Robot Swarms

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 29

proposed L-ALLIANCE, a behavior-based control architecture
that allows the on-line optimization of some internal parameters
of the control software. No robot experiment is described in the
articles in which the method is introduced. Matarić (2001) sur-
veyed various behavior-based control architectures that allow the
on-line optimization of parameters. Lee and Arkin (2003) applied
learning momentum (Clark et al., 1992) to a multi-robot system.
The task that they considered is an abstraction of capture-the-
flag. Experiments were performed in simulation only.

A number of significant studies on on-line automatic design
belong to the embodied evolution approach (Watson et al., 1999,
2002). In embodied evolution, an evolutionary algorithm that
is in charge of optimizing the control software is executed in a
distributed way. The computation is performed by the robots of
the swarm while they are situated in the operational environment.
Watson et al. (1999, 2002) developed a multi-robot system that is
able to achieve phototaxis via embodied evolution. In this system,
each robot broadcasts a mutated version of the best instance of
control software it obtained, with a probability that is a function of
its performance. Experiments were conducted with eight custom-
made two-wheeled robots. To overcome the limited duration of
the batteries and to grant a sufficient amount of time to the design
process, robots were connected to a power source using special
hardware that makes contact with an electrified floor. Similarly,
Usui and Arita (2003) applied embodied evolution to design a
simple obstacle avoidance behavior on six Khepera robots. The
study includes a comparison between a group of robots that
exchange the best performing instances of control software
they found and a group that does not. The results indicate that
exchanging control software is beneficial. As in Watson et al.
(2002), the limited duration of the batteries was overcome using
special hardware that provides a continuous power supply; in
this case, a pantograph that makes constant contact with an
overhead power line. Bianco and Nolfi (2004) proposed a method
that allows robots to share their internal configuration via self-
assembly. The method was tested in simulation only. König and
Mostaghim (2009) departed from the classical approach based
on neural networks, by proposing a control architecture based on
finite state machines optimized on-line via embodied evolution.
The tasks considered were gate passing and collision avoidance.
The experiments were conducted in simulation only.

A few studies were devoted to the investigation of fundamental
scientific questions concerning the relationship between and the
combination of learning and evolution. Wischmann et al. (2007)
studied the relationship between learning and embodied evolu-
tion in a predator–prey scenario. Experiments were performed
in simulation only. Elfwing et al. (2011) investigated the combi-
nation of reinforcement learning and embodied evolution in a
survival scenario. Experiments were conducted in simulation and
the control software obtained was then evaluated on two Cyber
Rodent robots. The authors followed a hybrid procedure: the
design was conducted in simulation using initially a group of four
robots and then a group of two. The resulting control software was
eventually tested on the two Cyber Rodent robots.

More recent studies shifted the focus back to the develop-
ment of effective on-line design methods. Bredeche et al. (2012)
proposed MEDEA, a framework for onboard evolution of control

software based on neural networks. In MEDEA, robots are able
to adapt to environmental conditions. The experimental analysis
was performed on two tasks (survival and two suns) using twenty
e-puck robots. Some precautions were taken in the definition of
the experiments: (i) to reach convergence within the duration of
the batteries, experiments were conducted using a small search
space; (ii) to allow the exchange of solutions between robots,
a reliable local communication was emulated via Wi-Fi and
information provided by a tracking system. Haasdijk et al. (2014)
introduced a multi-objective variant of MEDEA called MONEE.
MONEE allows a swarm of robots to adapt their behavior to the
environment and to a given task at the same time. Experiments
were performed in simulation only. Silva et al. (2015) introduced
odNEAT, a variant of real-time NEAT (Stanley and Miikkulainen,
2002) for the online and decentralized optimization of robot
control software. Experiments on three multi-robot tasks (aggre-
gation, navigation with obstacle avoidance, and phototaxis) were
performed in simulation only.

A number of studies presented on-line design methods based
on distributed implementations of particle swarm optimization
(Pugh and Martinoli, 2009). Here, we mention only two recent
studies. We refer the reader to Di Mario et al. (2015) for a more
extensive review of the relevant literature. Di Mario and Martinoli
(2014) applied distributed particle swarm optimization to the
onboard optimization of control software for obstacle avoidance.
The method was tested on a swarm of eight Khepera III robots.
The experiments were performed in three different settings: (i)
the control software was designed in simulation and then tested
on the robots; (ii) the control software was designed and tested
on the robots; and (iii) the control software was designed partly
in simulation and partly on the robots, to be eventually tested on
the robots. In a similar study, Di Mario et al. (2015) presented
OCBA, a noise-resistant particle swarm optimization algorithm
for the on-line automatic design of robot control software. In this
case, the on-line adaptation was performed in simulation. The
resulting control software was then tested on a swarm of four
Khepera III robots.

3. CHALLeNGeS

Although a number of promising methods for the automatic
design of control software for robot swarms have been presented
and discussed so far, a consolidated literature on the topic is still
missing. In some sense, we could (somehow provocatively) argue
that the state of the art in the automatic design of control software
for robot swarms is undefined and is yet to be properly identified.
As we have seen in Section 2, with the exception of a few rare cases,
published studies do not produce comparisons between different
methods. Moreover, the vast majority of the articles in which
interesting automatic design methods have been introduced were
tailored to answer scientific questions that do not directly belong
in automatic design. For example, an important share of the
articles devoted to evolutionary robotics were tailored to answer
scientific questions related to the plausibility of biological models
or the justification of animal behaviors in evolutionary terms.
These questions are clearly extremely fascinating and relevant in
absolute terms. Nonetheless, in many cases, these questions have

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

6

Francesca and Birattari Automatic Design of Robot Swarms

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 29

unfortunately shadowed the core questions of the research on the
automatic design of control software for robot swarms. Indeed,
some key questions are hardly addressed in the current literature:
Which automatic method is the best under which conditions? How
general is method X? How well does method X perform on different
tasks? Which features of a task pose problems to method X? How
well does a swarm produced by method X cross the reality gap?
Questions of this nature are in our opinion fundamental for the
development of a mature science. In particular, the development
of a solid, well-established, and consistently applied empirical
practice to assess and compare methods is of paramount impor-
tance. Within the field of artificial intelligence, domains that
rightfully qualify as mature science greatly invested in the
development of a proper empirical practice. Think, for example,
of machine learning and heuristic optimization – for example,
evolutionary computation, particle swarm optimization, and ant
colony optimization. In these domains, virtually all published
articles propose an extensive experimental analysis and all newly
proposed ideas are thoroughly compared empirically against the
established state of the art. Moreover, in these domains, it is com-
mon to share benchmark problems, datasets, implementations,
and results.

It is our contention that the research on the automatic design
of control software for robot swarms cannot significantly pro-
gress further unless the research community endows itself with
a strong, common empirical practice. Comparisons between
different design methods should play a much more prominent
role. At every moment in time, the research community should be
mindful of what is the best method for a given problem, what is
the relative performance of the available methods, and which are
the relative strengths and weaknesses of each existing method. In
other words, the state of the art should be precisely defined and
every new proposed method should be compared with it.

In the following, we discuss four main issues to be addressed
in order to define an empirical practice that is appropriate for the
automatic design of control software for robot swarms.

3.1. Reference Model
To be meaningful, a comparison of design methods must be per-
formed under the same conditions for all methods under analysis.
It appears obvious that all methods must be given the same
resources: computation time, memory, simulator and simulation
models, number and kind of CPUs, operating system, hardware
infrastructure, etc. It appears also obvious that the different
design methods under analysis must be requested to produce
control software for the same robotic platform. This last require-
ment is less trivial than one might think. Indeed, we became
convinced that simply stating which platform is considered in a
study is not sufficient to guarantee that all methods under analysis
operate under the same conditions. We argue that a more formal
approach is needed: a reference model for the platform considered
should be explicitly defined. The reference model should formally
define the sensors and the actuators that the control software can
access along with the relative value ranges and, possibly, noise
models. Ideally, the control software produced by the automatic
design methods under analysis should interact with the platform
hardware via a common API. This prevents that the experimenter

introduces a bias by allowing a method to access resources or
information that is not available to other methods or to use them
in a more creative and profitable way.

3.2. Precise Definition
An automatic design method should be precisely defined so
as to enable the reproducibility of its results. In particular, an
automatic design method should be univocally identified by a
name, should be clearly defined in all its parts, and should prop-
erly pinpoint the reference model(s) to which it can be applied.
Ideally, an implementation should be made publicly available.
This would guarantee that an automatic design method can be
used by researchers other than those who originally proposed it,
and can be, therefore, included in objective comparative studies
performed by third parties. By studying the literature presented
in Section 2, we realized that, excluding very few cases, automatic
design methods proposed so far have been tested in a single study
by authors who introduced them. In each study, excluding very
few exceptions, researchers either present an original design
method or develop a variant of a previously presented one. It is
extremely rare in the literature that an automatic design method is
used “as is” in multiple subsequent studies on different tasks – i.e.,
without undergoing any ad hoc, manual, per-task modification.
Moreover, we are not aware of any case in which an automatic
design method is included in a study performed by a third party.
We find particularly revealing the fact that automatic design
methods are not typically given a name by their proponents: it
does not make much sense to name a method that is supposed to
live within the time span of a single research study. We are quite
sure that researchers would name the methods they propose if
there were a concrete expectation for them to be included in sub-
sequent studies and applied to several tasks, possibly by a third
party. The fact that a method is typically tested on a single task
in the original paper in which it is proposed makes it impossible
to apprise its qualities as an automatic method. In particular, it
makes it impossible to apprise whether the method is an ad hoc
solution for the single task considered or it is general enough and
able to address a class of tasks. Clearly, a method that applies to a
single task and needs to be manually re-instantiated and/or fine-
tuned to be applied to another task cannot legitimately qualify
as an automatic method. To serve the purpose of the research
on the automatic design of control software for robot swarm,
its experimental practice should take the above considerations
into account. In particular, it should prescribe that an automatic
design method is tested on multiple tasks without undergoing
any ad hoc, manual, per-task modification. Moreover, each newly
proposed method should be compared with those that have been
previously proposed so that a clear picture of the state of the art
is always available to the community. Independent evaluations
performed by third parties would be extremely valuable.

3.3. Benchmarks
Another important issue that should be addressed by the com-
munity concerns the tasks on which automatic design methods
should be tested and compared. A convincing and informative
experimental analysis should ideally be based on a large set of
different tasks. It should eventually allow the experimenter to

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

7

Francesca and Birattari Automatic Design of Robot Swarms

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 29

make conclusions on the ability of the design methods under
analysis to produce control software for a generic task of inter-
est. Obviously, whether a task can be possibly performed by a
swarm of robots depends on the capabilities of the robots, as
formally characterized by the reference model. In other terms,
a reference model implicitly determines the class of tasks that
can be performed by a swarm of robots conforming to the refer-
ence model itself. An informative comparison should be based
on a representative subset of tasks sampled from this class. We
are convinced that the definition of publicly available datasets
of benchmark tasks would be highly beneficial for the research
on the automatic design of control software for robot swarms
and would significantly speed up its progress. Each benchmark
task should specify its target platform(s) via a reference model.
At each moment in time, the research community should have
access to an up-to-date record of the performance yielded by
each automatic design method that has been tested on each
benchmark task. In this respect, having names that univocally
identify design methods is paramount. It could be convenient to
conceive programs that automatically generate benchmark tasks
within a class. For example, consider a program that generates
instances of a search and retrieve task by randomly sampling,
according to appropriately defined probability distributions: (i)
size and shape of the environment, (ii) number and position of
the obstacles, (iii) number and the positions of the targets, (iv)
initial placement of the robots, and (v) position of the safe area to
which retrieved targets should be carried. Such a program could
be used to generate multiple sets of tasks, all sharing the same
statistical properties. The experimenter could obtain two disjoint
sets: one to be used to automatically design control software, and
one to be used to test it.

The definition of benchmark tasks to be used by the whole
research community could be based on widely used and com-
mercially available robots. Indeed, some platforms have been
considered a de facto standard by many research labs for years.
For example, the Khepera and the e-puck have been adopted
in a large share of swarm robotics studies. More recently, the
kilobot is becoming popular and the Thymio appears to meet all
the requirements to become widely adopted in swarm robotics
research. As an alternative, standard benchmark tasks could be
implemented via remote controlled labs [e.g., see Zeiger et al.
(2009), Kulich et al. (2013), Casini et al. (2014), and Casan
et al. (2015)]. For example, imagine a confined area in which
a robotic arm can position obstacles and objects as remotely
specified by the experimenter. A robot swarm could then act
in the area operated by the control software to be tested. The
robotic arm would be in charge of placing the robots at desired
initial positions for each run and of recharging them when
needed.

Clearly, we do not wish to go so far as to state that all the
research in swarm robotics should be performed on standard
benchmarks and be based on the aforementioned platforms
or via remote controlled labs. Indeed, research on previously
unexplored tasks and the development of original custom-made
robots are essential elements for the advancement of the domain.
Yet, we are deeply convinced that routinely testing new proposals
on standard benchmarks and common platforms is the only way

to consolidate results and to enable an ordered and structured
accumulation of knowledge.

3.4. Robot experiments
A crucial aspect that has been often overlooked in the literature
is the ability of a design method to overcome the reality gap,
that is, the unavoidable difference between the models used in
computer-based simulations and reality. The reality gap is an
issue that is particularly relevant when studying off-line auto-
matic design methods. Indeed, one of the major challenges for
an off-line design method is to use computer-based simulations
to design control software that once installed on the robots will
behave as expected. Ideally, the robot swarm should behave in
reality as its simulated counterpart. Unfortunately, this chal-
lenge is far from being overcome. Potentially, the reality gap is
an issue also in the study of on-line methods as a large share of
the research work on these methods relies on computer-based
simulations. Due to the reality gap, automatic design methods
(either on-line or off-line methods) cannot be properly assessed
only via simulations, at least in this historical moment. We are
firmly convinced that robot experiments should have a much
more prominent role in the research on the automatic design
of control software for robot swarms. They should be the core
of the whole empirical practice in the domain. Increasing the
prominence of robot experiment has unfortunately a downside:
it raises the cost of research. Yet, we are convinced that, at least in
this phase of the development of the domain, robot experiments
are indispensable and their cost unavoidable. It is common in
many domains that researchers need costly resources to preform
their studies. For example, research in particle physics and in
observational astronomy require having access to a collider and
a telescope, respectively. These resources are expensive – much
more than a robot swarm. Most research groups do not own them
and need to get access to those shared by other groups. Even those
that do own the resources, often are not fully satisfied with them
and need to get access to alternative resources owned by other
groups. Indeed, each collider and telescope is different (energy
range, resolution, location, etc.) and researchers often need to
access more than one of them to confirm observations or to
calibrate their methods and tools. It is, therefore, customary that
these resources are shared in the context of international coop-
eration programs. Although the domains of particle physics and
observational astronomy are deeply different in many respects
from swarm robotics, we are convinced that the mechanisms
used to share resources within these two domains could serve as a
model also for our community. In particular, we envision interna-
tional cooperation programs within the research community that
investigates the automatic design of control software for robot
swarms. Research groups could share their resources with partner
groups so that each participant in the cooperation program can
test their automatic design methods on different platforms and/
or under different experimental conditions. When the research
groups own identical robots, they could join their resources and
perform experiments with a swarm larger than the one they own.
The collaboration would be the ideal context to compare the dif-
ferent automatic design methods developed by the partners and
conceive possible cross-fertilizations.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

8

Francesca and Birattari Automatic Design of Robot Swarms

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 29

4. CONCLUSiON

In this article, we reviewed the most notable achievements in the
automatic design of control software for robot swarms. These
achievements show that automatic methods are a viable and
promising approach to the design of control software for robot
swarms. Unfortunately, the literature on the automatic design of
control software for robot swarms appears to be scattered and
composed by isolated contributions: with few exceptions, no
comparison between design methods are provided and new ideas
and methods are not properly assessed against a well-established
state of the art. It is our contention that the lack of an empirical
practice hinders the progress of the domain.

In the body of the article, we highlighted four issues that
need to be addressed to establish a proper empirical practice
for the automatic design of control software for robot swarms:
(i) every study that proposes or applies an automatic design
method should clearly define a reference model for the robotic
platform considered. (ii) Every automatic design method should
be precisely defined in all its parts and parameters, and univo-
cally identified by a name. (iii) Libraries of standard benchmarks

should be defined and adopted by the community for assessing
newly proposed methods and ideas. (iv) Robot experiments
should be the ultimate way to assess methods for the automatic
design of control software for robot swarms and should be an
essential element of any research study in the domain.

We are convinced that a solid, well-established, and consist-
ently applied empirical practice would allow the community to
promote the best ideas proposed so far, to focus on promising
directions, and to attract further researches and investments to
the domain of the automatic design of control software for robot
swarms.

AUTHOR CONTRiBUTiONS

The two authors contributed equally to the preparation of the
manuscript.

FUNDiNG

MB acknowledges support from the Belgian F.R.S.–FNRS, of
which he is a Senior Research Associate.

ReFeReNCeS

Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., and Nolfi, S.
(2007). Self-organised coordinated motion in groups of physically connected
robots. IEEE Trans. Syst. Man Cybern. B Cybern. 37, 224–239. doi:10.1109/
TSMCB.2006.881299

Berman, S., Kumar, V., and Nagpal, R. (2011). “Design of control policies for
spatially inhomogeneous robot swarms with application to commercial polli-
nation,” in IEEE International Conference on Robotics and Automation – ICRA
(Piscataway, NJ: IEEE), 378–385.

Bianco, R., and Nolfi, S. (2004). Toward open-ended evolutionary robotics: evolv-
ing elementary robotic units able to self-assemble and self-reproduce. Connect.
Sci. 16, 227–248. doi:10.1080/09540090412331314759

Bongard, J. C. (2013). Evolutionary robotics. Commun. ACM 56, 74–83.
doi:10.1145/2492007.2493883

Brambilla, M., Brutschy, A., Dorigo, M., and Birattari, M. (2015). Property-driven
design for swarm robotics: a design method based on prescriptive modeling and
model checking. ACM Trans. Auton. Adapt. Syst. 9, 17. doi:10.1145/2700318

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics:
a review from the swarm engineering perspective. Swarm Intell. 7, 1–41.
doi:10.1007/s11721-012-0075-2

Bredeche, N., Montanier, J.-M., Liu, W., and Winfield, A. F. (2012). Environment-
driven distributed evolutionary adaptation in a population of autonomous
robotic agents. Math. Comput. Model. Dyn. Syst. 18, 101–129. doi:10.1080/1
3873954.2011.601425

Capi, G. (2007). Multiobjective evolution of neural controllers and task complexity.
IEEE Trans. Robot. 23, 1225–1234. doi:10.1109/TRO.2007.910773

Casan, G. A., Cervera, E., Moughlbay, A. A., Alemany, J., and Martinet, P. (2015).
“ROS-based online robot programming for remote education and training,” in
IEEE International Conference on Robotics and Automation – ICRA (Piscataway,
NJ: IEEE), 6101–6106.

Casini, M., Garulli, A., Giannitrapani, A., and Vicino, A. (2014). A remote lab for
experiments with a team of mobile robots. Sensors (Basel) 14, 16486–16507.
doi:10.3390/s140916486

Christensen, A. L., and Dorigo, M. (2006). “Evolving an integrated phototaxis
and hole-avoidance behavior for a swarm-bot,” in Artificial Life – ALIFE
(Cambridge, MA: MIT Press), 248–254.

Christensen, A. L., Duarte, M., Costa, V., Rodrigues, T., Gomes, J., Silva, F., et al.
(2016). A Sea of Robots. AAAI Video Competition. Best Robot Video. Available
at: https://youtu.be/JBrkszUnms8

Clark, R. J., Arkin, R. C., and Ram, A. (1992). “Learning momentum: online perfor-
mance enhancement for reactive systems,” in IEEE International Conference on
Robotics and Automation – ICRA (Piscataway, NJ: IEEE), 111–116.

Di Mario, E., and Martinoli, A. (2014). Distributed particle swarm optimization
for limited-time adaptation with real robots. Robotica 32, 193–208. doi:10.1017/
S026357471300101X

Di Mario, E. L., Navarro, I., and Martinoli, A. (2015). “A distributed noise-resistant
particle swarm optimization algorithm for high-dimensional multi-robot
learning,” in IEEE International Conference on Robotics and Automation – ICRA
(Piscataway, NJ: IEEE), 5970–5976.

Doncieux, S., and Mouret, J.-B. (2014). Beyond black-box optimization: a review of
selective pressures for evolutionary robotics. Evol. Intell. 7, 71–93. doi:10.1007/
s12065-014-0110-x

Dorigo, M., Birattari, M., and Brambilla, M. (2014). Swarm robotics. Scholarpedia
9, 1463. doi:10.4249/scholarpedia.1463

Duarte, M., Costa, V., Gomes, J. C., Rodrigues, T., Silva, F., Oliveira, S. M., et al.
(2016). Evolution of collective behaviors for a real swarm of aquatic surface
robots. PLoS ONE 11:e0151834. doi:10.1371/journal.pone.0151834

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014a). “Evolution of hierarchi-
cal controllers for multirobot systems,” in Artificial Life – ALIFE (Cambridge,
MA: MIT Press), 657–664.

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014b). “Hybrid control for
large swarms of aquatic drones,” in Artificial Life – ALIFE (Cambridge, MA:
MIT Press), 785–792.

Elfwing, S., Uchibe, E., Doya, K., and Christensen, H. I. (2011). Darwinian embod-
ied evolution of the learning ability for survival. Adapt. Behav. 19, 101–120.
doi:10.1177/1059712310397633

Ferrante, E., Guzmán, E. D., Turgut, A. E., and Wenseleers, T. (2013). “GESwarm:
Grammatical evolution for the automatic synthesis of collective behaviors in
swarm robotics,” in Genetic and Evolutionary Computation – GECCO (New
York: ACM), 17–24.

Ferrante, E., Turgut, A., Duéñez-Guzmán, E., Dorigo, M., and Wenseleers, T.
(2015). Evolution of self-organized task specialization in robot swarms. PLoS
Comput. Biol. 11:e1004273. doi:10.1371/journal.pcbi.1004273

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G.,
et al. (2015). AutoMoDe-chocolate: automatic design of control software for
robot swarms. Swarm Intell. 9, 125–152. doi:10.1007/s11721-015-0107-9

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M. (2014).
AutoMoDe: a novel approach to the automatic design of control software for
robot swarms. Swarm Intell. 8, 89–112. doi:10.1007/s11721-014-0092-4

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1109/TSMCB.2006.881299
http://dx.doi.org/10.1109/TSMCB.2006.881299
http://dx.doi.org/10.1080/09540090412331314759
http://dx.doi.org/10.1145/2492007.2493883
http://dx.doi.org/10.1145/2700318
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1080/13873954.2011.601425
http://dx.doi.org/10.1080/13873954.2011.601425
http://dx.doi.org/10.1109/TRO.2007.910773
http://dx.doi.org/10.3390/s140916486
https://youtu.be/JBrkszUnms8
http://dx.doi.org/10.1017/S026357471300101X
http://dx.doi.org/10.1017/S026357471300101X
http://dx.doi.org/10.1007/s12065-014-0110-x
http://dx.doi.org/10.1007/s12065-014-0110-x
http://dx.doi.org/10.4249/scholarpedia.1463
http://dx.doi.org/10.1371/journal.pone.0151834
http://dx.doi.org/10.1177/1059712310397633
http://dx.doi.org/10.1371/journal.pcbi.1004273
http://dx.doi.org/10.1007/s11721-015-0107-9
http://dx.doi.org/10.1007/s11721-014-0092-4

9

Francesca and Birattari Automatic Design of Robot Swarms

Frontiers in Robotics and AI | www.frontiersin.org May 2016 | Volume 3 | Article 29

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014a). “Clustering objects
with robots that do not compute,” in Autonomous Agents and Multiagent
Systems – AAMAS (Richland, SC: IFAAMAS), 421–428.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014b). Self-organized
aggregation without computation. Int. J. Robot. Res. 33, 1145–1161.
doi:10.1177/0278364914525244

Gomes, J., Urbano, P., and Christensen, A. L. (2013). Evolution of swarm
robotics systems with novelty search. Swarm Intell. 7, 115–144. doi:10.1007/
s11721-013-0081-z

Haasdijk, E., Bredeche, N., and Eiben, A. (2014). Combining environment-driven
adaptation and task-driven optimisation in evolutionary robotics. PLoS ONE
9:e98466. doi:10.1371/journal.pone.0098466

Hamann, H., and Wörn, H. (2008). A framework of space-time continuous models
for algorithm design in swarm robotics. Swarm Intell. 2, 209–239. doi:10.1007/
s11721-008-0015-3

Hauert, S., Zufferey, J.-C., and Floreano, D. (2008). Evolved swarming without
positioning information: an application in aerial communication relay. Auton.
Robots 26, 21–32. doi:10.1007/s10514-008-9104-9

Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., and Moses, M. E. (2012).
“Formica ex machina: ant swarm foraging from physical to virtual and back
again,” in Swarm Intelligence – ANTS, Vol. 7461 of LNCS (Berlin: Springer),
252–259.

Kazadi, S., Lee, J. R., and Lee, J. (2009). Model independence in swarm robotics.
Int. J. Intell. Comput. Cybern. 2, 672–694. doi:10.1108/17563780911005836

König, L., and Mostaghim, S. (2009). Decentralized evolution of robotic behav-
ior using finite state machines. Int. J. Intell. Comput. Cybern. 2, 695–723.
doi:10.1108/17563780911005845

Koos, S., Cully, A., and Mouret, J.-B. (2013a). Fast damage recovery in
robotics with the t-resilience algorithm. Int. J. Robot. Res. 32, 1700–1723.
doi:10.1177/0278364913499192

Koos, S., Mouret, J.-B., and Doncieux, S. (2013b). The transferability approach:
crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17,
122–145. doi:10.1109/TEVC.2012.2185849

Kuhn, T. (1962). The Structure of Scientific Revolutions. Chicago, IL: University of
Chicago Press.

Kulich, M., Chudoba, J., Kosnar, K., Krajnik, T., Faigl, J., and Preucil, L. (2013).
Syrotek-distance teaching of mobile robotics. IEEE Trans. Educ. 56, 18–23.
doi:10.1109/TE.2012.2224867

Lee, J., and Arkin, R. C. (2003). “Adaptive multi-robot behavior via learning
momentum,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems – IROS (Piscataway, NJ: IEEE), 2029–2036.

Lehman, J., Risi, S., D’Ambrosio, D., and Stanley, K. O. (2013). Encouraging
reactivity to create robust machines. Adapt. Behav. 21, 484–500.
doi:10.1177/1059712313487390

Lehman, J., and Stanley, K. O. (2011). Abandoning objectives: evolution through
the search for novelty alone. Evol. Comput. 19, 189–223. doi:10.1162/
EVCO_a_00025

Lopes, Y. K., Trenkwalder, S. M., Leal, A. B., Dodd, T. J., and Groß, R. (2016).
Supervisory control theory applied to swarm robotics. Swarm Intell. 10, 65–97.
doi:10.1007/s11721-016-0119-0

Matarić, M. J. (2001). Learning in behavior-based multi-robot systems:
policies, models, and other agents. Cogn. Syst. Res. 2, 81–93. doi:10.1016/
S1389-0417(01)00017-1

Nolfi, S., and Floreano, D. (2000). Evolutionary Robotics. Cambridge MA: MIT
Press.

Parker, L. E. (1996). “Task-oriented multi-robot learning in behavior-based
systems,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems – IROS (Piscataway, NJ: IEEE), 1478–1487.

Parker, L. E. (1997). L-ALLIANCE: task-oriented multi-robot learning in
behavior-based systems. Adv. Robot. 11, 305–322. doi:10.1163/1568553
97X00344

Pugh, J., and Martinoli, A. (2009). Distributed scalable multi-robot learning
using particle swarm optimization. Swarm Intell. 3, 203–222. doi:10.1007/
s11721-009-0030-z

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2003). Evolving controllers for
a homogeneous system of physical robots: structured cooperation with mini-
mal sensors. Philos. Trans. A Math. Phys. Eng. Sci. 361, 2321–2343. doi:10.1098/
rsta.2003.1258

Reina, A., Valentini, G., Fernàndez-Oto, C., Dorigo, M., and Trianni, V. (2015).
A design pattern for decentralised decision making. PLoS ONE 10:e0140950.
doi:10.1371/journal.pone.0140950

Silva, F., Duarte, M., Correia, L., Oliveira, S. M., and Christensen, A. L. (2016). Open
issues in evolutionary robotics. Evol. Comput. doi:10.1162/EVCO_a_00172

Silva, F., Urbano, P., Correia, L., and Christensen, A. L. (2015). odNEAT: an algo-
rithm for decentralised online evolution of robotic controllers. Evol. Comput.
23, 421–449. doi:10.1162/EVCO_a_00141

Stanley, K. O., and Miikkulainen, R. (2002). Evolving neural net-
works through augmenting topologies. Evol. Comput. 10, 99–127.
doi:10.1162/106365602320169811

Teo, J., and Abbass, H. (2004). Automatic generation of controllers for embodied
legged organisms: a pareto evolutionary multi-objective approach. Evol.
Comput. 12, 355–394. doi:10.1162/1063656041774974

Teo, J., and Abbass, H. (2005). Multiobjectivity and complexity in embodied cog-
nition. IEEE Trans. Evol. Comput. 9, 337–360. doi:10.1109/TEVC.2005.846902

Trianni, V. (2008). Evolutionary Swarm Robotics. Berlin: Springer.
Trianni, V. (2014). Evolutionary robotics: model or design? Front. Robot. AI 1:13.

doi:10.3389/frobt.2014.00013
Trianni, V., and López-Ibáñez, M. (2015). Advantages of task-specific multi-objec-

tive optimisation in evolutionary robotics. PLoS ONE 10:e0136406. doi:10.1371/
journal.pone.0136406

Trianni, V., and Nolfi, S. (2009). Self-organising sync in a robotic swarm. A
dynamical system view. IEEE Trans. Evol. Comput. 13, 722–741. doi:10.1109/
TEVC.2009.2015577

Usui, Y., and Arita, T. (2003). “Situated and embodied evolution in collective evo-
lutionary robotics,” in International Symposium on Artificial Life and Robotics
(Oita: Dept. of Electrical and Electronic Engineering, Oita University), 212–215.

Waibel, M., Keller, L., and Floreano, D. (2009). Genetic team composition and
level of selection in the evolution of cooperation. IEEE Trans. Evol. Comput. 13,
648–660. doi:10.1109/TEVC.2008.2011741

Watson, R., Ficici, S., and Pollack, J. (1999). “Embodied evolution: embodying
an evolutionary algorithm in a population of robots,” in IEEE Congress on
Evolutionary Computation – CEC, Vol. 1 (Piscataway, NJ: IEEE), 335–342.

Watson, R., Ficici, S., and Pollack, J. (2002). Embodied evolution: distributing an
evolutionary algorithm in a population of robots. Rob. Auton. Syst. 39, 1–18.
doi:10.1016/S0921-8890(02)00170-7

Werfel, J., Petersen, K., and Nagpal, R. (2014). Designing collective behavior in a
termite-inspired robot construction team. Science 343, 754–758. doi:10.1126/
science.1245842

Wischmann, S., Stamm, K., and Wörgötter, F. (2007). “Embodied evolution
and learning: the neglected timing of maturation,” in Advances in Artificial
Life – ECAL, Vol. 4648 of LNCS (Berlin: Springer), 284–293.

Zeiger, F., Schmidt, M., and Schilling, K. (2009). Remote experiments with
mobile-robot hardware via internet at limited link capacity. IEEE Trans. Ind.
Electron. 56, 4798–4805. doi:10.1109/TIE.2009.2027898

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer HH declared a past co-authorship with one of the authors MB to
the handling Editor, who ensured that the process met the standards of a fair and
objective review.

Copyright © 2016 Francesca and Birattari. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1177/0278364914525244
http://dx.doi.org/10.1007/s11721-013-0081-z
http://dx.doi.org/10.1007/s11721-013-0081-z
http://dx.doi.org/10.1371/journal.pone.0098466
http://dx.doi.org/10.1007/s11721-008-0015-3
http://dx.doi.org/10.1007/s11721-008-0015-3
http://dx.doi.org/10.1007/s10514-008-9104-9
http://dx.doi.org/10.1108/17563780911005836
http://dx.doi.org/10.1108/17563780911005845
http://dx.doi.org/10.1177/0278364913499192
http://dx.doi.org/10.1109/TEVC.2012.2185849
http://dx.doi.org/10.1109/TE.2012.2224867
http://dx.doi.org/10.1177/1059712313487390
http://dx.doi.org/10.1162/EVCO_a_00025
http://dx.doi.org/10.1162/EVCO_a_00025
http://dx.doi.org/10.1007/s11721-016-0119-0
http://dx.doi.org/10.1016/S1389-0417(01)00017-1
http://dx.doi.org/10.1016/S1389-0417(01)00017-1
http://dx.doi.org/10.1163/1568553
97X00344
http://dx.doi.org/10.1163/1568553
97X00344
http://dx.doi.org/10.1007/s11721-009-0030-z
http://dx.doi.org/10.1007/s11721-009-0030-z
http://dx.doi.org/10.1098/rsta.2003.1258
http://dx.doi.org/10.1098/rsta.2003.1258
http://dx.doi.org/10.1371/journal.pone.0140950
http://dx.doi.org/10.1162/EVCO_a_00172
http://dx.doi.org/10.1162/EVCO_a_00141
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1162/1063656041774974
http://dx.doi.org/10.1109/TEVC.2005.846902
http://dx.doi.org/10.3389/frobt.2014.00013
http://dx.doi.org/10.1371/journal.pone.0136406
http://dx.doi.org/10.1371/journal.pone.0136406
http://dx.doi.org/10.1109/TEVC.2009.2015577
http://dx.doi.org/10.1109/TEVC.2009.2015577
http://dx.doi.org/10.1109/TEVC.2008.2011741
http://dx.doi.org/10.1016/S0921-8890(02)00170-7
http://dx.doi.org/10.1126/science.1245842
http://dx.doi.org/10.1126/science.1245842
http://dx.doi.org/10.1109/TIE.2009.2027898
http://creativecommons.org/licenses/by/4.0/

	Automatic Design of Robot Swarms: Achievements and Challenges
	1. Introduction
	2. Achievements
	2.1. Off-Line Methods
	2.2. On-Line Methods

	3. Challenges
	3.1. Reference Model
	3.2. Precise Definition
	3.3. Benchmarks
	3.4. Robot Experiments

	4. Conclusion
	Author Contributions
	Funding
	References

