
June 2016 | Volume 3 | Article 331

Original research
published: 23 June 2016

doi: 10.3389/frobt.2016.00033

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Jochen J. Steil,

Bielefeld University, Germany

Reviewed by:
Ali Paikan,

Istituto Italiano di Tecnologia (IIT), Italy
Christian Schlegel,

University of Applied Sciences
Ulm, Germany

*Correspondence:
Mirko Wächter

mirko.waechter@kit.edu

Specialty section:
This article was submitted

to Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 03 December 2015
Accepted: 03 June 2016
Published: 23 June 2016

Citation:
Wächter M, Ottenhaus S,

Kröhnert M, Vahrenkamp N and
Asfour T (2016) The ArmarX

Statechart Concept: Graphical
Programing of Robot Behavior.

Front. Robot. AI 3:33.
doi: 10.3389/frobt.2016.00033

The armarX statechart concept:
graphical Programing of robot
Behavior
Mirko Wächter*, Simon Ottenhaus, Manfred Kröhnert, Nikolaus Vahrenkamp
and Tamim Asfour

High Performance Humanoid Technologies Lab (H2T), Institute for Anthropomatics and Robotics (IAR), Karlsruhe Institute
of Technology (KIT), Karlsruhe, Germany

Programing sophisticated robots, such as service robots or humanoids, are still a
complex endeavor. Although programming robotic applications requires specialist
knowledge, a robot software environment should support convenient development,
while maintaining full flexibility needed when realizing challenging robotics tasks.
In addition, several desirable properties should be fulfilled, such as robustness,
reusability of existing programs, and skill transfer between robots. In this work, we
introduce the ArmarX statechart concept, which is used for describing control and
data flow of robot programs. This event-driven statechart approach of ArmarX helps
realizing important features, such as increased robustness through distributed program
execution, convenient programming through graphical user interfaces, and versatility
by interweaving dynamic statechart structure with custom user code. We show that
using hierarchical and distributed statecharts increases reusability, allows skill transfer
between robots, and hides complexity in robot programming by splitting robot behavior
into control flow and functionality.

Keywords: robot software framework, robot programing, statecharts, graphical user interfaces, distributed
processing

1. inTrODUcTiOn

Programing complex robots like humanoids is challenging and is often divided into at least two
domains. One being, low-level control, which is essential for smooth execution, system stabiliza-
tion, safety, and consideration of dynamic effects. On the other hand, high-level robot programing
copes with perception, task and motion planning, user interaction, memory concepts, and reus-
ability of robot skills. Well-designed robot software frameworks should support the development
of complex robot programs on all system levels. Therefore, a framework needs to provide well-
defined interfaces for all available robot components and the flexibility to additionally implement
application- or task-specific behaviors. In addition, a basic set of robot skills (i.e., robot programs
for a special behavior) should be available, which can be used to assemble more complex robot
programs. One challenge in building a robot framework is to provide means for doing this in a
robust and convenient way.

In this work, we focus on high-level robot programing and discuss how using hierarchical,
distributed statecharts for encoding robot skills aid in achieving convenient programing and
reusable, transferable robot behaviors. Possible candidates of statechart implementations must
meet the following requirements to be considered eligible: full control over data flow and control
flow, local scoping of data similar to encapsulation in programing, runtime-reconfigurability as

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00033&domain=pdf&date_stamp=2016-06-23
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00033
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:mirko.waechter@kit.edu
http://dx.doi.org/10.3389/frobt.2016.00033
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00033/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00033/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00033/abstract
http://loop.frontiersin.org/people/277021/overview
http://loop.frontiersin.org/people/332155/overview
http://loop.frontiersin.org/people/354789/overview
http://loop.frontiersin.org/people/181701/overview
http://loop.frontiersin.org/people/153068/overview

Robot / Simulation

Sensor-Actor Units

Unit
Observers

Robot
Components Mid Level

Robot Capabilities

High Level
Robot Program

Low Level
Control

FigUre 1 | Basic structure of armarX. The low-level hardware access is
abstracted through the Sensor–Actor unit concept. These Sensor–Actor
units realize hardware or simulator access and hide the low-level
communication from higher-level layers of the robot software. On the
mid-level, robot capabilities, such as perception, planning, and motion
generation, are implemented in a network transparent way. The high-level
layer comprises a set of robot skills, realized as statecharts, which are used
for assembling complex robot programs. The arrows depict middleware
communication, which can be local or remote. The decision if a
communication channel is local or incorporates remote calls is transparently
taken on the fly by the middleware based on the current deployment.

2

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

well as runtime introspection. It should also not be necessary
to recompile programs upon structural or control flow changes.
Furthermore, a graphical user interface is desirable in order to
reduce the unavoidable complexity of describing robot behavior
and to minimize development and comprehension efforts. This
convenience feature should provide means for defining and
parametrizing both control and data flow, online visualization
of active states and transitions in running programs, and a
convenient way to incorporate custom user code. Additionally, a
code generator should be provided for enforcing type-safety and
catching errors in user code as early as possible as well as allowing
source code auto-completion in development environments of
statechart-related data types and functions.

We will discuss the statechart concept of the robot develop-
ment environment ArmarX (Vahrenkamp et al., 2015) in detail
and show how it provides both reusability of high-level robot
skills realized as distributed, hierarchical statecharts, and the
possibility to add user code with access to the external robot
components. Figure 1 shows how statecharts are integrated in
the basic structure of ArmarX.

In Section 2, we elaborate on the state of the art and compare
it to our approach. Our statechart concept is presented in detail
in Section 3. This is extended in Section 4 in regard to usability
and integration in the robot development framework ArmarX.
In Section 5, we show some use cases for the presented approach
to give a better understanding of how it can be utilized. The
discussion in Section 6 reflects our experience with the ArmarX
statecharts, and Section 7 concludes the paper.

2. relaTeD WOrK

Robot Development Environments (RDEs) have coevolved with
the increasing complexity and capabilities of modern robots.
Taking a closer look at recent RDEs, there has been an agreement
on the necessity of distributed processing for complex robotic
systems [e.g., Scholl et al. (2001), Bruyninckx et al. (2003),
Metta et al. (2006), Ando et al. (2008), Quigley et al. (2009)].
Communication in such distributed systems is often performed
via middlewares, such as CORBA (2006) or Ice (Henning, 2004).
In other cases, specialized middleware systems or messaging pro-
tocols have been developed based on task-specific requirements.

2.1. robot Development environments
Already several years ago, Schlegel and Wörz (1999) saw the
necessity to develop modular and distributed frameworks for
complex multi-sensorimotor systems and presented the software
framework SmartSoft. Apart from distribution and communica-
tion, RDEs differ depending on which part of robot program-
ing they target. For example, MiRPA (Finkemeyer et al., 2007)
provides a low-level message-oriented real-time communication
middleware. OpenRTM (Ando et al., 2008) is situated on the
lower control level and provides a component model with input,
output, and configuration interfaces as well as basic execution
state machines (inactive, active, error states). MOOS (Newman,
2008) is located on a similar level than OpenRTM and provides
a publish–subscribe-based communication and data exchange
between MOOS applications via a central database. OpenRDK

(Calisi et al., 2008) is also a low-level framework and uses agents
as main abstraction, which dynamically instantiate modules-
containing functionality. Modules communicate through a
blackboard-type mechanism and can access input, output, and
parameter data of any other module. YARP (Metta et al., 2006),
being used for the iCub robots (Metta et al., 2008), provides
low-level communication as a basis for higher-level robot capa-
bilities implemented in the iCub software. Last, ROS (Quigley
et al., 2009) and Orocos (Bruyninckx et al., 2003) lean toward
the implementation of higher-level system capabilities. In ROS,
software modules called nodes span a peer-to-peer network and
send messages, whereas Orocos provides an explicit component
model and separates the structure of the control system from its
functionality.

In 2010, Bischoff et al. (2010) started an initiative to structure
and formalize the robot development process by identifying and
documenting best practices and refactoring existing components
to increase reusability and robustness.

Schlegel et al. (2015) and Thomas et al. (2013) strive in their
approaches to divide tasks into different complexity levels to
reduce the knowledge required to adapt a robot to new but
similar tasks.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

3

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

A different type of architecture for robot skill specification
was proposed by Nordmann et al. (2015). They fuse methods of
software design and classical motion primitives to form a model-
driven approach for complex motion control architectures.

2.2. statecharts and coordination systems
Besides the original publications (Harel, 1987; Harel and Politi,
1998), there are many other publications (Coleman et al.,
1992; Von der Beeck, 1994; Samek, 2002) and software projects
(Angermann et al., 2014; EasyCODE, 2015; Yakindu, 2015) on
statecharts for a variety of different use cases.

The concept of statecharts as new formalism to represent and
describe complex systems was presented first by Harel (1987)
and Harel and Politi (1998). The concept extends the finite state
machines (FSM) proposed by Gill et al. (1962) to a powerful
representation, which significantly reduces the complexity for
system developers by introducing several notations features. Like
FSMs, statecharts consist in their core of states and transitions
between these states and extend FSMs by the following features.
The most important addition is the introduction of hierarchically
nested states. Harel introduced inter-level-transitions to allow
direct transitions into sub-states as well as orthogonality to allow
parallel execution of different states at the same statechart level.
Moreover, a history-connector was added to provide states with
a memory, which store the information about which sub-state
should be reactivated when a state is revisited. Condition-
connectors control to which subsequent state a transition leads.
Finally, each state can be connected to actions being triggered
during different phases of the state: entering, leaving, and an
action that is executed repeatedly as long as the state is active.

Several general purpose frameworks exist, which can be used
to specify the program flow based on statechart mechanisms.
In late 2015, the W3 consortium released version 1.0 of an XML
statechart notation [ScXML, World Wide Web Consortium
(W3), 2015] to establish one format describing Harel statecharts.
Similarly, the Object Management Group defined the UML
StateMachines notations [Object Management Group (OMG),
2015]. While these specifications mainly focus on general pur-
pose notations of the Harel formalism, the ArmarX statecharts
aim at providing a ready-to-use statechart framework in the
robotics context.

The well-known de facto extension of C++ Boost (Huber,
2007) contains a subproject called the Boost Statechart Library,
which offers a statechart implementation close to the original
formalism of Harel. It has the unique feature of specifying the
statecharts with C++ templates and achieving compile-time stat-
echart validation. While this is a valuable feature to ensure valid
statecharts, it does not fit our requirements. For our purposes, we
require runtime-reconfigurability and no recompilation on lay-
out changes as well as runtime introspection, which is difficult to
achieve if the structure is specified implicitly with C++ templates.
On the side of graphical tools, the statechart graphical modeling
tool QM (Quantum Leaps, 2015) provides means for designing
and implementing event-driven low-level statecharts for embed-
ded systems with a strong focus on traceability at the code level.
The complete statecharts are generated into C++ code, meaning
that for statechart structure changes recompilation is necessary.

In our statecharts, we aim to generate code only to catch errors
in the user code as early as possible and for IDE auto-completion
purposes. In Yakindu (2015), another graphical statechart mod-
eling tool is presented, aiming at usability and assistance inside
the editor during typing. Though it seems to target low-level
statecharts like QM with limited data flow control, which is of
high importance in the ArmarX statecharts, as described later.

Statecharts are widely used in robotics to control behavior
on a high level (Nilsson and Center, 1973; Merz et al., 2006;
Billington et al., 2010; Bohren and Cousins, 2010; Klotzbücher
and Bruyninckx, 2012), since they address several of the problems
of robotics like state-based control and event-triggered execution.
In the well-known RDE ROS (Quigley et al., 2009), an approach
called SMACH (Bohren and Cousins, 2010) is employed that
focuses on data flow in statecharts. However, scope of data flow
in ROS SMACH is handled differently than in ArmarX. In ROS
SMACH, a child state can access all data used by its parent state.
This not only eases programing because it is easy to operate with
data on several levels but also violates the principle of modularity
of states and creates implicit data dependencies between states.
A state using datafields of a parent state cannot easily be reused
in another state, since it depends on the availability of specific
datafields in a parent state. Due to this, we do not allow data
scopes over several state levels in ArmarX and require explicit
mapping of data between state levels. Also, ROS SMACH only
supports graphical online visualization of states but does not
provide any tool for graphical programing. In many aspects,
the statecharts of ArmarX are similar to the restricted Finite
State Machine (rFSM) (Klotzbücher and Bruyninckx, 2012) from
Orocos (Bruyninckx et al., 2003). However, the statecharts in
Orocos focus on coordination of components but offer only
very limited support to specify transition-based data flow. They
promote the “pure coordination” concept, where the coordina-
tion part of the framework should be strictly decoupled from
the computation capabilities to avoid unresponsiveness and
blocking. This resembles the state-phases of our approach, which
are split into coordination and computation phases. Though, to
give the developer the ability to easily create critical sections
separation of coordination and computation is only encouraged
and not enforced in the ArmarX statechart framework.

Stampfer and Schlegel (2014) present an aspect similar to our
dynamic structure, where they modify the statechart-formalism
to allow for dynamic replacement of states with alternatives
from a “robot app store” to increase robustness and reduce
complexity. This enables usage of different implementations of
a state in the same context, which is usually needed if a differ-
ent robot should be used. Further, they also provide means for
controlling data flow in their statecharts. The main difference
to our approach regarding data flow control is that Stampfer
and Schlegel (2014) attach data directly to events, while in our
approach a transition contains a parameter mapping, which
defines the sources to be used to fill a target parameter on
triggering of a transition (see Section 3.3.5).

Behavior-based systems [e.g., Arkin (1998), Nicolescu and
Matarić (2002), Frank et al. (2012), Paikan et al. (2014)] are
another way to specify high-level robot functionality. The
most striking difference is that statecharts are state-based, and

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

4

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

behavior-based systems are rule-based. This means statecharts
have an explicit current state, while behavior-based systems only
have an implicit state. Additionally, behavior-based systems are
inherently parallel, whereas statecharts are sequential. While
behavior-based systems may be closer to behavior of humans or
animals, we do not think they scale well for programing purposes.
For the developer, an explicit state is easier to comprehend, and
it eases the debugging process. Both are vital criteria for software
development and maintenance.

2.3. graphical robot Programing
When developing high-level software on a robotic platform, it is
desirable to configure and connect existing components using a
graphical user interface to prevent writing repetitive and therefore
error-prone source code. This allows new as well as experienced
users to intuitively and efficiently combine mid- and high-level
components in order to create a functional system structure.
Since writing software is one of the main challenges in robotics
for beginners, such as students, Graphical Robot Programing
offers a great entry point. It removes the obstacle presented by
syntax and control flow of a conventional programing language
(Rahul et al., 2014). Graphical software development often com-
bines complexity hiding by connecting modular components on
a macroscopic scale with the option to write low-level software,
facilitating control tasks on joint level or performing motions in
Cartesian space (Pot et al., 2009). Graphical and tabular repre-
sentations are an accessible way to model system behavior in the
context of simulation, validation, and consistency checking of a
system design before final implementation (MathWorks, 2015c).
Hirzinger and Bauml (2006) are using Simulink (MathWorks,
2015b) in conjunction with MATLAB (MathWorks, 2015a)
to graphically model subsystems to later generate executables
running on a real-time target. The Microsoft Visual Programing
Language (Microsoft, 2012b), as part of Microsoft Robotics
Developer Studio (Microsoft, 2012a), proposes developing
the complete logic and program flow in a visual development
environment as it lowers the bar for beginner programmers.
However, we decided to limit the visual development in ArmarX
to the definition of structure, used data types, and data flow in
our statecharts for the benefit that the user can write unrestricted
C++ code. The RDE YARP (Metta et al., 2006) also offers means
of graphical programing with the gyarpbuilder (Paikan, 2014),
yet on another level. With gyarpbuilder, it is possible to connect
continuous input and output data of components graphically and
to insert arbitrators in these connections to manipulate data flow
easily. RtcLink (AIST, 2015) from the OpenRTM project offers a
GUI to operate on RT-Components existing in a network. It can
activate and deactivate components as well as connect their ports.
It leverages the capabilities of an established IDE by providing the
GUI as an Eclipse plugin.

3. armarX sTaTecharTs

The complexity of multicomponent systems can be challenging
in terms of program and data flow. Hence, only skilled experts
are capable of designing and realizing highly connected software
systems, as they are needed on humanoid robots. The aim of the

ArmarX statechart concept is to reduce such complexity and
increase reusability of already created functionality.

With ArmarX, we provide a generic robotics software pro-
graming environment, which combines event-driven programing
with distributed component-based robot applications. A robot
framework in ArmarX consists of several distributed components
providing access to sensors and actors (i.e., the hardware), offer-
ing computation functionality, and realizing a robot memory
system as a common data source for the robot software. On top
of these robot components, the ArmarX statechart mechanism
can be employed to define the structure of the mid- to high-level
robot behavior (i.e., the program flow). In order to gain full
flexibility within the robot applications, the programmer can use
well-defined entry points to implement user-specific source code.
By separating structure from behavior, the task of building new
robot software applications can be supported through graphical
user interfaces, while maintaining full flexibility on source code
level. ArmarX provides means of designing such statecharts
textually and graphically with the possibility to link them with
user code to perform custom operations. The graphical way is
presented in Section 4.1 in detail.

In the following sections, we present the design principles we
chose for statecharts in ArmarX and the resulting differences to
Harel’s formalism. The details of the ArmarX statechart concept
are explained in the remainder of this section.

3.1. Design Principles
Key principles of the ArmarX statecharts are modularity, reus-
ability, runtime-reconfigurability, decentralization, and state
disclosure.

•	 Modularity in our statecharts comes naturally through the
individual states and explicitly specified input and output.
There is no direct interaction allowed between sub-states of
different parent states.

•	 Reusability is ensured, since every state can be used as a
sub-state in any other state and has a specific interface for
interaction. The interface is specified with the state parameters
like the parameters of a function.

•	 Runtime-reconfigurability means that a statechart can be
defined in configuration files, and that the statechart structure
can be changed completely at runtime.

•	 Decentralization means that a statechart does not need to be
resided in one process, but can be spread over several pro-
cesses and hosts. This enables load balancing and robustness.
A crashed distributed state component would not crash the
whole statechart but would just create an event for higher
layers that this specific state has failed (see Section 5.1, for an
example of crash recovery).

•	 State disclosure means that the current state and all its parame-
ters can be inspected at runtime and logged for future behavior
adaptation via a network interface (see Section 4.5).

3.2. Differences to harel’s formalism
The statecharts in ArmarX differ in several points from Harel’s
original formalism. We omitted some of Harel’s features to

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Statechart Group

State 2

State 1

SuccessFailure

Remote State

State 1

No Substates

Event triggered
transitions

FigUre 2 | statecharts in armarX are organized in groups. States are comprised of transitions and sub-states. Sub-states are states themselves and can
originate from any statechart group. If the statechart groups of parent state and sub-states differ, the sub-state is called a remote state (green state). A state can
appear as a sub-state in multiple other states and can even occur multiple times within one state. Control flow is defined by transitions between sub-states.
Transitions starting at the current state can be triggered by events. The control flow within a state is terminated if any end-state (yellow state) is reached. The parent
state can also be left if an external event occurs.

5

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

comply with our design principles and to simplify the statechart
design process for the developer. We added one important aspect
to our statechart, which is not covered in Harel’s formalism: data
flow specification and control during transitions. The hierarchy
and condition-connectors are available like in the original
statecharts. We do not allow direct inter-level-transitions to not
violate the principle of modularity. The history-connector is not
available, since it conflicts with the data flow specifications, and
to reduce side effects during execution as well as to simplify
the comprehension of the current state of the system during
introspection. Each entering of a state with the same parameters
must provide the same internal state. Orthogonality is currently
available only in a smaller scope. Each active state can contain an
asynchronous user code function executed in a separate thread.
Thus, the different hierarchy levels can run in parallel.

3.3. armarX statechart internals
Statecharts in ArmarX are organized in groups (see Figure 2).
Following the composite pattern, a statechart in ArmarX is a
state itself. A state can contain sub-states and transitions between
these sub-states. Every state can be nested in another state to
construct state hierarchies. Transitions between sub-states are
triggered by events. Transitions do not only specify control flow
but also data flow by attaching a parameter mapping to each
transition. This mapping contains instructions on how to fill the
input parameters of the next state. Distribution of statecharts
over multiple processes is possible with Remote States, which
transparently represent states located in another process.

In the following sections, we are describing the main technical
aspects of the ArmarX statecharts: sub-states, transitions, events,
state phases, data flow, interfacing with external components,
distributed statecharts, and the dynamic statechart structure.

3.3.1. Sub-State Types
Sub-states are not the same as states in ArmarX. States are
templates, which are instantiated as sub-states of other states.

Though, only one type of sub-states is direct instantiations of
states. ArmarX statecharts consists of four different types of sub-
states, each with a specific purpose.

3.3.1.1. LocalState
Local states are normal state instances with no special features.

3.3.1.2. EndState
EndStates trigger leaving the parent state immediately. They can-
not contain sub-states or execute any user code. EndStates are one
way to specify outgoing transitions of the parent state. The name
of an EndState specifies the name of the outgoing transition of
the parent state.

3.3.1.3. RemoteState
Remote states behave like local states but point internally to a
specific state in another process.

3.3.1.4. DynamicRemoteState
Dynamic remote states are similar to remote states but are like
generic pointers. On entering, a dynamic remote state morphs
into a specific remote state based on parameters mapped during
the transition.

3.3.2. Transitions
Transitions in ArmarX statecharts define control flow and data
flow. Each transition is associated with one event that the cor-
responding source state can process. A transition is comprised
of a source state, a destination state, the associated event, and a
data mapping that defines the data flow between states during
this transition.

Each state has exactly one initial transition if the parent state
has at least one sub-state. The initial transition can be seen as the
transition from the parent state to the first sub-state. This transi-
tion is triggered immediately when the parent state is entered.
Thus, when the top-level state of a state hierarchy is entered,

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

BOX 1 | an exemplary definition of an event condition.

Literal objectDistance(“ObjectMemoryObserver.hand.pose”,
checks::poseDistance, {object2PoseRef, 10});
Literal forceMagnitude(“ForceTorqueObserver.forces.TCP R”,
checks::magnitudeLarger, {5.0});
installCondition(“ObjectReachedEvent”, objectDistance || forceMagnitude);

6

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

initial sub-states on each level are entered recursively until the
lowest level of the statechart is reached.

Each end-state defines one outgoing transition in the cor-
responding parent state. When the control flow reaches an end-
state, the control flow within the parent state is terminated, and
the associated transition of the parent state is triggered.

Transitions do not only describe the control flow but also carry
data and define the data flow between states. The data flow during
transitions is realized through a parameter mapping definition,
which is attached to transitions (see Section 3.3.5). One important
detail to mention is that transitions can only be created between
sub-states of the same parent state, unlike in Harel statecharts. We
decided to create this restriction to keep the modularity principle
of states. If states would have transitions to other hierarchy levels
or other parent states, the parent state could not be reused without
disconnecting that transition.

3.3.3. Events
Transitions between sub-states can only be triggered by events.
Events can be fired either by user code, if an end-state is reached,
or if a certain condition is met. Events from user code or from
end-states are fired immediately, while events from conditions are
fired as soon as the condition is fulfilled.

Conditions are specified by terms based on Boolean algebra
comprising literals and Boolean operators.

3.3.3.1. Event Generation with Conditions
A literal is defined by a data field of an observer, and a parametrized
check that is to be performed on this data field. Conditions are
installed in sensor-observers and are evaluated by the appropri-
ate observer after each sensor update. To clarify the concept of
distributed conditions, the following listing gives an example that
will be explained in detail below.

The first statement in Box 1 defines the literal object-
Distance that describes the distance between the hand and
object2 and checks if this distance is below 10 mm. object-
2PoseRef is a reference to the current pose of object2
and is updated continuously. “ObjectMemoryObserver.
hand.pose” describes the current pose of the hand within
the ObjectMemoryObserver. The poseDistance check
compares the position components of both poses and evaluates
to true if the distance falls below the provided argument value
(here 10 mm).

The second statement defines forceMagnitude,
which checks if the force in the right TCP is larger than the
given threshold. Both literals are combined using a disjunc-
tion. So, if either of both conditions is true, the corresponding
event ObjectReachedEvent is fired. The condition is
evaluated in a distributed fashion. A central component called

ConditionHandler distributes the literals to the appropriate
observers. This approach avoids unnecessary transmission of high
frequency sensor values, since only changes of the Boolean state
of a literal are signaled by the observers. When the Boolean term
of a condition evaluates to TRUE, the ConditionHandler
fires the associated event. The middleware passes the event to the
state that originally installed the condition.

In the context of event processing, the ArmarX state disclosure
concept is consistently realized, e.g., by providing an event inspec-
tion GUI, as shown in Figure 9. This GUI enables the developer
to explore condition trees of currently active conditions, and it
further allows inspecting the history of past conditions.

3.3.3.2. Event Processing
Arriving events are queued and processed sequentially by the
receiving process. Due to the distributed and asynchronous
nature of the software framework, processing of events need to be
performed with caution in order to ensure stability and consist-
ency. One aspect that needs to be considered is the fact that a state
may already be left when an event arrives. To address this issue,
all events contain the id of the destination state.

Additionally, special care needs to be taken to consistently
consider parallelism. Since statecharts in ArmarX can be distrib-
uted over several processes, events can arrive and be processed in
parallel. In order to deal with this situation, the ArmarX statechart
framework protects critical sections, allowing concurrent multi-
threaded access. Such critical sections are the event-processing
function (one per statechart level) and the state phases, where
the state coordination is performed (see next section for details).
Thus, transitions can only be taken once, and states are only
entered or exited once.

3.3.4. State Phases
During the visit of a state, different phases are passed through:
OnEnter, running, onBreak, and onExit. To enable developers to
execute own code in a state, each phase is linked to a user code
function, i.e., C++ code. OnEnter, onBreak, and onExit are atomic
coordination phases, while running is the computation phase of
a state for complex, long-running computations. The order of
execution of the phases is as follows: onEnter, running, and then
onBreak or onExit. Before entering a state (i.e., phase onEnter),
the parameters (explained in the next paragraph) are mapped
or set to default values. In the onEnter phase, local variables can
be set to be mapped into sub-states or prepared for later phases.
When a transition is triggered, the onExit or onBreak phase is
entered. Which phase is executed depends on the level where
the transition was triggered: as aforementioned, statecharts are
hierarchical. Thus, it is possible for a higher state to receive an
event, although its sub-states are not finished yet. In this case, the
sub-statecharts cannot finish in an expected manner. To give the
developer an option to deal with this unexpected behavior, each
state provides the onBreak phase. If no behavior is specified for
the onBreak phase, the user code function of the onExit phase is
executed. When a top-level state received an event, the complete
stack of child states needs to exit first. This starts at the leaf-sub-
state, a sub-state with no further sub-states, and proceeds up
level by level.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 3 | available types of parameter mapping during transitions.
Each state has three parameter dictionaries: input, local, and output
parameters. In the blue sub-states, only the relevant dictionaries for the
mapping during the transition are shown. The green arrows show possible
mappings to the input parameters of the next state. The blue arrows show
possible mappings from the output of the previous state to the local and
output parameters of the parent state. These mappings happen after leaving
the previous state and before entering the next state.

7

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

Whenever a state is entered, its initial sub-state is entered
as well. This means that after executing the onEnter phase of a
state, the onEnter phase of the initial sub-state is also executed
immediately afterward.

Since the user has freedom of implementation in the coordina-
tion phases, she/he is discouraged by warnings if computation-
ally costly code is detected. After entering, the running-phase is
launched in its own thread to allow the execution of computation-
ally costly user code without interfering with the coordination.
In the default-behavior, the coordination does not wait for the
run-function to finish and ignores all results produced by the
running-phase after the state was left. During each of these phases,
the developer can access different parameter dictionaries in the
user code functions, which are explained in the next paragraph.

Although C++ code is difficult to verify, we decided to employ
C++, since all our algorithms and most robotics algorithms in
general are written in C++.

3.3.5. Transition-Based Data Flow
One important, and to our best knowledge in this extend, unique
feature of the ArmarX statecharts is the extensive control of
the data flow in the statecharts, which eases accomplishing the
modularity and reusability principles. All states are equipped
with input and output parameter dictionaries to decouple states
from external global data storage. Input parameters are read-only
in user code functions and specify all parametrization the state
needs for its computations. Output parameters can be set in the
user code functions, contain the results of a state, and can be used
as source for input parameters of the next state or mapped back
to the parent’s local or output parameters.

Additionally, so-called local parameters are provided and
accessible for the user code. Local parameters are intended to be
used for temporal local storage of parameters that are passed down
to sub-states’ input, passed up from sub-states’ output, or passed
between different state phases. Once a state is left, all parameters
are reset in order to avoid side effects of previous visits.

Each parameter dictionary field consists of a string identifier
and a variant data type that can manifest itself into arbitrary
types. ArmarX already provides the basic types bool, integer,
float, double, and string as well as several types associated with
robotics, like vectors, matrices, 3D poses, or probability distribu-
tions. If needed, developers can implement new types easily.

These parameter dictionaries are defined by the developer and
specify the interface of each state, i.e., which data it needs for
execution. Each parameter can be optional, can have a default
value,1 and/or can be filled from several sources. We call this
parameter mapping. When a state is used, its non-optional input
parameters without default values need to be connected with
other parameters of the same type. Thus, a parameter mapping
for each of these input parameters needs to be created for each
state instance. The developer can choose between mappings
from the output of a previous state from the same hierarchy
level, the input or local parameters of the parent state, or from
a parameter attached to the transition-event. Additionally,

1 Consequently, if parameters have a default value, the optional flag does not make
much sense any more, thus these two Boolean flags basically form a tri-state.

developers can map values from the output of a state to the local
or output parameters of the parent state. Later, when another
sub-state needs the calculated value as an input parameter, the
local parameter is mapped to that input parameter. For example,
generic counter states can be implemented following this pattern,
so that counting loop sequences of states can be defined without
writing any additional specialized custom code. With this, it is
possible to pass data from a sub-state to another state later in the
chain more easily. Otherwise, the parameters would need to be
mapped from state to state. Figure 3 shows the different types of
mappings during transitions.

3.3.6. Interfacing with External Components
Statecharts that can only access functionality and data of them-
selves are not particularly useful for robotics. Therefore, they
must be able to access all available components. Since ArmarX is
a heavily distributed system, it cannot be assumed that required
components are running in the same process or on the same
host. Hence, states require network proxies to these components,
and it should be ensured that a state is only started if all required
components are available. Dependencies for a group of states
can therefore be defined in a so-called StatechartContext, which
manages dependencies and enables states to communicate with
external components.

3.3.7. Distributed Statecharts
Another important feature of ArmarX is the possibility to dis-
tribute statecharts over several processes or hosts. To this end,
states in ArmarX are organized in groups, which, for example,
contain states that are semantically similar and share the same
dependencies to external components. In this context, semanti-
cally similar means, states that share common aspects regarding
their purpose. For example, all states for controlling holonomic

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Statechart Group 1 on Host X

State 2

State 1

Success Failure

Remote State 3

State 1

Statechart Group 2 on Host Y

State 3

State 4

Success

Failure

State 4

No Substates No Substates

FigUre 4 | statecharts in armarX are organized in groups, which can be distributed over several processes and hosts. Each statechart group resides
by default in one process. By creating RemoteState instances, it is possible to incorporate states of another group transparently into a statechart.

8

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

platform movements, from a PD-controller to calls to a path
planning component, should be encapsulated in one statechart
group. Though, this is just a useful convention.

Each group is executed as one component in a so-called
RemoteStateOfferer. These RemoteStateOfferers offer states to
be used by others states as RemoteStates over the network. For
robustness, each RemoteStateOfferer is located in its own process.
Thus, a RemoteState is inserted whenever a state uses a state of
another group as a sub-state. This process is completely transpar-
ent for the developer. The only difference to a local state is that
the RemoteStateOfferers name needs to be specified in addition
to the state name. Theoretically, each state could have its own
group for maximized robustness. Since distributed statecharts
are slower than local statecharts, developers need to decide care-
fully when to split statecharts in more than one group. Another
advantage of distributed statecharts is the possibility to deploy
them close to their components. A statechart that makes heavy
use of the robot’s memory should ideally be located on the same
host as the database servers, whereas a visual servoing statechart
should be close to the vision system and the host, where joint-
level control takes place. Figure 4 depicts the linkage between
different statechart groups and RemoteStates.

Due to the sophisticated underlying middleware Ice, which
transforms network communication into normal, transparent
function calls, the step from local statecharts to distributed
statecharts was fairly easy. Sub-states pointing to a remote state
just use another implementation of the state interface, which
reroutes all the function calls over the middleware. On the other
side, there is the aforementioned RemoteStateOfferer component,
which offers a network interface to the normally, local functions
of a state. This way, consistency is assured in the same way as it is
done locally, with mutexed access and storage of data only on the
offerer side. Thus, synchronization of data is not needed.

3.3.8. Dynamic Statechart Structure
In most statechart frameworks, the structure of the statecharts is
fixed, once it has been designed by the developer. This limits the
usability of statecharts in a highly dynamic environment, e.g., in
the context of humanoid service robots. In this context, a symbolic
planner may be incorporated, which needs to be able to change
the statechart structure on the fly, according to the currently
planned program flow. ArmarX supports dynamic online stat-
echart restructuring by offering so-called DynamicRemoteStates,
which provide generic entry points for exchangeable statecharts.
As the name suggests, a DynamicRemoteState connects to a state
in another (or its own) process. It decides upon entering, into
which state it is morphed based on specific parameters passed
by the transition. Additionally, it can specify more parameters
that are mapped into the connected state. The correctness and
completeness of the parameters is verified at runtime, i.e., when
the state is loaded.

3.4. Textual statechart specification
While the advised method to create statecharts is to use the
Statechart Editor (see Section 4.1), it is also possible to specify
statecharts textually, as shown in Box 2.

First, each state needs to be added with its state class
(TemplateParameter) and the instance name (parameter of
addState()). Afterward, transitions between these sub-states can
be created by specifying the start and end-state, and on which
event these transitions should be triggered.

4. The sTaTecharT cOncePT
eMBeDDeD inTO armarX

Statecharts can be implemented in various ways by using a
lookup table for transitions, by implementing transition tables

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

BOX 2 | an exemplary textual definition of a state.

void defineSubstates()
{
//add sub-states
setInitState(addState < InitialState > (“Initial”));
StateBasePtr finalSuccess = addState < SuccessState > (“Success”);
StateBasePtr finalFailure = addState < FailureState > (“Failure”);
//add transitions
addTransition < Next > (getInitState(), getInitState());
addTransition < TimerExpired > (getInitState(), finalFailure);
addTransition < Success > (getInitState(), finalSuccess);
}

9

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

via switch-case statements, by implementing an object-oriented
state pattern, etc. Since all these approaches are based on writing
code to perform the state transitions, a lot of repetitive textual
description is usually necessary to define large statecharts. This
textual description becomes rapidly incomprehensible for other
developers. To overcome this tedious and error-prone work, a
graphical statechart editor was developed for ArmarX statecharts.

4.1. statechart editor: Defining control
and Data Flow
The goal of the statechart editor is to enable all users to create
new statecharts with sub-states, to define input and output
parameters, and to connect states with transitions. The editor
covers all major use cases related to editing a statechart: creation
of structure, definition of control flow, and definition of data flow
during transitions. The user is not required to write any custom
code to create a functional statechart. We decided to store the
statechart definition in a custom xml-based format.

Figure 5A shows the main window of the statechart editor.
Statecharts are organized in statechart groups. A statechart group
can contain multiple statecharts and sub-states. For further
organization of statecharts, folders and sub-folders are avail-
able. All statechart groups are listed on the left side of the main
window. The user can open any statechart from the state library
for graphical editing or reuse a statechart by including it as a sub-
state within another statechart.

When a statechart is opened for graphical editing, it is dis-
played on the right side of the editor. The editor offers a variety
of options to edit a statechart, including specialized dialogs and
context menus.

4.1.1. Sub-States
By dragging a statechart from the statechart library into the right
editing area, a sub-state is created. A state can be reused multiple
times as a sub-state within a statechart. The editor displays sub-
states in two different colors: states from within the same statechart
group are colored blue; states from different statechart groups are
displayed in turquoise (RemoteState). DynamicRemoteStates are
violet.

4.1.2. End-States
End-states are special sub-states, which are colored yellow. Each
end-state implicitly creates an outgoing event/transition. When
the statechart transitions to an end-state, the execution within

the statechart is terminated. Additionally, the corresponding
event/transition is triggered so that control flow moves back to
the parenting statechart where execution is continued. When
transitioning to an end-state, a statechart completes by terminat-
ing its execution entirely if no parenting statechart is present, i.e.,
the statechart in question is the top-level statechart.

4.1.3. Events and Transitions
As mentioned before, an end-state implicitly creates an event,
which in turn implicitly creates an outgoing transition. When a
statechart is initially added as a sub-state, all outgoing transitions
of this sub-state are displayed as detached transitions. Transitions
can be connected to other sub-states by dragging them onto the
target sub-state. To create a valid statechart, all transitions have to
be connected from a source state to a target state. The target state
can be another sub-state, end-state, or the source state itself in case
of a reflexive transition. When no detached transitions remain,
the transitioning behavior of the statechart is fully defined, which
implies that no event is left unhandled. Additional events can be
specified in the state properties, which are fired from the code
directly or on fulfilled conditions.

4.1.4. State Parameters
Each state has a list of input, output, and local parameters.
A parameter is defined by its name, data type, and an optional
default value. Figure 5B displays the input parameters of the
PlaceObjectSkill, as it is used in ArmarX. Role and usage of the
three parameter types is similar to those of parameters, return
values, and local variables of functions in imperative programing
languages.

4.1.5. Data Flow
A transition can be accompanied by several data mappings that
define the data flow within the statechart during this transition.
The statechart editor does not support global data storage, since
global data storage breaks the concept of data encapsulation.
Data are only passed between states during a transition. Data
can be passed in 6 different ways, as depicted in Figure 3. The
editor ensures that only parameters of the same type are mapped,
while parameter mappings are edited in the transition dialog. An
example is given in Figure 5C.

For many use cases, it is possible to compose a complete stat-
echart by combining the capabilities listed above and by using
existing states from the state library. Writing any additional
source code in C++ is not required in these cases.

More complex applications may require implementing custom
behavior of states using source code. For these cases, the editor
offers the option to jump directly into the source code of any
state. Additionally, the source code of a state can be viewed in the
bottom panel below the graphical editing area (see Figure 5A).

4.2. linking implementation and
control Flow
Using a graphical definition for statecharts implies that all
parameters, parameter types, parameters mappings, events, and
transitions are identified via names. Since states are reusable

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

A B

C

FigUre 5 | Dialogs of the statechart editor. (a) The Statechart Editor is a graphical programming tool to conveniently design the control and data flow of a
statechart. (B) The parameters of a statechart including their types and default values are defined in the Statechart Editor. (c) Transitions between states contain a
parameter mapping which can be easily specified in the transition dialog of the Statechart Editor.

10

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

and do not store any information about previous or following
states, all states have to share the same basic interface for passing
input and output data. We decided to define this interface using
string-Variant maps, as described in Section 3.3.5. Additionally,
the state functions OnEnter, Run, OnBreak, and OnExit can be
implemented in C++. Since C++ is a statically typed language
without reflection, accessing an input parameter would look
similar to this:

float myInput = ((FloatContainer*)
getInput(“MyValue”))- > get();

The resulting code overhead to access input parameters
and to write output parameters is substantial, if one takes into
consideration that not only basic types but also lists and maps
of any data type are supported. Furthermore, the identification

of parameters by strings and run time casts can lead to run time
errors that could have been detected during the compile time.
Instead, accessing an input without self-written overhead code
should look like this:

float myInput = getMyValue();

To achieve this type safe and auto-completion friendly inter-
face, we employ a code generator that generates custom wrapper
functions to access inputs and outputs. Inside a generated func-
tion, the parameter is referenced by name, and necessary casts
are applied. Since these functions are generated automatically,
access by name and the casts will never lead to run time errors.
Instead, all possible errors related to parameter accessing occur
at compile time. Detecting these kinds of errors before executing
the statechart saves a lot of time during development.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Place Object Group

Visual Servo Group

Motion Control Group

Hand Group

use

MemoryX

TCP Control Unit

Kinematic Unit

Hand Unit

Statechart Groups Components

A B

FigUre 6 | interaction of statecharts and components in armarX. (a) Components which are used by statecharts can be selected in the Statechart Editor.
This defines the dependencies of a statechart to external components. (B) Statechart groups encapsulating components to reduce interface width on high level
statecharts.

11

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

4.3. connecting statecharts and armarX
components
One of the main aspects of statecharts in ArmarX is to interact with
components. Since different statecharts for different tasks often
require different sets of components, each statechart depends on
a set of components. The statechart editor generates a complete
list of all available ArmarX components from component meta
information. The user can pick any number of components from
this list and add them to the dependencies of the statechart, as
shown in Figure 6A. Every selected component can then be
accessed inside the states via a proxy object. Also, additional
code is automatically generated so that the statechart registers
these dependencies within the ArmarX framework before start-
up. Then, the dependency resolver in ArmarX ensures that all
necessary components are running before the statechart starts
execution.

The list of component proxies for a state can be interpreted as
the interface of this state to the ArmarX framework. Similar to
object-oriented development, our goal is to keep these interfaces
small. For example, a pick and place statechart requires compo-
nents to operate the robotic platform, the arms, the hands, do
visual servoing, etc. Without encapsulation of proxies, this would
lead to a very wide interface for high-level tasks.

To approach this challenge, we offer a wrapping statechart
group for each important component. Each state within a group
encapsulates a common task of the encapsulated component.
For example, the HandGroup offers states to open or close the
hands. A high-level statechart can then use these wrapper
states to indirectly interact with components without the need
of a direct dependency on all components. For example, the
PlaceObjectGroup needs to control the arms and hands as well
as to perform visual servoing to increase accuracy. This demands
interaction with the KinematicUnit, HandUnit, and MemoryX,
among others. Each of these units is encapsulated by a statechart

group, namely the MotionControlGroup, HandGroup, and
VisualServoGroup. The PlaceObjectGroup uses these statechart
groups to indirectly interact with the encapsulated components,
as shown in Figure 6B.

4.4. statechart Profiles and state cloning:
reusing statecharts for Different robots
When developing a new skill for a robot, we usually start in
simulation. During the transfer of the statechart to the real robot,
a lot of parameters usually need to be adapted. For example, when
picking up objects from a table, the height of the table might be
different in simulation and in reality or the force torque sensor
thresholds differ. But, these are just differences in parametrization
and not on source code level. Thus, our goal is to have the same
source code working in simulation as well as on the real robot.

To meet this requirement, we introduce the concept of profiles.
When working with the statechart editor, the user first selects
which profile he or she wants to work with. Every parameter of
every state can have specialized values in different profiles, but
it is also possible to define default values that apply to multiple
profiles if no specialized value is set.

Figure 7 displays the parameter edit dialog for the place
object example mentioned above. The parameter ObjectName
is set to “GreenCup” and is applied in simulation as well as on
the real robot. The parameter TableHeight is set to 900 mm for
simulation and to 800 mm for the real robot. The statechart will
be executed with the appropriate parameters depending on the
selected profile.

When reusing statecharts for new robots, simple parameter
adjustment is often not sufficient. The underlying behavior imple-
mentation of states might require adaptation or the statecharts
need to communicate with different components altogether. To
cover these cases, the statechart editor offers the option of cloning
complete statecharts, including all sub-states as well as cloning all

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 8 | cloning the PlaceObjectGroup for the icub.

Parameters for simulation

Parameters for the real robot ARMAR-IIIb

A

B

FigUre 7 | The figure shows statechart profiles for simulation (a), and a real robot (B) to compensate for differences between simulation and robot.

12

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

state-dependencies of the statechart in question. Dependencies
are determined by finding all external statecharts that are used
in the statechart to be cloned. This process is applied recursively
until the list of dependencies is complete. In addition, the stat-
echart editor checks if some of the dependencies have already
been cloned for the target robot and omits these states while
cloning accordingly. When cloning states, it is possible to apply
a prefix to all new states to avoid later confusion. Additionally,
all necessary C++ source code files are copied, renamed, and
modified to match the new names. Statecharts yielded by the

cloning process can be compiled and executed without any
manual adaptations or amending of source code.

Figure 8 shows an exemplary use case, in which the statechart
group for placing objects (PlaceObjectGroup) is cloned to be
adapted for the iCub robot. In this example, the HandGroup has
already been cloned previously and has been adapted for the iCub
under the name ICubHandGroup. The editor recognizes that the
ICubHandGroup already exists inside the ArmarX iCub package.
All newly cloned states that have a dependency to the HandGroup
will use the adapted ICubHandGroup instead of the original.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 9 | Plugin for visualizing active and already expired conditions
based on Boolean terms. The top part of the figure shows available
conditions and their origin in respect to components and/or states as well as
the corresponding event and its status. In the middle, a visualization of the
condition as a binary tree is shown. Each sub-term of the expression tree is
colored green upon fulfillment and red otherwise. The leafs of the tree are
literals of the condition term. They are Boolean predicates and correspond to
the table in the bottom part of the image. Each predicate consists of a
datafield, a check-type, and values it is compared to.

13

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

4.5. system state Disclosure
Disclosing the state of a robotic system is one of the key features
of ArmarX for diagnosing problems at runtime and inspecting
the internal state during development. Programmers are able to
access data of many parts of the system required for debugging,
monitoring, and profiling purposes. Different built-in frame-
work mechanisms provide this information, which includes
sensor data, conditions, statechart-related events, as well as
component dependencies, and the execution state of statecharts
and components. Specialized visualizations are available for pre-
senting and inspecting these different aspects. Textual output is
presented as a time-stamped log, memory contents are displayed
in a 3D view, and a plotter is provided for one dimensional
sensor data. Statecharts, their control flow, and active states
are visualized in the StatechartViewer (see Figure 10). Within
statecharts, conditions are used to generate events based on
sensor data and can be viewed as Boolean expression trees, as
shown in Figure 9.

Additionally, ArmarX discloses the system state on a very
low level for determining bottlenecks or providing hints for
partitioning the distributed application. On the component level,
CPU-, memory-, and network utilization data are accessible via
the observer mechanism [see Vahrenkamp et al. (2015)] for easy
visualization with the graphical plotter. On the statechart level,
state transitions and timing information about state durations are
available. To enable later processing and evaluation, this low-level
data can be stored persistently in the memory structure provided
by ArmarX.

4.6. Validation
Validation is always an important point in software development.
Since generic formal validation of a statechart with arbitrary user
code is difficult, we supply the possibility to create statechart test
cases like unit tests. Since ArmarX statecharts usually interact
with robot components, the user can specify a simulation
environment that should be started alongside the statechart test.
In the statechart test, the output parameters of a state or whole
statechart can be validated, or the status of robot components like
the memory can be checked.

5. aPPlicaTiOns anD Use cases

In this section, several applications and use cases realized with
ArmarX will be presented, which show how distributed stat-
echarts support robustness and provide both convenient usage
and flexibility.

5.1. robustness and Fault recovery
In this use case, we show how fault recovery concepts are realized
within ArmarX. This is important, since most robotics software is
written in C++, which allows writing program, crashing imple-
mentations easily. Hence, a robust robot framework must be able
to deal with crashing applications in a way that other components
are informed but not affected by a component fault. Further, fault
recovery mechanisms should be provided for high- and low-level
robot control.

Several concepts support robustness in ArmarX.

•	 Dependency management: due to the distributed nature of
ArmarX, crashing components do not affect other compo-
nents in a non-deterministic way. If component A depends on
another component B, the dependency manager of ArmarX
only sets A to the state connected after B is fully initialized and
connected. If component B stops working (i.e., crashes), A is
informed and reset to its prior initialized state. If the system
is capable of restarting B, A will be set to connected again.

•	 Automatic restart: the deployment mechanisms of the dis-
tributed Ice middleware can be used to automatically check
for running applications. In case an application (an ArmarX
component) stopped working, it can be automatically
started again.

•	 High-level fault recovery: if an implementation of a robot
statechart is erroneous and causes the statechart to crash, the
encapsulating statechart is automatically informed that the

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 11 | Distribution of statecharts increases robustness of the system. Left: the CrashTestMain state encapsulates a remote sub-state, which faults
from time to time due to a segmentation fault. Right: the C++ code of the enter method of the state CrashingRemoteState, which causes a segmentation fault error
in a non-deterministic way. The error results in an immediate termination of the application that executes the sub-state.

FigUre 10 | The current state of an executed statechart can be inspected live in the statechartViewer. The statecharts are layouted on the fly. The red
state border signals that this state is active. On the right, current state parameters of the selected state can be examined. Executed transitions are highlighted as
well in red, which fades to black over a few seconds to visualize the transition trace.

14

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

execution of its sub-state resulted in a failure. Hence, the high-
level robot program can consistently handle defective parts in
the robot program, which could result in a non-deterministic
behavior of the robot otherwise.

In the following section, we will show how a crashing sub-
statechart can be handled by the robot program. In Figure 11,
a statechart is depicted on the left. The execution of the
statechart starts with the MainState, which emits the event
EvProceed (1 in Figure 11) causing the execution to pass to

the CrashingRemoteState statechart (2 in Figure 11). A normal
execution would result in a success event (3 in Figure 11), but
as shown in Figure 11 on the right, the statechart crashes in
a non-deterministic way due to a segmentation fault. Such a
segmentation fault results in an immediate termination of the
application executing CrashingRemoteState. The encapsulating
statechart CrashTestMain automatically gets informed by the
ArmarX runtime system via the Failure event (4 in Figure 11) and
can recover from this faulty behavior in a deterministic manner
(5 in Figure 11).

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

TaBle 1 | generic set of skills available for use with different robots.

skill Description

MoveJoints Moves joints either in position or velocity control mode
MoveTCP Moves the tool center point to a Cartesian target
VisualServo Implements a position-based visual servo approach
MovePlatform Moves a platform-based robot along a graph or to a

specific point
LookTo Centers a Cartesian position with the head
GraspObject Picks up an object with an end effector
BringObject Picks up an object and delivers it to a specified location
ZeroForce Enables zero force control for an end effector
StopRobot Stops all movements
PlaceObject Puts down a grasped object
ScanForObject Applies a scanning strategy to search for an object
TrackObject Tries to track an object
ViewSelection Changes view direction, according to an automatic

attention mechanism
Open/Close/Shape
Hand

Move hand to specific shapes

15

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

5.2. generic robot skills
ArmarX provides a library of generic skills, implemented as
statecharts, which can be configured and used for a wide variety
of robots. The skills cover most basic capabilities needed to setup
a robot skill library. In addition to these skills, robot-specific
statecharts can be implemented to account for specific features of
the platform. The set of generic skills currently provided by the
ArmarX framework is listed in Table 1.

Generic skills can be applied to a specific robot by configuring
their parameters and by providing robot-specific components on
the mid-level of the ArmarX architecture (see Figure 1). Hence,
statecharts provide a dependency list of components, which
must be running before execution is possible. For example, the
ShapeHand skill needs a HandUnit to be running, and the skill
parameters must specify which shapes are available for execution.

5.2.1. Use Case: Generic Skills on Different Robots
To show how skills can be applied to different robots, we present
a use case for YouBot (Kuka, 2015) and ARMAR-4 (Asfour et al.,
2013), showing the required steps to use the skills MoveTCP and
MoveJoints on different robots.

In general, two steps are needed to program a robot platform
with ArmarX. First, a basic set of (robot) components must be
configured in order to realize the mid-level structure of the robot
software, as shown in Figure 1. Second, the initial set of skills
has to be configured, defining the basic capabilities the robot
programmer can use to build robot applications.

5.2.1.1. Robot Components
Initially, several components must be realized for the different
robots. Beforehand, the robot’s visualization, kinematics, and
dynamics properties must be defined. In ArmarX, these prop-
erties are specified with the Simox (Vahrenkamp et al., 2012)
robot file format. The minimal set of components needed for the
MoveJoints and MoveTCP skills is listed below:

•	 KinematicUnit: encapsulates access on joint level. In the
following examples, the robots are simulated with kinematic

simulation units provided by ArmarX. On a real robot,
this component is connected to the robot’s hardware layer.
In case of ARMAR-4, the KinematicUnit connects to the
ArmarX-RT layer to communicate with the motors and sen-
sors (Vahrenkamp et al., 2014).

•	 KinematicUnitObserver: observes the raw joint data in order
to trigger events.

•	 RobotStateComponent: a network transparent representation
of the robot used for forward and inverse kinematics.

•	 TCPControlUnit: allows control of the tool center point (TCP)
in Cartesian space.

Access to the real robot (i.e., to the drivers) needs to be
implemented via the KinematicUnit component, while all these
components are already available in simulation and can be
configured for use with a new robot. Hence, a basic framework
can be quickly realized by configuring provided ready-to-use
components of ArmarX.

5.2.1.2. Robot Skills
Once all components are set up for the specific robot, high-level
robot program can be implemented. As a starting point, several
skills can be taken from the ArmarX skill template library and
configured to be used on the robot. In this example, the MoveTCP
and MoveJoints skills are used, and a waving statechart is pro-
gramed via the Statechart Editor tool. As shown in Figures 12
and 13, the realization can take advantage of the ready-to-use
skill library of ArmarX on such different robots as ARMAR-4
and YouBot. In addition, the waving statechart that is used in
Figure 13 at the top can be directly executed on the real ARMAR-
4, as shown in Figure 13 at the bottom. Such a skill transfer for
the complex reactive grasping skill (similar to 3) is also shown in
the work presented by Paikan et al. (2015).

5.3. reactive grasping of Unknown
Objects
In the context of the Xperience (2011) Project, we developed a
statechart and extended accompanying components to perform
Reactive Grasping based on vision and haptics on the humanoid
robot ARMAR-III (Asfour et al., 2006). This use case demon-
strates reusability of ArmarX statecharts through extension of the
programed behavior and the incorporation of sensor feedback on
different hierarchy levels. The approach presented in Schiebener
et al. (2011) was used to initially learn an object hypothesis and
pose. The pose and the forward kinematics are not perfectly
exact. Therefore, correcting actions during grasping are neces-
sary. Guidance of the hand during the grasping approach phase is
based on visual servo. To accommodate for inaccuracies, we need
an extended visual servoing that reacts on collisions of the hand
with the object. Instead of implementing a specialized version of
visual servoing, we created a wrapping statechart called Visual
Servo with Collision Detection, which is used in our Reactive
Grasping (see Figure 14).

In parallel to the statechart execution, three different collision
detection components are running to detect visual collisions,
tactile collisions, and collisions inferred from proprioceptive
data. These components run independently, monitor different

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 13 | arMar-4 executing a waving motion with the same statechart in simulation and on the real robot.

FigUre 12 | The waving statechart executed on YouBot, while running a kinematic simulation.

16

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

sensors of the robot, and offer event notifications usable in
statecharts. The wrapping statechart Visual Servo with Collision
Detection monitors the output of the collision detection com-
ponents by installing conditions with given thresholds on the
output data. Then, the visual servoing statechart is started as a
sub-state. If any of the conditions is met during servoing, the
appropriate event is fired. The wrapping state Visual Servo with
Collision Detection is exited, and the execution of all sub-states

is stopped. Hereby, the visual servoing is interrupted, and the
collision can be handled appropriately by correcting the grasp
pose. After correcting the pose, the statechart transitions back
to the extended visual servoing.

By wrapping the visual servoing skill in a statechart, we can
reuse and extend the visual servoing without modifying it. The
used visual servoing skill is the standard visual servoing from
the ArmarX statechart library.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Visual Collision
Detection Component

Tactile Collision
Detection Component

Proprioceptive Collision
Detection Component

FigUre 14 | simplified statechart for reactive grasping in the Xperience project.

17

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

5.4. Dynamic state replacement
One use case for the dynamic state replacement feature of
ArmarX is the combination of a symbolic task planning system
with ArmarX statecharts for execution. To connect the planning
system to statecharts, a control statechart, as shown in Figure 15,
was built around one DynamicRemoteState (depicted in violet).
Since statecharts do not offer an interface for remote procedure
calls, it is not possible to communicate with states directly. States
react on external changes by observing changes in datafields. Thus,
we inserted an additional component, the plan step observer, on
which the statechart can install conditions to receive an event
(EvNextStepPlanned) on changes related to the current planning
step. The planning system manages this datafield containing the
current action and its parameters. After the event was received,
the desired skill statechart is loaded into the DynamicRemoteState
and is directly executed. With this powerful mechanism, it is pos-
sible to implement interactive and dynamic robotic applications
in a consistent and robust way.

6. DiscUssiOn

In the following section, we are discussing our experiences with
implementing and developing robot programs with the ArmarX
statechart framework. Since we realized a large number of robot
programs for a wide variety of applications for the robots of
the ARMAR series, we gained rich experience that allows us
to elaborate on advantages and disadvantages of the proposed
concept. The presented statechart approach has extensively been
used not only to demonstrate simple tasks like the examples
in this paper but also for complex skills applied in real world
scenarios, including grasping, opening and closing doors, mix-
ing, or pouring as presented in Ovchinnikova et al. (2015).

We think that the decision to restrict the ArmarX statecharts
to a subset of Harel’s original statechart definition has been shown
to benefit our statechart concept, since the removed features
(inter-level-transitions, history-connector) were rarely missed
but improved comprehension and reusability significantly.

Compared to the framework (Scholl et al., 2001) we used
before, in which robot behaviors were also encoded by state
machines, we see the advantages of now having a clear structure,
advanced graphical tools, and a consistent concept for defining
the data flow. In particular, the explicit definition of the data
flow, i.e., specifying input and output parameters of a state with
a defined and clear scope, helps immensely with understanding
and reusing existing states. Another effect of this explicit data flow
definition is that implicit data dependencies to other states are not
possible, which ensures that entering a state with the same set of
input parameters leads to the same result. Naturally, specifying
the data flow explicitly and in detail is development overhead,
but we are sure that it is worth the effort in the long run. Though,
specifying and inspecting data flow with graphical tools simplifies
this process greatly.

Such graphical tools are not only useful for defining the
data flow but also indispensable for developing complex state
machines (although ArmarX allows defining statechart structures
manually, it is infeasible to realize complex robot programs this
way). Hence, the graphical Statechart Editor is one of the most
important tools of the ArmarX framework, which supports the
convenient development of robot programs.

From our experience, we can confirm the necessity seen
by Harel of introducing the concept of hierarchies into state
machines. Hierarchies are essential for developing complex
state machines and for maintaining reusability. For example, the
grasping skill consists of up to six hierarchy levels, where some
of the sub-states are used several times. Unrolling this into one
hierarchy level results into a statechart that is practically impos-
sible to design due to the number of required states.

The ArmarX statecharts proved to be applicable for use cases
from low-level to high-level. An example of a low-level statechart
is a controller for holonomic platform movements, where the
leaf state is the PD-controller (using the asynchronous user code
run-function), and the level above decides on the waypoints. An
example for a high-level statechart is the statechart from Section
4, which is used for symbolic plan execution.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Symbolic Planning System Plan Step Observer

Sets plan step

Observes for
new skill result

Observes for
new plan step

Set skill results

FigUre 15 | Planning statechart with a DynamicRemoteState (violet) that can be changed at runtime.

18

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

Currently, there are many small decider or preparation states,
performing some minor, but necessary calculations like coordi-
nate transformations. This introduces clutter, since new states
need to be created frequently. In the future, we plan to improve
this by the possibility to attach conversion-functions to transitions
to perform such minor calculations.

7. cOnclUsiOn

We presented the statechart concept of the robot development
environment ArmarX and showed how high-level robot pro-
graming can be realized in a robust and convenient way. The
event-driven statechart approach within ArmarX helps real-
izing important features, such as increased robustness through
distributed program execution, convenient programing through
graphical user interfaces, and versatility by interweaving dynamic
statechart structure with custom user code. Additionally, we
extended the original statechart concept by Harel with the possi-
bility to explicitly specify data flow between states. These features
build a solid base for implementing higher-level robot programs,
which is accompanied by advanced framework capabilities, such
as reusable robot programs and the presented ability to transfer
skills to different robots.

In future work, we will improve the framework in terms of
high-level robot program development, validation, and debug-
ging. Therefore, we will introduce orthogonality into the stat-
echart concept to enable parallel statechart structures. Currently,

parallel execution is supported only between hierarchy levels,
but there are use cases where orthogonal skill execution eases the
design of a high-level robot program. In addition, we will work
on automatic statechart validation in order to eliminate faults
in robot programing and to speed up the development process.
Furthermore, we plan to offer break points in statecharts, which
will greatly improve debugging on statechart level.

aUThOr cOnTriBUTiOns

TA identified based on his experience in developing humanoid
robots the need for robot software frameworks which link sensori-
motor execution and high-level planning. MW and TA developed
the proposed statechart concept and MW implemented it in the
ArmarX framework. MW, SO, MK, and NV realized the graphical
user interface and applications of these proposed statecharts. All
authors wrote and revised the manuscript.

acKnOWleDgMenTs

The research leading to these results has received funding from
the European Union’s Seventh Framework Programme under
grant agreement no. 270273 (Xperience) and from the European
Union’s Horizon 2020 Research and Innovation Programme
under grant agreement no. 643950 (SecondHands). The authors
would like to thank all members and students of the Humanoids
group at KIT for their various contributions to this work.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

19

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

reFerences

AIST. (2015). RtcLink. Available at: http://openrtm.org/openrtm/en/content/
rtclink-0

Ando, N., Suehiro, T., and Kotoku, T. (2008). “A software platform for com-
ponent based rt-system development: Openrtm-aist,” in Proceedings of the
1st International Conference on Simulation, Modeling, and Programming
for Autonomous Robots, SIMPAR ‘08 (Berlin; Heidelberg: Springer-Verlag),
87–98.

Angermann, A., Beuschel, M., Rau, M., and Wohlfarth, U. (2014). MATLAB-
Simulink-Stateflow: Grundlagen, Toolboxen, Beispiele. München: Walter de
Gruyter.

Arkin, R. C. (1998). Behavior-Based Robotics. Cambridge: MIT Press.
Asfour, T., Regenstein, K., Azad, P., Schröder, J., Vahrenkamp, N., and Dillmann, R.

(2006). “ARMAR-III: an integrated humanoid platform for sensory-motor con-
trol,” in IEEE/RAS International Conference on Humanoid Robots (Humanoids)
(Genova), 169–175.

Asfour, T., Schill, J., Peters, H., Klas, C., Bücker, J., Sander, C., et al. (2013). “ARMAR-
4: a 63 dof torque controlled humanoid robot,” in IEEE/RAS International
Conference on Humanoid Robots (Humanoids) (Atlanta), 390–396.

Billington, D., Estivill-Castro, V., Hexel, R., and Rock, A. (2010). “Modelling
behaviour requirements for automatic interpretation, simulation and
deployment,” in SIMPAR, Volume 6472 of Lecture Notes in Computer Science
(Darmstadt: Springer), 204–216.

Bischoff, R., Guhl, T., Prassler, E., Nowak, W., Kraetzschmar, G., Bruyninckx, H.,
et al. (2010). “BRICS – best practice in robotics,” in Robotics (ISR), 2010 41st
International Symposium on and 2010 6th German Conference on Robotics
(ROBOTIK) (Munich: VDE), 1–8.

Bohren, J., and Cousins, S. (2010). The SMACH high-level executive [ROS news].
IEEE Robot. Autom. Mag. 17, 18–20. doi:10.1109/MRA.2010.938836

Bruyninckx, H., Soetens, P., and Koninckx, B. (2003). “The real-time motion con-
trol core of the Orocos project,” in IEEE International Conference on Robotics
and Automation (ICRA) (Taipei), 2766–2771.

Calisi, D., Censi, A., Iocchi, L., and Nardi, D. (2008). “Openrdk: a modular
framework for robotic software development,” in 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems (Nice: IEEE), 1872–1877.

Coleman, D., Hayes, F., and Bear, S. (1992). Introducing objectcharts or how to
use statecharts in object-oriented design. IEEE Trans. Softw. Eng. 18, 8–18.
doi:10.1109/32.120312

CORBA, O. M. G. (2006). Corba Component Model 4.0 Specification. Specification
Version 4.0. CORBA Object Management Group.

EasyCODE. (2015). EasyCODE. Available at: http://www.easycode.de
Finkemeyer, B., Kröger, T., Kubus, D., Olschewski, M., and Wahl, F. M. (2007).

“MiRPA: middleware for robotic and process control applications,” in Workshop
on Measures and Procedures for the Evaluation of Robot Architectures and
Middleware at the IEEE/RSJ International Conference on Intelligent Robots and
Systems (San Diego, CA), 78–93.

Frank, M., Leitner, J., Stollenga, M., Harding, S., Förster, A., and Schmidhuber,
J. (2012). “The modular behavioral environment for humanoids and other
robots (mobee),” in ICINCO (2) (Rome: Citeseer), 304–313.

Gill, A. (1962). Introduction to the Theory of Finite-State Machines. New York:
McGraw-Hill.

Harel, D. (1987). Statecharts: a visual formalism for complex systems. Sci. Comput.
Program. 8, 231–274. doi:10.1016/0167-6423(87)90035-9

Harel, D., and Politi, M. (1998). Modeling Reactive Systems with Statecharts: The
STATEMATE Approach. McGraw-Hill, Inc.

Henning, M. (2004). A new approach to object-oriented middleware. IEEE Internet
Comput. 8, 66–75. doi:10.1109/MIC.2004.1260706

Hirzinger, G., and Bauml, B. (2006). “Agile robot development (ard): a pragmatic
approach to robotic software,” in 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems (Beijing: IEEE), 3741–3748.

Huber, A. (2007). Boost Statechart Library. Available at: http://www.boost.org
Klotzbücher, M., and Bruyninckx, H. (2012). Coordinating robotic tasks and

systems with rFSM statecharts. J. Softw. Eng. Robot. 3, 28–56.
Kuka. (2015). YouBot Webpage. Available at: http://www.youbot-store.com
MathWorks. (2015a). MATLAB. Available at: http://www.mathworks.com/products/

matlab/
MathWorks. (2015b). Simulink. Available at: http://www.mathworks.com/products/

simulink/

MathWorks. (2015c). Stateflow. Available at: http://www.mathworks.com/products/
stateflow/

Merz, T., Rudol, P., and Wzorek, M. (2006). “Control system framework for auton-
omous robots based on extended state machines,” in ICAS (Silicon Valley: IEEE
Computer Society), 14.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). YARP: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 43–48. doi:10.5772/5761

Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F. (2008). “The icub human-
oid robot: an open platform for research in embodied cognition,” in Proceedings
of the 8th Workshop on Performance Metrics for Intelligent Systems, PerMIS ‘08
(New York, NY: ACM), 50–56.

Microsoft. (2012a). Robotics Developer Studio. Available at: https://msdn.microsoft.
com/en-us/library/bb648760.aspx

Microsoft. (2012b). Visual Programming Language. Available at: https://msdn.
microsoft.com/en-us/library/bb483088.aspx

Newman, P. M. (2008). Moos-mission orientated operating suite. Mass. Inst.
Technol. Tech. Rep. 2299, 1–77.

Nicolescu, M. N., and Matarić, M. J. (2002). “A hierarchical architecture for
behavior-based robots,” in Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems: Part 1 (New York, NY: ACM),
227–233.

Nilsson, N. J., and Center, A. I. (1973). A Hierarchical Robot Planning and Execution
System. Menlo Park, CA: Stanford Research Institute.

Nordmann, A., Wrede, S., and Steil, J. (2015). “Modeling of movement control
architectures based on motion primitives using domain-specific languages,”
in Robotics and Automation (ICRA), 2015 IEEE International Conference on
(Seattle, WA: IEEE), 5032–5039.

Object Management Group (OMG). (2015). OMG Unified Modeling Language
Version 2.5.

Ovchinnikova, E., Wächter, M., Wittenbeck, V., and Asfour, T. (2015). “Multi-
purpose natural language understanding linked to sensorimotor experience in
humanoid robots,” in IEEE/RAS International Conference on Humanoid Robots
(Humanoids) (Seoul), 365–372.

Paikan, A. (2014). Enhancing Software Module Reusability and Development in
Robotic Applications [Dissertation]. Bergamo: Istituto Italiano di Tecnologia.

Paikan, A., Metta, G., and Natale, L. (2014). “A representation of robotic behaviors
using component port arbitration,” in 5th International Workshop on Domain-
Specific Languages and models for ROBotic systems (DSLRob), Bergamo.

Paikan, A., Schiebener, D., Wächter, M., Asfour, T., Metta, G., and Natale, L. (2015).
“Transferring object grasping knowledge and skill across different robotic plat-
forms,” in International Conference on Advanced Robotics (ICAR) (Istanbul),
498–503.

Pot, E., Monceaux, J., Gelin, R., and Maisonnier, B. (2009). “Choregraphe: a graph-
ical tool for humanoid robot programming,” in Robot and Human Interactive
Communication, 2009. RO-MAN 2009. The 18th IEEE International Symposium
on (Toyama: IEEE), 46–51.

Quantum Leaps. (2015). QM Statemachines. Available at: http://www.state-
machine.com

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., et al. (2009).
“ROS: an open-source robot operating system,” in ICRA Workshop on Open
Source Software, Vol. 3. Kobe, 5.

Rahul, R., Whitchurch, A., and Rao, M. (2014). “An open source graphical robot
programming environment in introductory programming curriculum for
undergraduates,” in MOOC, Innovation and Technology in Education (MITE),
2014 IEEE International Conference on (Patiala: Thapar University), 96–100.

Samek, M. (2002). Practical Statecharts in C/C++: Quantum Programming for
Embedded Systems. Boca Raton, FL: CRC Press.

Schiebener, D., Ude, A., Morimotot, J., Asfour, T., and Dillmann, R. (2011).
“Segmentation and learning of unknown objects through physical interac-
tion,” in Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International
Conference on (Bled: IEEE), 500–506.

Schlegel, C., Lotz, A., Lutz, M., Stampfer, D., Inglés-Romero, J. F., and Vicente-
Chicote, C. (2015). Model-driven software systems engineering in robotics:
covering the complete life-cycle of a robot. Info. Technol. 57, 85–98. doi:10.1515/
itit-2014-1069

Schlegel, C., and Wörz, R. (1999). “The software framework SMARTSOFT for
implementing sensorimotor systems,” in Intelligent Robots and Systems, 1999.
IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, Vol. 3
(Kyongju: IEEE), 1610–1616.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://openrtm.org/openrtm/en/content/rtclink-0
http://openrtm.org/openrtm/en/content/rtclink-0
http://dx.doi.org/10.1109/MRA.2010.938836
http://dx.doi.org/10.1109/32.120312
http://www.easycode.de
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1109/MIC.2004.1260706
http://www.boost.org
http://www.youbot-store.com
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/stateflow/
http://dx.doi.org/10.5772/5761
https://msdn.microsoft.com/en-us/library/bb648760.aspx
https://msdn.microsoft.com/en-us/library/bb648760.aspx
https://msdn.microsoft.com/en-us/library/bb483088.aspx
https://msdn.microsoft.com/en-us/library/bb483088.aspx
http://www.state-machine.com
http://www.state-machine.com
http://dx.doi.org/10.1515/itit-2014-1069
http://dx.doi.org/10.1515/itit-2014-1069

20

Wächter et al. The ArmarX Statechart Concept

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 33

Scholl, K.-U., Albiez, J., and Gassmann, B. (2001). “Mca-an expandable modular
controller architecture,” in 3rd Real-Time Linux Workshop.

Stampfer, D., and Schlegel, C. (2014). Dynamic state charts: composition and
coordination of complex robot behavior and reuse of action plots. Intell. Serv.
Robot. 7, 53–65. doi:10.1007/s11370-014-0145-y

Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C., and Wortmann, A. (2013).
“A new skill based robot programming language using uml/p statecharts,”
in Robotics and Automation (ICRA), 2013 IEEE International Conference on
(Karlsruhe: IEEE), 461–466.

Vahrenkamp, N., Kröhnert, M., Ulbrich, S., Asfour, T., Metta, G., Dillmann, R.,
et al. (2012). “Simox: a robotics toolbox for simulation, motion and grasp
planning,” in International Conference on Intelligent Autonomous Systems (IAS)
(Jeju Island), 585–594.

Vahrenkamp, N., Wächter, M., Kröhnert, M., Kaiser, P., Welke, K., and Asfour, T.
(2014). “High-level robot control with ArmarX,” in INFORMATIK Workshop on
Robot Control Architectures, 1–12.

Vahrenkamp, N., Wächter, M., Kröhnert, M., Welke, K., and Asfour, T. (2015). The
ArmarX framework – supporting high level robot programming through state
disclosure. Info. Technol. 57, 99–111. doi:10.1515/itit-2014-1066

Von der Beeck, M. (1994). “A comparison of statecharts variants,” in Formal
Techniques in Real-time and Fault-Tolerant Systems (Lübeck: Springer), 128–148.

World Wide Web Consortium (W3). (2015). State Chart XML (SCXML): State
Machine Notation for Control Abstraction. Available at: https://www.w3.org/
TR/scxml/

Xperience. (2011). The Xperience Project. Available at: http://www.xperience.org
Yakindu. (2015). Yakindu Statechart Editor Tools. Available at: http://www.

yakindu.org

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Wächter, Ottenhaus, Kröhnert, Vahrenkamp and Asfour. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1007/s11370-014-0145-y
http://dx.doi.org/10.1515/itit-2014-1066
https://www.w3.org/TR/scxml/
https://www.w3.org/TR/scxml/
http://www.xperience.org
http://www.yakindu.org
http://www.yakindu.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The ArmarX Statechart Concept: Graphical Programing of Robot Behavior
	1. Introduction
	2. Related Work
	2.1. Robot Development Environments
	2.2. Statecharts and Coordination Systems
	2.3. Graphical Robot Programing

	3. ArmarX Statecharts
	3.1. Design Principles
	3.2. Differences to Harel’s formalism
	3.3. ArmarX Statechart Internals
	3.3.1. Sub-State Types
	3.3.1.1. LocalState
	3.3.1.2. EndState
	3.3.1.3. RemoteState
	3.3.1.4. DynamicRemoteState

	3.3.2. Transitions
	3.3.3. Events
	3.3.3.1. Event Generation with Conditions
	3.3.3.2. Event Processing

	3.3.4. State Phases
	3.3.5. Transition-Based Data Flow
	3.3.6. Interfacing with External Components
	3.3.7. Distributed Statecharts
	3.3.8. Dynamic Statechart Structure

	3.4. Textual Statechart Specification

	4. The Statechart Concept Embedded into ArmarX
	4.1. Statechart Editor: Defining Control and Data Flow
	4.1.1. Sub-States
	4.1.2. End-States
	4.1.3. Events and Transitions
	4.1.4. State Parameters
	4.1.5. Data Flow

	4.2. Linking Implementation and Control Flow
	4.3. Connecting Statecharts and ArmarX Components
	4.4. Statechart Profiles and State Cloning: Reusing Statecharts for Different Robots
	4.5. System State Disclosure
	4.6. Validation

	5. Applications and Use Cases
	5.1. Robustness and Fault Recovery
	5.2. Generic Robot Skills
	5.2.1. Use Case: Generic Skills on Different Robots
	5.2.1.1. Robot Components
	5.2.1.2. Robot Skills

	5.3. Reactive Grasping of Unknown Objects
	5.4. Dynamic State Replacement

	6. Discussion
	7. Conclusion
	Author Contributions
	Acknowledgments
	References

