
ORIGINAL RESEARCH
published: 27 June 2016

doi: 10.3389/frobt.2016.00036

Edited by:
Andreas Kolling,

The University of Sheffield, UK

Reviewed by:
Sabine Hauert,

University of Bristol, UK
Jonathan M. Aitken,

The University of Sheffield, UK

*Correspondence:
Konstantinos Karydis

kkarydis@seas.upenn.edu

Specialty section:
This article was submitted to

Multi-Robot Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 15 February 2016
Accepted: 09 June 2016
Published: 27 June 2016

Citation:
Karydis K, Kannappan P, Tanner HG,

Jardine A and Heinz J (2016)
Resilience through Learning in

Multi-Agent Cyber-Physical Systems.
Front. Robot. AI 3:36.

doi: 10.3389/frobt.2016.00036

Resilience through Learning in
Multi-Agent Cyber-Physical Systems
Konstantinos Karydis1*, Prasanna Kannappan2, Herbert G. Tanner 2, Adam Jardine3 and
Jeffrey Heinz3

1 Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA,
2 Department of Mechanical Engineering, University of Delaware, Newark, DE, USA, 3 Department of Linguistics and Cognitive
Science, University of Delaware, Newark, DE, USA

The paper contributes to the design of secure and resilient supervisory Cyber-Physical
Systems (CPS) through learning. The reported approach involves the inclusion of learning
modules in each of the supervised agents, and considers a scenario where the system’s
coordinator privately transmits to individual agents their action plans in the form of
symbolic strings. Each agent’s plans belong in some particular class of (sub-regular)
languages, which is identifiable in the limit from positive data. With knowledge of the class
of languages their plans belong to, agents can observe their coordinator’s instructions and
utilize appropriate Grammatical Inference modules to identify the behavior specified for
them. From that, they can then work collectively to infer the executive function of their
supervisor. The paper proves that in cases where the coordinator fails, or communication
to subordinates is disrupted, agents are able not only to maintain functional capacity but
also to recover normalcy of operation by reconstructing their coordinator. Guaranteeing
normalcy recovery in supervisory CPSs is critical in cases of a catastrophic failure or
malicious attack, and is important for the design of next-generation Cyber-Physical
Systems.

Keywords: multi-agent systems, leader decapitation, resilience, supervisory control, grammatical inference,
cryptography

1. INTRODUCTION

1.1. Context and Motivation
Cyber-Physical Systems (CPSs) encompass a wide range of networked software and control units,
sensors and actuators, and the intrinsic communication channels among these components. Some
application areas of CPSs include automated factories, smart and energy efficient buildings, the
smart grid, and self-driving cars; (Kim andKumar, 2012; Khaitan andMcCalley, 2014) provide addi-
tional application areas. As the domain of applicability of CPSs expands into security-sensitive areas,
such as automated highways, water and electricity distribution systems, and military command and
control, it is critical to develop novel design and control paradigms that go beyond the traditional
notions of robustness, reliability, and stability (Rieger et al., 2009). These novel paradigms – or
elements of resilience – include cyber-security and privacy [e.g., Liu et al. (2012)], control system and
informationnetwork robustness, and the ability tomaintain normalcy and restore function following
a failure or a malicious attack.

Making a system resilient to such events is non-trivial due to the high degree of inter-connectivity
among the physical and software components, and the intricate cyber, cognitive, and human

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 361

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00036
https://creativecommons.org/licenses/by/4.0/
mailto:kkarydis@seas.upenn.edu
http://dx.doi.org/10.3389/frobt.2016.00036
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00036&domain=pdf&date_stamp=2016-06-27
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00036/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00036/abstract
http://loop.frontiersin.org/people/181277/overview
http://loop.frontiersin.org/people/355629/overview
http://loop.frontiersin.org/people/134145/overview
http://loop.frontiersin.org/people/335372/overview
http://loop.frontiersin.org/people/188656/overview
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

inter-dependencies (Rieger, 2014). One way to approach this
problem (Rieger et al., 2009) is by decomposing it into two broad
research thrusts. One of them is State Awareness, which is related
to efficient and timelymonitoring for the purpose of ensuring nor-
malcy. The other is Resilient Design, which is related to enabling
the system to take the appropriate control actions to maintain
normalcy. This paper focuses on the latter.

Resilient design is a broad field of research that requires novel
design and control paradigms and creative integration of method-
ological elements borrowed from various – originally disjoint –
control-theoretic areas. Examples of the former category include
fault-tolerant control (Blanke et al., 2003), resilient control (Mah-
moud, 2004), and robust control of networked systems (Hespanha
et al., 2007; Schenato et al., 2007). The latter category is a novel,
rapidly expanding area of research, and some recent examples
involve secure control (Cardenas et al., 2008; Mo and Sinopoli,
2009), and modeling of attacks and their impact (Kundur et al.,
2011; Cam et al., 2014). Recently launched research initiatives,
such as FORCEs (CPS-FORCES, 2015), aim to increase the under-
standing of how to design resilient large-scale, human-in-the-loop
systems by combining tools from resilient control with economic
incentive schemes. Yet, although resilience can emerge as a result
of judicious design of interacting agent objectives and incentives,
(Rieger et al., 2009) argue that, much like any organization will
fail without organizational leadership, a supervisory design is still
needed to ensure smooth operation. At this time, it is unclear
what happens in cases where the supervisor ceases functioning,
following amalicious attack or a catastrophic failure. How can one
prevent the whole system from collapsing and recover normalcy
of operation?

To answer this question, the paper proposes a different resilient
design paradigm that incorporates learning to enable the system
to recover normalcy of operation following a coordinator decapi-
tation. It considers a class of supervisory systems,1 and integrates
machine learning modules based on formal languages and Gram-
matical Inference (de la Higuera, 2010) within the subordinate
control units (agents). The idea is that agents keep track of the
commands sent by the coordinator during normal operation, and
through a particular machine learning procedure they can infer
the plan(s) that the supervisor instructs them to execute, even if
the agents themselves have no prior knowledge of those specific
plans. The paper shows that agents can work together to ensure
four key elements that prevent destabilization after coordinator
decapitation: information flow, consensus-reaching ability, func-
tional capability, and information interpretation (Jordan, 2009).
Finally, it is shown how the various aspects of the coordinator’s
language that each agent has individually learned can be used
to recover the behavior of the coordinator and, thus, maintain
normalcy.

The work that originally motivated this study has been in the
context of emergency response (Kendra and Wachtendorf, 2003)
that documented how New York City’s emergency management
center was recreated on site by means of grass-root, spontaneous
efforts of citizens, after it had collapsedwith the twin towers. Stud-
ies on networked system resilience after leader decapitation have

1Examples of such systemsmay be scada systems or separation kernel architectures.

also been conducted within social and political sciences, focusing
on counter-terrorism tactics (Jordan, 2009). The question of why
not ensuring resilience after decapitation in applications men-
tioned (Kim and Kumar, 2012; Khaitan and McCalley, 2014) by
merely maintaining a copy of the coordinating element’s function
in each of the subordinate agents becomes clearer if one starts
considering the risks and costs related to cyber-security and pri-
vacy, in private, public, and military networks, the vulnerabilities
of which to deliberate cyber-attacks are highlighted in the news
(Bruni, 2014). In light of these developments, a counter-question
to the one raised just above is why would anyone create multiple
security liabilities by distributing copies of sensitive information
and procedures.

The proposed approach complements existing ones by pro-
viding an additional feature to include in the resilient design of
the next-generation CPSs. This feature is important because, in
essence, equipping the agents with a learning module allows them
to learn features of the organizational patterns of their supervi-
sory system and the role assignment during normal operation.
Preservation of these features following coordinator decapita-
tion has been found to be an important factor that contributes
to resilience (Kendra and Wachtendorf, 2003). Additionally, the
tools developed in this work are general, and can be used in a
variety of applications, such as emergency response, privacy, secu-
rity and counter-intelligence, command and control, and learning
through human–robot interactions. This paper extends the results
obtained in Kannappan et al. (2016) by developing the theoretical
foundations of this line of work, and showing that the approach is
applicable to more than two subordinate agents.

1.2. Problem Description
More technically, the problem considered is the following. A sys-
tem consists of a coordinator (leader), indexed by 0, and k∈ N+

subordinate autonomous agents. The group coordinator is a pro-
cessing unit that broadcasts instructions to all othermembers, and
its messages have a structure that dictates unambiguously which
agent is to execute which plan of action. A plan is understood
as a temporal sequence of actions. Communication between the
coordinator and each agent is private. The agents do not need to
communicate with each other, but they are assumed capable to
establish an all-to-all ad hoc network in cases of emergency in
order to recover normalcy.

The group operates in an environment that imposes condi-
tional effects upon which agent actions can be executed at any
given environment state; it is important to notice here that agent
actions may not necessarily change the state of the environment.
The dependence between agent actions and environment states
is assumed Markovian. Agent actions that are compatible with a
given world state depend only on the current state, while the next
environment state depends entirely on how the agents act at the
current state. Furthermore, the coordinator is designed so that
the generated plans can be executed by the subordinate agents;
in other words, commanded agent actions are guaranteed to be
implementable at the current world state.

The controlled (desired) behavior of agent i ∈ {1, . . ., k} is
captured by a formal language Li over a particular alphabet of
symbols, Σi. The language of agent i is a set of finite combinations

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 362

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

of letters (or symbols) from Σi which are called words (or strings).
Li is the specification language of agent i, and expresses what the
agent is tasked to do. Note that the specification language of an
agent is in general different from its capacity; the latter is a superset
of Li expressing everything that this agent is capable of doing. The
plans issued by the coordinator to agent i are words that belong
in Li, however the subordinate agents do not know a priori what
their specification language is. What is known to them is that the
specification language belongs to a particular class of languages,
and that this class is identifiable asymptotically from examples of
elements from this language – such a language is called identifiable
in the limit from positive presentations; this notion of learning is
defined formally in Section 2.

There are several reasons for withholding from agents infor-
mation about local objectives or the specifications, despite that
the release of such information would seem to naturally endow
the system with resilience properties and obviate the need for
learning – agents could then operate in a completely decentralized
fashion. To see this, take, for example, the common method for
adding robustness (and in some sense resilience) to a distributed
system: equipping every agent with a copy of the decision making
algorithm. This strategy is effective if agent behaviors are not
interdependent, in the sense that that action or inaction on behalf
of one agent can not block execution for the remaining system.
This condition holds in instances where agents swarm or flock
(Tanner et al., 2007), but not when team behavior is carefully
sequenced and scheduled in an orchestrated fashion as in the
application context considered here.

Indeed, in the scenario considered, distributing the planning
capability among the agents does not improve robustness: it is
equally bad if either the coordinator or any of the agents fails. In
fact, as the paper suggests, it is probably better if the coordinator –
rather than any of the agents – fails, because the function of the for-
mer can be recovered by the latter. In addition, there may be pri-
vacy (and) or security reasons why the global strategy generation

mechanism should not be proliferated across the system compo-
nents: an attacker would then be able to exploit vulnerabilities
at any of the distributed agent sites to gain access and insight
into how the whole organization is structured and controlled.
Alternatively, the strategy algorithm can bemaintained in a single,
remote, and secured physical device. Such distributed architec-
ture, including physically separate, private communication chan-
nels between unsecured and trusted processes (cf. Figure 1), is the
hallmark of separation kernels used in cryptography and secure
system design (Rushby, 1981). In addition to enhancing security,
it is argued (Rushby, 1981) that these distributed architectures
facilitate formal verification, especially in contexts with isolated
channels of different security levels (Martin et al., 2000), which
become increasingly prevalent given the trend for miniaturization
of communication devices.

A first question raised now is whether an agent can learn its
specification language if it observes the instructions given by its
coordinator for sufficiently long time. The answer to this question
is straightforward and is affirmative; this is a direct consequence of
known results in the field ofGrammatical Inference that dealswith
properties of classes of formal languages and associated learning
techniques (more on that in Section 2). What is not so clear is
whether the agents can reconstruct the language of their coordi-
nator once they learn their own specification language. The dis-
tinction is subtle, and it involves a certain type of synchronization
that needs to occur between the strings in the individual spec-
ification languages – not every combination works. The paper
shows that the answer to this question is also affirmative, and
proceeds to note that these two simple facts directly bring about
the seemingly surprising realization that themechanism by which
the coordinator devised plans for its group, although originally
private, can be revealed within the organization. The agents can
reconstruct faithfully the function of their coordinator, should
the latter ceases to exist, through decentralized inference and
inter-agent communication.

FIGURE 1 | Conceptual diagram of the supervisory system operation and learning functions in support of resilience.

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 363

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

1.3. Organization
The rest of the paper is organized as follows. Section 2 presents
the necessary technical preliminaries on Grammatical Inference.
Section 3 develops the technical machinery for learning elements
of resilience in CPS, and Section 4 discusses the results and poten-
tial avenues for future research. Finally, Section 5 concludes.

2. MATERIALS AND METHODS

What follows is a brief description of formal languages and learn-
ing techniques for a class of languages we consider in this work.
The introduced terminology is then used to provide a technical
description of the problem tackled here.

2.1. Formal Languages
An alphabet is a finite set of symbols; here, alphabets are referred
towith capital Greek letters (Σ or∆). A string is a finite concatena-
tion of symbols σ, taken from an alphabet Σ. In this sense, strings
are “words,” formed as combinations of “letters,” within a finite
alphabet. A string u is of the form

u = σ0 σ1 σ2 · · · σn such that each σi ∈ Σ.

For a string w let |w| denote its length. The empty string λ
is the string of length 0. For two strings u, v, uv denotes their
concatenation. Let Σ∗ denote the set of all strings (including λ)
over alphabet Σ, and Σn all strings of length n over Σ. For strings
v, w∈Σ∗, v is a substring of w if and only if there exist some u1,
u2 ∈Σ∗ such that u1vu2 =w. The k-factors of a string w, denoted
fk(w), are its substrings of length k. Formally,

fk(w) =

{
{u ∈ Σk| u is a substring of w}, if |w| ≥ k
{w}, otherwise

.

Subsets of Σ∗ are called stringsets, or languages. By default, all
languages considered here are assumed to contain λ. A grammar
is a finite representation of a (potentially infinite) language. For
a grammar G, let L(G) denote the language represented by G. A
class of languages L is a set of languages, e.g., the set of languages
describable by a particular type of grammar.

This paper will make use of the Locally k-Testable class of
languages (McNaughton andPapert, 1971;García andRuiz, 2004).
A language L is Locally k-Testable if there is some k such that, for
any two strings w, v∈Σ∗, if fk(w)= fk(v) then either both w and
v are in L or neither are. Thus, a Locally k-Testable language is
one for which membership in that language is decided entirely by
substrings of length k.

For example, let Σ= {a, b} and Lbb be the set of strings over Σ,
which contain at least one bb substring. In other words,

Lbb = {bb, abb, bba, bbb, aabb, abba, abbb, ...}.

Lbb is Locally 2-Testable because for any w ∈ Σ∗, whether or
not w is a member of Lbb can be determined by seeing if f 2(w)
contains bb.

In fact, Lbb belongs to a subclass of the Locally k-Testable
languages for which any language in the subclass can be described

by a grammar G which is simply a required k-factor; i.e.,
L(G)= {w |G ∈ fk(w)}. For example, Lbb is L(G) for G= bb. This
particular subclass is used here in the context of application exam-
ples, since its member languages can be learned from positive data
in a straightforward way, as described below.

2.2. Language Identification in the Limit
The learning paradigm used in this work is that of identification in
the limit from positive data (Gold, 1967). The particular definition
here is adapted from Fu et al. (2013): given a language L, a
presentation ϕ of L is a function ϕ: N → L∪ #, where # is a symbol
not in Σ, and represents a point in the text with no data. Then ϕ is
a positive presentation of L if for all w∈ L, there exists n∈ N such
that ϕ(n)=w.

Let ϕ[i] denote the sequence ϕ(0), ϕ(1),. . ., ϕ(i). A learner or
grammatical inference machine GIM is an algorithm that takes
such a sequence as an input and outputs a grammar. A learner
is said to converge on a presentation ϕ if there is some n∈ N that
for all m> n, GIM(ϕ[n])= GIM(ϕ[m]).

A learnerGIM is said to identify a classL of languages in the limit
from positive data if and only if for all L∈L, for all positive presen-
tations ϕ of L, there is some point n∈ N at which GIM converges
and L(GIM(ϕ[n]))= L. Intuitively, given any language in L, GIM
can learn from some finite sequence of examples of strings in L a
grammar that represents L.

This idea of learning is very general, and there are many classes
of formal languages for which such learning results exist. For
reviews of some of these classes, see de la Higuera (2010) and
Heinz and Rogers (2013). Thus, while demonstrated with a par-
ticular subclass of the Locally k-Testable languages, the results in
this paper are independent of the particular class from which the
specification languages of the agents are drawn, as long as the class
is identifiable in the limit from positive data.

2.3. Problem Statement
The basic problem treated in this paper is illustrated in Figure 1.
A discrete-event system in the role of a team coordinator encodes
the desired operation of its system in the form of some type of
a collection of combined system trajectories A. The coordinator
generates plans A, elements of A, which direct the behavior of a
number 1,. . .,κ of subordinate agents. Each coordinator plan A
is essentially a bundle of open-loop control laws, one per agent,
so each agent i receives its own control trajectory A⟨i⟩ through a
projection operation that strips away all information that is not
related to that particular agent.

In the process of executing their instructions, the agents can
potentially learn incrementally the strategy behind their coordi-
nator’s plans. This paper hypothesizes that the process through
which agents infer the strategy behind the instructions they
receive can be implemented in a decentralized fashion by means
of agent-specific inference machines (learners). Such a learner
operates on the body of instructions provided to its agent up to
that moment in time.

If agents can indeed figure out the rules behind the instructions
they receive, a following question is whether they can combine
this acquired knowledge to construct collectively a system that
reproduces the behavior of their coordinator. This way, if at any

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 364

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

point their leader is decapitated, either due to system failure
or disruption of communication, the agents are able to recover
normalcy of operation by “cloning” their coordinator.

The goal of this paper is to show that the answer to both ques-
tions above, namely whether (i) agents can learn their behavior
specification through observation and (ii) they can collectively
reconstruct the machine that coordinates them, is affirmative.
Readers familiar with results in language identification will have
little reason to doubt (i), once it is revealed that system behaviors
are represented as formal languages; the technical complication
lies in the projection of A intoA⟨·⟩ components.Whether hypoth-
esis (ii) is valid is less obvious and has to be treated in some more
detail.

3. RESULTS

The main claim of this paper is that individual agents can gradu-
ally learn the plans that the coordinator has devised, by observing
the descending commands the coordinator sends to them during
the execution of a desired task. This way, if this coordinator unex-
pectedly fails or communication is disrupted, the agents will have
learned their individual local specifications, and by combining
their local hypotheses about what they are expected to do, they
can essentially reconstruct an image of their lost commander.

Themathematical proof of this claim is constructive. The key to
develop this proof is practically in the structure of the object types
defined, and in the operations between the objects in these types.

3.1. The Models
Consider κ ∈ N+ agents indexed by i∈ {1,. . .,κ}. Their dynamics
are modeled as transition systems denoted by Ti.

Definition 1.A transition system is a tuple T = (Q, Σ, →) with

Q A finite set of states
Σ A finite set of actions
→: Q×Σ→Q The transition function

Transition system Ti can generate every run agent i can pro-
duce – this is referred to as the capacity of agent i.

Definition 2. The capacity of agent i is a transition system
Ti = (∆, Σi, →i) with

∆ A finite set of (world) states
Σi A finite set of actions
→i: ∆×Σi →i ∆ The transition function

Symbols in ∆ are understood as (world) states in transition
system Ti, in other words, they express the state of the world in
which the agent is operating. Since the agents are operating in a
commonworkspace and possibly interacting with each other, they
are assumed to share alphabet ∆.

Transition systems can be thought of as accepting families of
languages. However, once initial states ∆I ⊆∆ and final states
∆F ⊆∆ aremarked on T , the latter becomes an automatonT that
accepts a particular (regular) language L. Let Ti be the automaton
derived fromTi when all states aremarked as both initial and final,
i.e., ∆=∆I =∆F.

In the context of this paper, the process of marking ini-
tial and final states is thought of as a product operation

(Cassandras and Lafortune, 2008) between the transition system
and a language specification automaton TLi = ⟨Gi, GI

i ,GF
i ,

Σi, →Li⟩.
Definition 3. The specification of agent i is an automaton TLi =

(Gi, GI
i , GF

i , Σi, →Li) with
Gi A finite set of (internal) states
GI
i ⊆ Gi A finite set of initial states

GF
i ⊆ Gi A finite set of final states

Σi A finite set of actions
→Li : Gi × Σi→LiGi The transition function
When agent i behaves in a way consistent with its specification,

the corresponding alphabet strings are exactly the input strings
of the automaton TCi = Ti × TLi , where× denotes the standard
product operation on automata (Cassandras and Lafortune, 2008).

Definition 4. The constrained dynamics of agent i satisfying
specification TLi is an automaton

TCi = (∆ × Gi, ∆ × GI
i , ∆ × GF

i , Σi, →Ci) . (1)

having as components
∆×Gi A finite set of states
∆ × GI

i A finite set of initial states
∆ × GF

i A finite set of final states
Σi A finite set of actions
→Ci : ∆ × Gi × Σi→Ci∆ × Gi The transition functiona

aFor δ, δ′ ∈ ∆, g, g′ ∈Gi, and σ ∈ Σi, one has δ
σ→i δ′ ∧ g σ→Li

g′ =⇒ (δ, g) σ→Ci (δ′, g′).
For computational expedience, the paper assumes that TLi gen-

erates a language Li that belongs to a particular subset of Locally
k-Testable class of languages (see Section 2). In this subclass, each
string contains a specific k-factor. In other words, if z is the
required k-factor, then any stringw accepted by TLi can be written
as w= uzv where u, v ∈ Σ∗.

If ϕ is a positive presentation of Li, and ϕi[m] is the sequence of
the images of 1,. . .,m under ϕi, then the set of factors in the string
ϕi(r) associated with r ∈ {1, . . ., m} with |ϕ(r)|≥ k is

fk(ϕi(r)) = {z ∈ Σk
i | ∃u, v ∈ Σ∗

i : ϕ(r) = uzv}. (2)

The learner that identifies Li in the limit can be compactly
expressed through the equation

GIM(ϕ[m]) =
m∩
r=1

fk(ϕ(r)) . (3)

Knowing that there is only one k-factor that needs to be found
in all strings of Li, one can determine when the learner has
converged. Indeed, this happens when for some m ∈ N, it holds
that |GIM(ϕ[m])|= 1.

3.2. The Types
Let a symbol vector v of length κ, be defined as an ordered
collection of symbols arranged in a column format, where the
symbol σi at location i belongs to Σi:

v ,

σ1
σ2
...

σκ

 ,

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 365

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

Sometimes, to save (vertical) space, v is written in the form of a
row, using parentheses instead of square brackets, and separating
its elements with a comma:

v = (σ1, σ2, . . . , σκ).

A concatenation of symbol vectors of the same length makes an
array. The array has the same number of rows as the length of any
vector in this concatenation. Every distinct vector concatenated
forms a column in this array. A vector is a (trivial) array with only
one column. A row in an array is understood as a string. Thus,
an array can be thought of being formed, either by concatenating
vectors horizontally, or by stacking (appending) strings of the
same length vertically.

The notation used distinguishes vectors from arrays and
strings; strings are (horizontal) sequences of symbols without
delimiters, but when writing a vector in row format, its elements
are separatedwith a comma and are enclosed in parentheses, while
an array is denoted with square brackets.

Let K ⊂ N, and define the class AK of symbol arrays with |K|
rows and 2n, for some n ∈ N columns over the set of symbols
∆∪Σ. Set AK contains arrays of the form

[ab]n : a = (δ, δ, . . . , δ︸ ︷︷ ︸
κ times

), δ ∈ ∆,

b = (σ1, σ2, . . . , σκ) ∈ Σκ, n < ∞.

The set K will be called the support set of the class. The support
set of a class is used to index the rows of the arrays belonging in the
class. To keep track of those indices, the arrays from a particular
class are annotated with the support set of this class. For example,
with K = {1, 2, . . ., κ}, an array AK ∈ AK is written as

AK =

δ1 σ1,1 δ2 σ1,2 · · · δn σ1,n
δ1 σ2,1 δ2 σ2,2 · · · δn σ2,n
...

...
...

...
. . .

...
...

δ1 σκ,1 δ2 σκ,2 · · · δn σκ,n

K

(4)

For m= 1, . . ., n, array AK has every 2m+ 1 column formed
as a vector with the same symbol from ∆, while symbols from
columns with indices equal to 2m for some m, are in Σ. Note that
the elements in K need not necessarily be consecutive integers
as in the example above; it is assumed, however, that they are
arranged in increasing order. Each class AK is assumed to contain
the empty array Λ, which is a trivial array with no columns.

To ground the concept of an array AK in the context of
transition systems, assume, for instance, that all agents share the
same state set Q and set ∆=Q. Take σi,j ∈ Σi. Then each row
of AK is a sequence, the subsequence of which containing the
elements with even indices denotes an input word for transition
system Ti, while the subsequence containing the elements with
odd indices represents the common run that all transition systems
synchronously execute.

3.3. The Operations
From an automata-theoretic perspective, the basic operation
needed is a (particular) product operation, which essentially

implements the intersection implied in Section 1. The product
operation was referred to as “particular,” because it does not
conform exactly to the product definition in standard literature
(Cassandras and Lafortune, 2008). The reason, it does not, is
because it enforces synchronization on a component of the state
of the factors, rather than their actions. This special product
operation is referred to as the synchronized product.

To see how it works, consider two agent constrained dynamics
TC1 and TC2 , respectively, that share the same space Q as the
first component of their state space. Recall the standard Trim
operation on automata (Cassandras and Lafortune, 2008), which
simplifies the system by retaining only its accessible2 and co-
accessible3 states and define the synchronized product of TL1 and
TL2 as follows.

Definition 5. The synchronized product ⊗ of TC1 and TC2 is
defined as the operation that yields a third automaton

TC1⊗2 := TC1 ⊗ TC2 := Trim((Q × G1 × G2, Q × GI
1 × GI

2,

Q × GF
1 × GF

2, Σ1 × Σ2, →C1⊗2)) (5)

where the transition function→C1⊗2 is defined as amapQ×G1 ×

G2 ×Σ1 ×Σ2 →Q×G1 ×G2 where (q, g1, g2)
(σ1,σ2)−−−−→C1⊗2=

(q′, g1, g2) if for q ∈ q, g1, g′
1 ∈ G1, g2, g′

2 ∈ G2, σ1 ∈ Σ1, and σ2

∈ Σ2, it is (q, g1)
σ1−→C1 (q′, g′

1) and (q, g2)
σ2−→C2 (q′, g′

2).
The operation is extended inductively tomore than two factors:

TC1⊗TC2⊗TC3⊗· · ·⊗TCn := (· · · ((TC1⊗TC2)⊗TC3)⊗· · ·⊗TCn).

The effect of the synchronized product on two automata is a
particular form of operation on the languages they generate. This
operation is neither a pure union, nor a pure intersection. The
effect is clearer when the words in the languages of each system
are viewed as rows of a symbol array as in equation (4), that
is, sequences in (∆×Σ)∗. In fact, a string in (∆×Σ)∗ can be
thought of as a (trivial) 1× 2n array. The synchronized product
operation now essentiallymerges these one-row arrays into a two-
row array, in a way that ensures that odd columns are vectors
consisted of the same symbol.

To see how this works in general with arrays, define first a
projection operation on strings. A string u formed with symbols
in an alphabet Σ can be projected to a set Σ′ ⊂ Σ, by “deleting”
all symbols in the string that do not belong in Σ′. The projection
to Σ′ operation is denoted πΣ′ and formally defined as

πΣ′ : Σ∗ → Σ′∗; u 7→

λ u = λ

πΣ′(s) u = s a, a ̸∈ Σ′

πΣ′(s)a u = s a, a ∈ Σ′
.

The projection operation is extended from strings to arrays
implicitly, through a function that extracts a particular row from
an array. This extraction operation is first defined on vectors,
and then naturally extended to arrays. The process is as follows.
Let ·[j] denote the (extraction) operation on vectors that selects

2Accessible states are all states that are reachable from initial states.
3Co-accessible states are states from which there exists a path to a final state.

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 366

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

the element (a symbol) of the vector at position j ∈ {1, . . ., n},
that is,

·⟨ j⟩ : Σ1 × Σ2 × · · · × Σj × · · · × Σn → Σj;

Λ ̸= u = (σ1, σ2, . . . , σj, . . . , σn) 7→ σj.

The extraction operation can be naturally extended to arrays.
Without loss of generality, assume that |K|=κ, and arrange the
elements of K in increasing order: {n1, . . ., nκ}. In this case,
the ·⟨j⟩ operation yields the row (string) of the array indexed
by nj ∈ K:

·⟨ j⟩ : (Σn1 × · · · × Σj × · · · × Σnκ)∗ → Σ∗
nj ;

AK×n 7→

λ AK×n = Λ
λ nj /∈ K
BK×(n−1)⟨j⟩b⟨j⟩ AK×n = [BK×(n−1) b] ,

b ∈ Σn1 × · · · × Σnκ .

Let now AK×n denote specifically the class of symbol arrays
with support set4 K ⊂ N and dimension |K|× 2n. Consider two
array classes, AI×n and AJ ×n, that have the same row length 2n,
and non-intersecting support sets I ∩J = ∅. Amerge operation
can be defined on those two arrays in the following way:

AI×n ⊕ AJ ×n → A I∪J ×n;

AI×n ⊕ AJ ×n 7→

Λ ; I ∩ J ≠ ∅

A :

{
A I∪J ×n⟨j⟩ = AI×n⟨j⟩ j ∈ I
A I∪J ×n⟨j⟩ = AJ ×n⟨j⟩ j ∈ J

; π∆
(
AI×n⟨j⟩

)
=

π∆
(
AJ ×n⟨j⟩

)
Λ ; π∆

(
AI×n⟨j⟩

)
̸=

π∆
(
AJ ×n⟨j⟩

)
(6)

Notice the projection operation that checks whether the sym-
bols in ∆ match in the rows of the arrays being merged. A close
comparison of equation (6) with the definition of the transi-
tion function of equation (5) reveals the equivalence. The merge
operation essentially translates the synchronized product oper-
ation on automata to the corresponding operation on language
arrays.

To express the fact that the substrings formed by taking every
symbol with even index (i.e., not in ∆) in a row i ∈ {1, . . ., κ} of
an array belong in a specific language Li ⊂ Σ∗

i , the array class is
written AK×n({Li}i∈K). When not all rows contain substrings in
specific languages, but rather only the rowswith indices belonging
in M⊂ K, then this can be denoted AK×n({Li}M) (short and for
AK×n({Li}M ∪ {Σ∗

j }j∈K\M)).

3.4. The Result
Let K = {1,. . ., κ} and consider κ agents, the capacity of which is
modeled originally in the form of transition systems T1,. . .,T κ.

4Note that K may not necessarily contain consecutive integers.

A run on Ti is a row-vector, just like a row in some AK as in
equation (4), where the alphabet symbols in Σi are interspersed
with symbols from an alphabet ∆.

The closed-loop (controlled) behavior of agent i is supposed to
satisfy specification TLi . The closed-loop system, which is con-
sistent with the specification, is TCi . However, since agents are
not supposed to have knowledge of Li (or, equivalently, TLi), the
product operation yielding TCi cannot be performed locally by
each agent. Instead, the agents are “teleoperated” by a coordinator,
a central automaton T0 that dictates specifically what transition
each agent is to take at each given state. In some sense, all such
product operations have been performed by this coordinator, a
model of which can be thought of as

T0 = TC1 ⊗ · · · ⊗ TCκ .

Definition 6. The coordinator is an automaton

T0 = (∆ × G1 × · · · × Gκ, ∆ × GI
1 × · · · × GI

κ

∆ × GF
1 × · · · × GF

κ, Σ1 × · · · × Σκ, →)

with components

∆×G1 × ···×Gκ A finite set of states
∆ × GI

1 × · · · × GI
κ A finite set of initial statesa

∆ × GF
1 × · · · × GF

κ A finite set of final statesb
Σ1 × ··· ×Σκ A finite set of action profilesc

→:∆×G1×···×Gκ×Σ1×···×
Σκ→∆×G1×···×Gκ

The transition functiond

aGI
i ⊆ Gi.

bGF
i ⊆ Gi.

cAn action profile is a tuple of symbols from agents’ alphabets.
dFor δi, δj ∈ ∆, a transition δi

(σ1,...,σκ)δj−−−−−−−−→ occurs if (δi, σk) ∈
→k for all κ ∈K.

A coordinator’s run is a finite sequence of the form

rK :=

row κ︷︸︸︷
δ1 g1,1︸ ︷︷ ︸
row 1

· · ·
︷︸︸︷
gκ,1 σ1,1︸︷︷︸ · · ·

︷ ︸︸ ︷
σκ,1 δ2 g1,2︸ ︷︷ ︸ · · ·

︷︸︸︷
gκ,2 σ1,2︸︷︷︸

· · ·
︷ ︸︸ ︷
σκ,2 δn g1,n︸ ︷︷ ︸ · · ·

︷︸︸︷
gκ,n σ1,n︸︷︷︸ · · ·

︷︸︸︷
σκ,n · · · (7)

where the braces indicate how the sequence elements can be
regrouped with some minimal redundancy, and rearranged in the
form of an array like equation (4)

AK =

δ1 g1,1 σ1,1 δ2 g1,2 σ1,2 · · · δn g1,n σ1,n
δ1 g2,1 σ2,1 δ2 g2,2 σ2,2 · · · δn g2,n σ2,n

...
...

...
...

. . .
...

...
δ1 gκ,1 σκ,1 δ2 gκ,2 σκ,2 · · · δn gκ,n σκ,n

 ,

(8)
from which the link between the synchronized product on
automata and the merge operation on symbol arrays is verified.
Coordinator runs, either in the form of a sequence [equation (7)]

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 367

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

or in the form of an array [equation (8)], are referred to as
plans.

Viewing now the coordinator as the synchronized product of
the constrained dynamics of agents, the details of communica-
tion between this coordinator and its subordinate agents can be
formalized. Assume that there exists a dedicated communication
channel to each agent, and an encoder that takes the row of AK
that corresponds to the particular agent and extracts the sequence
of input strings for that agent. Specifically, assume that the coor-
dinator communicates πΣi(AK⟨i⟩) to agent i. (This can be done
either in one batch, or one symbol at a time.) Then agent i executes
the specified sequence of input symbols synchronously with the
other agents, and all agents transition together through world
states δ1, δ2,. . ., until some final world state δn+1 (not shown
in AK).

Assume now that every Li ∋ πΣi(AK⟨i⟩) belongs to a sub-
class of Locally 2-Testable languages with grammars Gi con-
sisted of a single 2-factor, i.e., Gi = {{σmσk}} for σm, σk, ∈
Σi, and that each agent knows that this is the subclass of lan-
guages containing its specification. Then a GIMi can be con-
structed (García and Ruiz, 2004) to identify Li in the limit
from positive data. Each plan communicated by the coordina-
tor to the agents constitutes a positive datum, and if enough5

data are presented to GIMi, the learner will converge to Li in
finite time.

Imagine a moment in time when the hypothesis (output) of
every GIMi has converged to the corresponding specification lan-
guage Li. The question now is: can the agents, having knowledge
of their own specification, reconstruct T0 by communicating?
The sequence of mathematical statements that follow provide an
affirmative answer to this question.

Consider a sequence {AK×n(k)}∞
k=0 of 2n-column symbol

arrays of the form [equation (8)]. Pick an arbitrary i ∈ {1, . . ., κ}.
Let the presentation to learner GIMi of agent i be

ϕi := πΣi(AK×n(0)⟨i⟩)︸ ︷︷ ︸
ϕi(0)

, πΣi(AK×n(1)⟨i⟩)︸ ︷︷ ︸
ϕi(1)

, πΣi(AK×n(2)⟨i⟩)︸ ︷︷ ︸
ϕi(2)

,

As assumed, there is a finite m ∈ N such that
L(GIMi(ϕi[m]))= Li. At this point, and without any additional
information about its teammates, an agent generically
hypothesizes that the language of the coordinator is AK×n({Li}),
i.e., an κ × 2n array class where the rows in row i are words
accepted by TCi , and in any row j ̸= i one finds any combination
of symbols in Σj interspersed with the (same) symbols from ∆
that appear in the i row.

The following lemma indicates that if two agents intersect the
array classes they each hypothesize as the coordinator’s language,
they obtain exactly what they would have learned if they had been
observing each other’s presentation and running two learners in
parallel, one for each presentation.

Lemma 1. AI∪J ×n({Li}i∈I) ∩ AI∪J ×n({Lj}j∈J)=
AI∪J ×n({Lk}k∈I∪J).

5For the particular language subclass, a handful of positive examples generally
suffice.

Proof.

AI∪J ×n
(
{Li}i∈I

)
∩ AI∪J ×n

(
{Lj}j∈J

)
= AI∪J ×n

(
{Li}i∈I ∪ {Σ∗

j }j∈J

)
∩ AI∪J ×n

(
{Lj}j∈J ∪ {Σ∗

i }i∈I

)
= AI∪J ×n

(
{Li ∩ Σ∗

i }i∈I ∪ {Lj ∩ Σ∗
j }j∈J

)
= AI∪J ×n

(
{Li}i∈I ∩ {Lj}j∈J

)
= AI∪J ×n

(
{Lk}k∈I∪J

)
.

It is now natural to take this argument one step further to
conclude that if all κ agents intersect their hypotheses obtained
after their individual learners have converged, the resulting array
class would be identical to the one that a single GIM would
produce if it were to operate on a presentation of symbol arrays
coming out of the coordinator.

Lemma 2.
∩

i∈K AK×n (Li)=AK×n ({Li}i∈K).
Proof. Straightforward induction on i.
In this light, the intersection performed at the end, compensates

for the decentralized agent operation and inference.
Proposition 1. Assume that for each i ∈ K, a grammatical

inference module running on inputs πΣi(A[m]⟨i⟩) has converged
on a language Li for large enough m ∈ N. Then the array class
where the modules’ presentation has been drawn from is exactly∩

i∈K AK×n ({Li}i∈K).
Proof. A direct restatement of Lemma 2 in the context of κ

grammatical inference modules running in parallel on the rows
of the finite sequence of symbol arrays {AK×n(k)}mk=0.

One interpretation of Proposition 1, therefore, is that if the
agents’ link to their coordinator is severed, yet they had identified
their own specification before this happened, then they can resur-
rect their coordinator’s function by intersecting their individual
hypotheses AK×n ({Li}) through communication.

4. DISCUSSION

4.1. Implementation Study
Consider two agents, with capacities T1 and T2; the transition
systems of the capacities of the two agents are illustrated in
Figure 2. The two agents share the same (discrete) world state
setW = {w0,w1,w2}. Agent has alphabet Σ1 = {s10, s11, s12}, while
agent 2 has alphabetΣ2= {s20, s21, s22}. Both agents are supervised
by coordinator T0, which determines the desired behavior its
subordinates. The desired behavior for an agent is its language
specification, and is encoded as an automaton: TL1 for agent 1,
and TL2 for agent 2, and shown in Figure 3. The labels on each
specification automaton’s states are (almost) arbitrary integers:
the only consideration in the assignment is so that the states of
the two automata can be distinguished. Here, let G1 = {g11, g12,
g13}= {1, 2, 0} and G2 = {g21, g22, g23}= {4, 5, 3}. The languages
generated by TL1 and TL2 belong to the specific subclass of Locally
2-Testable languages considered: the specification language for
agent 1 contains all strings that have s12s11 as a substring, while
that for agent 2 includes all strings that have the factor s22s21.

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 368

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

A B

FIGURE 2 | The capacity of agents T1 and T2 shown in (A,B), respectively. Since, in a transition system, all states can be thought of as both initial and final,
they are marked in the figures using circles drawn with double thick line.

A B

FIGURE 3 | Automata TL1 (A) and TL2 (B) encode the specifications for agents 1 and 2, respectively. Thick single circles denote initial states; double circles
denote final states. Input strings for agent 1 belong to the specification language if they contain the factor s12s11. Input strings for agent 2 are consistent with that
agent’s specification if they contain the factor s22s21.

Taking the product of the agent’s capacity Ti with its specifi-
cation TLi produces the constrained dynamics of the agent, TCi .
The result of the product operation for the systems depicted in
Figures 2 and 3 is shown in Figure 4. The coordinator T0 is
formed by taking the synchronized product of TC1 and TC1 , which
is shown in Figure 5. It may be worth noting that the product
operation between the agent’s capacity and its specification creates
a unique perspective of a world state, from the point of view of the
individual agent: for example, world state w1 may have different
semantics for agent 1 compared to agent 2, for the two agents are
trying to achieve different things. Yet, as the whole group oper-
ates in the same physical workspace, agents synchronize on their
world state when they act together, as shown in the synchronized
product of Figure 5.

A run in the coordinator is now a plan for the subordinates.
After translating tuple labels into strings (dropping parentheses
and commas), this plan takes the form as in equation (7). One
example can be:

r{1,2} = w1 1 4 s10s20 w1 1 4 s12s22 w0 2 5 s11s21 w0 0 3,

which in tabulated form [as in equation (8)] looks like

A{1,2} =
[
w1 1 4 s10 w1 1 4 s12 w0 2 5 s11
w1 1 4 s20 w1 1 4 s22 w0 1 5 s21

]
.

Plans are then communicated to the agents. Agent i receives
πΣi(A{1,2}⟨i⟩), and all agents execute their instructions in step
(i.e., synchronously), transitioning from one common world state
to a next. There can be several instances where the same task
needs to be completed, and for each one of these instances the
coordinator crafts a different plan – the system may be initial-
ized at a different world state each time, or several scheduling
strategies can be tried out; there is usually more than one way
to achieve the same end result involving the same crucial steps.
Each such instance of guided task completion offers an example
for the agent learning algorithms. Figures 6A,B display results
from several different experiments, during which the two agents
observe the instructions received over a number of instances,
and attempt to identify their specification. Depending on the
composition of these sequences of examples, agents may need
more time to identify their specification language. The two figures
show the size (cardinality) of the hypothesized grammar produced
by the inference machine, |GIM|, for the specification language
of agent 1 (Figure 6A) and agent 2 (Figure 6B) as a function
of the number m of examples in the presentation ϕ provided to
their inference algorithms by their coordinator, over a number
of different experiments. Every experiment consists of an initial
fragment of some (specification language) presentation, which
for the purpose of these numerical tests is generated randomly.

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 369

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

A
B

FIGURE 4 | The constrained dynamics of agents 1 and 2, (A) TC1 =T1 ×TL1 and (B) TC2 =T2 ×TL2 , respectively.

FIGURE 5 | The automaton T0 of the coordinator. It is produced as
T0 =TC1⊗2

=TC1
⊗TC2 .

Convergence is achieved when |GIM(ϕ[m])|= 1. The thick curves
in Figures 6A,B correspond to experimental averages of grammar
size for random presentation fragments of a certain length. It
appears that a (uniformly) random generation of presentations
for the target Locally 2-Testable languages results in (at least)
polynomial rate of convergence.

4.2. Scaling Up
Obviously, due to the product operations involved, increasing
the number of agents κ, or the size of the agents’ automata has
an adverse effect on one’s ability to reproduce the results of the
previous section. Several observations, however, seem to indicate
that the key insight behind the reported method is not directly
linked to computational complexity issues related to dimension-
ality. This section, thus, briefly illustrates the implementation of
the reported method on a similar setup with three agents, and
concludes with the observations that can guide further algorithm
development in the direction of handling larger-scale problems.

In this setup, there are three agents with structure similar
to that shown in Figure 2. The three agents have similar but
not identical capacities. There are still three world states, three-
symbol alphabets for each agent, and the agents’ specification
languages are again Locally 2-Testable languages, each represented
by an automaton with three states. (The actual automaton for the
coordinator is too large to display on these pages.)

Similar to Section 1, the learning process is repeated several
times, and in each trial initial segments ϕ[m] of random presenta-
tions of length m= 100 are generated and processed by the indi-
vidual agent learners. Each segment is tabulated in an array A{1,2,3},
from which each agent reads the (projected) row πΣi(A{1,2,3}⟨i⟩)
associated with its index i∈ {1, 2, 3}. As each learner reads this
presentation segment, it progressively refines its hypothesis about
what its specification languagemight be, and similarly to Figure 6,
in Figure 7 the number of factors in the hypothesized agent
grammar is recorded in the plots of Figures 7A–C. Figure 7C
seems to also indicate a polynomial rate of convergence.

The simulation of the three-agent example was coded in
python and was run on a Intel-I7 Quad-core laptop computer

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 3610

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

A B

FIGURE 6 | Convergence of the learner as the number of examples m increases. The shaded envelopes in (A,B) represent the SD around the mean size of
the hypothesized grammars for agents 1 and 2, indicating that |GIM(ϕ[m])| converges to the value of 1 (marked with a dotted black line) as the number of
presentations m increases.

A B C

FIGURE 7 | Convergence results for individual agent learners over initial segments of presentation with 100 examples. The plots (A–C) show the
evolution of the cardinality of each agent’s hypothesized grammars; when these grammars are reduced to a single factor, then the learner has converged. The
shaded envelopes indicate the evolution of the SD around the mean grammar size over all trials, as the size of the presentation to the learners increases.

(8 threads, 2.30GHz processor).What needs to be noted, however,
is that the computationally challenging aspect of such an imple-
mentation, as the number of agents and the size of their automata
increase, is in computing and representing their products (with
their specifications, and eventually with each other). In practice,
however, this computation would be needed for determining
coordination plans, not for inferring the agents’ specifications.
Note that if the (big) automaton that the coordinator needs to
devise its plans for its subordinates is available, and the system
is running in normal operation mode, then the inference algo-
rithm on each agent’s hardware would need to build and refine
a machine of size independent of the number of agents in the
group: each agent is learning its own specification. Only when the
agents are called to combine their hypotheses into a single model,
and construct the synchronized product, would the increased
computational power be required.

Skeptics will argue that outside the realmof academic examples,
one inevitably has to face analysis of many complex sub-systems
(agents), and a daunting computation of a huge synchronized
product will be unavoidable. It is conjectured, however, that there
are computationally efficient alternatives to performing this oper-
ation. For example, once all agent constrained dynamics have
been reconstructed, compatible coordinator plans can possibly
be synthesized in a factored fashion, by synchronizing the runs
on individual constrained dynamics incrementally, transition by
transition. Preliminary evidence that supports this hypothesis is
that this type of factored synthesis has been already demonstrated
when constructing winning strategies in two-player zero-sum
games (Fu et al., 2015), while at the same time it has been formally
proven that learning sub-regular languages in factored form is also

feasible (Heinz and Rogers, 2013). In fact, the identification of
individual agent specifications as implemented in this paper is
a manifestation of the ability to learn in factored form. Exploit-
ing the factored structure of the system in this way allows for
exponentially smaller system representations (Heinz and Rogers,
2013), significantly alleviating the ramifications of the curse of
dimensionality. Exploring further the possibility for synthesis of
coordinator plans when a model of the latter is maintained in
factored form deserves treatment in a separate paper.

5. CONCLUSION

Distributed multi-agent systems, in which individual agents are
coordinated by a central control authority, and the dynamics of all
entities is captured in the form of transition systems, can be made
resilient to leader decapitation by means of learning. Specifically,
grammatical inference algorithms running locally at each agent
can be utilized to decode the logic behind the generation of
commands that are issued to each individual agent over a period
of time, provided that a sufficiently large sample of command
examples are observed, and the agents know a priori the class of
formal languages their specifications belong to. Once individual
agent specifications are identified, then it is shown that agents
can put together their hypotheses about how their coordinator
has been generating their instructions, and in this way essentially
reconstruct it. This type of result can contribute to theory that
supports the design of resilient multi-agent supervisory control
systems, but also be utilized from the opposite direction as ameans
of decoding the mechanism that generates a bundle of signals
communicated over a number of different, isolated, channels.

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 3611

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

Karydis et al. Resilience in Supervisory Multi-Agent Systems

AUTHOR CONTRIBUTIONS

KK contributed primarily in exploring the related literature,
and together with HT he took leadership in formulating the
problem, as well as designing the overall architecture depicted
in Figure 1. PK was responsible for generating and present-
ing the numerical data that support the theoretical predictions,
and helped revising the presentation of the theoretical analysis
in order to be in concert with the software implementation.

AJ and JH led the design of the grammatical inference algo-
rithms, and contributed to the design of numerical tests. All
authors contributed to varying degrees in writing and editing this
manuscript.

FUNDING

This work is supported in part by ARL MAST CTA # W911NF-
08-2-0004.

REFERENCES
Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. (2003). Diagnosis and

Fault-Tolerant Control. Berlin Heidelberg: Springer-Verlag.
Bruni, F. (2014). Hacking our humanity: sony, security and the end of privacy. The

New York Times, SR3.
Cam, H., Mouallem, P., Mo, Y., Sinopoli, B., and Nkrumah, B. (2014). “Mod-

eling impact of attacks, recovery, and attackability conditions for situa-
tional awareness,” in IEEE Int. Inter-Disciplinary Conf. on Cognitive Meth-
ods in situation Awareness and Decision Support (San Antonio, TX: IEEE),
181–187.

Cardenas, A., Amin, S., and Sastry, S. (2008). “Secure control: towards survivable
cyber-physical systems,” in 28th Int. Conf. on Distributed Computing Systems
Workshops (Beijing: IEEE), 495–500.

Cassandras, C. G., and Lafortune, S. (2008). Introduction to Discrete Event Systems,
Vol. 11. New York, NY: Springer.

CPS-FORCES. (2015). Available at: https://www.cps-forces.org/
de laHiguera, C. (2010).Grammatical Inference: Learning Automata andGrammars.

Cambridge: Cambridge University Press.
Fu, J., Tanner, H. G., and Heinz, J. (2013). “Adaptive planning in unknown environ-

ments using grammatical inference,” in Decision and Control (CDC), 2013 IEEE
52nd Annual Conference on (Florence: IEEE), 5357–5363.

Fu, J., Tanner, H. G., Heinz, J. N., Karydis, K., Chandlee, J., and Koirala, C. (2015).
Symbolic planning and control using game theory and grammatical inference.
Eng. Appl. Artif. Intell. 37, 378–391. doi:10.1016/j.engappai.2014.09.020

García, P., and Ruiz, J. (2004). Learning k-testable and k-piecewise testable lan-
guages from positive data. Grammars 7, 125–140.

Gold, M. E. (1967). Language identification in the limit. Inf. Control 10, 447–474.
doi:10.1016/S0019-9958(67)91165-5

Heinz, J., and Rogers, J. (2013). “Learning subregular classes of languages
with factored deterministic automata,” in Proceedings of the 13th Meet-
ing on the Mathematics of Language (MoL 13), eds A. Kornai and M.
Kuhlmann (Sofia, Bulgaria: Association for Computational Linguistics),
64–71.

Hespanha, J., Naghshtabrizi, P., and Xu, Y. (2007). A survey of recent results in
networked control systems. Proc. IEEE 95, 138–162. doi:10.1109/JPROC.2006.
887288

Jordan, J. (2009). When heads roll: assessing the effectiveness of leadership decapi-
tation. Secur. Stud. 18, 719–755. doi:10.1080/09636410903369068

Kannappan, P., Karydis, K., Tanner, H. G., Jardine, A., and Heinz, J. (2016).
“Incorporating learning modules improves aspects of resilience of supervisory
cyber-physical systems,” in 24thMediterraneanConf. on Control andAutomation
(Athens: IEEE).

Kendra, J. M., and Wachtendorf, T. (2003). Elements of resilience after the world
trade center disaster: reconstitungNewYorkCity’s emergency operations centre.
Disasters 27, 37–53. doi:10.1111/1467-7717.00218

Khaitan, S., and McCalley, J. (2014). Design techniques and applications of cyber-
physical systems: a survey. IEEE Syst. J. 9, 350–365. doi:10.1109/JSYST.2014.
2322503

Kim, K.-D., and Kumar, P. (2012). Cyber-physical systems: a perspective at the
centennial. Proc. IEEE 100, 1287–1308. doi:10.1109/JPROC.2012.2189792

Kundur, D., Feng, X., Mashayekh, S., Liu, S., Zourntos, T., and Butler-Purry, K.
(2011). Towards modelling the impact of cyber attacks on a smart grid. Int. J.
Secur. Netw. 6, 2–13. doi:10.1504/IJSN.2011.039629

Liu, J., Xiao, Y., Li, S., Liang, W., and Chen, C. L. P. (2012). Cyber security and
privacy issues in smart grids. IEEE Commun. Surv. Tutorials 14, 981–997. doi:
10.1109/SURV.2011.122111.00145

Mahmoud, M. S. (2004). Resilient Control of Uncertain Dynamical Systems. Berlin
Heidelberg: Springer.

Martin, W., White, P., Taylor, F., and Goldberg, A. (2000). “Formal construction of
the mathematically analyzed separation kernel,” in Proceedings of the Fifteenth
IEEE International Conference on Automated Software Engineering (Grenoble:
IEEE), 133–141.

McNaughton, R., and Papert, S. (1971). Counter-Free Automata. Cambridge, MA:
MIT Press.

Mo, Y., and Sinopoli, B. (2009). “Secure control against replay attacks,” in 47th
Annual Allerton Conf. on Communication, Control, and Computing (Monticello,
IL: IEEE), 911–918.

Rieger, C. (2014). “Resilient control systems practical metrics basis for defining
mission impact,” in 7th Int. Symp. on Resilient Control Systems (Denver, CO:
IEEE), 1–10.

Rieger, C., Gertman, D., and McQueen, M. (2009). “Resilient control systems:
next generation design research,” in 2nd Conf. on Human System Interactions
(Catania: IEEE), 632–636.

Rushby, J. (1981). Design and verification of secure systems. ACM SIGOPS Oper.
Syst. Rev. 15, 12–21. doi:10.1145/1067627.806586

Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., and Sastry, S. (2007).
Foundations of control and estimation over lossy networks. Proc. IEEE 95,
163–187. doi:10.1109/JPROC.2006.887306

Tanner, H. G., Jadbabaie, A., and Pappas, G. J. (2007). Flocking in fixed and
switching networks. IEEE Trans. Automat. Contr. 52, 863–867. doi:10.1109/
TAC.2007.895948

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Karydis, Kannappan, Tanner, Jardine and Heinz. This is an open-
access article distributed under the terms of the Creative CommonsAttribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org June 2016 | Volume 3 | Article 3612

https://www.cps-forces.org/
http://dx.doi.org/10.1016/j.engappai.2014.09.020
http://dx.doi.org/10.1016/S0019-9958(67)91165-5
http://dx.doi.org/10.1109/JPROC.2006.887288
http://dx.doi.org/10.1109/JPROC.2006.887288
http://dx.doi.org/10.1080/09636410903369068
http://dx.doi.org/10.1111/1467-7717.00218
http://dx.doi.org/10.1109/JSYST.2014.2322503
http://dx.doi.org/10.1109/JSYST.2014.2322503
http://dx.doi.org/10.1109/JPROC.2012.2189792
http://dx.doi.org/10.1504/IJSN.2011.039629
http://dx.doi.org/10.1109/SURV.2011.122111.00145
http://dx.doi.org/10.1145/1067627.806586
http://dx.doi.org/10.1109/JPROC.2006.887306
http://dx.doi.org/10.1109/TAC.2007.895948
http://dx.doi.org/10.1109/TAC.2007.895948
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

	Resilience through Learning in Multi-Agent Cyber-Physical Systems
	1. Introduction
	1.1. Context and Motivation
	1.2. Problem Description
	1.3. Organization

	2. Materials and Methods
	2.1. Formal Languages
	2.2. Language Identification in the Limit
	2.3. Problem Statement

	3. Results
	3.1. The Models
	3.2. The Types
	3.3. The Operations
	3.4. The Result

	4. Discussion
	4.1. Implementation Study
	4.2. Scaling Up

	5. Conclusion
	Author Contributions
	Funding
	References

