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Programing sophisticated robots, such as service robots or humanoids, are still a 
complex endeavor. Although programming robotic applications requires specialist 
knowledge, a robot software environment should support convenient development, 
while maintaining full flexibility needed when realizing challenging robotics tasks. 
In  addition, several desirable properties should be fulfilled, such as robustness, 
reusability of existing programs, and skill transfer between robots. In this work, we 
introduce the ArmarX statechart concept, which is used for describing control and 
data flow of robot programs. This event-driven statechart approach of ArmarX helps 
realizing important features, such as increased robustness through distributed program 
execution,  convenient programming through graphical user interfaces, and versatility 
by interweaving dynamic statechart structure with custom user code. We show that 
using hierarchical and distributed statecharts increases reusability, allows skill transfer 
between robots, and hides complexity in robot programming by splitting robot behavior 
into control flow and functionality.

Keywords: robot software framework, robot programing, statecharts, graphical user interfaces, distributed 
processing

1. inTrODUcTiOn

Programing complex robots like humanoids is challenging and is often divided into at least two 
domains. One being, low-level control, which is essential for smooth execution, system stabiliza-
tion, safety, and consideration of dynamic effects. On the other hand, high-level robot programing 
copes with perception, task and motion planning, user interaction, memory concepts, and reus-
ability of robot skills. Well-designed robot software frameworks should support the development 
of complex robot programs on all system levels. Therefore, a framework needs to provide well-
defined interfaces for all available robot components and the flexibility to additionally implement 
application- or task-specific behaviors. In addition, a basic set of robot skills (i.e., robot programs 
for a special behavior) should be available, which can be used to assemble more complex robot 
programs. One challenge in building a robot framework is to provide means for doing this in a 
robust and convenient way.

In this work, we focus on high-level robot programing and discuss how using hierarchical, 
distributed statecharts for encoding robot skills aid in achieving convenient programing and 
reusable, transferable robot behaviors. Possible candidates of statechart implementations must 
meet the following requirements to be considered eligible: full control over data flow and control 
flow, local scoping of data similar to encapsulation in programing, runtime-reconfigurability as 
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FigUre 1 | Basic structure of armarX. The low-level hardware access is 
abstracted through the Sensor–Actor unit concept. These Sensor–Actor 
units realize hardware or simulator access and hide the low-level 
communication from higher-level layers of the robot software. On the 
mid-level, robot capabilities, such as perception, planning, and motion 
generation, are implemented in a network transparent way. The high-level 
layer comprises a set of robot skills, realized as statecharts, which are used 
for assembling complex robot programs. The arrows depict middleware 
communication, which can be local or remote. The decision if a 
communication channel is local or incorporates remote calls is transparently 
taken on the fly by the middleware based on the current deployment.
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well as runtime introspection. It should also not be necessary 
to recompile programs upon structural or control flow changes. 
Furthermore, a graphical user interface is desirable in order to 
reduce the unavoidable complexity of describing robot behavior 
and to minimize development and comprehension efforts. This 
convenience feature should provide means for defining and 
parametrizing both control and data flow, online visualization 
of active states and transitions in running programs, and a 
convenient way to incorporate custom user code. Additionally, a 
code generator should be provided for enforcing type-safety and 
catching errors in user code as early as possible as well as allowing 
source code auto-completion in development environments of 
statechart-related data types and functions.

We will discuss the statechart concept of the robot develop-
ment environment ArmarX (Vahrenkamp et al., 2015) in detail 
and show how it provides both reusability of high-level robot 
skills realized as distributed, hierarchical statecharts, and the 
possibility to add user code with access to the external robot 
components. Figure  1 shows how statecharts are integrated in 
the basic structure of ArmarX.

In Section 2, we elaborate on the state of the art and compare 
it to our approach. Our statechart concept is presented in detail 
in Section 3. This is extended in Section 4 in regard to usability 
and integration in the robot development framework ArmarX. 
In Section 5, we show some use cases for the presented approach 
to give a better understanding of how it can be utilized. The 
discussion in Section 6 reflects our experience with the ArmarX 
statecharts, and Section 7 concludes the paper.

2. relaTeD WOrK

Robot Development Environments (RDEs) have coevolved with 
the increasing complexity and capabilities of modern robots. 
Taking a closer look at recent RDEs, there has been an agreement 
on the necessity of distributed processing for complex robotic 
systems [e.g., Scholl et  al. (2001), Bruyninckx et  al. (2003), 
Metta et  al. (2006), Ando et  al. (2008), Quigley et  al. (2009)]. 
Communication in such distributed systems is often performed 
via middlewares, such as CORBA (2006) or Ice (Henning, 2004). 
In other cases, specialized middleware systems or messaging pro-
tocols have been developed based on task-specific requirements.

2.1. robot Development environments
Already several years ago, Schlegel and Wörz (1999) saw the 
necessity to develop modular and distributed frameworks for 
complex multi-sensorimotor systems and presented the software 
framework SmartSoft. Apart from distribution and communica-
tion, RDEs differ depending on which part of robot program-
ing they target. For example, MiRPA (Finkemeyer et  al., 2007) 
provides a low-level message-oriented real-time communication 
middleware. OpenRTM (Ando et  al., 2008) is situated on the 
lower control level and provides a component model with input, 
output, and configuration interfaces as well as basic execution 
state machines (inactive, active, error states). MOOS (Newman, 
2008) is located on a similar level than OpenRTM and provides 
a publish–subscribe-based communication and data exchange 
between MOOS applications via a central database. OpenRDK 

(Calisi et al., 2008) is also a low-level framework and uses agents 
as main abstraction, which dynamically instantiate modules-
containing functionality. Modules communicate through a 
blackboard-type mechanism and can access input, output, and 
parameter data of any other module. YARP (Metta et al., 2006), 
being used for the iCub robots (Metta et  al., 2008), provides 
low-level communication as a basis for higher-level robot capa-
bilities implemented in the iCub software. Last, ROS (Quigley 
et  al., 2009) and Orocos (Bruyninckx et  al., 2003) lean toward 
the implementation of higher-level system capabilities. In ROS, 
software modules called nodes span a peer-to-peer network and 
send messages, whereas Orocos provides an explicit component 
model and separates the structure of the control system from its 
functionality.

In 2010, Bischoff et al. (2010) started an initiative to structure 
and formalize the robot development process by identifying and 
documenting best practices and refactoring existing components 
to increase reusability and robustness.

Schlegel et al. (2015) and Thomas et al. (2013) strive in their 
approaches to divide tasks into different complexity levels to 
reduce the knowledge required to adapt a robot to new but 
similar tasks.
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A different type of architecture for robot skill specification 
was proposed by Nordmann et al. (2015). They fuse methods of 
software design and classical motion primitives to form a model-
driven approach for complex motion control architectures.

2.2. statecharts and coordination systems
Besides the original publications (Harel, 1987; Harel and Politi, 
1998), there are many other publications (Coleman et  al., 
1992; Von der Beeck, 1994; Samek, 2002) and software projects 
(Angermann et al., 2014; EasyCODE, 2015; Yakindu, 2015) on 
statecharts for a variety of different use cases.

The concept of statecharts as new formalism to represent and 
describe complex systems was presented first by Harel (1987) 
and Harel and Politi (1998). The concept extends the finite state 
machines (FSM) proposed by Gill et  al. (1962) to a powerful 
representation, which significantly reduces the complexity for 
system developers by introducing several notations features. Like 
FSMs, statecharts consist in their core of states and transitions 
between these states and extend FSMs by the following features. 
The most important addition is the introduction of hierarchically 
nested states. Harel introduced inter-level-transitions to allow 
direct transitions into sub-states as well as orthogonality to allow 
parallel execution of different states at the same statechart level. 
Moreover, a history-connector was added to provide states with 
a memory, which store the information about which sub-state 
should be reactivated when a state is revisited. Condition-
connectors control to which subsequent state a transition leads. 
Finally, each state can be connected to actions being triggered 
during different phases of the state: entering, leaving, and an 
action that is executed repeatedly as long as the state is active.

Several general purpose frameworks exist, which can be used 
to specify the program flow based on statechart mechanisms. 
In late 2015, the W3 consortium released version 1.0 of an XML 
statechart notation [ScXML, World Wide Web Consortium 
(W3), 2015] to establish one format describing Harel statecharts. 
Similarly, the Object Management Group defined the UML 
StateMachines notations [Object Management Group (OMG), 
2015]. While these specifications mainly focus on general pur-
pose notations of the Harel formalism, the ArmarX statecharts 
aim at providing a ready-to-use statechart framework in the 
robotics context.

The well-known de facto extension of C++ Boost (Huber, 
2007) contains a subproject called the Boost Statechart Library, 
which offers a statechart implementation close to the original 
formalism of Harel. It has the unique feature of specifying the 
statecharts with C++ templates and achieving compile-time stat-
echart validation. While this is a valuable feature to ensure valid 
statecharts, it does not fit our requirements. For our purposes, we 
require runtime-reconfigurability and no recompilation on lay-
out changes as well as runtime introspection, which is difficult to 
achieve if the structure is specified implicitly with C++ templates. 
On the side of graphical tools, the statechart graphical modeling 
tool QM (Quantum Leaps, 2015) provides means for designing 
and implementing event-driven low-level statecharts for embed-
ded systems with a strong focus on traceability at the code level. 
The complete statecharts are generated into C++ code, meaning 
that for statechart structure changes recompilation is necessary. 

In our statecharts, we aim to generate code only to catch errors 
in the user code as early as possible and for IDE auto-completion 
purposes. In Yakindu (2015), another graphical statechart mod-
eling tool is presented, aiming at usability and assistance inside 
the editor during typing. Though it seems to target low-level 
statecharts like QM with limited data flow control, which is of 
high importance in the ArmarX statecharts, as described later.

Statecharts are widely used in robotics to control behavior 
on a high level (Nilsson and Center, 1973; Merz et  al., 2006; 
Billington et al., 2010; Bohren and Cousins, 2010; Klotzbücher 
and Bruyninckx, 2012), since they address several of the problems 
of robotics like state-based control and event-triggered execution. 
In the well-known RDE ROS (Quigley et al., 2009), an approach 
called SMACH (Bohren and Cousins, 2010) is employed that 
focuses on data flow in statecharts. However, scope of data flow 
in ROS SMACH is handled differently than in ArmarX. In ROS 
SMACH, a child state can access all data used by its parent state. 
This not only eases programing because it is easy to operate with 
data on several levels but also violates the principle of modularity 
of states and creates implicit data dependencies between states. 
A state using datafields of a parent state cannot easily be reused 
in another state, since it depends on the availability of specific 
datafields in a parent state. Due to this, we do not allow data 
scopes over several state levels in ArmarX and require explicit 
mapping of data between state levels. Also, ROS SMACH only 
supports graphical online visualization of states but does not 
provide any tool for graphical programing. In many aspects, 
the statecharts of ArmarX are similar to the restricted Finite 
State Machine (rFSM) (Klotzbücher and Bruyninckx, 2012) from 
Orocos (Bruyninckx et  al., 2003). However, the statecharts in 
Orocos focus on coordination of components but offer only 
very limited support to specify transition-based data flow. They 
promote the “pure coordination” concept, where the coordina-
tion part of the framework should be strictly decoupled from 
the computation capabilities to avoid unresponsiveness and 
blocking. This resembles the state-phases of our approach, which 
are split into coordination and computation phases. Though, to 
give the developer the ability to easily create critical sections 
separation of coordination and computation is only encouraged 
and not enforced in the ArmarX statechart framework.

Stampfer and Schlegel (2014) present an aspect similar to our 
dynamic structure, where they modify the statechart-formalism 
to allow for dynamic replacement of states with alternatives 
from a “robot app store” to increase robustness and reduce 
complexity. This enables usage of different implementations of 
a state in the same context, which is usually needed if a differ-
ent robot should be used. Further, they also provide means for 
controlling data flow in their statecharts. The main difference 
to our approach regarding data flow control is that Stampfer 
and Schlegel (2014) attach data directly to events, while in our 
approach a transition contains a parameter mapping, which 
defines the sources to be used to fill a target parameter on 
triggering of a transition (see Section 3.3.5).

Behavior-based systems [e.g., Arkin (1998), Nicolescu and 
Matarić (2002), Frank et  al. (2012), Paikan et  al. (2014)] are 
another way to specify high-level robot functionality. The 
most striking difference is that statecharts are state-based, and 
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behavior-based systems are rule-based. This means statecharts 
have an explicit current state, while behavior-based systems only 
have an implicit state. Additionally, behavior-based systems are 
inherently parallel, whereas statecharts are sequential. While 
behavior-based systems may be closer to behavior of humans or 
animals, we do not think they scale well for programing purposes. 
For the developer, an explicit state is easier to comprehend, and 
it eases the debugging process. Both are vital criteria for software 
development and maintenance.

2.3. graphical robot Programing
When developing high-level software on a robotic platform, it is 
desirable to configure and connect existing components using a 
graphical user interface to prevent writing repetitive and therefore 
error-prone source code. This allows new as well as experienced 
users to intuitively and efficiently combine mid- and high-level 
components in order to create a functional system structure. 
Since writing software is one of the main challenges in robotics 
for beginners, such as students, Graphical Robot Programing 
offers a great entry point. It removes the obstacle presented by 
syntax and control flow of a conventional programing language 
(Rahul et al., 2014). Graphical software development often com-
bines complexity hiding by connecting modular components on 
a macroscopic scale with the option to write low-level software, 
facilitating control tasks on joint level or performing motions in 
Cartesian space (Pot et al., 2009). Graphical and tabular repre-
sentations are an accessible way to model system behavior in the 
context of simulation, validation, and consistency checking of a 
system design before final implementation (MathWorks, 2015c). 
Hirzinger and Bauml (2006) are using Simulink (MathWorks, 
2015b) in conjunction with MATLAB (MathWorks, 2015a) 
to graphically model subsystems to later generate executables 
running on a real-time target. The Microsoft Visual Programing 
Language (Microsoft, 2012b), as part of Microsoft Robotics 
Developer Studio (Microsoft, 2012a), proposes developing 
the complete logic and program flow in a visual development 
environment as it lowers the bar for beginner programmers. 
However, we decided to limit the visual development in ArmarX 
to the definition of structure, used data types, and data flow in 
our statecharts for the benefit that the user can write unrestricted 
C++ code. The RDE YARP (Metta et al., 2006) also offers means 
of graphical programing with the gyarpbuilder (Paikan, 2014), 
yet on another level. With gyarpbuilder, it is possible to connect 
continuous input and output data of components graphically and 
to insert arbitrators in these connections to manipulate data flow 
easily. RtcLink (AIST, 2015) from the OpenRTM project offers a 
GUI to operate on RT-Components existing in a network. It can 
activate and deactivate components as well as connect their ports. 
It leverages the capabilities of an established IDE by providing the 
GUI as an Eclipse plugin.

3. armarX sTaTecharTs

The complexity of multicomponent systems can be challenging 
in terms of program and data flow. Hence, only skilled experts 
are capable of designing and realizing highly connected software 
systems, as they are needed on humanoid robots. The aim of the 

ArmarX statechart concept is to reduce such complexity and 
increase reusability of already created functionality.

With ArmarX, we provide a generic robotics software pro-
graming environment, which combines event-driven programing 
with distributed component-based robot applications. A robot 
framework in ArmarX consists of several distributed components 
providing access to sensors and actors (i.e., the hardware), offer-
ing computation functionality, and realizing a robot memory 
system as a common data source for the robot software. On top 
of these robot components, the ArmarX statechart mechanism 
can be employed to define the structure of the mid- to high-level 
robot behavior (i.e., the program flow). In order to gain full 
flexibility within the robot applications, the programmer can use 
well-defined entry points to implement user-specific source code. 
By separating structure from behavior, the task of building new 
robot software applications can be supported through graphical 
user interfaces, while maintaining full flexibility on source code 
level. ArmarX provides means of designing such statecharts 
textually and graphically with the possibility to link them with 
user code to perform custom operations. The graphical way is 
presented in Section 4.1 in detail.

In the following sections, we present the design principles we 
chose for statecharts in ArmarX and the resulting differences to 
Harel’s formalism. The details of the ArmarX statechart concept 
are explained in the remainder of this section.

3.1. Design Principles
Key principles of the ArmarX statecharts are modularity, reus-
ability, runtime-reconfigurability, decentralization, and state 
disclosure.

•	 Modularity in our statecharts comes naturally through the 
individual states and explicitly specified input and output. 
There is no direct interaction allowed between sub-states of 
different parent states.

•	 Reusability is ensured, since every state can be used as a 
sub-state in any other state and has a specific interface for 
interaction. The interface is specified with the state parameters 
like the parameters of a function.

•	 Runtime-reconfigurability means that a statechart can be 
defined in configuration files, and that the statechart structure 
can be changed completely at runtime.

•	 Decentralization means that a statechart does not need to be 
resided in one process, but can be spread over several pro-
cesses and hosts. This enables load balancing and robustness. 
A crashed distributed state component would not crash the 
whole statechart but would just create an event for higher 
layers that this specific state has failed (see Section 5.1, for an 
example of crash recovery).

•	 State disclosure means that the current state and all its parame-
ters can be inspected at runtime and logged for future behavior 
adaptation via a network interface (see Section 4.5).

3.2. Differences to harel’s formalism
The statecharts in ArmarX differ in several points from Harel’s 
original formalism. We omitted some of Harel’s features to 
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state can also be left if an external event occurs.
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comply with our design principles and to simplify the statechart 
design process for the developer. We added one important aspect 
to our statechart, which is not covered in Harel’s formalism: data 
flow specification and control during transitions. The hierarchy 
and condition-connectors are available like in the original 
statecharts. We do not allow direct inter-level-transitions to not 
violate the principle of modularity. The history-connector is not 
available, since it conflicts with the data flow specifications, and 
to reduce side effects during execution as well as to simplify 
the comprehension of the current state of the system during 
introspection. Each entering of a state with the same parameters 
must provide the same internal state. Orthogonality is currently 
available only in a smaller scope. Each active state can contain an 
asynchronous user code function executed in a separate thread. 
Thus, the different hierarchy levels can run in parallel.

3.3. armarX statechart internals
Statecharts in ArmarX are organized in groups (see Figure  2). 
Following the composite pattern, a statechart in ArmarX is a 
state itself. A state can contain sub-states and transitions between 
these sub-states. Every state can be nested in another state to 
construct state hierarchies. Transitions between sub-states are 
triggered by events. Transitions do not only specify control flow 
but also data flow by attaching a parameter mapping to each 
transition. This mapping contains instructions on how to fill the 
input parameters of the next state. Distribution of statecharts 
over multiple processes is possible with Remote States, which 
transparently represent states located in another process.

In the following sections, we are describing the main technical 
aspects of the ArmarX statecharts: sub-states, transitions, events, 
state phases, data flow, interfacing with external components, 
distributed statecharts, and the dynamic statechart structure.

3.3.1. Sub-State Types
Sub-states are not the same as states in ArmarX. States are 
templates, which are instantiated as sub-states of other states. 

Though, only one type of sub-states is direct instantiations of 
states. ArmarX statecharts consists of four different types of sub-
states, each with a specific purpose.

3.3.1.1. LocalState
Local states are normal state instances with no special features.

3.3.1.2. EndState
EndStates trigger leaving the parent state immediately. They can-
not contain sub-states or execute any user code. EndStates are one 
way to specify outgoing transitions of the parent state. The name 
of an EndState specifies the name of the outgoing transition of 
the parent state.

3.3.1.3. RemoteState
Remote states behave like local states but point internally to a 
specific state in another process.

3.3.1.4. DynamicRemoteState
Dynamic remote states are similar to remote states but are like 
generic pointers. On entering, a dynamic remote state morphs 
into a specific remote state based on parameters mapped during 
the transition.

3.3.2. Transitions
Transitions in ArmarX statecharts define control flow and data 
flow. Each transition is associated with one event that the cor-
responding source state can process. A transition is comprised 
of a source state, a destination state, the associated event, and a 
data mapping that defines the data flow between states during 
this transition.

Each state has exactly one initial transition if the parent state 
has at least one sub-state. The initial transition can be seen as the 
transition from the parent state to the first sub-state. This transi-
tion is triggered immediately when the parent state is entered. 
Thus, when the top-level state of a state hierarchy is entered, 
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installCondition(“ObjectReachedEvent”, objectDistance || forceMagnitude);
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initial sub-states on each level are entered recursively until the 
lowest level of the statechart is reached.

Each end-state defines one outgoing transition in the cor-
responding parent state. When the control flow reaches an end-
state, the control flow within the parent state is terminated, and 
the associated transition of the parent state is triggered.

Transitions do not only describe the control flow but also carry 
data and define the data flow between states. The data flow during 
transitions is realized through a parameter mapping definition, 
which is attached to transitions (see Section 3.3.5). One important 
detail to mention is that transitions can only be created between 
sub-states of the same parent state, unlike in Harel statecharts. We 
decided to create this restriction to keep the modularity principle 
of states. If states would have transitions to other hierarchy levels 
or other parent states, the parent state could not be reused without 
disconnecting that transition.

3.3.3. Events
Transitions between sub-states can only be triggered by events. 
Events can be fired either by user code, if an end-state is reached, 
or if a certain condition is met. Events from user code or from 
end-states are fired immediately, while events from conditions are 
fired as soon as the condition is fulfilled.

Conditions are specified by terms based on Boolean algebra 
comprising literals and Boolean operators.

3.3.3.1. Event Generation with Conditions
A literal is defined by a data field of an observer, and a parametrized 
check that is to be performed on this data field. Conditions are 
installed in sensor-observers and are evaluated by the appropri-
ate observer after each sensor update. To clarify the concept of 
distributed conditions, the following listing gives an example that 
will be explained in detail below.

The first statement in Box  1 defines the literal object-
Distance that describes the distance between the hand and 
object2 and checks if this distance is below 10 mm. object-
2PoseRef is a reference to the current pose of object2 
and is updated continuously. “ObjectMemoryObserver.
hand.pose” describes the current pose of the hand within 
the ObjectMemoryObserver. The poseDistance check 
compares the position components of both poses and evaluates 
to true if the distance falls below the provided argument value 
(here 10 mm).

The second statement defines forceMagnitude, 
which checks if the force in the right TCP is larger than the 
given threshold. Both literals are combined using a disjunc-
tion. So, if either of both conditions is true, the corresponding 
event ObjectReachedEvent is fired. The condition is 
evaluated in a distributed fashion. A central component called 

ConditionHandler distributes the literals to the appropriate 
observers. This approach avoids unnecessary transmission of high 
frequency sensor values, since only changes of the Boolean state 
of a literal are signaled by the observers. When the Boolean term 
of a condition evaluates to TRUE, the ConditionHandler 
fires the associated event. The middleware passes the event to the 
state that originally installed the condition.

In the context of event processing, the ArmarX state disclosure 
concept is consistently realized, e.g., by providing an event inspec-
tion GUI, as shown in Figure 9. This GUI enables the developer 
to explore condition trees of currently active conditions, and it 
further allows inspecting the history of past conditions.

3.3.3.2. Event Processing
Arriving events are queued and processed sequentially by the 
receiving process. Due to the distributed and asynchronous 
nature of the software framework, processing of events need to be 
performed with caution in order to ensure stability and consist-
ency. One aspect that needs to be considered is the fact that a state 
may already be left when an event arrives. To address this issue, 
all events contain the id of the destination state.

Additionally, special care needs to be taken to consistently 
consider parallelism. Since statecharts in ArmarX can be distrib-
uted over several processes, events can arrive and be processed in 
parallel. In order to deal with this situation, the ArmarX statechart 
framework protects critical sections, allowing concurrent multi-
threaded access. Such critical sections are the event-processing 
function (one per statechart level) and the state phases, where 
the state coordination is performed (see next section for details). 
Thus, transitions can only be taken once, and states are only 
entered or exited once.

3.3.4. State Phases
During the visit of a state, different phases are passed through: 
OnEnter, running, onBreak, and onExit. To enable developers to 
execute own code in a state, each phase is linked to a user code 
function, i.e., C++ code. OnEnter, onBreak, and onExit are atomic 
coordination phases, while running is the computation phase of 
a state for complex, long-running computations. The order of 
execution of the phases is as follows: onEnter, running, and then 
onBreak or onExit. Before entering a state (i.e., phase onEnter), 
the parameters (explained in the next paragraph) are mapped 
or set to default values. In the onEnter phase, local variables can 
be set to be mapped into sub-states or prepared for later phases. 
When a transition is triggered, the onExit or onBreak phase is 
entered. Which phase is executed depends on the level where 
the transition was triggered: as aforementioned, statecharts are 
hierarchical. Thus, it is possible for a higher state to receive an 
event, although its sub-states are not finished yet. In this case, the 
sub-statecharts cannot finish in an expected manner. To give the 
developer an option to deal with this unexpected behavior, each 
state provides the onBreak phase. If no behavior is specified for 
the onBreak phase, the user code function of the onExit phase is 
executed. When a top-level state received an event, the complete 
stack of child states needs to exit first. This starts at the leaf-sub-
state, a sub-state with no further sub-states, and proceeds up 
level by level.
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FigUre 3 | available types of parameter mapping during transitions. 
Each state has three parameter dictionaries: input, local, and output 
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Whenever a state is entered, its initial sub-state is entered 
as well. This means that after executing the onEnter phase of a 
state, the onEnter phase of the initial sub-state is also executed 
immediately afterward.

Since the user has freedom of implementation in the coordina-
tion phases, she/he is discouraged by warnings if computation-
ally costly code is detected. After entering, the running-phase is 
launched in its own thread to allow the execution of computation-
ally costly user code without interfering with the coordination. 
In the default-behavior, the coordination does not wait for the 
run-function to finish and ignores all results produced by the 
running-phase after the state was left. During each of these phases, 
the developer can access different parameter dictionaries in the 
user code functions, which are explained in the next paragraph.

Although C++ code is difficult to verify, we decided to employ 
C++, since all our algorithms and most robotics algorithms in 
general are written in C++.

3.3.5. Transition-Based Data Flow
One important, and to our best knowledge in this extend, unique 
feature of the ArmarX statecharts is the extensive control of 
the data flow in the statecharts, which eases accomplishing the 
modularity and reusability principles. All states are equipped 
with input and output parameter dictionaries to decouple states 
from external global data storage. Input parameters are read-only 
in user code functions and specify all parametrization the state 
needs for its computations. Output parameters can be set in the 
user code functions, contain the results of a state, and can be used 
as source for input parameters of the next state or mapped back 
to the parent’s local or output parameters.

Additionally, so-called local parameters are provided and 
accessible for the user code. Local parameters are intended to be 
used for temporal local storage of parameters that are passed down 
to sub-states’ input, passed up from sub-states’ output, or passed 
between different state phases. Once a state is left, all parameters 
are reset in order to avoid side effects of previous visits.

Each parameter dictionary field consists of a string identifier 
and a variant data type that can manifest itself into arbitrary 
types. ArmarX already provides the basic types bool, integer, 
float, double, and string as well as several types associated with 
robotics, like vectors, matrices, 3D poses, or probability distribu-
tions. If needed, developers can implement new types easily.

These parameter dictionaries are defined by the developer and 
specify the interface of each state, i.e., which data it needs for 
execution. Each parameter can be optional, can have a default 
value,1 and/or can be filled from several sources. We call this 
parameter mapping. When a state is used, its non-optional input 
parameters without default values need to be connected with 
other parameters of the same type. Thus, a parameter mapping 
for each of these input parameters needs to be created for each 
state instance. The developer can choose between mappings 
from the output of a previous state from the same hierarchy 
level, the input or local parameters of the parent state, or from 
a parameter attached to the transition-event. Additionally, 

1 Consequently, if parameters have a default value, the optional flag does not make 
much sense any more, thus these two Boolean flags basically form a tri-state.

developers can map values from the output of a state to the local 
or output parameters of the parent state. Later, when another 
sub-state needs the calculated value as an input parameter, the 
local parameter is mapped to that input parameter. For example, 
generic counter states can be implemented following this pattern, 
so that counting loop sequences of states can be defined without 
writing any additional specialized custom code. With this, it is 
possible to pass data from a sub-state to another state later in the 
chain more easily. Otherwise, the parameters would need to be 
mapped from state to state. Figure 3 shows the different types of 
mappings during transitions.

3.3.6. Interfacing with External Components
Statecharts that can only access functionality and data of them-
selves are not particularly useful for robotics. Therefore, they 
must be able to access all available components. Since ArmarX is 
a heavily distributed system, it cannot be assumed that required 
components are running in the same process or on the same 
host. Hence, states require network proxies to these components, 
and it should be ensured that a state is only started if all required 
components are available. Dependencies for a group of states 
can therefore be defined in a so-called StatechartContext, which 
manages dependencies and enables states to communicate with 
external components.

3.3.7. Distributed Statecharts
Another important feature of ArmarX is the possibility to dis-
tribute statecharts over several processes or hosts. To this end, 
states in ArmarX are organized in groups, which, for example, 
contain states that are semantically similar and share the same 
dependencies to external components. In this context, semanti-
cally similar means, states that share common aspects regarding 
their purpose. For example, all states for controlling holonomic 
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platform movements, from a PD-controller to calls to a path 
planning component, should be encapsulated in one statechart 
group. Though, this is just a useful convention.

Each group is executed as one component in a so-called 
RemoteStateOfferer. These RemoteStateOfferers offer states to 
be used by others states as RemoteStates over the network. For 
robustness, each RemoteStateOfferer is located in its own process. 
Thus, a RemoteState is inserted whenever a state uses a state of 
another group as a sub-state. This process is completely transpar-
ent for the developer. The only difference to a local state is that 
the RemoteStateOfferers name needs to be specified in addition 
to the state name. Theoretically, each state could have its own 
group for maximized robustness. Since distributed statecharts 
are slower than local statecharts, developers need to decide care-
fully when to split statecharts in more than one group. Another 
advantage of distributed statecharts is the possibility to deploy 
them close to their components. A statechart that makes heavy 
use of the robot’s memory should ideally be located on the same 
host as the database servers, whereas a visual servoing statechart 
should be close to the vision system and the host, where joint-
level control takes place. Figure  4 depicts the linkage between 
different statechart groups and RemoteStates.

Due to the sophisticated underlying middleware Ice, which 
transforms network communication into normal, transparent 
function calls, the step from local statecharts to distributed 
statecharts was fairly easy. Sub-states pointing to a remote state 
just use another implementation of the state interface, which 
reroutes all the function calls over the middleware. On the other 
side, there is the aforementioned RemoteStateOfferer component, 
which offers a network interface to the normally, local functions 
of a state. This way, consistency is assured in the same way as it is 
done locally, with mutexed access and storage of data only on the 
offerer side. Thus, synchronization of data is not needed.

3.3.8. Dynamic Statechart Structure
In most statechart frameworks, the structure of the statecharts is 
fixed, once it has been designed by the developer. This limits the 
usability of statecharts in a highly dynamic environment, e.g., in 
the context of humanoid service robots. In this context, a symbolic 
planner may be incorporated, which needs to be able to change 
the statechart structure on the fly, according to the currently 
planned program flow. ArmarX supports dynamic online stat-
echart restructuring by offering so-called DynamicRemoteStates, 
which provide generic entry points for exchangeable statecharts. 
As the name suggests, a DynamicRemoteState connects to a state 
in another (or its own) process. It decides upon entering, into 
which state it is morphed based on specific parameters passed 
by the transition. Additionally, it can specify more parameters 
that are mapped into the connected state. The correctness and 
completeness of the parameters is verified at runtime, i.e., when 
the state is loaded.

3.4. Textual statechart specification
While the advised method to create statecharts is to use the 
Statechart Editor (see Section 4.1), it is also possible to specify 
statecharts textually, as shown in Box 2.

First, each state needs to be added with its state class 
(TemplateParameter) and the instance name (parameter of 
addState()). Afterward, transitions between these sub-states can 
be created by specifying the start and end-state, and on which 
event these transitions should be triggered.

4. The sTaTecharT cOncePT 
eMBeDDeD inTO armarX

Statecharts can be implemented in various ways by using a 
lookup table for transitions, by implementing transition tables 
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BOX 2 | an exemplary textual definition of a state.

void defineSubstates()
{
//add sub-states
setInitState(addState < InitialState > (“Initial”));
StateBasePtr finalSuccess = addState < SuccessState > (“Success”);
StateBasePtr finalFailure = addState < FailureState > (“Failure”);
//add transitions
addTransition < Next > (getInitState(), getInitState());
addTransition < TimerExpired > (getInitState(), finalFailure);
addTransition < Success > (getInitState(), finalSuccess);
}
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via switch-case statements, by implementing an object-oriented 
state pattern, etc. Since all these approaches are based on writing 
code to perform the state transitions, a lot of repetitive textual 
description is usually necessary to define large statecharts. This 
textual description becomes rapidly incomprehensible for other 
developers. To overcome this tedious and error-prone work, a 
graphical statechart editor was developed for ArmarX statecharts.

4.1. statechart editor: Defining control 
and Data Flow
The goal of the statechart editor is to enable all users to create 
new statecharts with sub-states, to define input and output 
parameters, and to connect states with transitions. The editor 
covers all major use cases related to editing a statechart: creation 
of structure, definition of control flow, and definition of data flow 
during transitions. The user is not required to write any custom 
code to create a functional statechart. We decided to store the 
statechart definition in a custom xml-based format.

Figure  5A shows the main window of the statechart editor. 
Statecharts are organized in statechart groups. A statechart group 
can contain multiple statecharts and sub-states. For further 
organization of statecharts, folders and sub-folders are avail-
able. All statechart groups are listed on the left side of the main 
window. The user can open any statechart from the state library 
for graphical editing or reuse a statechart by including it as a sub-
state within another statechart.

When a statechart is opened for graphical editing, it is dis-
played on the right side of the editor. The editor offers a variety 
of options to edit a statechart, including specialized dialogs and 
context menus.

4.1.1. Sub-States
By dragging a statechart from the statechart library into the right 
editing area, a sub-state is created. A state can be reused multiple 
times as a sub-state within a statechart. The editor displays sub-
states in two different colors: states from within the same statechart 
group are colored blue; states from different statechart groups are 
displayed in turquoise (RemoteState). DynamicRemoteStates are 
violet.

4.1.2. End-States
End-states are special sub-states, which are colored yellow. Each 
end-state implicitly creates an outgoing event/transition. When 
the statechart transitions to an end-state, the execution within 

the statechart is terminated. Additionally, the corresponding 
event/transition is triggered so that control flow moves back to 
the parenting statechart where execution is continued. When 
transitioning to an end-state, a statechart completes by terminat-
ing its execution entirely if no parenting statechart is present, i.e., 
the statechart in question is the top-level statechart.

4.1.3. Events and Transitions
As mentioned before, an end-state implicitly creates an event, 
which in turn implicitly creates an outgoing transition. When a 
statechart is initially added as a sub-state, all outgoing transitions 
of this sub-state are displayed as detached transitions. Transitions 
can be connected to other sub-states by dragging them onto the 
target sub-state. To create a valid statechart, all transitions have to 
be connected from a source state to a target state. The target state 
can be another sub-state, end-state, or the source state itself in case 
of a reflexive transition. When no detached transitions remain, 
the transitioning behavior of the statechart is fully defined, which 
implies that no event is left unhandled. Additional events can be 
specified in the state properties, which are fired from the code 
directly or on fulfilled conditions.

4.1.4. State Parameters
Each state has a list of input, output, and local parameters. 
A parameter is defined by its name, data type, and an optional 
default value. Figure  5B displays the input parameters of the 
PlaceObjectSkill, as it is used in ArmarX. Role and usage of the 
three parameter types is similar to those of parameters, return 
values, and local variables of functions in imperative programing 
languages.

4.1.5. Data Flow
A transition can be accompanied by several data mappings that 
define the data flow within the statechart during this transition. 
The statechart editor does not support global data storage, since 
global data storage breaks the concept of data encapsulation. 
Data are only passed between states during a transition. Data 
can be passed in 6 different ways, as depicted in Figure 3. The 
editor ensures that only parameters of the same type are mapped, 
while parameter mappings are edited in the transition dialog. An 
example is given in Figure 5C.

For many use cases, it is possible to compose a complete stat-
echart by combining the capabilities listed above and by using 
existing states from the state library. Writing any additional 
source code in C++ is not required in these cases.

More complex applications may require implementing custom 
behavior of states using source code. For these cases, the editor 
offers the option to jump directly into the source code of any 
state. Additionally, the source code of a state can be viewed in the 
bottom panel below the graphical editing area (see Figure 5A).

4.2. linking implementation and 
control Flow
Using a graphical definition for statecharts implies that all 
parameters, parameter types, parameters mappings, events, and 
transitions are identified via names. Since states are reusable 
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and do not store any information about previous or following 
states, all states have to share the same basic interface for passing 
input and output data. We decided to define this interface using 
string-Variant maps, as described in Section 3.3.5. Additionally, 
the state functions OnEnter, Run, OnBreak, and OnExit can be 
implemented in C++. Since C++ is a statically typed language 
without reflection, accessing an input parameter would look 
similar to this:

float myInput = ((FloatContainer*)
getInput(“MyValue”))- > get();

The resulting code overhead to access input parameters 
and to write output parameters is substantial, if one takes into 
consideration that not only basic types but also lists and maps 
of any data type are supported. Furthermore, the identification 

of parameters by strings and run time casts can lead to run time 
errors that could have been detected during the compile time. 
Instead, accessing an input without self-written overhead code 
should look like this:

float myInput = getMyValue();

To achieve this type safe and auto-completion friendly inter-
face, we employ a code generator that generates custom wrapper 
functions to access inputs and outputs. Inside a generated func-
tion, the parameter is referenced by name, and necessary casts 
are applied. Since these functions are generated automatically, 
access by name and the casts will never lead to run time errors. 
Instead, all possible errors related to parameter accessing occur 
at compile time. Detecting these kinds of errors before executing 
the statechart saves a lot of time during development.
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4.3. connecting statecharts and armarX 
components
One of the main aspects of statecharts in ArmarX is to interact with 
components. Since different statecharts for different tasks often 
require different sets of components, each statechart depends on 
a set of components. The statechart editor generates a complete 
list of all available ArmarX components from component meta 
information. The user can pick any number of components from 
this list and add them to the dependencies of the statechart, as 
shown in Figure  6A. Every selected component can then be 
accessed inside the states via a proxy object. Also, additional 
code is automatically generated so that the statechart registers 
these dependencies within the ArmarX framework before start-
up. Then, the dependency resolver in ArmarX ensures that all 
necessary components are running before the statechart starts 
execution.

The list of component proxies for a state can be interpreted as 
the interface of this state to the ArmarX framework. Similar to 
object-oriented development, our goal is to keep these interfaces 
small. For example, a pick and place statechart requires compo-
nents to operate the robotic platform, the arms, the hands, do 
visual servoing, etc. Without encapsulation of proxies, this would 
lead to a very wide interface for high-level tasks.

To approach this challenge, we offer a wrapping statechart 
group for each important component. Each state within a group 
encapsulates a common task of the encapsulated component. 
For example, the HandGroup offers states to open or close the 
hands. A high-level statechart can then use these wrapper 
states to indirectly interact with components without the need 
of a direct dependency on all components. For example, the 
PlaceObjectGroup needs to control the arms and hands as well 
as to perform visual servoing to increase accuracy. This demands 
interaction with the KinematicUnit, HandUnit, and MemoryX, 
among others. Each of these units is encapsulated by a statechart 

group, namely the MotionControlGroup, HandGroup, and 
VisualServoGroup. The PlaceObjectGroup uses these statechart 
groups to indirectly interact with the encapsulated components, 
as shown in Figure 6B.

4.4. statechart Profiles and state cloning: 
reusing statecharts for Different robots
When developing a new skill for a robot, we usually start in 
simulation. During the transfer of the statechart to the real robot, 
a lot of parameters usually need to be adapted. For example, when 
picking up objects from a table, the height of the table might be 
different in simulation and in reality or the force torque sensor 
thresholds differ. But, these are just differences in parametrization 
and not on source code level. Thus, our goal is to have the same 
source code working in simulation as well as on the real robot.

To meet this requirement, we introduce the concept of profiles. 
When working with the statechart editor, the user first selects 
which profile he or she wants to work with. Every parameter of 
every state can have specialized values in different profiles, but 
it is also possible to define default values that apply to multiple 
profiles if no specialized value is set.

Figure  7 displays the parameter edit dialog for the place 
object example mentioned above. The parameter ObjectName 
is set to “GreenCup” and is applied in simulation as well as on 
the real robot. The parameter TableHeight is set to 900 mm for 
simulation and to 800 mm for the real robot. The statechart will 
be executed with the appropriate parameters depending on the 
selected profile.

When reusing statecharts for new robots, simple parameter 
adjustment is often not sufficient. The underlying behavior imple-
mentation of states might require adaptation or the statecharts 
need to communicate with different components altogether. To 
cover these cases, the statechart editor offers the option of cloning 
complete statecharts, including all sub-states as well as cloning all 
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state-dependencies of the statechart in question. Dependencies 
are determined by finding all external statecharts that are used 
in the statechart to be cloned. This process is applied recursively 
until the list of dependencies is complete. In addition, the stat-
echart editor checks if some of the dependencies have already 
been cloned for the target robot and omits these states while 
cloning accordingly. When cloning states, it is possible to apply 
a prefix to all new states to avoid later confusion. Additionally, 
all necessary C++ source code files are copied, renamed, and 
modified to match the new names. Statecharts yielded by the 

cloning process can be compiled and executed without any 
manual adaptations or amending of source code.

Figure 8 shows an exemplary use case, in which the statechart 
group for placing objects (PlaceObjectGroup) is cloned to be 
adapted for the iCub robot. In this example, the HandGroup has 
already been cloned previously and has been adapted for the iCub 
under the name ICubHandGroup. The editor recognizes that the 
ICubHandGroup already exists inside the ArmarX iCub package. 
All newly cloned states that have a dependency to the HandGroup 
will use the adapted ICubHandGroup instead of the original.
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4.5. system state Disclosure
Disclosing the state of a robotic system is one of the key features 
of ArmarX for diagnosing problems at runtime and inspecting 
the internal state during development. Programmers are able to 
access data of many parts of the system required for debugging, 
monitoring, and profiling purposes. Different built-in frame-
work mechanisms provide this information, which includes 
sensor data, conditions, statechart-related events, as well as 
component dependencies, and the execution state of statecharts 
and components. Specialized visualizations are available for pre-
senting and inspecting these different aspects. Textual output is 
presented as a time-stamped log, memory contents are displayed 
in a 3D view, and a plotter is provided for one dimensional 
sensor data. Statecharts, their control flow, and active states 
are visualized in the StatechartViewer (see Figure 10). Within 
statecharts, conditions are used to generate events based on 
sensor data and can be viewed as Boolean expression trees, as 
shown in Figure 9.

Additionally, ArmarX discloses the system state on a very 
low level for determining bottlenecks or providing hints for 
partitioning the distributed application. On the component level, 
CPU-, memory-, and network utilization data are accessible via 
the observer mechanism [see Vahrenkamp et al. (2015)] for easy 
visualization with the graphical plotter. On the statechart level, 
state transitions and timing information about state durations are 
available. To enable later processing and evaluation, this low-level 
data can be stored persistently in the memory structure provided 
by ArmarX.

4.6. Validation
Validation is always an important point in software development. 
Since generic formal validation of a statechart with arbitrary user 
code is difficult, we supply the possibility to create statechart test 
cases like unit tests. Since ArmarX statecharts usually interact 
with robot components, the user can specify a simulation 
environment that should be started alongside the statechart test. 
In the statechart test, the output parameters of a state or whole 
statechart can be validated, or the status of robot components like 
the memory can be checked.

5. aPPlicaTiOns anD Use cases

In this section, several applications and use cases realized with 
ArmarX will be presented, which show how distributed stat-
echarts support robustness and provide both convenient usage 
and flexibility.

5.1. robustness and Fault recovery
In this use case, we show how fault recovery concepts are realized 
within ArmarX. This is important, since most robotics software is 
written in C++, which allows writing program, crashing imple-
mentations easily. Hence, a robust robot framework must be able 
to deal with crashing applications in a way that other components 
are informed but not affected by a component fault. Further, fault 
recovery mechanisms should be provided for high- and low-level 
robot control.

Several concepts support robustness in ArmarX.

•	 Dependency management: due to the distributed nature of 
ArmarX, crashing components do not affect other compo-
nents in a non-deterministic way. If component A depends on 
another component B, the dependency manager of ArmarX 
only sets A to the state connected after B is fully initialized and 
connected. If component B stops working (i.e., crashes), A is 
informed and reset to its prior initialized state. If the system 
is capable of restarting B, A will be set to connected again.

•	 Automatic restart: the deployment mechanisms of the dis-
tributed Ice middleware can be used to automatically check 
for running applications. In case an application (an ArmarX 
component) stopped working, it can be automatically 
started again.

•	 High-level fault recovery: if an implementation of a robot 
statechart is erroneous and causes the statechart to crash, the 
encapsulating statechart is automatically informed that the 
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FigUre 11 | Distribution of statecharts increases robustness of the system. Left: the CrashTestMain state encapsulates a remote sub-state, which faults 
from time to time due to a segmentation fault. Right: the C++ code of the enter method of the state CrashingRemoteState, which causes a segmentation fault error 
in a non-deterministic way. The error results in an immediate termination of the application that executes the sub-state.

FigUre 10 | The current state of an executed statechart can be inspected live in the statechartViewer. The statecharts are layouted on the fly. The red 
state border signals that this state is active. On the right, current state parameters of the selected state can be examined. Executed transitions are highlighted as 
well in red, which fades to black over a few seconds to visualize the transition trace.
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execution of its sub-state resulted in a failure. Hence, the high-
level robot program can consistently handle defective parts in 
the robot program, which could result in a non-deterministic 
behavior of the robot otherwise.

In the following section, we will show how a crashing sub-
statechart can be handled by the robot program. In Figure 11, 
a statechart is depicted on the left. The execution of the 
statechart starts with the MainState, which emits the event 
EvProceed (1 in Figure  11) causing the execution to pass to 

the CrashingRemoteState statechart (2 in Figure 11). A normal 
execution would result in a success event (3 in Figure 11), but 
as shown in Figure  11 on the right, the statechart crashes in 
a non-deterministic way due to a segmentation fault. Such a 
segmentation fault results in an immediate termination of the 
application executing CrashingRemoteState. The encapsulating 
statechart CrashTestMain automatically gets informed by the 
ArmarX runtime system via the Failure event (4 in Figure 11) and 
can recover from this faulty behavior in a deterministic manner 
(5 in Figure 11).
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TaBle 1 | generic set of skills available for use with different robots.

skill Description

MoveJoints Moves joints either in position or velocity control mode
MoveTCP Moves the tool center point to a Cartesian target
VisualServo Implements a position-based visual servo approach
MovePlatform Moves a platform-based robot along a graph or to a 

specific point
LookTo Centers a Cartesian position with the head
GraspObject Picks up an object with an end effector
BringObject Picks up an object and delivers it to a specified location
ZeroForce Enables zero force control for an end effector
StopRobot Stops all movements
PlaceObject Puts down a grasped object
ScanForObject Applies a scanning strategy to search for an object
TrackObject Tries to track an object
ViewSelection Changes view direction, according to an automatic 

attention mechanism
Open/Close/Shape 
Hand

Move hand to specific shapes
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5.2. generic robot skills
ArmarX provides a library of generic skills, implemented as 
statecharts, which can be configured and used for a wide variety 
of robots. The skills cover most basic capabilities needed to setup 
a robot skill library. In addition to these skills, robot-specific 
statecharts can be implemented to account for specific features of 
the platform. The set of generic skills currently provided by the 
ArmarX framework is listed in Table 1.

Generic skills can be applied to a specific robot by configuring 
their parameters and by providing robot-specific components on 
the mid-level of the ArmarX architecture (see Figure 1). Hence, 
statecharts provide a dependency list of components, which 
must be running before execution is possible. For example, the 
ShapeHand skill needs a HandUnit to be running, and the skill 
parameters must specify which shapes are available for execution.

5.2.1. Use Case: Generic Skills on Different Robots
To show how skills can be applied to different robots, we present 
a use case for YouBot (Kuka, 2015) and ARMAR-4 (Asfour et al., 
2013), showing the required steps to use the skills MoveTCP and 
MoveJoints on different robots.

In general, two steps are needed to program a robot platform 
with ArmarX. First, a basic set of (robot) components must be 
configured in order to realize the mid-level structure of the robot 
software, as shown in Figure  1. Second, the initial set of skills 
has to be configured, defining the basic capabilities the robot 
programmer can use to build robot applications.

5.2.1.1. Robot Components
Initially, several components must be realized for the different 
robots. Beforehand, the robot’s visualization, kinematics, and 
dynamics properties must be defined. In ArmarX, these prop-
erties are specified with the Simox (Vahrenkamp et  al., 2012) 
robot file format. The minimal set of components needed for the 
MoveJoints and MoveTCP skills is listed below:

•	 KinematicUnit: encapsulates access on joint level. In the 
following examples, the robots are simulated with kinematic 

simulation units provided by ArmarX. On a real robot, 
this component is connected to the robot’s hardware layer. 
In case of ARMAR-4, the KinematicUnit connects to the 
ArmarX-RT layer to communicate with the motors and sen-
sors (Vahrenkamp et al., 2014).

•	 KinematicUnitObserver: observes the raw joint data in order 
to trigger events.

•	 RobotStateComponent: a network transparent representation 
of the robot used for forward and inverse kinematics.

•	 TCPControlUnit: allows control of the tool center point (TCP) 
in Cartesian space.

Access to the real robot (i.e., to the drivers) needs to be 
implemented via the KinematicUnit component, while all these 
components are already available in simulation and can be 
configured for use with a new robot. Hence, a basic framework 
can be quickly realized by configuring provided ready-to-use 
components of ArmarX.

5.2.1.2. Robot Skills
Once all components are set up for the specific robot, high-level 
robot program can be implemented. As a starting point, several 
skills can be taken from the ArmarX skill template library and 
configured to be used on the robot. In this example, the MoveTCP 
and MoveJoints skills are used, and a waving statechart is pro-
gramed via the Statechart Editor tool. As shown in Figures  12 
and 13, the realization can take advantage of the ready-to-use 
skill library of ArmarX on such different robots as ARMAR-4 
and YouBot. In addition, the waving statechart that is used in 
Figure 13 at the top can be directly executed on the real ARMAR-
4, as shown in Figure 13 at the bottom. Such a skill transfer for 
the complex reactive grasping skill (similar to 3) is also shown in 
the work presented by Paikan et al. (2015).

5.3. reactive grasping of Unknown 
Objects
In the context of the Xperience (2011) Project, we developed a 
statechart and extended accompanying components to perform 
Reactive Grasping based on vision and haptics on the humanoid 
robot ARMAR-III (Asfour et  al., 2006). This use case demon-
strates reusability of ArmarX statecharts through extension of the 
programed behavior and the incorporation of sensor feedback on 
different hierarchy levels. The approach presented in Schiebener 
et al. (2011) was used to initially learn an object hypothesis and 
pose. The pose and the forward kinematics are not perfectly 
exact. Therefore, correcting actions during grasping are neces-
sary. Guidance of the hand during the grasping approach phase is 
based on visual servo. To accommodate for inaccuracies, we need 
an extended visual servoing that reacts on collisions of the hand 
with the object. Instead of implementing a specialized version of 
visual servoing, we created a wrapping statechart called Visual 
Servo with Collision Detection, which is used in our Reactive 
Grasping (see Figure 14).

In parallel to the statechart execution, three different collision 
detection components are running to detect visual collisions, 
tactile collisions, and collisions inferred from proprioceptive 
data. These components run independently, monitor different 
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FigUre 13 | arMar-4 executing a waving motion with the same statechart in simulation and on the real robot.

FigUre 12 | The waving statechart executed on YouBot, while running a kinematic simulation.
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sensors of the robot, and offer event notifications usable in 
statecharts. The wrapping statechart Visual Servo with Collision 
Detection monitors the output of the collision detection com-
ponents by installing conditions with given thresholds on the 
output data. Then, the visual servoing statechart is started as a 
sub-state. If any of the conditions is met during servoing, the 
appropriate event is fired. The wrapping state Visual Servo with 
Collision Detection is exited, and the execution of all sub-states 

is stopped. Hereby, the visual servoing is interrupted, and the 
collision can be handled appropriately by correcting the grasp 
pose. After correcting the pose, the statechart transitions back 
to the extended visual servoing.

By wrapping the visual servoing skill in a statechart, we can 
reuse and extend the visual servoing without modifying it. The 
used visual servoing skill is the standard visual servoing from 
the ArmarX statechart library.
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Visual Collision
Detection Component

Tactile Collision
Detection Component

Proprioceptive Collision
Detection Component

FigUre 14 | simplified statechart for reactive grasping in the Xperience project.
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5.4. Dynamic state replacement
One use case for the dynamic state replacement feature of 
ArmarX is the combination of a symbolic task planning system 
with ArmarX statecharts for execution. To connect the planning 
system to statecharts, a control statechart, as shown in Figure 15, 
was built around one DynamicRemoteState (depicted in violet). 
Since statecharts do not offer an interface for remote procedure 
calls, it is not possible to communicate with states directly. States 
react on external changes by observing changes in datafields. Thus, 
we inserted an additional component, the plan step observer, on 
which the statechart can install conditions to receive an event 
(EvNextStepPlanned) on changes related to the current planning 
step. The planning system manages this datafield containing the 
current action and its parameters. After the event was received, 
the desired skill statechart is loaded into the DynamicRemoteState 
and is directly executed. With this powerful mechanism, it is pos-
sible to implement interactive and dynamic robotic applications 
in a consistent and robust way.

6. DiscUssiOn

In the following section, we are discussing our experiences with 
implementing and developing robot programs with the ArmarX 
statechart framework. Since we realized a large number of robot 
programs for a wide variety of applications for the robots of 
the ARMAR series, we gained rich experience that allows us 
to elaborate on advantages and disadvantages of the proposed 
concept. The presented statechart approach has extensively been 
used not only to demonstrate simple tasks like the examples 
in this paper but also for complex skills applied in real world 
scenarios, including grasping, opening and closing doors, mix-
ing, or pouring as presented in Ovchinnikova et al. (2015).

We think that the decision to restrict the ArmarX statecharts 
to a subset of Harel’s original statechart definition has been shown 
to benefit our statechart concept, since the removed features 
(inter-level-transitions, history-connector) were rarely missed 
but improved comprehension and reusability significantly.

Compared to the framework (Scholl et  al., 2001) we used 
before, in which robot behaviors were also encoded by state 
machines, we see the advantages of now having a clear structure, 
advanced graphical tools, and a consistent concept for defining 
the data flow. In particular, the explicit definition of the data 
flow, i.e., specifying input and output parameters of a state with 
a defined and clear scope, helps immensely with understanding 
and reusing existing states. Another effect of this explicit data flow 
definition is that implicit data dependencies to other states are not 
possible, which ensures that entering a state with the same set of 
input parameters leads to the same result. Naturally, specifying 
the data flow explicitly and in detail is development overhead, 
but we are sure that it is worth the effort in the long run. Though, 
specifying and inspecting data flow with graphical tools simplifies 
this process greatly.

Such graphical tools are not only useful for defining the 
data flow but also indispensable for developing complex state 
machines (although ArmarX allows defining statechart structures 
manually, it is infeasible to realize complex robot programs this 
way). Hence, the graphical Statechart Editor is one of the most 
important tools of the ArmarX framework, which supports the 
convenient development of robot programs.

From our experience, we can confirm the necessity seen 
by Harel of introducing the concept of hierarchies into state 
machines. Hierarchies are essential for developing complex 
state machines and for maintaining reusability. For example, the 
grasping skill consists of up to six hierarchy levels, where some 
of the sub-states are used several times. Unrolling this into one 
hierarchy level results into a statechart that is practically impos-
sible to design due to the number of required states.

The ArmarX statecharts proved to be applicable for use cases 
from low-level to high-level. An example of a low-level statechart 
is a controller for holonomic platform movements, where the 
leaf state is the PD-controller (using the asynchronous user code 
run-function), and the level above decides on the waypoints. An 
example for a high-level statechart is the statechart from Section 
4, which is used for symbolic plan execution.
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Sets plan step
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new skill result
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new plan step

Set skill results

FigUre 15 | Planning statechart with a DynamicRemoteState (violet) that can be changed at runtime.
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Currently, there are many small decider or preparation states, 
performing some minor, but necessary calculations like coordi-
nate transformations. This introduces clutter, since new states 
need to be created frequently. In the future, we plan to improve 
this by the possibility to attach conversion-functions to transitions 
to perform such minor calculations.

7. cOnclUsiOn

We presented the statechart concept of the robot development 
environment ArmarX and showed how high-level robot pro-
graming can be realized in a robust and convenient way. The 
event-driven statechart approach within ArmarX helps real-
izing important features, such as increased robustness through 
distributed program execution, convenient programing through 
graphical user interfaces, and versatility by interweaving dynamic 
statechart structure with custom user code. Additionally, we 
extended the original statechart concept by Harel with the possi-
bility to explicitly specify data flow between states. These features 
build a solid base for implementing higher-level robot programs, 
which is accompanied by advanced framework capabilities, such 
as reusable robot programs and the presented ability to transfer 
skills to different robots.

In future work, we will improve the framework in terms of 
high-level robot program development, validation, and debug-
ging. Therefore, we will introduce orthogonality into the stat-
echart concept to enable parallel statechart structures. Currently, 

parallel execution is supported only between hierarchy levels, 
but there are use cases where orthogonal skill execution eases the 
design of a high-level robot program. In addition, we will work 
on automatic statechart validation in order to eliminate faults 
in robot programing and to speed up the development process. 
Furthermore, we plan to offer break points in statecharts, which 
will greatly improve debugging on statechart level.
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