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Designed to safely share the same workspace as humans and assist them in various
tasks, the new collaborative robots are targeting manufacturing and service applications
that once were considered unattainable. The large diversity of tasks to carry out, the
unstructured environments, and the close interaction with humans call for collaborative
robots to seamlessly adapt their behaviors, so as to cooperate with the users successfully
under different and possibly new situations (characterized, for example, by positions
of objects/landmarks in the environment or by the user pose). This paper investigates
how controllers capable of reactive and proactive behaviors in collaborative tasks can be
learned from demonstrations. The proposed approach exploits the temporal coherence
and dynamic characteristics of the task observed during the training phase to build a
probabilistic model that enables the robot to both react to the user actions and lead
the task when needed. The method is an extension of the hidden semi-Markov model
where the duration probability distribution is adapted according to the interaction with the
user. This adaptive duration hidden semi-Markov model (ADHSMM) is used to retrieve a
sequence of states governing a trajectory optimization that provides the reference and
gain matrices to the robot controller. A proof-of-concept evaluation is first carried out in
a pouring task. The proposed framework is then tested in a collaborative task using a
7-DOF backdrivable manipulator.

Keywords: human–robot collaboration, robot learning and control, learning from demonstration, collaborative
robots, minimal intervention control

1. INTRODUCTION

The first generations of robots were mostly designed to handle heavy parts, do dangerous tasks,
or execute operations at fast pace in a stand-alone manner. Nowadays, due to the advances in the
fields of sensing and control, robots are designed to work alongside humans and assist them in a
large variety of complex tasks, not only in manufacturing production lines but also in spaces such
as houses, museums, and hospitals. In order for a robot to successfully collaborate with a human,
it needs to physically interact with the user in a safe manner (Haddadin et al., 2012), understand
the user’s intentions (Wang et al., 2013), and decide when it can lead the task or follow the human
(Evrard et al., 2009), among other needs. Nevertheless, hardcoding an extensive repertoire of these
collaborative behaviors for a robot becomes an intractable problem, and therefore robot learning
arises as a promising solution to tackle the challenges posed by human–robot collaboration (HRC).

Various modalities of programing by demonstration (PbD), such as kinesthetic teaching and
observational learning, make it natural to interact with these robots and teach them the skills and
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tasks we want them to perform (Billard et al., 2008). PbD is
used in this paper to teach a robot about reactive and proactive
behaviors for collaborative tasks. Here, reactive behaviors refer
to actions that are conditioned on the interaction with the user,
while proactive behaviors involve taking the lead of the task.
These two types of behaviors allow the collaborative robot to assist
users in a larger variety of tasks, in which the robot not only
adapts its behavior according to the user actions but also takes
advantage of the taught knowledge in a proactive manner. To
achieve this goal, we propose to learn a model of the collaborative
task with a modified version of the hidden semi-Markov model
(Yu, 2010) where the duration probability distribution is adapted
online according to the interaction, which permits to modify the
temporal dynamics of the task as a function of the user actions.

The proposedmethod, hereinafter referred to as adaptive dura-
tion hidden semi-Markov model (ADHSMM), exploits the tem-
poral coherence and dynamic features of the task to locally shape
the states duration according to the interaction with the user. The
ADHSMM is then used to retrieve a sequence of states in a tra-
jectory optimization process providing a reference with associated
gainmatrices within an infinite horizon linear quadratic regulator
(LQR). In summary, the novelties of this learning framework
for collaborative behaviors are (i) encoding of reactive behaviors
based on the user actions, (ii) proactive behaviors generation
that exploits the temporal coherence of the task, and (iii) time-
independent retrieval of reference trajectories and gain matrices
governing the robot motion.

The rest of the paper is organized as follows: Section 2 reviews
work related to our problem, whereas Section 3 presents the
proposed framework for learning reactive and proactive collabo-
rative behaviors. Section 4 describes a number of experiments that
evaluate the proposed algorithm. Finally, conclusions and future
routes of research are given in Section 5.

2. RELATED WORK

HRC has been investigated from the early nineties, when purely
control-based approaches were designed to endow collaborative
robots with a follower role, while its user led the task (Kosuge et al.,
1993). However, the key limitation in this approach is the need
for a model of the task linked to an analysis of the possible robot
movements, so that both the parameters and the structure of the
controller can be designed accordingly (Kosuge and Kazamura,
1997). This, in turn, confines the set of actions that the robot can
perform, because it merely follows a predefined plan with limited
adaptation and interaction capabilities. These shortcomings are
here overcome by exploiting PbD.

In the field of robot learning for HRC, several groups have
focused on teaching robots collaborative tasks in which their
role is purely reactive to the partner actions. Amor et al. (2013)
proposed to learn separate models [based on probabilistic prin-
cipal components analysis (PPCA) and hidden Markov models
(HMM)] of two persons interacting during a collaborative task,
encapsulating the adaption of their behaviors to themovements of
the respective partner. One of these models was then transferred
to the robot, so that it is able to autonomously respond to the
behavior of the human partner. Maeda et al. (2014) proposed to

use probabilistic interaction primitives (Paraschos et al., 2013) to
learn collaborative movements that need to be coordinated with
the user actions by exploiting the correlations between human and
robot trajectories.

Collaborative reactive behaviors have also been learned to
modify the temporal dynamics of a task. Maeda et al. (2015)
included a phase variable representing the speed of the task exe-
cution, which eliminated the need of aligning demonstrations
in time and allowed the robot to react faster. At a higher level
task representation, Wilcox et al. (2012) proposed an adaptive
algorithm for handling HRC tasks where the temporal behavior
is adapted online based on the user preferences. Their method
is built on dynamic scheduling of simple temporal problems and
formulated as a non-linear program considering person-specific
workflow patterns. In contrast to our learning framework, the
aforementioned approaches only provide the robot with reactive
behaviors, that is, without proactive behaviors learned during the
demonstrations of the task.

Other works have exploited PbD to teach collaborative robots
follower and leader roles.1 Evrard et al. (2009) proposed to use
Gaussian mixture models (GMM) and Gaussian mixture regres-
sion (GMR) to, respectively, encode and reproduce robot collab-
orative behaviors. Leading and following roles in a cooperative
lifting task were demonstrated by teleoperation. GMM encap-
sulated the robot motion and the sensed forces, whereas GMR
generated the reference force during reproduction. Medina et al.
(2011) endowed a robot with a cognitive system providing seg-
mentation, encoding and clustering of collaborative behavioral
primitives. These were represented by a primitive graph and a
primitive tree using HMM, which were incrementally updated
during reproduction. One of the main differences with respect to
Evrard et al. (2009) is that the robot starts behaving as a follower,
and its role progressively becomes more proactive as it acquires
more knowledge about the task.

Murata et al. (2014) used a dynamic neural network to predict
future perception and action and to generate both reflex and
voluntary behaviors. The formerwere generatedwith probabilistic
estimation of subsequent actions when the human intention state
was not utilized in the learning process. In contrast, the latter
was produced with deterministic prediction of subsequent actions
when human intention information was available. Note that reflex
behaviors refer here to instinctive responses triggered by sen-
sory stimuli, while voluntary behaviors correspond to actions
that depend on the situation. Li et al. (2015) addressed the role
allocation problem through a formulation based on game the-
ory. A continuous role adaptation is achieved by modifying the
contribution of the human and the robot in the minimization
of a linear quadratic cost. This adaption depended on the level
of disagreement between partners, which was estimated as the
difference between desired and real interaction forces. Similarly,
Kulvicius et al. (2013) used dynamicmovement primitives inHRC
where interaction forces were considered. The learning problem
was treated as that of finding an acceleration-based predictive
reaction for coupled agents, in response to force signals indicating

1A leader role can be considered as a type of proactive behavior since the robot
exploits the knowledge of the task to take the lead during execution.
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disagreements due to obstacle avoidance or different paths to
follow.

Our approach is similar to the foregoing works in the sense
that it provides the robot with both reactive and proactive actions
that are learned from demonstrations of the collaborative task.
However, unlike Li et al. (2015) and Kulvicius et al. (2013), the
behavior in the approach that we propose is not a function of
the partners’ disagreement, but instead depends on the temporal
patterns observed during the demonstration phase, and on the
way the temporal dynamics is shaped by the interaction with
the human partner. Our controller shares similarities with the
approach presented by Li et al. (2015), with the difference that
the role allocation is not directly affecting the robot control input,
but is instead driven by a linear quadratic regulator. Additionally,
our time-independent trajectory retrieval approach provides gain
matrices that exploit the variability of the task and shape the robot
compliance accordingly.

3. PROPOSED APPROACH

When two persons cooperatively carry out a task, each partici-
pant is not only required to perform the part of the task he/she
is in charge of but also to adapt to the other’s actions and/or
changes in the task plan. Therefore, in this collaborative scenario,
learning and adaptation capabilities are imperative for success.
Consequently, if collaborative robots need to assist humans, they
need to be endowed with such capability in order to naturally
interact with users. This interaction encompasses a large variety
of behaviors that enable the robot to react and adapt to different
situations arising during the execution of a specific task. In this
Section, we present a PbD approach that allows the robot not
only to learn the collaborative task but also to behave reactively
or proactively according to the interaction with the user and the
temporal coherence of the task.

The rest of this section first presents the adaptive duration
hidden semi-Markov model (ADHSMM) that is used to both
encode the task and extract the reactive and proactive behaviors
by exploiting the temporal patterns observed during the demon-
stration phase. Second, a trajectory model for retrieving reference
trajectories based on the learning model is explained.

3.1. Adaptive Duration Hidden
Semi-Markov Model (ADHSMM)
A hidden Markov model (HMM) is characterized by an initial
state distribution Πi, a transition probability matrix ai,j, and an
emission distribution for each state in the model, commonly
expressed as a Gaussian distribution withmeanµi and covariance
matrixΣi. InHMM, the self-transition probabilities ai ,i only allow
a crude implicit modeling of the number of iterations that we
can expect to stay in a given state i before moving to another
state. Indeed, the probability of staying d consecutive time steps
in a state i follows the geometric distribution [see, for example,
Rabiner (1989)]

Pi(d) = ad−1
i,i (1 − ai,i), (1)

decreasing exponentially with time.

Variable durationmodeling techniques such as the hidden semi-
Markov model (HSMM) sets the self-transition probabilities ai ,i
of the HMM to zero and replaces it with an explicit model (non-
parametric or parametric) of the relative time during which one
stays in each state, see, for example, Yu and Kobayashi (2006) and
Zen et al. (2007b).

Since the state duration is always positive, its distribution
should preferably be modeled by a function preserving this
property. It is proposed to use a univariate normal distribution
N (µD

i , ΣD
i ) with mean µD

i and associated covariance matrix
ΣD

i to model the logarithm of the duration, which is equiva-
lent to the use of a lognormal distribution to fit the duration
data. Indeed, if d is lognormally distributed, log(d) is normally
distributed.

In the resulting HSMM, the probability to be in state i at time
step t given the partial observation ζ1:t = {ζ1, ζ2, . . ., ζt}, namely
αt,i ,P(st = i|ζ1:t), can be recursively computed with [see, for
example, Rabiner (1989)]

αt,i =
dmax∑
d=1

K∑
j=1

αt−d,jaj,i N D
d,i

t∏
s=t−d+1

Ns,i, and ht,i =
αt,i∑K

k=1 αt,k
,

where N D
d,i = N (log(d)|µD

i , ΣD
i ) and Ns,i = N (ζs|µi,Σi).

(2)

For t< dmax, the initialization is given by

α1,i = ΠiN D
1,iN1,i,

α2,i = ΠiN D
2,i

2∏
s=1

Ns,i +
K∑

j=1
α1,j aj,i N D

1,i N2,i,

α3,i = ΠiN D
3,i

3∏
s=1

Ns,i +
2∑

d=1

K∑
j=1

α3−d,j aj,i N D
d,i

3∏
s=4−d

Ns,i,

etc., which corresponds to the update rule

αt,i = ΠiN D
t,i

t∏
s=1

Ns,i +
t−1∑
d=1

K∑
j=1

αt−d,j aj,i N D
d,i

t∏
s=t−d+1

Ns,i.

(3)

Note that the above iterations can be reformulated for efficient
computation, see Yu and Kobayashi (2006) and Yu (2010) for
details.

3.1.1. Conditional Estimation of Duration Probability
The explicit-duration formulation of HSMM assumes that the
duration probability P i(d) exclusively depends on how long the
system stays in state i. Yamagishi and Kobayashi (2005) noted that
such assumption can have drawbacks in some applications such
as in speech synthesis where various speaking styles and/or emo-
tions could influence the duration model. In such case, it looks
relevant to consider adaptive duration probability. In Yamagishi
and Kobayashi (2005) and Nose et al. (2007), the authors pro-
posed to express the mean µD

i of the duration probability P i(d)
as an affine function of a style vector, whose parameters were
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estimated by a maximum likelihood linear regression (MLLR)
method (Leggetter and Woodland, 1995). This approach also
showed to improve human walking motion synthesis (Yamazaki
et al., 2005).

We propose an adaptive duration hidden semi-Markov model
(ADHSMM) in which the duration in every state depends on
an external input u. Unlike Yamagishi and Kobayashi (2005)
and Nose et al. (2007), we express the duration probability as
P i(log(d)|u), obtained from a Gaussian mixture model of KD

components encoding the joint distributionP i(u, log(d)) for each
state i of the HSMM. We thus obtain a GMM for each state, with
parameters

πD
i,j , µi,j =

[
µU

i,j

µD
i,j

]
, Σi,j =

[
ΣU

i,j Σ
UD
i,j

ΣDU
i,j ΣD

i,j

]
∀i ∈ {1, . . . ,K},

j ∈ {1, . . . ,KD}. (4)

In contrast to Yamagishi and Kobayashi (2005) and Nose et al.
(2007) that only consider an affine relationship between µD

i and
the input vector, our approach permits to encode more complex
non-linear relationships between the duration of the state and the
external parameter.

We also propose to define a maximum duration dmax
i for

each state i that depends on the duration probability distribu-
tion P i(log(d)|u). Indeed, the maximum allowed duration dmax

does not necessarily need to be the same for each state i, see,
for example, Mitchell et al. (1995). In the experiments, we used

dmax
i = exp

(
µD
i + 2ΣD

1
2

i

)
, which means that ~95% of the

observed duration for the state i lie within 2 SDs.2
Therefore, we computeN D

d,i in equation (2) asPi(log(d)|ut) ∼
N (µ̂D

i,t, Σ̂D
i,t) with

µ̂D
i,t =

KD∑
j=1

γi,j(ut)µ̃D
i,j(ut), (5)

Σ̂D
i,t =

KD∑
j=1

γi,j(ut)(Σ̃D
i,j + µ̃D

i,j(ut)(µ̃
D
i,j(ut))

⊤)

− µ̂D
i,t(µ̂

D
i,t)

⊤
, (6)

where µ̃D
i,j(ut) = µD

i,j + ΣDU
i,j ΣU

i,j
−1

(ut − µU
i,j), (7)

Σ̃D
i,j = ΣD

i,j − ΣDU
i,j ΣU

i,j
−1

ΣUD
i,j , (8)

γi,j(ut) =
πD
i,jN (ut|µU

i,j,Σ
U
i,j)∑KD

k πD
i,kN (ut|µU

i,k,Σ
U
i,k)

. (9)

When it comes to human–robot collaboration, the proposed
formulation can be exploited for learning reactive and proactive
behaviors. On the one hand, ADHSMM encodes the temporal
patterns and sequential information observed during the demon-
stration phase through its duration probabilities and transition

2Note that the conditional duration probability is characterized by a mean and
a variance lying in the log-transformed space of the duration data, therefore an
exponential mapping is needed to define the maximum duration as time steps.

matrix. This feature allows the robot to behave proactively by
taking leading actions in case the user does not follow the task
plan as experienced in the training phase. On the other hand,
ADHSMM also permits the robot to shape the task dynamics by
modifying the states duration according to the interactionwith the
human, and therefore react to the user’s actions. These two types
of behaviors are driven by the forward variableαt in equation (2),
which determines the influence of the ADHSMM states at each
time step t considering the partial observation ζ1:t, the transition
matrix ai,j, and the duration model P i(log(d)|ut) that takes into
account the interaction with the user. The forward variable will
next be used to generate trajectory distributions to control the
robot during the collaborative task.

3.2. Trajectory Retrieval Using Dynamic
Features
In the field of speech processing, it is common to exploit both
static and dynamic features to reproduce smooth trajectories from
HMMs (Furui, 1986; Tokuda et al., 1995; Zen et al., 2007a). This is
achieved by encoding the distributions of both static and dynamic
features (the dynamic features are often called delta coefficients).
In speech processing, these parameters usually correspond to the
evolution ofmel-frequency cepstral coefficients characterizing the
power spectrum of a sound, but the same approach can be used
with any form of continuous signals. In robotics, this approach
has rarely been exploited, at the exception of the work from
Sugiura et al. (2011) employing it to represent objectmanipulation
movements. We take advantage of this formulation for retrieving
a reference trajectory with associated covariance that will govern
the robot motions according to the behavior determined by the
ADHSMM.

For the encoding of robotmovements, velocity and acceleration
can alternatively be used as dynamic features. By considering an
Euler approximation, the velocity is computed as

ẋt =
xt+1 − xt

∆t , (10)

where xt is a multivariate position vector. The acceleration is
similarly computed as

ẍt =
ẋt+1 − ẋt

∆t =
xt+2 − 2xt+1 + xt

∆t2 . (11)

By using equations (10) and (11), the observation vector ζt
will be used to represent the concatenated position, velocity, and
acceleration vectors at time step t, namely3

ζt =

xtẋt
ẍt

 =

 I 0 0
− 1

∆t I
1
∆t I 0

1
∆t2 I − 2

∆t2 I
1

∆t2 I


 xt
xt+1
xt+2

 . (12)

ζ and x are then defined as large vectors concatenating ζt and xt
for all time steps, namely

ζ =


ζ1
ζ2
...

ζT

, x =


x1
x2
...
xT

 . (13)

3To simplify the notation, the number of derivatives will be set up to acceleration,
but the results can easily be generalized to a higher or lower number of derivatives.
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Similar to thematrix operator in equation (12) defined for a single
time step, a large sparse matrix Φ can be defined so that ζ =Φx,
namely4

ζ︷ ︸︸ ︷

...
xt
ẋt
ẍt
xt+1
ẋt+1
ẍt+1
...


=

Φ︷ ︸︸ ︷

. . .
...

...
...

. . .
· · · I 0 0 · · ·
· · · − 1

∆t I
1
∆t I 0 · · ·

· · · 1
∆t2 I − 2

∆t2 I
1

∆t2 I · · ·
· · · I 0 0 · · ·
· · · − 1

∆t I
1
∆t I 0 · · ·

· · · 1
∆t2 I − 2

∆t2 I
1

∆t2 I · · ·
...

...
...

. . .



x︷ ︸︸ ︷

...
xt
xt+1
xt+2
xt+3
...


.

(14)
During the demonstration phase of a collaborative task, the

collected dataset {ζt}Nt=1 with N =
∑M

m Tm is composed of
M trajectory samples, where the m-th trajectory sample has Tm
datapoints. This dataset is encoded by an ADHSMM, which can
also provide a given sequence of states s= {s1, s2, . . ., sT} of T time
steps, with discrete states st ∈ {1, . . ., K}. So, the likelihood of a
movement ζ is given by

P(ζ|s) =
T∏

t=1
N (ζt|µst ,Σst), (15)

where µst and Σst are the center and covariance of state st at
time step t. This product can be rewritten as the conditional
distribution

P(ζ|s) = N (ζ|µs,Σs), (16)

with µs =


µs1
µs2
...

µsT

 and Σs =


Σs1 0 · · · 0
0 Σs2 · · · 0
...

...
. . .

...
0 0 · · · ΣsT

 .

Byusing the relationζ =Φx, we then seek during reproduction
for a trajectory xmaximizing equation (16), namely

x̂ = arg max
x

log P(Φx|s). (17)

The part of log P(Φx|s) dependent on x takes the quadratic
error form

c = (µs − ζ)⊤Σ−1
s (µs − ζ)

= (µs − Φx)⊤Σ−1
s (µs − Φx). (18)

A solution can be found by differentiating the above objec-
tive function with respect to x and equating to 0, providing the
trajectory (in vector form)

x̂ =
(
Φ⊤Σs

−1Φ
)−1

Φ⊤Σs
−1µs, (19)

4Note that a similar operator is defined to handle border conditions, and thatΦ can
automatically be constructed through the use of Kronecker products.

with the covariance error of the weighted least squares estimate
given by

Σ̂x = σ
(
Φ⊤Σs

−1Φ
)−1

, (20)

where σ is a scale factor.5
The resulting Gaussian N (x̂, Σ̂x) forms a trajectory distribu-

tion that will be used to control the robot motion during the col-
laborative task. Specifically, once a reference trajectory x̂ has been
obtained, the optimal controller for human–robot collaborative
tasks proposed in Rozo et al. (2015) is used to track this reference.
Such an optimal feedback controller allows the robot to plan a
feedback control law tracking the desired state within a minimal
intervention control principle. Formally, the problem is stated as
finding the optimal input ν that minimizes the cost function

Jt =
∞∑
n=t

(xn − x̂t)⊤Qt(xn − x̂t) + ν⊤
n Rtνn, (21)

where the matrices Qt and Rt are weighting matrices that deter-
mine the proportion in which the tracking errors and control
inputs affect the minimization problem. Here, we take advantage
of the variability observed during the demonstrations to adapt the
error costs in equation (27) in an online manner by defining

Qt =
(
Σ̂x

t

)−1
, (22)

and by setting Rt in accordance to the application and motors
used in the experiment (set as constant diagonal matrix in the
experiments reported in this paper).

4. EXPERIMENTS

This section introduces the two experimental settings that were
used to test the performance of the proposed learning framework
and to show its functionality in different scenarios. The first
experiment, a pouring task, is used to illustrate our approach in a
scenario where the robot reproduces a task in a stand-alone man-
ner. The second experiment, a handover and transportation task
in a human–robot collaboration setting, is aimed at showing how
reactive and proactive behaviors can be learned and reproduced
using our framework.

4.1. Pouring Task
Pouring is a challenging skill for a robot to learn (Rozo et al.,
2013b). We want the robot to learn how to pour into a glass liquid
from a bottle that can be filled up to different levels. Thus, the
time it takes to rotate the bottle and pour the liquid should scale
with the amount of liquid that the bottle contains. Therefore, the
duration of the pouring movement executed by the robot should

5Equations (19) and (20) describe a trajectory distribution and can be computed
efficiently with Cholesky and/or QR decompositions by exploiting the positive def-
inite symmetric band structure of thematrices, see, for example, Strang (1986).With
the Cholesky decomposition Σ−1

s = T⊤T, the objective function is maximized
when TΦx = Tµs. With a QR decomposition TΦ=QR, the equation becomes
QRx=Tµs with a solution efficiently computed with x=R−1 Q⊤Tµs. When
using Matlab, x̂ and Σ̂x in equations (19) and (20) can, for example, be computed
with the  function.

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 305

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Rozo et al. Learning Controllers in Human-Robot Collaboration

FIGURE 1 | Experimental setting of the pouring task. Kinesthetic
teaching and reproduction are shown in the left and right pictures,
respectively. The amount of fluid inside the bottle is sensed by a force-torque
sensor attached to the wrist of the manipulator.

be modulated by the amount of liquid to be poured, making it a
skill for which our approach can be employed.

The task is demonstrated through kinesthetic teaching in two
distinct situations: full and almost-empty bottle. We use a 7-DOF
torque-controlled WAMmanipulator with a Barrett Hand, which
employs a gravity compensation controller during the kinesthetic
teaching phase (see Figure 1). The pouring movement is per-
formed by using only the last two joints of the kinematic chain.
Joint 7 provides a rotational degree of freedom in task space that
allows for rotating the bottle from an upright position to a pour-
ing configuration and back to the initial position, while joint 6
provides a compliant DOF that facilitates the kinesthetic teaching
process (in practice, its variation is small across demonstrations).
The remaining joints are kept at a constant value. The amount
of fluid inside the bottle (not explicitly computed) is sensed by a
force-torque sensor attached to the wrist of the manipulator. The
force along the vertical axis of the robot’s base frame is recorded
at the beginning of each demonstration. This force is used as the
input u in the state duration model.6

We collected three demonstrations of each situation, totaling
six demonstrations (see Figures 2A,B). The observation vector is

given by ζt =
[
q6,t, q̇6,t, q7,t, q̇7,t

]⊤
, where qn,t and q̇n,t are the

observed angle of joint n and its first derivative at time step t. With
this dataset, we trained an ADHSMM with K = 6 states (selected
empirically) as an HSMM initialized with left-right topology. The
state durationmodels were trained using a dataset {ξi,m}Mi

m=1 with
ξi,m = [u⊤

m , log(di,m)], where um represents the force measured
along the vertical axis of the robot base frame (changing for
each demonstration sequence), log(di,m) is the log-transformed
duration given by the number of consecutive time steps that the
system stays in state i, and Mi is the number of datapoints in
the demonstration sequences in which state i was visited. With
this dataset, a Gaussian distribution was fitted (KD = 1, selected
empirically), estimating the joint probability of state duration and
external input.7

6Note that, since this value is only measured once, the subscript t is removed from
ut in the description of this experiment.
7The choice of using KD = 1 instead of a GMM in this experiment is driven by the
assumption of a linear relation between duration and bottle weight.

The learned model was then used to regenerate the pouring
movement for different bottle weights, showing that the robot is
capable of reproducing the skill with a duration modulated by an
external input. In order to evaluate the generalization capability
of the approach, we considered the two demonstrated situations
during reproduction (almost-empty and full bottle), as well as the
new situation of a half-full bottle.

4.1.1. Results
Figure 2A shows the obtained model with the Gaussian kernels
(plotted as iso-contour of 1 SD) successfully encoding the local
correlations between q7 and q̇7. Figure 2B shows the demonstra-
tions over time, which illustrates the requiredmovement duration
for each type of input (darker lines correspond to a heavier bottle).
This information is complemented by Figure 2D, which shows
the state transition graph of the model, together with the duration
distributions for the three different inputs that we considered. The
duration distributions were retrieved using equations (5)–(9) with
darker Gaussians corresponding to higher initial bottle weights.
Figure 2D indicates that the duration of states 2–4 is strongly
correlated with the input, since its mean increases when a heavier
bottle is used. This reflects the demonstrations since states 2 and
3 cover the part of the movement responsible for the rotation
of the bottle, while state 4 encodes the actual pouring, which
should last longer when the bottle is fuller. The reproductions
of the skill are shown in Figure 2C, where the value of q7 over
time is depicted (we omit q6 since it is practically constant).
This is the result of the trajectory retrieval and tracking process
described in Section 3.2. We observe that the movements are
correctly generated, in particular that the duration of the most
relevant phases of themovement (rotating the bottle and pouring)
increases as the input signal grows. Notably, the movement is
correctly generalized to the situation of a half-full bottle, which
was not demonstrated. Indeed, we can see that the duration of
the rotation and pouring scales correctly with the bottle weight
(longer than the almost-empty scenario, but shorter than with the
full bottle).

The duration of each state during the reproductions is shown
in Figure 3 by the rescaled forward variable ht,i, which determines
the influence of each state at every step in the movement.8 As
previously observed, states 2–4 (i.e., orange, yellow, and purple
states, respectively) are particularly influenced by the input, with
their durations decreasing as a lighter bottle is used, resulting
in an overall faster movement. The duration of the last part of
the movement, encoded in states 5 and 6 (i.e., green and light
blue), shows a much lower correlation with the input, since the
demonstrator rotated the bottle back to the initial configuration
at a similar rate in all the demonstrations, as a result of the bottle
being empty after the pouring. These results clearly show how
the proposed model is able to shape the temporal dynamics of
the task as a function of an external input. This approach will
be next exploited to learn reactive and proactive behaviors in a
collaborative task. A video showing the results of this experi-
ment is available at http://programming-by-demonstration.org/
Frontiers2016/

8In this experiment, a time step lasts 0.04 s approximately.
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FIGURE 2 | Model, demonstrations, and reproductions of the pouring skill. (A) The 6 states model projected on the space q̇7, q7, and the demonstrations
(dotted gray). Joint angles and velocities are in radian and radian per second, respectively. (B) Evolution in time of demonstrations for two different bottle weights
(darker lines depict heavier bottle). (C) Reproductions of the skill, including the new situation of a half-full bottle. (D) State transition diagram and state duration
probabilities (darker log-normals correspond to a heavier bottle, and therefore a longer duration).

FIGURE 3 | Evolution of the rescaled forward variable ht,i, where each plot corresponds to a different initial bottle weight, which decreases from the
uppermost to the lowermost plot.

4.2. Handover and Transportation Task
In order to show how the proposed approach can be exploited
in HRC scenarios, we consider a collaborative task in which the
robot role is to first reach for an object that is delivered by the
user, and then transport it along a given path to attain a final
location. The first part of the task should thus be conditioned by
the human motion, namely, the state durations for this phase of
the task should vary according to the user hand positionmeasured
when he/she is bringing the object to the location where the robot
will grab it. The second part of the task occurs when the robot
takes the object and transports it toward the final location. Here,
the robot motion is expected to be independent from the human
motion.

A BarrettWAM robot is used in this experiment. In the demon-
stration phase, the gravity-compensated robot is kinesthetically
guided by the teacher while cooperatively achieving the task with
a person, as shown in Figure 4. A human teacher first shows
the robot how to approach the object location based on the user
motion, and how to transport the object to the final location.

The collaborator’s hand position is tracked with a marker-based
NaturalPoint OptiTrack motion capture system, which is com-
posed of 12 cameras working at a rate of 30 fps. The position of
the robot is defined by Cartesian position x, while the external
input u, conditioning state duration, corresponds to the human
hand position xH.

During the demonstration phase, the first part of the task
was demonstrated by showing three different human motion
velocities labeled as low, medium, and fast. We collected four
demonstrations for each velocity level, totaling twelve demon-
strations, and afterward trained a model of nine components
(K = 9, selected empirically), under the assumption of a left-right
topology. Each datapoint consists of the robot position xt and
velocity ẋt at each time step t of the demonstration, therefore the
observation vector is defined as ζt = [x⊤

t , ẋ⊤
t ] in this experi-

ment. We model the state duration using a GMM with KD = 2
(selected empirically), trained by using the dataset {ξi,m}Mi

m=1
with ξi,m = [u⊤

m , log(di,m)], where um corresponds to the hand
position xH recorded while the system is in state i, log(di,m) is
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FIGURE 4 | Experimental setting of the handover and transportation task. The teacher on the left demonstrates the skill to the robot, while the person on the
right is the collaborator. After learning, the robot reproduces the collaborative behavior as demonstrated by the teacher. Top: first phase of the demonstration in
which the robot reaches for an object (a screwdriver in this setup) that is delivered by the user. The hand position is tracked using optical markers. Bottom: second
phase of the demonstration showing the transportation of the object toward its final location (black area).

A B C

FIGURE 5 | Model, demonstrations, and reproductions of the handover task in the reactive behavior scenario. (A) Task-space view of the model, robot
end-effector, and human hand trajectories depicted in gray and green solid lines, respectively. (B) Evolution in time of the demonstrations. (C) Reproductions of the
skill. Darker lines display slower human hand motion.

the log-transformed duration given by the number of consecutive
time steps that the system stays in state i, and Mi is the number
of datapoints in the demonstration sequences in which state i was
visited.9

4.2.1. Results
4.2.1.1. Reactive Behaviors
Figure 5 shows the model, demonstrations and reproductions
of the collaborative task when the robot is acting in a reac-
tive manner to the human input. In Figure 5A, we show a 3D
view of the model in the workspace of the robot, as well as the
human input during the demonstrations. The model successfully
encodes the local correlations between the task-space variables.
Figure 5B depicts the demonstrations provided to the robot
through kinesthetic teaching, with lighter lines corresponding to
a faster approach toward the human hand before the handover
occurs. In Figure 5C, we show the skill reproductions for two

9In contrast to the pouring task that used KD = 1, the use of KD = 2 for the hand-
over task allows the encoding of non-linear relationships with the input variable
(hand position).

different hand velocities. We can see that the movement is cor-
rectly regenerated in both situations. Finally, Figure 6 shows the
forward variable in the two cases that we considered during the
reproductions. First, we see that the sequence of states is correctly
generated in both scenarios, matching what one would expect
to be an accurate task-space trajectory of the end-effector for
the considered skill. Note that, similar to the previous experi-
ment, this was achieved by taking advantage of the probabilis-
tic modeling of temporal variability employed by ADHSMM,
through state transition and state duration probabilities. Second,
we observe that the duration of the first three states is strongly
correlated with the human hand motion since the duration short-
ens when the hand moves faster (first row), resulting in a faster
approach of the end-effector to the human hand. The influence
of the hand movement in the remaining states is negligible, as
expected.

These results show how the robot learned to react to the
interaction with the user by modifying the temporal dynamics
of the task accordingly. This modulation of durations becomes
highly relevant when we consider that humans might not
perform the task with the same dynamics across repetitions.
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FIGURE 6 | Evolution in time of the rescaled forward variable ht,i during the handover task. The temporal dynamics of the task is autonomously adapted
according to the interaction with the user.

FIGURE 7 | Evolution in time of the proactive behavior variables. Top: first dimension of the user hand position. The hand does not move during the period
marked by the shaded area. Middle: dimension x1 of the robot end-effector position in task space. The state transition (shaded areas) marks the start of the proactive
behavior. Bottom: rescaled forward variable ht,i.

More importantly, this adaptation of the temporal aspects
of the skill could provide the robot with the capability of
interacting with several partners exhibiting different motion
dynamics.

4.2.1.2. Proactive Behaviors
In addition to human-adaptive reactive behaviors, the proposed
approach can also be used to generate proactive behaviors that
remain consistent with the expected temporal evolution of the
task. To showcase this property, we portray a scenario where
the human stops moving while reaching the object (Figure 7,
top). This illustrates a situation in which a new person would
be interacting with the robot and would not know enough about
the task to lead the cooperation. Consequently, the behavior
that one would like to observe in the robot would be that it
provides clues about how previous users proceeded in similar
situations. In the proposed approach, the robot will take the
initiative to proceed with the movement after some time (in
case this duration lasts unexpectedly longer than in past experi-
ences) and will guide the user toward the next step of the task
(Figure 7, middle). This occurs at most when the duration of state
1 exceeds its maximum value dmax

1 and the model transits to state
2 (Figure 7, bottom). This mechanism can be exploited to let the
robot help new users proceed with their roles in the collaboration
by showing its intent in the cooperation, i.e., showing the way
in which the task is believed to be continued (see Figure 7,

before t= 100).10 A video showing the results of this experi-
ment is available at http://programming-by-demonstration.org/
Frontiers2016/

This mechanism currently has some limitations. In the exam-
ple, the robot had to stop only once before the user could under-
stand what to do. If the user had not understood that his/her
role was to hand the object to the robot, the cooperation would
have failed because the robot would have finished the task without
having the object in its hand. A possible way to increase the
number of clues that the robot provides to the human before
continuing the task on its own could be to add more states to
the model to let the user better understand the intent of the
movement. This would make the robot reach the handover pose
in approximately the same time, but with a greater number of state
transitions, i.e., discrete movements toward the target, providing
the user with more information about the movement. Similarly,
additional sensory information could be used to verify that a valid
situation occurs before moving on to the next part of the task.

Finally, note that this type of proactive behavior allowing
the robot to communicate its intent may be combined with
approaches aimed at creating legible robot motions. This enables
the collaborator to quickly and confidently infer the task goal
(Dragan et al., 2015; Stulp et al., 2015), which may lead to more
fluent collaborations.

10In this experiment, a time step approximately lasts 0.04 s.
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5. CONCLUSION AND FUTURE WORK

Human–robot collaboration requires robots not only to pas-
sively react to users’ movements and behaviors but also to
exploit their knowledge about the collaborative task to improve
their level of assistance, therefore achieving better assistance in
the collaboration. This paper introduced an approach allow-
ing collaborative robots to learn reactive and proactive behav-
iors from human demonstrations of a collaborative task. We
showed that reactive behaviors could include the modulation of
the temporal evolution of the task according to the interaction
with the user, while proactive behaviors could be achieved by
exploiting the temporal patterns observed during the learning
phase.

These collaborative behaviors can be exploited to extend the
robot capability to assisting tasks in which both interaction and
temporal aspects are relevant. Indeed, the probabilistic nature of
the proposed ADHSMM allows the robot to react to different
human dynamics, which is beneficial for collaborating with dif-
ferent partners. The proposed proactive behavior allows the robot
to take the lead of a task when it is appropriate (namely, according
to the task dynamics previously experienced in the demonstra-
tions), which can be exploited to communicate its intention to the
user.

We plan to extend the proposed learning model to situations in
which the transitions between themodel states also depend on the
interaction with the partner, which will allow the robot to learn
more complex collaborative tasks. We will also explore how the
optimization in the trajectory retrieval process can be integrated
with the optimal controller used to drive the collaborative robot
motion, so that only a single optimization step is carried out. Addi-
tionally, we plan to investigate how the robot could learn a larger
repertory of behaviors in which not only the interaction with the
user is considered, but where the situation and the environment
are also taken into account, by combining the developed approach
with our previouswork on task-parameterizedmodels (Rozo et al.,
2013a).
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