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Predicting a hand’s position using only biosignals is a complex problem that has not 
been completely solved. The only reliable solution currently available requires invasive 
surgery. The attempts using non-invasive technologies are rare, and usually have led 
to lower correlation values (CVs) between the real and the reconstructed position than 
those required for real-world applications. In this study, we propose a solution for
reconstructing the hand’s position in three dimensions using electroencephalography 
(EEG) and electromyography (EMG) to detect from the shoulder area. This approach 
would be valid for most trans-humeral amputees. In order to find the best solution, we 
tested four different architectures for the system based on artificial neural networks. Our 
results show that it is possible to reconstruct the hand’s motion trajectory with a CV 
up to 0.809 compared to a typical value in the literature of 0.6. We also demonstrated 
that both EEG and EMG contribute jointly to the motion reconstruction. Furthermore, 
we discovered that the system architectures do not change the results radically. In
addition, our results suggest that different motions may have different brain activity
patterns that could be detected through EEG. Finally, we suggest a method to study 
non-linear relations in the brain through the EEG signals, which may lead to a more 
accurate system.
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inTrODUcTiOn

Motion reconstruction refers to the problem of predicting an extremity’s position using only biosig-
nals for reconstructing, without using any cameras or tracking devices. The main application for this 
kind of system is the control of a prosthetic device. Nevertheless, applications, such as videogames 
or robot control, are also possible.

Depending on which part of the trajectory of the extremity is reconstructed, there are different 
challenges. A distal part of the extremities, such as a hand or foot, is easier to reconstruct than a 
proximally amputated part, such as an arm or leg. This is mainly because most of the muscles related to 
foot and hand movements are still active in the leg and arm; thus, it is possible to predict the intention 
with electromyography (EMG) signals detected from those muscles. Foot prostheses have achieved 
high accuracy (Au et al., 2008) due to the low number of Degrees of Freedom (DoF) and well-known 
dynamics. Although the hand has a higher number of DoF, its reconstruction also achieved high 
accuracy. In the case of the hand, there are different challenges, such as reconstruction of each one of 
the fingers (Tenore et al., 2007) or cheaper development of the prosthetic device (Zuniga et al., 2015). 
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Above-knee prostheses have fewer DoF than hand prostheses, but 
in this case, the number of the remaining motion-related muscles 
is lower. Yet, since the motion dynamics of the leg are well known, 
it is possible to create reliable above-knee prostheses (Seliktar and 
Kenedi, 1976; Jung-Hoon and Jun-Ho, 2001). Finally, shoulder 
prostheses (those used for trans-humeral amputees) are the most 
complex ones. The number of DoF is larger than for any other 
prostheses (in theory, the system should be able to reconstruct 
the motion of the shoulder, elbow, wrist, and fingers); on the 
other hand, the number of remaining motion-related muscles is 
very low, and the dynamics of the arm are complex and difficult 
to predict. The final objective is to build a system in which the 
prosthetic device moves as a real arm would.

Due to the lack of remaining motion-related muscles, the infor-
mation from the EMG is not enough to completely implement the 
control of shoulder prosthesis. Thus, brain computer interfaces 
(BCI) are used to improve the reconstruction accuracy. The most 
precise control is usually achieved by using invasive technologies 
(Gilja et al., 2012; Hochberg et al., 2012); such technologies are 
also used for sensory restoration (Tabot et al., 2013). However, 
these approaches require brain surgery, which could cause brain 
damage, and need further safety inspection. Consequently, these 
kinds of approaches are only used experimentally with animals or 
in extreme cases of paralysis. Thus, a method using non-invasive 
technologies should be developed in order to promote the use of 
shoulder prostheses.

Full arm motion reconstruction has been addressed by a few 
studies. Generally, the problem is simplified when using non-
invasive technologies by, for example, reducing the number of 
DoF that are reconstructed (Lv et al., 2010; Robinson et al., 2013; 
Kim et  al., 2014). In those cases, only electroencephalography 
(EEG) was used. This approach is the most general one; for any 
amputee, we can assume that the EEG is available, while some 
muscles may be present or not depending on the subject. The 
main problem of this approach is that the obtained correlation 
values (CVs) between the real and the reconstructed trajectory 
are too low, up to 0.6 in the best-case scenario. Other studies, such 
as Kiguchi and Hayashi (2013), using a combination of EEG and 
EMG obtained almost perfect scores. This approach, neverthe-
less, places the EMG along the arm. Thus, it may be applicable to 
videogames or robot control, but not to prosthesis control.

In this study, we present an approach to solve the arm motion 
reconstruction problem, taking into consideration the following 
aspects. First, our main goal is to use this approach for trans-
humeral amputees in real life. Therefore, the system should be 
able to work in real time and should not use EMG located beyond 
the humerus. To be certain that our system is usable by most 
trans-humeral amputees, the only muscle located in the arm that 
we used was the deltoidus. This muscle is present, by definition, 
in every trans-humeral amputee, and it carries a lot of motion-
related information. The second characteristic of our system is 
that it only predicted the position of the hand in three dimensions 
(x, y, and z). This means that it did not predict the position of the 
elbow or its rotation. It neither predicted the angle of the wrist 
nor the position of the fingers. We reconstruct only for the hand’s 
position since the elbow position is not as important for conduct-
ing everyday living activities, such as pointing or grasping. In the 

case of the wrist and fingers, we do not reconstruct them since it 
is too difficult to do for the moment. Finally, we use both EEG 
and EMG, and make clear their contribution to the reconstruc-
tion. Even if these systems are intrinsically related (Halliday et al., 
1998; Grosse, 2002; Hashimoto et al., 2010), different information 
can be extrapolated from them.

Previous Work
We divided our study into three stages: predictor proposal, 
system optimization, and feature analysis. In the first one, we 
proposed four different architectures based on artificial neural 
networks (ANNs) as predictors for the system (Fernandez-Vargas 
et  al., 2015). Those architectures were combined with different 
inputs to create eight different approaches. This paper presents 
the results obtained in this first stage and further research efforts 
based on the results.

With the results obtained from the first stage, we selected the 
two best ones for the next stage based on their final CVs. In the 
second stage, we optimized the input and configuration of the 
selected approaches for removing redundant information. We 
also added the estimated previous positions as the input to the 
system to see the effect (Fernandez-Vargas et al., 2016).

In the last stage, we analyzed the importance of the different 
signal sources, the amount of information that they provide, and 
the topography of the relation between the motion and the brain 
activation.

The paper is organized as follows: in the Section “Materials 
and Methods,” the experiment task, data processing, classifica-
tion and optimization procedures, and statistical methods are 
described; in the Section “Results,” analyses and comparison of 
different approaches are presented; furthermore, the effects of the 
optimization process and the information analyses are shown; 
finally, in the Section “Discussion,” we discuss the interpretation 
of the data, the limitations, and future studies.

MaTerials anD MeThODs

Text from Section “System” and “Predictor Proposal” has been 
adapted from Fernandez-Vargas et al. (2015), including Figures 1 
and 3.

system
Experiment Subjects
A sample of N  =  16 healthy young adults participated in the 
experiment. Our sample consisted of eight females and eight 
males. Permission from the ethics committee of the Graduate 
School of Engineering, Chiba University was obtained. All sub-
jects participated voluntarily, giving informed consent without 
receiving any incentives. Participants were informed that they 
could stop the experiment at any time.

Task
The experiment was designed considering the future use of the 
system for controlling a wearable prosthetic device; therefore, 
there are some a priori restrictions. First, the number of DoF is 
limited. We chose three movements that allow placing the hand 
in almost any position with a wearable prosthesis. The three 
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FigUre 1 | representation of the seven phases with movement. (a–c) simple movements, i.e., the motion occurs only on one DoF, (D–F) combined 
movements, i.e., the movement occurs on two DoFs, and (g) the hand’s free movement.
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DoFs are two for the shoulder [up and down (Figure 1A) and 
rotation (Figure 1C)] and one for the elbow [flexion and exten-
sion (Figure 1B)]. With these three movements, the subject can 
reach any point in front of him/her. The second limitation arising 
from using a wearable prosthetic device is that the speed that the 
machine can reach is limited, especially if we take into considera-
tion the system stability. Therefore, subjects were asked to move 
the arm slowly (not faster than around 60°/s). At this speed, it is 
possible to grasp an object and pass it to another person in less 
than 5 s.

The experiment was divided into eight phases, and each is 
separated from the successive ones by a resting time of 20 s in 
which we explained to the subject the next phase. The first phase 
was a 60-s baseline in which the subject was asked to stay still and 
try to avoid blinking or ocular movements in order to avoid EEG 
artifacts. During the following phases, the subject was instructed 
to move the arm according to a specific set of movements. From 
phase two to four (the first row in Figure 1), the subject was asked 
to perform three simple movements for 20 s. In this case, by “sim-
ple” we mean that the movement takes place only across one DoF. 
From phase five to seven (the second row in Figure 1), the subject 
was asked to perform a combined movement for another 20 s, 
which meant moving the arm along two DoFs. Finally, for the last 

phase, the subject was instructed to move the arm freely across 
three DoFs for 60 s (Figure 1G). This process was performed only 
once per subject. The whole experiment (including the setup) 
took less than 40 min. All data were saved for a posteriori off-line 
analysis.

Data Acquisition
Three synchronized systems were used for acquiring the data:

• EEG (input): an EEG cap (BioSemi ActiveTwo) recording 
device with 16 active electrodes. The electrodes were posi-
tioned at Fz, F2, F4, F6, F8, FCz, FC2, FC4, FC6, Cz, C2, C4, 
Pz, P2, Oz, and O2, according to the international 10–20 
system, as shown in Figure 2A. The locations of the electrodes 
were chosen to primarily cover the motor cortex, parietal, and 
occipital area as suggested in Waldert et al. (2008), Bradberry 
et al. (2010), Lv et al. (2010), and Schoffelen et al. (2011). Since 
the task of the experiment consisted of moving the left arm, 
the electrodes were located in the center and right hemisphere 
of the scalp.

• EMG (input): four surface EMG electrodes connected to an 
NI USB-6210 amplifier. Two of the EMG’s electrodes were 
placed in the left trapezius (location A and B in Figure 2), one 
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FigUre 2 | electrode location diagram. Those EEG electrodes used for the recordings are highlighted in red in the left image. The approximated location of the 
EMG electrodes for the trapezius (a,B) is presented in the middle. The approximated location of the EMG electrode for the deltoideus (c), and pectoralis major 
(D) are presented in the right image. The middle and right figure are adapted from Gray and Carter (1858).

4

Fernandez-Vargas et al. Hand Motion Reconstruction for Trans-Humeral Amputees

Frontiers in Robotics and AI | www.frontiersin.org August 2016 | Volume 3 | Article 50

on the left deltoideus (location C in Figure 2), and one on the 
left pectoralis major (location D in Figure 2) (see Figure 2B). 
These locations were chosen to acquire the information rela-
tive to the arm’s movement without placing them on the arm, 
following Horiuchi et al. (2009).

• Motion Tracking (output): OptiTrack’s arena 1.7 software with 
nine Flex 3 cameras was used. This system tracks the physical 
position (x, y, and z) of three rigid body markers attached 
to the subject on the left shoulder, left elbow, and left hand, 
respectively. The relative coordinate values corresponding to 
the hand using the shoulder as the origin were the predicted 
values using the EEG and EMG signals.

The three acquisition systems recorded signals at 1024 Hz.

Preprocessing
Both EEG and EMG signals were divided into windows of 1  s 
with 87.5% overlap. This means that there were eight different 
windows per second. For the EEG, a detrending window and a 
Hamming window were applied. After this, a process, similar to 
the one used in Lv et  al. (2010), was performed to extract the 
EEG’s features. For each EEG window, the corresponding FFT 
was calculated. The result of the FFT was divided into 10 bands 
of 4  Hz (from 1 to 40  Hz with a resolution of 1  Hz), and the 
total power for those bands was computed. In addition, the mean 
value of the 60-s baseline was calculated for each band. Using the 
baseline, the signal to noise ratio (SNR) of those same bands was 
calculated as follows:

 
SNRi

i

i Baseline

P
P

= ,
 

where Pi is the power of the i-th band, and Pi Baseline is the mean 
power for the same band during the baseline. Altogether, 20 
values were calculated as the final output for each EEG channel.

For describing the EMG, 13 values were calculated for each 
channel and window. These features were selected from Zardoshti-
Kermani et al. (1995), Fukuda et al. (2003), and Phinyomark et al. 
(2010): integrated EMG (IEMG), mean absolute value (MAV), 
modified mean absolute value 1 (MAV1), modified mean 
absolute value 2 (MAV2), mean absolute value slope (MAVS), 
simple square integral (SSI), variance (VAR), root mean square 
(RMS), waveform length (WL), zero crossing (ZC), slope sign 
change (SSC), Wilson amplitude (WAMP), and square sum of 
EMG (SSM). For further details of these features, please refer to 
Fernandez-Vargas et al. (2015).

Only time domain features were computed, because frequency 
domain features do not lead to clear improvement, although they 
are more computationally expensive (Phinyomark et al., 2010).

At the end of preprocessing, we obtained 372 features, 10 
from each EEG channel’s FFT power bands (160), 10 from each 
EEG channel’s SNR power bands (160), and 13 from each EMG 
channel (52). We calculated the mean value and the SD for each 
of those features and then normalized each of them. This high 
dimensional feature vector is used as the input for the predictors.

Even though the preprocessing was performed offline, our tests 
confirmed that it can be done online. As mentioned in Section 
“Information Importance,” we used a 1-s window at 1024 Hz with 
an overlapping of 87.5%, which means that we performed the 
complete preprocessing eight times per second. The complexity of 
the process depends on the length (N) of the window. Regarding 
the EEG features, the operation performed was an FFT, which 
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either only EEG, only EMG, or the concatenation of EEG and EMG as a single vector. In the case of the multilayer approaches, the data are always separated.
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has a complexity O(NlogN). For calculating the EMG features, all 
the operations were linear, and thus, had a complexity of O(N). 
In conclusion, the complexity of the preprocessing is O(NlogN).

Regarding the output, we calculated the three position coor-
dinates (x, y, and z) of the hand. For each input, we had 1024 
samples of each coordinate. Since we wanted to calculate only one 
value, we apply a Hamming window to those values and compute 
the mean. Hence, each output is an array with three elements, 
calculated from an input array of length 372.

Many BCI studies use other preprocessing procedures, such as 
spatial filters (Liao et al., 2007) or independent component analy-
sis (Lv et al., 2010). However, these procedures typically require 
that the output is a discrete value. Consequently, it is impossible 
to use them for continuous position reconstruction (Blankertz 
et al., 2008).

Predictor Proposal
Predictor Design
For solving the reconstruction problem, it is important to choose 
the right predictor. Many predictors have binary output, which 

enables differentiations between two classes. Other predictors 
can handle N classes. For this problem, we need a predictor that 
can handle continuous output values for predicting the hand’s 
position. We chose ANNs.

We employed the scaled conjugate gradient algorithm for 
training all ANNs (Møller, 1993), using the Neural Network 
Toolbox from Matlab®. As the transfer function for the hidden 
layer, we used the hyperbolic tangent sigmoid and a linear trans-
fer function for the output layer. Since there is no established 
method to preselect the number of neurons in the hidden layers, 
we decided to use two-thirds of the size of the input plus output. 
We found that the number of neurons in the hidden neuron 
is essential for getting optimal results. Nevertheless, since the 
number of training–validation iterations that have to be per-
formed was too high, we could not add more analysis to search 
for an optimal number of hidden neurons in each network. This 
process was performed afterward for two of the predictors (see 
Optimization).

We implemented four different predictors, as described below 
(Figure 3).
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Classical Predictor (Simple Predictor)
As input, we used a single vector. The predictor itself was an 
ANN, which predicts the three outputs x, y, and z. This is the 
most simple and common approach in the literature to solve this 
problem.

Triple-ANN Predictor
As input, we used a single vector. Then, we used three different 
ANNs to predict each of the outputs independently. Theoretically, 
this predictor should be very similar to the previous one, with 
three times the number of neurons in the hidden layer.

Multilayer Regression Predictor
In the first layer, we had two ANNs similar to the one used in 
the classical approach. Nevertheless, in this case, the input was 
divided into EEG and EMG, so each ANN predicted the output 
based only on one of the inputs. At the second layer, we performed 
a linear regression for each dimension, using the outputs of both 
ANNs as inputs.

Multilayer ANN Predictor
Similar to the previous predictor, the data were divided into EEG 
and EMG. The difference was that for predicting the final output, 
we used a third ANN whose inputs were the outputs of the previ-
ous two ANNs. This second ANN was trained once the first two 
had finished their training.

In the case of the classical predictor and the triple-ANN 
predictor, we used three kinds of input data: the complete 
data (EEG  +  EMG), only EEG, and only EMG. As a result of 
these combinations, we had eight different approaches in total: 
complete data using the simple approach (CPS), complete data 
using the triple-ANN approach (CPT), only EEG using the sim-
ple approach (EES), only EEG using the triple-ANN approach 
(EET), only EMG using the simple approach (EMS), only EMG 
using the triple-ANN approach (EMT), separated data using the 
multilayer regression approach (SMR), and separated data using 
the multilayer ANN approach (SMA).

Evaluation
Every time we trained an ANN, the recorded data were randomly 
divided into training (70%), testing (15%), and validation (15%). 
The training was repeated 30 times for each analysis. This process 
was done for every subject. The input data for the ANN are the 
preprocessed values for each time window. Since there are ~180 s 
of valid recording (20 s for each of the six motions plus 60 s of 
free motion) and 87.5% of overlapping, there are ~1440 samples 
for each subject.

For calculating the final CV, we used the validation data and 
calculated the CV between the output of the predictor and the real 
trajectory for each dimension. Then, we took the median across 
the 30 repetitions of the training and the mean value of the three 
dimensions (x, y, and z) as the final CV.

Optimization
Dimensionality Reduction
After analyzing the results from the previous approaches, we 
optimized the ANN architectures of the two approaches, CPS 

and SMR, based on the results shown in Section “Results.” The 
optimization process was done after the first group of results, 
since part of the process was highly computationally expensive. 
Thus, it was not possible to apply it for every predictor approach. 
The optimization was divided into two steps. The first one was 
the feature selection. The second one was the optimization of the 
number of neurons in the ANNs.

For the feature selection, we calculated the correlation between 
each pair of features, separating EEG and EMG. We removed one 
of the features in those pairs with a correlation higher than 0.95. 
For the EEG, we removed the SNR values following this process, 
i.e., 50% of the EEG data we were using were redundant.

In the case of the EMG, we removed the features MAV, MAV1, 
VAR, RMS, and WL, i.e., 38% of the EMG data we were using 
were redundant.

For optimizing the number of neurons for the CPS, we repeated 
the evaluation process 30 times for each subject and configura-
tion, varying the number of neurons from 5 to 400 in steps of 
5 neurons (i.e., 80 different ANN configurations). We selected 
the ANN configuration with maximum mean correlation across 
all subjects as the optimal ANN configuration. In this case, the 
number of neurons was set to 145 neurons.

For the SMR, we followed a similar process. Nevertheless, 
SMR had two separated ANNs, the one that reconstructed 
the movement from the EEG and the one that used the EMG 
data. Finding the optimal number of neurons for each of them 
was not enough to obtain an optimal result, so we needed to 
test the combination of different ANN configurations. For the 
ANN in charge of the EEG, we tested from 20 to 250 neurons. 
For the ANN in charge of the EMG, we tested from 20 to 180 
neurons. Thus, the number of possible ANN configurations that 
we tested was 1551. We selected the combination of the ANN 
configuration with the maximum mean correlation across all 
subjects as optimal. As a result, we determined that the optimal 
number of neurons for the ANN in charge of the EEG was 130, 
and the optimal number of neurons for the ANN in charge of 
the EMG was 45.

Temporal Information
After the optimization process, we added temporal information 
to seek the possibility of further improving the system. We con-
ducted this process only for the CPS and SMR approaches, based 
on the results shown in Section “Results.”

For the previous approaches, the prediction at moment t was 
done by using only EEG and EMG data at the moment. They are 
defined as:

 CPS ANN EEG EMGt t t( ) = ( ) + ( )( ), 

 SMR LR ANN EEG ANN EMGt t t( ) = ( )( ) + ( )( )( ),  
where “+” stands for the concatenation of vectors, LR means the 
linear regression function, and ANN means an ANN function. 
For example, ANN EEG EMGt t( ) + ( )( )  corresponds to the out-
put of the ANN that has as input, the concatenation of the data 
from the EEG at time = t and the data from the EMG at the same 
time t. We decided to create a new approach using the previ-
ously estimated points. We called these approaches temporal 
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CPSN (TCPSN) and temporal SMRN (TSMRN). We defined them 
as follows:

 
TCPS ANN EEG EMG TCPSN

i

N

Nt t t t i( ) = ( ) + ( ) + −( )









=
∑

1

,
 

 

TSMR LR ANN EEG ANN EMG

TSMR

N

i

N

N

t t t

t i

( ) = ( )( ) + ( )( )




+ −( )



=
∑

1

,
 

where N is the number of time steps taken into consideration. 
Since we used a time window of 1  s with an 87.5% overlap, 
each time step corresponded to 0.125 s. Thus, N = 8 takes into 
consideration all the previously estimated positions from t − 1 s. 
The TCPSN approach is also known as a non-linear autoregres-
sive neural network with external input (NARX) (Leontaritis and 
Billings, 2007).

There are two important points to consider. First, TSMR0 
should be the same as SMR, since as in the former case, there 
would not be temporal information. However, we use the name 
SMR for the approach without optimization and TSMR0 for the 
approach with optimization. The same reasoning can be applied 
to CPS and TCPS0. Second, the temporal data in the TSMR 
approach were added in the linear regression layer, while the 
ANN layer was left unchanged. We tested these approaches by 
changing N from 0 to 8.

Finally, since we needed the previously estimated points to 
reconstruct the next point, the training method was slightly 
modified for the TCPSN approaches. Instead of using random 
points, the data were divided into three consecutive blocks, 
maintaining the proportion 70, 15, and 15 for training, testing, 
and validation, respectively.

information importance
Four analyses were performed to calculate the importance of 
different dimensions of the system.

In the first analysis, we calculated the importance of different 
channels (both EEG and EMG). For this analysis, we used the 
TCPS0 approach. After training the network and calculating the 
original CV, we replaced each channel with zeros (since the mean 
value of each channel is zero), one at a time. Using the new data 
as input for the predictor, we calculated the new CV. Subtracting 
the original CV from the new CV showed the contribution of 
that variable to the final output. We performed this process for 
each channel and normalized the result across all channels to 
obtain their relative importance. This was an empirical method 
that we called Zero Substitution. We compared these results 
with those obtained by the theoretical Goh measure described 
by Goh (1995).

The second analysis focused only on the EEG channels, to 
investigate the topology of their importance in the scalp. In this 
case, we compared two different descriptors. The first one was the 
result obtained in the previous analysis with the Zero Substitution 
method. In addition, we used the Source Power Comodulation 
(SPoC) method (Dähne et al., 2014) between the hand’s position 
and the raw data signal. SPoC returns a group of spatial filters 

based on the covariance between two signals. In this case, we used 
the raw EEG signals of the raw hand’s position. We used the nor-
malized absolute values of the filter with the highest correlation 
between both signals. We computed both descriptors separately 
for each one of the three dimensions x, y, and z.

Using the Zero Substitution method, we also calculated the 
importance of each feature used during the optimization. In this 
case, instead of substituting each channel, we substituted each 
feature for all channels.

The last analysis aimed to compare the different systems (EEG, 
EMG, and temporal information). The TSMRN approach with 
different configurations was used. For doing so, we extracted the 
regression coefficients obtained in the second layer to calculate 
the importance of each system. We also normalized the results 
in this case. Intuitively, if a system has a high regression coef-
ficient, it means that the system is highly correlated with the 
output, while having a lower regression coefficient means a poor 
correlation.

statistical analysis
Predictor Proposal
Different statistical analyses were performed in order to decide 
which approach was better. For comparing the eight predictor 
approaches defined in subsection predictors (CPS, CPT, EES, 
EET, EMS, EMT, SMR, and SMA), we used a Kruskal–Wallis 
analysis (Kruskal and Wallis, 1952). We did not use a para-
metric test, such as ANOVA (Fisher, 1925), since the data do 
not fulfill the homoscedasticity and normal distribution 
pre-assumptions.

Furthermore, in order to calculate the corresponding 
p-value of every comparison of the Kruskal–Wallis analysis, we 
performed a post hoc analysis using the Fisher’s least significant 
difference procedure and calculated the size effect using Cohen’s 
Δ (Muller, 1989).

Using a priori statistical test power analysis with the program 
G*Power 3 (Faul et al., 2007) showed that the Pearson correlation 
significance test, using a sample size of 16 and with a significance 
level of α = 0.05, has a test power (1 − β) > 0.8, as suggested by 
Cohen (1988) when there is an effect size in the population with 
ρ ≥ 0.60. Thus, even if the employed sample size is relatively small, 
hypothesis testing of the Pearson correlation was possible at the 
level of assumed large effect sizes.

Optimization
To test whether there was any difference between the optimized 
approaches (TCPS0 and TSMR0) and the original approaches (CPS 
and SMR), two Student’s t-tests (Gosset, 1908) were executed. For 
deciding the best configuration for each predictor, we selected the 
one with the highest CV for each one. Then, we used a t-test to see 
if there was any difference between the two predictors. Finally, an 
ANOVA analysis was performed to check for differences between 
the TSMRN approaches.

resUlTs

Figures 5 and 6 have been adapted from Fernandez-Vargas et al. 
(2016). Still, all the calculations (including the ANN trainings) 
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TaBle 1 | Predictors result.

subject Predictor

cPs cPT sMa sMr ees eeT eMs eMT

1 0.689 0.669 0.788 0.771 0.444 0.415 0.755 0.745
2 0.607 0.557 0.625 0.650 0.496 0.409 0.606 0.609
3 0.736 0.541 0.719 0.746 0.615 0.481 0.715 0.715
4 0.724 0.606 0.726 0.757 0.521 0.434 0.752 0.741
5 0.648 0.529 0.724 0.761 0.476 0.426 0.747 0.740
6 0.718 0.581 0.689 0.704 0.606 0.517 0.598 0.608
7 0.716 0.636 0.740 0.734 0.527 0.494 0.682 0.681
8 0.655 0.601 0.691 0.693 0.561 0.496 0.637 0.608
9 0.694 0.561 0.761 0.772 0.490 0.395 0.737 0.717

10 0.593 0.476 0.650 0.661 0.456 0.352 0.670 0.626
11 0.611 0.489 0.604 0.614 0.525 0.442 0.440 0.440
12 0.534 0.422 0.527 0.597 0.442 0.335 0.506 0.462
13 0.646 0.563 0.661 0.649 0.466 0.377 0.612 0.622
14 0.685 0.559 0.709 0.719 0.554 0.497 0.629 0.588
15 0.631 0.525 0.700 0.722 0.373 0.362 0.727 0.681
16 0.591 0.489 0.639 0.678 0.466 0.409 0.632 0.619
Mean 0.655 0.550 0.684 0.702 0.501 0.428 0.653 0.638

Bold font indicates the best CV for each subject.

8

Fernandez-Vargas et al. Hand Motion Reconstruction for Trans-Humeral Amputees

Frontiers in Robotics and AI | www.frontiersin.org August 2016 | Volume 3 | Article 50

were done again using the same process for every analysis. 
New versions include more data and have been reshaped to make 
it clearer.

Predictor comparison
The final CVs (calculated as explained in Section “Evaluation”) 
for the eight different approaches are presented in Table 1. The 
best approach is highlighted for each subject. The best approach 
for eight of them was CPS, for seven was SMR, and for one of 
them was SMA. None of the other approaches were the best for 
any subject.

Table 2 shows the post hoc analysis. Approaches were com-
pared two by two. For each approach, the difference of means, 
the p-value of Fisher’s least significant difference procedure, and 
Cohen’s Δ are presented. A positive mean difference means that 
the first approach is better, while a negative value indicates the 
second approach is better. The p-value column indicates the result 
of such a comparison. Finally, Cohen’s Δ column indicates the 
size effect of the difference.

These results show that there are two groups of predictors. 
On the one hand, the group with the highest CV is the one 
including the EMG data. The second group is formed by EES 
and EET (i.e., those predictors that take into consideration only 
EEG). There is an exception that CPT has a lower CV than the 
rest of the predictors for their corresponding groups; this is most 
likely due to an over-fitting problem. There are no statistical 
differences within groups. All the possible pairs between those 
two groups have a large size effect. Graphical representation of 
Tables 1 and 2 can be seen in Figure 4.

In order to see whether there was an increasing error with the 
speed, we calculated the correlation between the speed, calculated 
as the distance between two consecutive points, and the error for 
each dimension. We found no statistically significant correlation 
between the variables.

Optimization and Temporal information
Table  3 presents the results for the optimization and temporal 
information. The TCPS0 and TSMR0 columns correspond to the 
optimization of CPS and SMR, respectively.

• The mean difference between TCPS0 and CPS is 0.07 (i.e., an 
increment of 11%). The p-value resulting from the t-test of this 
comparison was <0.001.

• The mean difference between TSMR2 and SMR is 0.06 (i.e., an 
increment of 8%). The p-value resulting from the t-test of this 
comparison was <0.001.

• The difference between TSMR2 and TCPS0 is 0.03 (i.e., an 
increment of 5%). The p-value resulting from the t-test of this 
comparison was <0.001.

The best result achieved during the optimization was a CV of 
0.855 for subject # 9 with the TSMR4 approach.

In the case of the TCPSN, there was a drop of the CV for every 
subject and configuration. In the case of the TSMRN, the inclusion 
on the previous reconstructed points improved the reconstruc-
tion significantly at least in the case of TSMR2, compared to 
TSMR0. Other comparisons between the TSMRN approaches 
were not significant.

information importance
The overall information importance, according to Goh’s method 
and to the Zero substitution method, is represented in Figure 5. 
The two methods gave different results. According to Goh’s 
method, all the EEG channels had the same importance. Also, 
the EEG channels were more important than the EMG channels. 
In the case of the Zero Substitution method, the most important 
channels were EMG3 (trapezius) and EMG4 (pectoralis major). 
Also, the Zero Substitution results presented more variation 
among channels. The data for this comparison were obtained 
using the TCPS0 approach. The results presented in Figure  5 
correspond to the mean of the three dimensions. If we split the 
information importance by dimension, there was only a change in 
the Zero Substitution method regarding the EMG channels. For 
the x dimension, the results were as follows: 0.06, 0.042, 0.089, 
and 0.042 for EMG1, EMG2, EMG3, and EMG4, respectively. The 
results for the y dimension were as follows: 0.032, 0.066, 0.079, 
and 0.091. Lastly, the results for the z dimension were as follows: 
0.032, 0.044, 0.049, and 0.134.

For studying the information carried by different systems 
(EEG, EMG, time), we used the TSMRN approaches. In this case, 
we took into consideration the regression values in the second 
layer when different configurations were used. Figure 6 presents 
the accumulated relative importance for the different configura-
tions. In the first configuration, comparing the EEG importance 
and the EMG importance with a t-test resulted in a p-value 
<0.001, indicating that the EMG was more important (53%). The 
values for TSMR8 were 0.013, 0.017, 0.552, 0.225, 0.077, 0.031, 
0.034, 0.016, 0.021, and 0.14 for EEG, EMG, and the eight previ-
ously estimated points, respectively. This means that the EEG and 
EMG were not relevant for the reconstruction of the motion in 
that configuration. Even from TSMR2, the added importance of 
EEG and EMG was only 4.1%.
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FigUre 4 | comparison of the eight initial approaches plus the two best optimization results. Each line represents the 95% confident interval for each of 
them. The circle in the middle corresponds to the mean for that group. Overlapping intervals between two approaches means that they were not significantly different.

TaBle 2 | Predictors post hoc results.

cond. 1 cond. 2 Mean diff. p-value cohen’s Δ cond. 1 cond. 2 Mean diff. p-value cohen’s Δ

CPS CPT 0.105 0.006 1.734c SMA EES 0.183 <0.001 2.852c

CPS SMA −0.030 0.348 0.482b SMA EET 0.257 <0.001 4.211c

CPS SMR −0.047 0.146 0.826c SMA EMS 0.032 0.410 0.404b

CPS EES 0.154 <0.001 2.533c SMA EMT 0.047 0.189 0.593b

CPS EET 0.227 <0.001 3.973c SMR EES 0.201 <0.001 3.361c

CPS EMS 0.002 0.909 0.027 SMR EET 0.274 <0.001 4.885c

CPS EMT 0.017 0.708 0.226a SMR EMS 0.049 0.181 0.654b

CPT SMA −0.134 <0.001 2.099c SMR EMT 0.064 0.068 0.850c

CPT SMR −0.152 <0.001 2.554c EES EET 0.074 0.203 1.223c

CPT EES 0.049 0.330 0.778b EES EMS −0.152 <0.001 1.947c

CPT EET 0.123 0.025 2.053c EES EMT −0.137 0.001 1.739c

CPT EMS −0.103 0.004 1.321c EET EMS −0.225 <0.001 2.994c

CPT EMT −0.087 0.016 1.117c EET EMT −0.210 <0.001 2.770c

SMA SMR −0.017 0.607 0.284a EMS EMT 0.015 0.625 0.168

The comparisons with a p-value <0.05 are shown in bold.
aSize’s effect small.
bSize’s effect medium.
cSize’s effect large.

TaBle 3 | Optimization and temporal information results.

N 0 1 2 3 4 5 6 7 8

TCPSN 0.725 0.109 0.142 0.134 0.094 0.069 0.053 0.048 0.039
TSMRN 0.703 0.74 0.763 0.737 0.734 0.74 0.733 0.757 0.76

Bold font indicates the best result for each approach.
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We used the Zero Substitution method again to study the 
importance of each feature (see Figure  7). These results cor-
respond to the mean across all channels, but the results for each 
independent channel are very similar to the mean, especially in 

the EEG. The highest value in the EEG is for the first frequency 
band (1–4  Hz) with a weight of 22.1%, while the minimum 
corresponds to the second band (5–8 Hz) with a weight of 3.1%. 
In the case of the EMG, the maximum value corresponds to 
WAMP with a weight of 16.5%, while the minimum corresponds 
to SSM with a weight of 1.4%. As a mean value, the EEG has a 
weight of 5.4% and the EMG of 5.8%, which is coherent with 
the previous result.

The topological distribution of channel importance, accord-
ing to the two methods, Zero Substitution and SPoC, is presented 
in Figure  8. In the case of the Zero Substitution method, the 
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FigUre 5 | relative importance for each channel. Dark gray bars represent the results using Goh’s method. The light gray bars represent the Zero Substitution 
method. MG1, EMG2, EMG3, and EMG4 correspond to the upper trapezius, lower trapezius, deltoideus, and pectoralis major, respectively.

FigUre 6 | The accumulated relative importance for different configurations of TsMrN. In the case of TSMR0, only EEG (darker blue) and EMG (lighter 
blue) are present. In the rest of the configurations, the added bars correspond to the added time information. For example, in TSMR1, the bar in the top corresponds 
to the previous reconstructed point. In the case of TSMR8, there are eight bars corresponding to the previous reconstructed points plus the EEG and EMG.
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values for the mean correspond to those presented in Figure 5. 
The SPoC method, similar to the independent component 
analysis, returns a number of spatial filters equal to the number 
of variables, in this case 16. For this analysis, we took into 
consideration only spatial filters with a higher correlation with 
the output signals.

DiscUssiOn

Motion reconstruction
This study demonstrated that it is possible to reconstruct the 
hand’s position from non-invasive technologies and without 
using EMG along the arm. Figure  9 shows the reconstruction 
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FigUre 7 | relative importance for each feature. The first 10 bars 
correspond to the EEG features, while the last 8 correspond to EMG.

FigUre 8 | Topographical representation of the variable importance for two different methods. For each method, the importance for the three dimensions 
and the mean are presented. Each of the methods has different scales. Therefore, the colors in the map are relative to each method.
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using different methods and dimensions. We can see that the 
reconstruction precision is similar for the three dimensions. In 
both TCPS0 and TSMR0, the reconstructed waveform is similar 
to the original signal. Nevertheless, in the reconstructed signals, 
there seem to be noise with high frequency components, which 
generate most of the error. Considering the low CVs between the 
speed and the error, the speed does not relate to the error. Using 
the TSMR6 shows a softer reconstruction. The high frequency 
components disappear; instead, the reconstructed waveform is 
also simpler, showing a more static behavior.

It is important to notice that most of the motions were repeti-
tive in this experiment, i.e., the same motion was repeated several 

times. This fact, in addition to the importance that the TSMRN 
approaches give to the previous estimated steps (Figure 6), leads 
us to think that the system may be adapting to the repetitive 
motion, more than the intentions of the subject. Therefore, a real-
world application of the same methods may fail to reconstruct 
the trajectory.

The results of the TCPSN approaches are not as good as 
those of the TSMRN, which is probably due to an over-fitting. 
Compared with the TSMRN approaches, the TCPSN is likely to 
give a large amount of variable importance to the previously 
estimated points during the training phase. In the case of the 
TSMRN approaches, the temporal information is added in a linear 
regression layer, i.e., a simpler approach, which is less likely to be 
over-fitted. Nevertheless, we have to note that using the temporal 
information helps to reduce the noise in the reconstructed signal. 
Consequently, a method that efficiently takes into account the 
previous estimated points should be found.

information importance
EEG vs. EMG
The results from Table 1 and Figure 4 suggest that the EEG and 
EMG systems carry different information, and it is not possible 
to reach a higher CV without both systems. The results show 
that the best approach is SMR for 10 out of 16 subjects. Even 
if the difference between EMS and SMR is not significant, the 
results in Table 2 suggest that a higher number of subjects may 
demonstrate so. These results, in addition to those presented in 
Figure 6, suggest that even if the EMG carries more movement-
related information than the EEG, the EEG still provides extra 
information needed to improve the reconstruction. With the data 
from Table 1, it might seem that both SMR and CPS are similar 
predictors, but we can see that SMR is more robust by looking at 
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FigUre 9 | reconstruction of the signal using different methods. From bottom to top, TCPS0 for the x dimension, TCPS0 for the y dimension, TCPS0 for the z 
dimension, TSMR0 for the y dimension, and TSMR6 for the y dimension. In all the cases, blue lines indicate the original movement and red lines the reconstructed. 
Dotted vertical lines indicate different phases (described in Figure 1). The amplitude is normalized so it has a mean of zero and SD of 1. The data are from subject #10.
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Table 3. The TSMRN and TCPS0 approaches have a higher CV 
than the state of the art (Lv et  al., 2010; Robinson et  al., 2013; 
Kim et al., 2014). In the case of the TCPSN approaches, the CV 
values drop considerably (below 0.1), which makes the system 
completely unusable.

Channel Importance
The analyses that we performed to calculate the channel impor-
tance provided different results. Goh’s method shows almost no 
variation between channels, which is not coherent with other 
studies (Bradberry et  al., 2010). Also, the Zero Substitution 
method suggests that the EMG has higher importance, coherent 
with the results already discussed, while Goh’s method suggests 
the opposite. Altogether, we assume that the Zero Substitution 
method is more representative of the real channel importance. 
The results from Goh’s method may come from the theoretical 
background of such a method. In this case, the only things taken 
into consideration are the weights of the network. Since every 
feature has a similar importance for every channel (as discussed 
for Figure 7), the sum of weights for each channel tends to be 
the same. Analyzing the importance of each EMG electrode for 
each dimension shows that there is variation between them. 
This suggests that the locations of the EMG electrodes are very 
important, and that using too few or placing them incorrectly, 
may lead to one of the dimensions not being reconstructed cor-
rectly. Therefore, a further study should be done to analyze which 
are the best positions for the EMG electrodes, and how many are 
necessary to correctly reconstruct the hand’s position.

Topographical Distribution
We proposed a novel method to calculate the topographical 
activation and distribution, which provided very different results 
from the SPoC method. We have to take into consideration that 
the SPoC method finds linear relations between the EEG signal 
and the hand’s position, while the Zero Substitution method 
represents the importance of each channel for the ANN, which is 
highly non-linear. Thus, the SPoC method shows a more uniform 
distribution, granting higher importance to the frontal–lateral area 
than the occipital–middle area. This corresponds to the premotor 
cortex and the primary motor cortex, as expected. On the other 
hand, the Zero Substitution method results in a more heteroge-
neous distribution. In this case, the distribution for x, y, and z 
dimensions are different among them, each showing an electrode 
(or group of them) with higher importance than the rest. For the 
x dimension, the CP3 and the C3 seem to be the most important. 
For the y dimension, C3 is the most important, while for the z 
dimension, CP5, C3, and C1 seem to create the most important 
hub. This kind of result may suggest that different motions are 
related to different specific parts of the brain. However, in this 
study, only 16 electrodes were used, and they cover a wide area, 
from the frontal to the occipital part. A study with a higher den-
sity of electrodes should be conducted to see whether the results 
can be reproduced. In Bradberry et al. (2010), the analysis done 
with a higher density of electrodes (64) showed different results, 
whereby CP3 was the most important electrode, but, in this case, 
the method used for calculating the importance of each electrode 
is based on a linear model (similar to an autoregressive model).
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Features Importance
Finally, we want to focus on the outcome of the analysis of the 
feature analysis (Figure  7), especially the results regarding the 
EEG. According to this result, the most important frequency 
band for predicting the position is 1–4  Hz. This corresponds 
to the delta waves. Generally, this band is associated with the 
sleep stage, while the beta band (16–30  Hz) is associated with 
movement. This relation arises from the increment in the 
amplitude of such bands during those activities. Nevertheless, 
it seems that even if there is an increase on the beta bands during 
the movement, the information of the position is carried on a 
different band. We also have to take into consideration that the 
association between bands and activities generally comes from 
a linear relation, while the Zero Substitution method provides 
highly non-linear relations. Altogether, we consider that it is 
possible to use the Zero Substitution method to discover non-
linear relations in the EEG that would remain hidden otherwise. 
The disadvantage of this method is due to the way that AAN 
works; the reason for those relations is not always clear.

Future Work
There are still many improvements to do in this field to be 
able to obtain a natural and precise reconstruction of the arm’s 
movement. In this study, several areas of improvement have 
been identified. First of all, the training should be changed. 
At present, the training requires a motion tracking device 
located on the subject’s hand. If we want to use this system for 
amputees, this is not possible. Therefore, a training system that 

does not require the subject to perform a complete real motion 
is needed. This could be, for example, a digital representation 
from which the subject can replicate the movement. Second, 
the use of closed-loop and biofeedback has shown great results 
in several areas, including BCI (Fernandez-Vargas et al., 2013). 
Thus, a feedback system should be included in the system to 
improve the usability and the CV. Finally, in order to gain more 
knowledge on the underlying processes in the body (both brain 
and muscle), a higher density of electrodes in both EEG and 
EMG should be used.
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