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Recent advances in image classification methods, along with the availability of associated 
tools, have seen their use become widespread in many domains. This paper presents 
a novel application of current image classification approaches in the area of Emergency 
Situation Awareness. We discuss image classification based on low-level features as 
well as methods built on top of pretrained classifiers. The performance of the classifiers 
is assessed in terms of accuracy along with consideration to computational aspects 
given the size of the image database. Specifically, we investigate image classification 
in the context of a bush fire emergency in the Australian state of NSW, where images 
associated with Tweets during the emergency were used to train and test classification 
approaches. Emergency service operators are interested in having images relevant to 
such fires reported as extra information to help manage evolving emergencies. We show 
that these methodologies can classify images into fire and not fire-related classes with 
an accuracy of 86%.
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InTRoDUcTIon

In times of crisis, it is increasingly common for the public to use social media to broadcast their 
needs, propagate news, and stay abreast of evolving situations (Landwehr and Carley, 2014). 
Situation awareness during disaster management and emergency response is an evolving area for 
research. In this context, situation awareness relates to picking up sensory cues from the environ-
ment, interpreting said cues, and forecasting what may occur (Endsley, 1995). The ubiquity of social 
media platforms presents an opportunity to harness developing information to improve situation 
awareness for management and response teams.

With advances in natural language processing (NLP) technologies, attention has been given to 
research and development for extracting relevant information from streaming data such as Twitter. 
For example, Sen (2015) investigates finding tweets that do not reflect user sentiment using NLP. 
Varga et al. (2013) propose methods for matching problem reports to aid messages while Tweet4Act 
(Chowdhury et al., 2013) filters for irrelevant tweets. Power et al. (2014) have developed a system 
for processing large volumes of Twitter data using language models to identify Tweets of interest to 
emergency managers.
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An aspect of social media in relation to disaster management, 
which has so far received little attention, is images. Images have 
the potential to provide new insights on top of the text-derived 
intelligence in tweets, giving a rich and contextual information 
stream in crisis situations. For example, images of fires provide 
an immediate cue to crisis coordinators about an event allowing 
them to react appropriately. Images provide a less ambiguous 
insight into a situation compared to subjective textual descrip-
tions. An image can show the size of the fire and also provide clues 
to environmental conditions such as weather conditions and the 
potential fuel load in the vicinity.

To our knowledge, most social media monitoring tools cur-
rently in use for emergency management purposes target images 
based on the text associated with them. While this is often the 
case, we wanted to investigate if the images could be processed 
directly without relying on the associated text to identify high 
value images depicting fire events. The contribution provided 
by this paper is the application of well-known state-of-the-art 
image classification approaches in a new field, namely, that of 
Emergency Situation Awareness (ESA).

This paper is organized as follows. First, we present back-
ground information describing the task of situation awareness for 
emergency events. We then provide examples of how this is cur-
rently being addressed and describing issues in image classifica-
tion. A motivating case study is then presented, which includes a 
description of the images collected from Twitter relating to a bush 
fire in Australia that we have used in our work. We then outline 
the image classification approaches we have investigated includ-
ing details of their implementation using the Spark framework. 
We have also examined a classification approach that utilizes a 
pretrained deep neural network-based classifier. We conclude 
with a discussion of the results comparing the four classification 
approaches examined.

BAcKgRoUnD

emergency Situation Awareness
In Australia, the State and Territory governments are responsible 
for emergency management and coordination during crisis 
events. Agencies such as the New South Wales Rural Fire Service 
(NSW RFS) and the Victorian Country Fire Authority are respon-
sible for managing bushfires in rural areas. These agencies have 
map-based web sites showing warnings and advice concerning 
fire events in progress. The information reported includes the fire 
alert level, the location, the severity, its status (for example, “con-
tained” or “out of control”), when an update was last reported, 
and details of the response activities underway and sometimes 
specific advice for those in harm’s way.

The usefulness of information obtained from the public is 
recognized by the various fire agencies. The adoption of social 
media in our society is an opportunity for emergency managers to 
utilize this new communication channel as a source of situational 
awareness during crises events. However, to date, this opportu-
nity is not fully realized due to a number of factors. For example, 
a survey of U.S. public sector emergency managers (Hiltz et al., 
2014) identified the following issues as the main barriers to using 
social media: limited personal time to work on social media; 

lack of organizational policies and guidelines for social media 
use; and concern over trustworthiness of social media data. Our 
work aims to address the trustworthiness issue for large-scale fire 
emergencies and to develop tools that help users quickly identify 
relevant social media content.

As reported in Power et al. (2015), we undertook a require-
ments gathering exercise in collaboration with the NSW RFS 
to better understand how they would like to use social media 
to gather evidence of fire events from the general community. 
A significant requirement was the ability to find relevant “high 
value” images such as those with smoke plumes. This collabora-
tion led to the customization of our ESA tool (Power et al., 2014) 
that provides all-hazard situation awareness information for 
emergency managers using content gathered from Twitter. This 
preliminary work was based on our earlier attempts at identify-
ing images of interest, which relied on filtering the tweet message 
text using keywords and machine learning text classifiers (Power 
et al., 2013). The aim was to identify relevant images to help over-
come the trustworthiness issue mentioned above. If there is an 
image to support the description of a fire underway, it improves 
the credibility of the information. These images may also provide 
useful information to the fire responders by assessing the color of 
the smoke, the extent of plume, and the possible speed of the fire, 
as well as providing evidence of the wind speed and direction.

This became out next task: how to identify such “high value” 
images that are relevant to users in these fire agencies. The cur-
rent tool relied on the user associating descriptive text with their 
images. Now, we wanted to explore if the images themselves 
could be processed so that we do not have to rely on the text 
descriptions.

Related Work
There are other social media monitoring tools similar to our 
ESA platform. Some are focused on specific disaster types, such 
as earthquakes (Sakaki et al., 2013; Avvenuti et al., 2014), floods 
(Holderness et al., 2015), small-scale incidents such as car acci-
dents, urban fires, or shootings (Schulz et al., 2013), or are similar 
to ESA in that they detect and monitor different disaster events 
or crisis management issues (Terpstra et  al., 2012; Chowdhury 
et al., 2013). They are also not all based on Twitter. Some make 
use of other social media sources, such as Facebook, YouTube, 
Instagram, and Flickr.

Fundamental to realizing the potential of identifying “high 
value” images is the ability to understand the content of an image 
using an automated process. Image classification is a topic receiv-
ing considerable attention in the machine learning and computer 
vision communities. New methods are being developed to solve 
problems in many application areas, such as biomedical imaging 
(Zhang et  al., 2015, 2016), biometry (Gaoa et  al., 2015), video 
surveillance (Chamasemani and Affendey, 2013), remote sens-
ing (Al-doski et al., 2013), and industrial inspection (Jaffery and 
Dubey, 2016). One of the key outputs of an image classification 
system is a class label for an image. To achieve this output, a 
system would typically need to automatically extract a feature set 
from an image and use a machine learning algorithm, developed 
on test data, to determine such a class. Typical image features 
describe color, texture, or shape and can be represented at global, 
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block-based, or region-based levels. Tian (2013) provides a 
review of the current state of feature extraction and representa-
tion techniques. Following on from the development of a feature 
set, numerous classification techniques can be employed in a 
supervised machine learning framework (Kotsiantis, 2007). Deep 
learning (Schmidhuber, 2015) has underpinned many recent 
advances in image classification. There is a growing body of deep 
neural network architectures for image classification being made 
available. Among them are pretrained classifiers that can be 
employed to classify images via a web browser. These classifiers are 
trained on enormous image databases, such as ImageNet (Deng 
et al., 2009), and can provide a viable alternative to developing 
one’s own classifier on an image dataset.

With the growing attention given to image classification, many 
cutting edge approaches are being made available to practitioners 
in a variety of languages and environments. The OpenCV library 
of computer vision tools has, among other approaches, a guide 
to implementing a cascade of boosted classifiers working with 
Haar-like features (Dawson-Howe, 2014). VLFeat is another 
open source computer vision library written in C, which makes 
available an image classification approach based on visual word 
dictionaries and support vector machines (SVMs) (Vedaldi and 
Fulkerson, 2008). DLib is a C++ machine learning library, which 
can perform image classification using a histogram of gradients 
approach (King, 2009). Furtado et  al. (2010) have developed a 
genetic algorithm approach to image classification within the 
Matlab environment. The combination of sci-kit learn (Pedregosa 
et al., 2011) and skimage (van der Walt et al., 2014) libraries for the 
Python language also underpins a number of implementations 
of image classification approaches. For example, Keras provides 
a convolutional neural network approach (Chollet, 2015) while 
(He et  al., 2015) present a deep residual learning framework. 
Indeed, deep learning frameworks are becoming widely available 
for image classification problems, such as Caffe (Jia et al., 2014) 
and Tensorflow (Abadi et  al., 2015). Along with providing the 
framework to carry out deep learning approaches directly on a 
practitioners own image data set, these frameworks also offer pre-
trained classifiers. These are trained on massive image data bases 
containing thousands of different objects. A user simply needs to 
feed an image to the classifier to receive a predicted label or labels.

The following pieces of work relate to the use of images for 
ESA and highlight the lack of research in this area. Yang et al. 
(2011) describe a multi-source data fusion approach to crisis situ-
ation reporting. One component of the approach involves image 
classification via low- and mid-level feature extraction followed 
by multiple correspondence analysis. They establish their frame-
work by classifying Flickr images into one of two subcategories, 
such as sea grass damage versus death to animals, within the crisis 
context of an oil spill. Peters and Albuquerque (2015) establish 
that the presence of images in crisis-related messages or tweets 
is an indicator of geographical proximity to the event. They 
postulate that the existence of an image could be used as a proxy 
for relevance to improve situational awareness. Data from social 
media sources during a flooding event are used in this study. Ilyas 
(2014) presents a system designed to take advantage of image data 
by scraping tweets and the links therein for images and then using 
machine learning to classify them. They use color histograms 

and Haralick features (Haralick et al., 1973) on segments in each 
image. The features are then used to discriminate between images 
containing or not containing damage from hurricanes using 
Naive Bayes and SVMs.

Our research investigates the use of a state-of-the-art image 
classification scheme based on the Pyramid Histogram of Words 
(PHoW) (Lazebnik et al., 2006) features along with SVMs. We 
detail how this can be employed on a large database of images 
in a useful time frame using Apache Spark (Zaharia et al., 2010), 
an open source cluster computing framework. We also contrast 
this to the use of a pretrained image classification scheme devel-
oped on the ImageNet database. Results are reported for a 5975 
strong image database developed around images associated with 
Australian bush fires.

pRelIMInARy WoRK

case Study
Our investigation into image classification methodologies has 
been chiefly motivated by work done by Power et al. (2015), who 
developed a monitoring system for tracking tweets describing fire 
events. Their work presents a case study of a bush fire event in 
NSW, Australia, which occurred in October of 2013. During this 
time, there were over 100 active fires in NSW. During this study, 
it was identified that images were a potentially highly valuable 
source of information. Being able to identify images that are 
related to fire in an automated fashion would be an important 
capability within their monitoring system.

Data
The authors gathered all the tweets published in NSW during 
October 2013 and examined this content to determine if there 
was useful information relating to the fires in the Blue Mountains 
region. This included searching for tweets that contained 
fire-related keywords (such as “fire” or “smoke”), focusing on 
a specific geographic region of interest, ignoring retweets, and 
manually inspecting the content found. The authors were then 
able to identify 6214 such tweets, which also had an associated 
image. Duplicate images were then removed. These images were 
then manually inspected and placed into two groups: “fire” or 
“not-fire” based on their potential usefulness to emergency 
services in the event of a bushfire. This labeling process was 
undertaken by first deciding what constitutes a relevant fire 
image. The criteria used was that at least one of the following 
features had to be present: flames (bush or grass fire with visible 
flames, house, other structure or vehicle fire, or flames at night), 
smoke (smoke plume or haze), firefighting response (firefight-
ing personnel and equipment such as planes, helicopters, and 
trucks), or burnt remains (house, structure, vehicle, or bushland). 
The result was a collection of 3851 fire-related images and 2124 
not related to a fire, giving a total of 5975 images. Examples are 
shown in Figure 1 below.

MeThoDology

This section details the image classification approaches we have 
investigated in the context of image-based situational awareness. 
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FIgURe 1 | Various images from our database compiled from fire-related tweets. Images (A–c) are manually grouped into a “fire” category, while (D–F)  
are “not-fire” images based on their potential usefulness to emergency services. The tweets for these images can be found at: http://twitter.com/NoobNelson/
statuses/385693129984061440; http://twitter.com/auxesis/statuses/391778476933410816; http://twitter.com/KAZMAC2/statuses/391772236866019330;  
http://twitter.com/FireworksSydney/statuses/391774856175312896; http://twitter.com/waxinggibberish/statuses/391807106220687360; and http://twitter.com/
JoYohana/statuses/391003278411968512.

4

Lagerstrom et al. Image Classification to Support Emergencies

Frontiers in Robotics and AI | www.frontiersin.org September 2016 | Volume 3 | Article 54

First, we present an image classifier based on the PHoW feature 
space combined with a SVM classifier. Second, we discuss how 
this classifier was implemented using the Spark framework given 
the need to rapidly build models in the face of a developing 
crisis. Lastly, we describe a classification approach that utilizes 
a deep neural network-based classifier, which is pretrained on 
an enormous image database. Our intention in exploring these 
methodologies was to assess how a classifier based on low-level 
image features compares to that of a pretrained classifier, in the 
context of the database of images discussed above.

phoW with SVMs
To describe this approach, we begin by describing the scale-
invariant feature transform (SIFT) (Lowe, 2004). SIFT is a means 
for detecting and characterizing localized areas in images and 

is invariant to scale and orientation. The feature descriptor for 
a point of interest in an image is built up from histograms of 
local gradient directions. Sixteen histograms, with 8 bins each, 
are computed for each point, giving a feature vector of length 
128. Points of interest can be automatically detected, but for this 
implementation, we sample the image at regular intervals in a 
grid formation. This is referred to as the dense SIFT feature set 
for an image.

Pyramid Histogram of Words is an extension on Bag of 
Words (BoW) models (Salton and McGill, 1983). A BoW for 
a document, in the context of language processing, is a sparse 
vector containing the frequencies of the document’s words over 
all the words in the dictionary. An analogous representation can 
be built for images. Image features are first extracted and can 
be thought of as words. A dictionary is then built by clustering 
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all of the features over the collection of images. For BoW, the 
image features are the dense SIFT feature set described above. 
The assembly of dense SIFT features over a collection of images 
is then clustered using the k-means approach to create a diction-
ary. The need for clustering to form a dictionary, as opposed 
to simply using the whole collection, is that features are often 
numerically unique. The BoW features can now be determined 
by calculating the frequencies of feature sets in an image over 
the dictionary, which simply amounts to cluster membership. 
This gives us an indication of whether and how often a particular 
feature occurs in an image. However, we have lost the spatial 
context of the particular feature. PHoW seeks to address this 
issue by computing the BoW features for image segments over 
multiple spatial scales. The method partitions an image into 
increasingly fine segments. The BoW features can then be cal-
culated for each of the local segments and finally concatenated 
to form the PHoW feature for the image. The final stage of the 
approach is classification based on the PHoW feature sets. For 
this, we employ L2-loss linear SVMs as a reasonable approach to 
a large-scale classification with sparse data.

The choice in this combination of feature set and classifier 
was not only motivated by its performance as an image classi-
fier but also its convenient availability within OpenIMAJ (Hare 
et  al., 2011). OpenIMAJ is an open source set of Java libraries 
and tools for multimedia content analysis and content generation. 
OpenIMAJ is very broad and contains everything from state-of-
the-art computer vision (e.g., SIFT descriptors, salient region 
detection, face detection, etc.) and advanced data clustering, 
through to software that performs analysis on the content, layout, 
and structure of webpages.

Spark
Despite the ease of access to the PHoW with SVMs approach via 
OpenIMAJ, performance in terms of the time it takes to build a 
classifier was a serious issue. Initial experiments to build a classi-
fier on a small set of 120 images took in the order of 6 h. This kind 
of time frame would make operating this kind of methodology in 
a real world setting useless as classification time scales up with a 
training sample size. In recent years, a large number of technolo-
gies have been developed to enable data-intensive computing, 
including Apache Spark. Spark originated at the University of 
Berkeley and is a fast and general engine for large-scale data pro-
cessing maintained by the Apache Software Foundation. Machine 
learning algorithms that are employed in image classification are 
also computationally intensive. Spark lends itself well to machine 
learning as it supports fast in-memory computing and iterative 
querying of data. MLlib is Spark’s scalable machine learning 
library (Meng et al., 2015). It consists of common learning algo-
rithms and utilities, including classification, regression, cluster-
ing, collaborative filtering, and dimensionality reduction. Spark, 
including MLlib, provides APIs in Java, Scala, and Python, which 
makes it easy to integrate with an existing Java application that 
utilizes OpenIMAJ for image feature extraction and classification.

A Spark application consists of a driver program that runs the 
user’s main function and executes various parallel operations on 
a cluster. The main abstraction that Spark provides is a resilient 
distributed dataset (RDD), which is a collection of elements 

partitioned across the nodes of the cluster that can be operated 
on in parallel. One way to create an RDD is by parallelizing an 
existing collection in the driver program. Subsequently, opera-
tions applied to RDDs are executed on a cluster. RDDs support 
two types of operations: transformations, which create a new 
dataset from an existing one, and actions, which return a value to 
the driver program after running a computation on the dataset. 
Finally, RDDs can automatically recover from node failures.

We developed a Spark application in Java that implements 
the image classification approach described above. Most of the 
OpenIMAJ methods utilized by this approach could not be used 
straightforwardly in distributed transformations of Spark RDDs 
as OpenIMAJ objects are not serializable. To overcome this, we 
created container classes that implement the Serializable interface 
and encompass instantiation of associated OpenIMAJ classes and 
calls to their methods. Objects of such container classes could 
be passed over the network, saved, and restored (deserialized); 
therefore, they could be used in Spark transformations.

We delegated the data-intensive tasks of loading images and 
the subsequent extraction of dense SIFT features to a “big data 
cluster” – a dedicated hardware cluster intended to support big 
data related research. Its specifications are described in Section 
“Results” below. In the training phase, MLlib’s k-means clustering 
was applied to SIFT features extracted from a small, randomly 
selected subset of the training images. The MLlib implementation 
is based on a highly scalable version of k-means called scalable 
k-means++ (Bahamani et  al., 2012). The PHOW features were 
calculated on the cluster as well. BoW features were computed 
from four non-overlapping image segments and concatenated to 
form a resulting image feature vector. Finally, all the image feature 
vectors were returned as an array to the driver program to train 
an SVM classifier locally. The OpenIMAJ linear SVM is based 
on LIBLINEAR, which is efficient on large sparse datasets (Fan 
et al., 2008). We used L2-regularized L2-loss support vector clas-
sification with C = 1. After reducing an image to a 1200-element 
feature vector (given k = 300 in k-means clustering), image clas-
sification was not a big data problem anymore, and an overhead 
cost of using distributed computations would possibly outweigh 
its gains. However, it should be noted that MLlib contains a 
distributed implementation of SVM that could be used in place 
of the local classifier provided the training set is very large.

pretrained classifiers
The existence of enormous image databases, such as ImageNet, 
underpins many advances in image classification technologies. 
Large volumes of clean, annotated images are excellent data 
sources for data hungry machine learning approaches to image 
classification such as deep learning. ImageNet runs an annual 
challenge in which researchers compete in image classification 
tasks, with researchers often making available their classifiers to 
the public in either open or closed format.

We have employed two of these classifiers as components 
of a solution to our image classification task. In both cases, 
the classifiers can be executed to provide a number of possible 
classes or labels for any given input image. The first classifier we 
discuss is OverFeat (Sermanet et al., 2014). This classifier uses a 
multiscale, sliding approach within a convolutional network for 
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TABle 1 | First 10 labels produced by clarifai’s labeling system for the  
6 images in Figure 1, respectively.

Light, fire, hot, sunset, 
sun, silhouette, warm, 
people, flame, heat

Landscape, mountain, 
sky, valley, nobody, 
travel, nature, outdoors, 
autumn, desert

Smoke, rainbow, 
landscape, rain, 
nobody, tree, nature, 
mist, sky, outdoors

(Figure 1A) (Figure 1B) (Figure 1c)
Explosion, night, 
fireworks, carnival, 
nobody, fire, new year, 
party, light, burst

Illustration, vector, 
cartoon, art, humor, 
design, outline, clip, 
ancient, line

Sunset, sky, sunrise, 
evening, sun, sky, 
landscape, morning, 
beach, nature

(Figure 1D) (Figure 1e) (Figure 1F)
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image detection, localization, and classification tasks. It won the 
2013 ImageNet challenge for localization. The source code for the 
classifier was written is C++ and makes use of the OpenBLAS 
(Qian et al., 2013) and ImageMagick (Still, 2005) libraries. The 
source also comes with weights information, which allows the 
user to classify images with respect to the algorithm trained on 
the ImageNet database. The second classification framework we 
assessed was Clarifai (Zeiler et al., 2011). Clarifai is a closed source 
classifier that is accessed via a web API using Python hooks. 
The classifier produces 20 possible labels for each input image. 
Clarifai won the 2013 ImageNet challenge for classification and is 
trained on both the ImageNet database and extra images curated 
by its creators.

While these pretrained classifiers return labels that are impres-
sively accurate over a range of images from animals to food, the 
results that they produce for fire-related images are less than 
perfect. Executing the classifiers on our database of fire-related 
images and looking for labels, such as “fire” or “smoke,” yields 
fairly inaccurate results. For example, Table  1 shows example 
raw labeling results using Clarifai for the six images in Figure 1. 
However, given these classifiers return multiple labels per image, 
we can treat these labels as a feature space for a secondary classi-
fier. One way to construct such a feature space is, for every image, 
to create a presence/absence vector for each possible label in the 
classifier (which is of the order of 10,000 labels). This of course 
would create a lot of redundancy, so we can reduce the dimen-
sionality of such a feature space by retaining those labels which 
occur in more than q% of the raw labels for each image, in each 
class (“fire” or “not-fire”). To illustrate, with reference to our fire 
image database discussed earlier, consider the output of running 
Clarifai on the whole database. This would result in 20 labels for 
each of the 5975 images. The “fire” class of images, which has 3851 
images, yields 1374 unique labels. The “not-fire” class produces 
2267 labels. If we compute the frequency of these labels and retain 
those which occur in more than q = 5% of the observations for 
each class, we get 87 labels for “fire” and 81 for “not-fire.” The 
combined unique set of labels for both classes totals 133. The 
presence/absence of these unique labels for each image can now 
form a reduced dimension feature space. The selection of p was 
determined empirically to be 5% for our methodologies. This was 
done by assessing the classification accuracy over a range of val-
ues and examining at which point the accuracy was significantly 
compromised by the reduced dimension.

Now that a suitable feature space has been constructed, a clas-
sification algorithm can be employed to derive a class for each 

image. There exists many such classification schemes to do so, 
such as linear discriminant analysis, neural networks, SVMs, 
etc. We opted for using a random forest model due to its good 
trade-off between accuracy and model interpretability. It was not 
our intention to assess the relative merits of various classifiers in 
this context but to show how pretrained classifiers can be adapted 
to the requirements of the image database presented earlier. In 
terms of parameter settings for the random forest, the number 
of trees parameter was set to 500, while the number of variables 
randomly sampled as candidates at each split was set to 3. We 
used R’s randomForest library to carry out the classification work 
at this step (Liaw and Wiener, 2002).

operationalization
In this section, we describe how the methodology and the tech-
nologies presented above can be used to implement an online 
(streaming) image classification system for the ESA application. 
The basic assumption is that we can perform the resource inten-
sive task of image tagging (human intensive) and classification 
model training (compute intensive) offline, and that classification 
of images with the model is relatively fast and inexpensive and as 
such suitable for online application.

Figure  2 presents a conceptual architecture of such an 
implementation. The tweets and related images are captured 
through Tweeter Public API with the “Tweet and Image 
Capture” component (which is part of the ESA application) and 
published to a message queue (in the publish/subscribe model). 
The “Store Images Consumer” subscribes to incoming images 
and saves them together with metadata in the “Image Store” 
for offline processing. Once a sufficient number of images 
have been collected, a “Human Expert” (or many of them) is 
invited to label the images as “Fire”/“No fire” using a dedicated 
“Image Labeling” interface. The labels are saved together with 
the images. Once a sufficient number of images has been 
labeled, the “Classifier Training” process is invoked, which 
builds the classified model and saves its representation to the 
ESA database. The model can be then used by the “Streaming 
Image Classifier” consumer, which classifies the incoming 
stream of images and saves the assigned categories to the ESA 
database so that they can be used for searches, filtering, and 
alert generation. This process may be repeated as more labeled 
images become available to build better models and improve 
the performance of the classification.

The presented concept is very general and can employ the 
various methods and technologies described earlier. In particu-
lar, Apache Spark can be used in both streaming classifier (Spark 
Streaming) and model training component (Spark Core/Batch). 
As an example, we also present the conceptual implementation 
of the “PHoW with SVM” classifier in Figure 3. This diagram 
closely follows the description of “PHoW with SVM” classifier 
given in Section “PHoW with SVMs.” For each labeled image 
from “Image Store,” SIFT features are extracted from multiple 
local points and together they form an “Image feature set.” Image 
feature sets are stored in “SIFT Feature space” data store. Once 
this space is populated, “k-means clustering” is performed in 
SIFT feature space, and each image is assigned a cluster mem-
bership vector. Cluster membership vectors of all participating 
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FIgURe 3 | conceptual implementation of “classifier training” block with “phoW with SVM” classifier.

FIgURe 2 | conceptual architecture of the online image classification system.
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images form “PHoW Feature space,” on which the SVM Classifier 
is trained. The output is “Classifier model” that is stored in 
“ESA Database” to be used for streaming image classification 
(Figure 2). We have indicated in this diagram that computation-
ally and data-intensive operations could be performed using “big 
data” technologies.

ReSUlTS

In this section, we discuss the performance of the methodologies 
outlined with regard to the fire-related image data set described 
in Section “Data.”

Models
In this section, we report on four different methodologies. First, 
there are two methods based on the PHoW with SVM approach 
presented in Section “PHoW with SVMs.” The two methods 
differ based on their underlying SIFT feature sets in that one 
uses gray scale only, while the other uses color. We will denote 
these methods as PHoWG and PHoWC, for the gray scale and 
color variants of the PHoW with SVM method, respectively. We 
also report on the two methods based on pretrained classifiers, 
namely Clarifai and OverFeat, with a random forest second-level 
classifier, as described in Section “Pretrained Classifiers.” We refer 
to these as ClarifaiRF and OverFeatRF.
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TABle 3 | classification results for the six images shown in Figure 1. 

Image and truth phoWg phoWc clarifaiRF overFeatRF

Fire (Figure 1A) Not fire (0.47) Not fire (0.47) Fire (0.93) Fire (0.80)
Fire (Figure 1B) Fire (0.63) Fire (0.65) Fire (0.90) Fire (0.90)
Fire (Figure 1c) Fire (0.57) Fire (0.58) Fire (0.96) Fire (0.92)
Not fire (Figure 1D) Not fire (0.49) Not fire (0.48) Not fire (0.37) Fire (0.51)
Not fire (Figure 1e) Not fire (0.43) Not fire (0.43) Not fire (0.01) Not fire (0.01)
Not fire (Figure 1F) Fire (0.61) Fire (0.58) Not fire (0.29) Not fire (0.31)

The class is reported along with posterior probability of being classified as “fire.”

TABle 2 | performance results for the four classification approaches.

Model Recall precision Accuracy F1 Feature computation  
time (s)

Training time (s) classification time (s)

PHoWG 0.843 0.799 0.816 0.820 0.037 1008.00 0.0002
PHoWC 0.846 0.800 0.817 0.822 0.106 1726.77 0.0002
ClarifaiRF 0.915 0.833 0.866 0.872 1.83 12.67 0.06
OverFeatRF 0.904 0.802 0.841 0.850 1.05 12.18 0.06
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Training and Test Data
Each of the four models was trained on a stratified random sam-
ple of 2200 images from our image database described earlier. 
This gives us 1100 images from each of the “fire” and “not-fire” 
classes. Results were then reported on a test set derived from a 
stratified random sample of the remaining images of size 2000, 
with 1000 images from each class. We chose not to use the whole 
image database so as to retain a balanced sample from each class 
in both the training and test sets (note here, we have 2124 “not-
fire” images in our database, which is slightly larger than the 2100 
“not-fire” images used in our training and test samples).

computing
All methods were run on the big data cluster that supports 
Hadoop ecosystem technologies such as MapReduce, YARN, 
Spark, Pig, Hive, etc. The cluster consists of 14 worker nodes 
connected with a fast Infiniband network, each featuring 2× Intel 
Xeon E5-2660@2.20 GHz CPU (8 cores), 128-GB RAM and two 
additional nodes with the same specification acting as the cluster 
master and edge node, respectively.

performance
Performance of the various methodologies is assessed based on 
both accuracy and speed. We report on recall, precision, accuracy, 
and F1 score to quantify the correctness of the results (Sammut 
and Webb, 2011). The speed with which the results are derived is 
reported in terms of feature computation (per image), training 
time, and classification time (per image).

These results are summarized in Table  2. With respect to 
the correctness of classification, the ClarifaiRF methodology 
achieves the best performance with respect to recall, precision, 
accuracy, and F1 with scores of 0.915, 0.833, 0.866, and 0.872, 
respectively. In assessing the relative merits of these approaches, 
it is useful to bear in mind the context of use. For our data 
relating to images of bush fires, an emergency services operator 
would like to be alerted to images from social networks that may 
contain vital information relating to evolving emergency events. 

Operationally, this would mean passing images in tweets, which 
have been assessed as fire related based on their text content, to a 
classification algorithm. The algorithm would then report that if 
image is fire related or not. This could help the operator to assess 
the spread of the fire or if any new outbreaks are occurring. With 
this use case in mind, one would tend toward accepting more false 
positive reporting. For this reason, recall may be the most useful 
measure to consider.

With respect to the computation time of PHoWG and 
PHoWC, we have shown that implementing these methods using 
a distributed technology, such as Spark, notably reduced a model 
building (training) time: from hours to minutes on a much larger 
training sample size. For all methods, classifying a new image 
happens in real time.

observations
In Table  3, we present the individual classification results for 
the example images shown in Figure  1. The example images 
show three fire-related images and three not fire-related images. 
Shown is the ground truth class along with the predicted class and 
posterior probability for being in the fire class. The images were 
chosen to illustrate some of the issues with the results. Figure 1A 
is an open fire in a 44 gallon drum. This would be considered a 
fire hazard especially when fire bans are in place due to hazardous 
conditions. However, it is not a typical bush fire image, which 
shows smoke and trees. We can see that the PHoW approaches 
give borderline results and classifies the image into the not fire 
class. Figure 1B shows a landscape shot which contains a lot of 
smoke but no visible flames. All four methods classify this image 
correctly. Figure 1C is a reasonably close in shot of an active fire, 
with burning trees and smoke. Again all four methods report 
the correct class for this image. Figure  1D shows an image of 
fireworks, which is obviously not useful to an emergency services 
operator but may present issues to a classifier given the “fire” is a 
potential tag and that some explosions may look vaguely similar 
to flames. The PHoW classifiers report this correctly; however, it 
is a borderline result. The ClarifaiRF method reports correctly, 
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but its discrimination is not as strong as with other examples. 
The OverFeatRF method reports incorrectly with a borderline 
probability. Figure 1E is a bush fire-related cartoon that would 
be expected amongst tweets relating to a fire event, yet it would 
not be useful to emergency service operators. All four approaches 
classify this image correctly. Finally, Figure  1F is an outdoors 
landscape scene which is similar in content to some of the more 
typical bush fire images, yet has no smoke or flames. The two 
PHoW methods incorrectly classify this image as fire related, 
while the ClarifaiRF and OverFeatRF methods correctly classify 
them as not fire.

One of the useful aspects of the random forest classifier is 
its variable importance functionality which allows us to gain an 
insight into each variable’s contribution to the model. To do this, 
one can rank variables based on the mean decrease in accuracy 
of the model due to the omission of the variable. For example, 
with respect to the ClaifaiRF methodology, the top 10 variables 
(of the 134 used) are “sky,” “landscape,” “sunset,” “light,” “disaster,” 
“tree,” “sun,” “fire,” “road,” and “illustration.” Because Clarifai’s 
labels (or variables) are very generic, one can get a good sense 
of the type of image content that is driving the classification 
process. Interestingly, the “smoke” variable was ranked 19th.

In assessing the relative merits of these approaches, it is 
useful to bear in mind the context of use. For our data relating 
to images of bush fires, an emergency services operator would 
like to be alerted to images from social networks that may 
contain vital information relating to evolving emergency events. 
Operationally, this would mean passing images in tweets, which 
have been assessed as fire related based on their text content, to a 
classification algorithm. The algorithm would then report that the 
image is fire related or not. This could help the operator to assess 
the spread of the fire or if any new outbreaks are occurring. With 
this use case in mind, one would tend toward accepting more false 
positive reporting.

DIScUSSIon

We presented a novel application of some current image clas-
sification approaches to the area of ESA. The methodologies we 
investigated involved classification of images based on low-level 
features as well as features derived by image tagging method-
ologies built from pretrained classifiers. We discussed aspects of 
operationalizing the computation, given the size of our training 
libraries and using technologies for data-intensive computing. 

The methods were assessed in the context of a bush fire emergency 
in NSW Australia where image data was available relating to a 
particular event via Twitter. In this example, emergency service 
operators would like relevant images to be reported that may con-
tain important information. We showed that our methodologies 
could classify images into fire and not fire-related classes with an 
accuracy of 86%.

Further work is planned to compare the results of using the 
image classifier over tweets directly to find fire images of interest 
with our previous practice of filtering the tweets for fire-related 
keywords and then checking for attached images. We expect that 
the image classifier will find better results; however, this needs to 
be tested experimentally. We also plan to explore novel ways of 
presenting the images found to crisis coordinators. Our previous 
experience indicates that during emergency events, these people 
are time poor and under pressure to make informed decisions. 
They do not have the luxury of interacting with user interfaces 
to look for relevant social media content: it needs to be displayed 
immediately and with a priority that takes into consideration the 
current emergency context. This challenge is at the heart of situ-
ation awareness and is our goal for deploying our research with 
practitioners: getting the right information to the right people at 
the right time in the right format.
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