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In evolutionary robotics, populations of robots are typically trained in simulation before one
or more of them are instantiated as physical robots. However, in order to evolve robust
behavior, each robot must be evaluated in multiple environments. If an environment is
characterized by f free parameters, each of which can take one of np features, each robot
must be evaluated in all nfp environments to ensure robustness. Here, we show that if the
robots are constrained to have modular morphologies and controllers, they only need to
be evaluated in np environments to reach the same level of robustness. This becomes
possible because the robots evolve such that each module of the morphology allows
the controller to independently recognize a familiar percept in the environment, and each
percept corresponds to one of the environmental free parameters. When exposed to a
new environment, the robot perceives it as a novel combination of familiar percepts which
it can solve without requiring further training. A non-modular morphology and controller
however perceives the same environment as a completely novel environment, requiring
further training. This acceleration in evolvability – the rate of the evolution of adaptive and
robust behavior – suggests that evolutionary robotics may become a scalable approach
for automatically creating complex autonomous machines, if the evolution of neural and
morphological modularity is taken into account.

Keywords: evolutionary robotics, modularity, evolvability, evolutionary algorithms, embodied cognition

1. INTRODUCTION

Matarić and Cliff (1996) pointed out that the time necessary to evolve robots grows with the number
of environments in which the robot should behave correctly. Following their work, let f be the
number of free parameters in the environmental set and np be the number of features for each
of these free parameters. So, the total number of environments is nfp. (For example, if a robot
must behave appropriately in environments containing two objects (f = 2), and each object may
be small, medium, or large (np = 3), then there are nfp = 32 = 9 possible environments in which the
robot must perform correctly.) Thus, in order to evolve robots to perform complex behavior (which
means increasing np, f, or both) the number of environments the robot needs to be evolved in scales
exponentially.
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Pinville et al. (2011) presented one way to reduce the num-
ber of environments evaluated while still obtaining robust and
generalized controllers for evolved robots. Using the ProGAb
approach, they were able to successfully obtain robust and suc-
cessful controllers with better generalization abilities in less time
than other top methods. However, their work did neither look
specifically at the structure of the controller and morphology as
methods to reduce the necessary number of environments nor did
it categorize which environments should be trained on.

The work presented here demonstrates that morphological and
neural modularity is one possible way to reduce the number of
environments needed for evolving robust behavior.

Modularity is ubiquitous at all levels of biological organization,
from cells to distinct species. Explaining why such modularity
exists, and how it evolved, remains an important question in
biology. Much work has focused on how modularity evolves
in non-embodied systems, but relatively little work has focused on
the impact ofmodularity in evolving embodied systems. Thework
presented here contributes to this latter aim.

1.1. Non-Embodied Modularity
Wagner (1996) argued that a combination of directional and
stabilizing selection, acting on different parts of the organism’s
phenotype, should lead to modular developmental programs.
Suchmodularitywould enable evolutionary changes to that part of
the phenotype experiencing directional selection while retaining
the structure and function of the other parts of the phenotype
under stabilizing selection.

This theoretical argument was confirmed by a number of
computational experiments. Lipson et al. (2002) showed that
environmental change can be a catalyst for the evolution of
modularity. That work was followed by experiments in which
non-embodied Boolean networks (Espinosa-Soto and Wagner,
2010) or neural networks (Kashtan and Alon, 2005; Clune et al.,
2013) were evolved to perform various tasks. The tasks and fitness
functions were chosen in such a way as to favor networks that
computed partial results using separate genetic or neuralmodules;
changes to the fitness function over evolutionary time favored
networks that could rapidly change how those partial results were
combined. Thus, stabilizing selection came to bear on the partial
results, while directional selection acted on how those partial
results were combined.

More recently, it has been shown that selecting sparse networks
helps to favor the evolution of modular networks. Espinosa-Soto
and Wagner (2010) accomplished this by formulating a biased
mutation operator that favors low in-degree network nodes. Clune
et al. (2013) used a multi-objective approach, in which one
objective was to minimize the number of edges in the network.
Bernatskiy and Bongard (2015) showed that this relationship
between sparsity and modularity can be exploited to enhance the
evolution of modular networks by seeding the initial population
with sparse, rather than random, networks.

Modularity is a desirable property of artificial systems for a
number of reasons, beyond just the desire to create biologically
inspired artifacts. First, modular systems possess a form of robust-
ness: modular systems can more rapidly adapt to certain kinds
of changes in their environments, compared to non-modular

systems. Second, modular neural networks are better able to
avoid catastrophic forgetting than non-modular networks (Ellef-
sen et al., 2015). Catastrophic forgetting (French, 1999) is a
common problem in machine learning, whereby a learner must
forget something in order to learn something new. Third, complex
predictive models and dense, non-modular networks can suffer
from the pathology of overfitting: they fail to generalize to novel
environments (Kouvaris et al., 2015).Modular networks can avoid
overfitting by internally reflecting the modularity in its environ-
ment: it responds appropriately in a “new” environment, which is
actually just an unfamiliar combination of familiar percepts.

1.2. Embodied Modularity
A modular robot may likewise be robust and avoid catastrophic
forgetting and overfitting, but there are additional challenges that
arise when evolving embodied agents compared to non-embodied
networks and morphologies.

Embodied cognition is a particular approach to the under-
standing of intelligence, which holds that the body must necessar-
ily be taken into any account of adaptive behavior (Brooks, 1990;
Clark, 1998; Pfeifer and Bongard, 2006). One repercussion of the
embodied cognitive stance is that if neural controllers are evolved
for artificial embodied agents (i.e., robots), a given robot body
plan may facilitate or hinder the evolution of desirable traits. In
the context of modularity, previous work showed that there do
exist body plans in which modular neural controllers will evolve
(Bongard, 2011).

Follow-on work demonstrated that, given appropriate condi-
tions, evolution will find such body plans (Bongard et al., 2015).
However, in Bongard et al. (2015), the morphology itself was not
modular, only the neural networks that evolved to control it.

Here, we investigate another aspect of the relationship between
morphology and modularity: for a given task environment, must
both the body and neural controller be modular, and if so, in what
way? Before addressing these issues, however, wemust define both
neural modularity and morphological modularity.

1.3. Neural Modularity and Morphological
Modularity
In this work, we investigate robots controlled by artificial neural
networks. A common approach tomeasuring the amount of mod-
ularity in a network is to investigate its connectivity: a network that
has dense connectivity within subsets of nodes, and relative spar-
sity between those subsets, is said to bemodular (Newman, 2006).
Following this approach, we here investigate modular neural con-
trollers inwhich subsets of sensor, internal, andmotor neurons are
connected, but there are no synaptic connections between these
subsets.We compare these to non-modular networks inwhich any
sensor can influence any motor.

In a neural controller in which sensor information flows from
sensor neurons to internal neurons to motor neurons, this struc-
tural approach to modularity implies a functional repercussion.
If subsets of sensors and motors are completely structurally inde-
pendent, they will be functionally independent as well: changes
to a subset of sensors will only have an influence on a subset of
motors.
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Thus, we here define neural modularity in the following
manner.

1.3.1. Neural Modularity
A neural network with i sensor neurons S= {s1, s2, . . ., si} and j
motor neurons M= {m1, m2, . . .,mj} is defined to be modular if
every possible change to less than i of the sensors results in changes
to less than j of the motors.

Conversely, in a non-modular neural controller, it is possible
for a change to fewer than i sensors to influence the new values
of all j motors. It is possible that a non-modular neural controller
may internally extinguish certain sensor dynamics from reaching
some motors, but we disregard this case in the present work. This
results in a simplified, binary definition of modularity: either a
neural controller is modular or not. Here, we investigate robots
with both types of neural controller.

This approach to defining the modularity of robot neural con-
trollers suggests a similar approach for defining the modularity of
a robot’s body plan:

1.3.2. Morphological Modularity
A robot is defined to be morphologically modular if a change in
less than j of its motors results in a change in the state of the
world registered by at least one and strictly less than i of the robot’s
sensors.

One common definition of morphology is any agent subsystem
that mediates between its controller and its environment. More
specifically, when an agent acts, it alters its relationship with
its environment. If it is equipped with sensors, it can register
this change. The above definition of morphological modularity
captures the intuition that structural independence of the body,
like structural independence of a neural network, implies func-
tional independence: if a robot moves one part of its body that
is independent of the rest of its body, local sensors will register
the action, but more sensors on other morphological modules
will not.

Armed with these two definitions, one can investigate four
classes of robots:

1. those that are morphologically and neurally non-modular;
2. those that are morphologically modular but neurally non-

modular;
3. those that are morphologically non-modular but neurally

modular; or
4. those that are morphologically and neurally modular.

In this study, we evolve robots belonging to the first, second,
and fourth class. One can deduce that robots which belong to
the third class are functionally equivalent to those which belong
to the first class: if a morphologically non-modular robot moves,
its motion will affect all of its sensors. These sensors will then
affect all motors, regardless of whether its neural controller is
modular or not. Further, for this instance of the treebot, there is
no design of a robot of the third class with a completely modular
controller where both leaf sensors influence the motor neuron. If
the controller was modular, only one or none of the leaf sensors
would influence the motor neuron.

Although modular robots have been the focus of a number
of studies (Yim et al., 2007; Fitch et al., 2014), here we compare
morphologically modular and non-modular robots to investigate
a specific and new question: if modular and non-modular robots
are evolved in an increasing number of environments, are the
robots with modular controllers able to detect familiar percepts
combined in unfamiliar ways, and, with a modular morphology,
respond appropriately?

This question brings to light a challenge formodular, embodied
agents that modular, non-embodied systems do not experience.
Even if an embodied agent has a modular neural controller with
which it detects novel combinations of familiar percepts in a new
environment, once it moves, its perceptions will change, and the
environment may no longer “look” modular. We show here that
movement in a new environment continues to appear modular
from the robot’s point of view only if it also has a modular
morphology: it is free tomove in response to independent percepts
as it did previously, without disrupting the sensory signals arriving
at other morphological modules.

The methods employed for investigating this issue are
described in the next section. Section 3 reports our results, while
Sections 4 and 5 provide some analysis and concluding remarks,
respectively.

2. MATERIALS AND METHODS

This section describes the body plans of the simulated robots
(Section 2.1), their various controllers (Section 2.2), the task
environments they operatedwithin (Section 2.3), the evolutionary
algorithm used to optimize their controllers in those environ-
ments (Section 2.4), and the experimental design (Section 2.5).

2.1. The Robot Morphologies
Two robot morphologies were considered: one which is modular
and one which is non-modular. Figures 1A,B represent robots
with modular morphologies, while Figure 1C represents the non-
modular one.

Robots were instantiated as trees composed of hierarchically
branching segments. Both robot morphologies considered here
were composed of one root branch and two leaf branches. Each
branch had length 1, and the leaf branches were placed at 45°
angles from the base. The robot contained three joints: one con-
necting the base branch to the environment itself (the base joint),
and two that connect the base of each leaf branch to the tip of the
root branch (the leaf joints). In the modular robot, the leaves were
free to move independently of one another and the root was fixed,
whereas in the non-modular robot, the leaves were fixed and the
root was free to move.

In the non-modular robot, this was accomplished by instantiat-
ing the base joint as a rotational hinge joint and the two leaf joints
as fixed joints. In the modular robot, the base joint was fixed and
the two leaf joints were rendered as rotational hinge joints. The
base hinge joint movement was restricted to rotations of [−120°,
120°] and the leaf hinge joints restricted movement to rotations of
[−45°, +45°] around the vertical axis. These angles are relative to
the initial angle of the joint, which is treated as 0°.

The robots were designed in this way such that a single
parameter could dictate how modular the robot’s body plan
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FIGURE 1 | The controllers and morphologies for each of the three robots. The red diamonds indicate that branches connected at that position are fixed
relative to one another. Large blue circles indicate that the branches rooted at the circles are free to move independently of one another. Beige circles represent leaf
tips. The small circles represent neurons: blue neurons represent motor neurons, white neurons represent sensor neurons, and yellow neurons represent hidden
neurons. The modular robot is represented by (A) on the left, the mod-non-modular (B) is in the middle, and the non-modular robot is represented by (C) on the
right. Blow ups of the network structure are included. All hidden neurons and motor neurons have recurrent self-connections, which are not depicted. Further, all
connections except those with the sensor neurons are two-way. (D) is a legend showing the various types of joints and neurons.

was. If we define [−45α°, +45α°] as the range of rotation of
the leaf joints, [−120(1−α)°, +120(1−α)°] as the range of
rotation of the base joint, and restrict α to [0,1], then higher
values of α create more modular robots, with α= 0 and α= 1
corresponding to the maximally non-modular and maximally
modular robots investigated here. The robot with α= 0 is con-
sideredmorphologically non-modular according to the definition
above, and any robot with α > 0 is considered morphologically
modular.

2.2. The Robot Controllers
Three robot controllers were considered in this work. The first
makes the robot neurologically modular (Figure 1A), while the
second and third make the robot neurologically non-modular
(Figures 1B,C). All controllers contain two distance sensors (the
small blue circles in Figure 1), one in each of the two branches
of the robot’s body plan. These sensors emit a beam that enables
the robot to sense the distance from a branch to any objects in
the environment. The value returned by this sensor is the length
of the beam. The maximum length of the beam, if unobstructed,
was set to 10U, so the largest value the sensor neuron could
have is 10.

Controller M (Figure 1A) consists of a sensor neuron, a motor
neuron, and four hidden neurons in each leaf branch. The sensor
feeds into all of the hidden neurons, which are completely inter-
connected with each other. All of the hidden neurons also have
connections to the motor neuron, which also is connected back to
all of the hidden neurons. Finally, all of the hidden neurons and
the motor neuron are self connected, giving the M robot a total of
12 neurons and 50 synapses.

Controller MNM (Figure 1B) consists of two sensor neurons,
seven hidden neurons, and two motor neurons. The hidden neu-
rons are in a two-layer structure. The input from the sensors is
passed into each of the four neurons in the first hidden layer. They,

in turn, feed forward into the second hidden layer. The second
layer has synapses connected back to the first one and also forward
to themotor neurons. Themotor neurons are also connected back
to the second hidden layer. Finally, all of the hidden neurons and
the motor neurons are self-connected. Therefore, MNM has 11
neurons and 53 synapses.

Controller NM (Figure 1C) consists of two sensor neurons,
seven hidden neurons, and one motor neuron. The hidden neu-
rons are organized in a two-layer structure. The sensor values
input into the four neurons in the first layer, which then feed
forward into the three neurons in the second layer. The second
layer has synapses going back to the first layer and forward to
the motor neuron. The motor neuron is also connected back to
the second layer. Finally, all of the hidden neurons and the motor
neuron are self-connected. Therefore, NM has 10 neurons and 46
synapses.

During evaluation, each sensor neuron received the raw dis-
tance value from its sensor. The hidden and motor neurons were
updated using

ni = tanh

 ∑
nj∈Ini

wjinj

 (1)

where Ini is the set of incoming synapses to neuron ni andwji is the
weight of the synapse fromneuron nj to neuron ni. The hyperbolic
tangent function limits the hidden and motor neurons to floating
point values in [−1, +1].

Movement was controlled using proportional difference con-
trol. The values output by the motor neurons were scaled to the
range [−45, +45] and treated as desired angles. The rotational
velocity of a branch at each time step was thus determined by the
difference between the desired angle determined by the value of
the motor neuron in that branch (or at the root) and the current
angle of that branch (or root).
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2.3. The Task Environments
The robots were evolved for a simple embodied categorization
task: the robots were evolved to “point at” Type A spheres and
“point away” from Type B spheres (Figure 2). Each environment
that a robot was placed in contained a pair of spheres. Following
Matarić and Cliff (1996), this corresponds to two free parameters
(f = 2): the object on the left and the object on the right.

Three environment spaces were considered.
The first was the simplest consisting of a 2× 2 environment

space, giving four separate environments (Figure 3A). Each
sphere could be Type A or Type B (np = 2). For this environment,
the type A sphere had a radius of 3.5, and the type B sphere had a
radius of 0.5.

The second environment space contained 3× 3 environments,
meaning nine total environments to consider (Figure 3B). A
sphere could be one of two instances of Type A (either A or a)
or Type B. For this environment, space A had a radius of 3.5, a
had a radius of 0.5, and B was in the middle with a radius of 2.0.
Thus, for this environment space, np = 3.

Finally, the last environment space considered contained
4× 4= 16 different environments (Figure 3C). A sphere could be
one of two instances of Type A (A or a) or one of two instances of
Type B (B or b). For this environment space, spheres of type A, B,

a, and b had radii of 3.5, 2.5, 1.5, and 0.5, respectively. Therefore,
np = 4 for this environment space.

OpenDynamics Enginewas used to simulate the robots and the
environment. A time step size of 0.05 was used.

2.4. Evolutionary Optimization
The robots were trained using Age-Fitness Pareto Optimization
[AFPO; Schmidt and Lipson (2011)]. AFPO is a multi-objective
optimization algorithm, which is designed to maintain diversity
in an evolving population by periodically injecting new random
individuals into the population and restricting the ability of older
individuals to unfairly compete against younger individuals. In all
of the experiments reported herein, a population size of 40 was
employed.

Mutations in the population occurred in the form of choosing
a new weight for a synapse from a normal distribution with
mean of the current weight and a SD proportional to the absolute
value of the current weight. This mutation operator enables evo-
lution to rapidly incorporate high magnitude weights if required
while also being able to fine tune weights with low magnitude.
Mutation rates were set to be the reciprocal of the number of
synapses, thus yielding an average of one synapse change per
mutation.

A B

FIGURE 2 | Drawings of desired behavior for the modular morphology (A) and non-modular morphology (B) in each of the four environments in the
2× 2. Arrows indicate desired movement away from the base position (the base position is shown in the top left panels). Gray segments and arrows indicate other
acceptable behaviors.

A B C

FIGURE 3 | The three environment spaces considered. A, B, a, and b represent spheres positioned on the left or right of the robot. Uppercase letters represent
bigger spheres than their lowercase counterparts. Robots were evolved to “point” at A= {A, a} spheres and away from B= {B, b} spheres. (A) represents the 2×2
environment space, (B) represents the 3×3 environment space, and (C) represents the 4×4 environment space.
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The optimization function used was an error function, which
averaged the error of the robot when exposed to each environment
in the environment list E{}:

Err(E{}) =
1

||E{}||
∑

oℓor∈E{}

e(oℓor) − emin(oℓor)
emax(oℓor) − emin(oℓor)

(2)

e(oℓor) =
g(oℓ) + g(or)

2
(3)

g(A) =

{
1, if d(A) > dmax(A)

d(A)−dmin(A)
dmax(A)−dmin(A) , otherwise,

g(B) =

{
0, if d(B) > dmax(B)

d(B)−dmin(B)
dmax(B)−dmin(B) , otherwise

(4)

where

• E{} is a single environment, e.g., (AA, bA, Bb, etc.);
• ol ∈ {A,B} indicates the type of the object on the left. Either

(ol =A) or (ol =B);
• or ∈ {A,B} indicates the type of the object on the right. Either

(or =A) or (or =B);
• e(olor) indicates the robot’s error incurred in environment olor

during the last time step;
• emin(olor) and emax(olor) indicate the minimum and maximum

possible error the robot can incur in environment olor during
any one-time step, respectively. These were calculated based on
the environment present and the geometry of the robot;

• g(ol) and g(or) denote the errors incurred as a result of the
left-hand and right-hand objects, respectively;

• g(A) and g(B) denote the errors incurred as a result of the
objects of each type.

• d(A) and d(B) denote the distances from the midpoint of the
closest leaf to the center of the object considered.

• dmax(A), dmin(A), dmax(A), and dmin(B) denote the maximum
and minimum distance values for the A and B environments.

Because the motion range of the modular and non-modular
robots is inherently different, these values are necessarily dif-
ferent. Further, the dmax(A) and dmax(B) values could be set
artificially lower than the actual maximums in order to create
weighting which more heavily considered g(A) term over g(B).
dmin(A) and dmin(B) represent the actual observableminimums
depending on the geometry of the robot. The values are pre-
sented in Table 1.

For the modular morphologies, dmax was set to the actual limit
ofmotion of the branch. For the non-modularmorphologies, dmax
was set to less than the actual range of the motor to produce the
desired behavior. By setting dmax less than the actual range, any
robot that goes past a certain distance away from the A sphere
would have an error of 1 for that object. Similarly, in the B sphere,
if the robot moved far enough away to be past dmax, it was con-
sidered to have 0 error. This effectively created a weighting to the
influences between the A and B spheres, which corresponded to
the robot learning the desired behavior as seen in Figures 2 and 4.

2.5. Experimental Design
The first set of experiments consisted of evolutionary trials made
up of fixed length epochs in the 2× 2 environment space. The
robot starts by training on one environment for the duration of
the epoch. At the end of each epoch, a new environment is added
for the robot to be trained on. By the last epoch, the robot is

TABLE 1 | Table of maximum and minimum distance values for each
morphology type.

Actual maximum
distance

dmax(B) dmax(S) dmin(B) dmin(S)

Modular
morphology

5.315 5.315 5.315 5.157 5.157

Non-modular
morphology

7.596 6.002 7.200 5.028 5.028

FIGURE 4 | The behaviors generated by two controllers that evolved to succeed in each of the four environments in the 2× 2 environment space.
Lines emanating from the leaf branches represent the distance sensors embedded in each. Video of the robots can be found at https://www.youtube.com/
watch?v=t4gjv5nYeAA. (A) depicts an evolved robot with a modular morphology in each of the four environments in the 2×2 environment space. (B) depicts an
evolved robot with a non-modular morphology in each of the four environments in the 2×2 environment space.
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trained on all four environments. So, from the robots’ perspective,
when each new environment was introduced, the environment
space changes by becoming more complex. The epoch length was
set to 100 generations; thus, each evolutionary run lasted for 400
generations. If a robot survived from the last generation of one
epoch into the first generation of the next epoch, its fitness was
recomputed against this expanded set of environments.

In the second set of experiments, the robots were evolved in a
predetermined subset of the environment space. Unlike the previ-
ous experiment, the robot is introduced to all of the environments
in the subset at the same time instead of sequentially. After the best
robot in the population achieved a prespecified error threshold in
all of the environments in the chosen subset, it was tested in the
remaining environments, not in the subset, without any further
evolution to see how well it performed.

3. RESULTS

Experiment 1, described in Section 2.5, was run 50 times for all
three robots in four environments in the 2× 2 environment space,
yielding a total of 50× 2= 100 independent evolutionary runs.
The order of the environments was AA, BB, AB, and BA. Figure 5
shows that at the start of each epoch, there is a spike in the error
in the case of both the MNM and NM robots. In the case of the
M robot, there is no spike in error when the third (AB) and fourth
(BA) epochs are introduced.

Experiment 2, described in section 2.5, was also run 50 times
for the 2× 2, 3× 3, and 4× 4 environments on all of the robots.
Thus, there were 50× 2× 3= 300 independent trials. For the first
set of trials, only the “diagonal” of the environment space was
considered. For the 2× 2 environment space, this consisted of
{AA, BB}. For the 3× 3 environment space, the diagonal was {AA,
BB, aa}. Finally, for the 4× 4 environment space, the diagonal was
{AA, BB, aa, bb}. The error threshold was set to 0.15. Figure 6
shows the results for these trials.

The next test using this experimental setup considered another
subset other than the diagonal, which had the same number of

elements as the diagonal. Specifically, the “corner” of the environ-
ment space was considered Figure 7. All the three environment
spaces were considered. For the 2× 2 environment space, the
corner was designated to be the top row of the environment space
{AA, AB}. For the 3× 3 environment space, the corner was set
as {AA, AB, BA}. Finally, for the 4× 4 environment space, the
corner was {AA, AB, BA, BB}. Fifty trials of each robot in each
environment space were performed, yielding 50× 2× 3= 300
independent trials. Again, the error threshold was set to 0.15.

The last test performed using this experimental setup looked
at how well the MNM and NM robots respond to an unseen
environment in the 2× 2 case when evolved in three out of the
four environments. The robots were evolved in three different
subsets: {AA,AB,BA}, {AA,AB,BB}, and {AB,BA,BB}. Because of
the inherent symmetry in the problem, {AA, AB, BB} is the same
as {AA, BA, BB}; so, only one was chosen to be tested. Results are
presented in Table 2.

4. DISCUSSION

When the modular robot is presented with a new environment,
it is able to break down that environment into a combination
of percepts. If the robot has seen those percepts before, even if
the combination of those percepts is unfamiliar, it is able to act
appropriately. Evidence for this is shown in Figure 5. There is no
spike in error in the modular case at the start of the third and
fourth epochs when the AB and BA environments are introduced.
In contrast, the non-modular robots cannot see the environment
in this manner, as is shown by the presence of error spikes at each
new epoch.

Figure 6 shows that when the modular robot is evolved along
the diagonal of the environment space, it is able to achieve
acceptable error levels, that is at or below the predetermined
cut off threshold (0.15), in the remaining environments in the
environment space. This suggests that for this specific task, the
number of environments needed to evolve a robot with a modular
morphology and controller scales with the size of the diagonal

FIGURE 5 | Errors of controllers evolved for the M robot (left column), MNM robot (middle column), and the NM robot (right column) in fixed epoch
training (Experiment 1 as described in Section 2). New environment regimes occurred every 100 generations. Robots were evolved along the diagonal of the
environment space meaning the order presented to the robot was AA, BB, AB, and BA. Each blue curve corresponds to an individual evolutionary run: it reports,
at each generation, the controller with the lowest error in the population at that time. The red curve reports the average of these runs.
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FIGURE 6 | The M (bottom row), MNM (middle row), and NM (top row) robots were evolved along the diagonal (environments with blue boxes around
them) until they achieved an error of less than or equal to 0.15 in each environment in the subset considered. The robots were then tested in the
remaining environments. The color of the box of each environment represents the average reported error in that environment. The lighter the color, the greater the
average error with white representing an error of 1.0 and black representing an error of ≤0.15. In the modular case, every robot achieved an error of less than or
equal to 0.15 on the off-diagonal environments. Over the 50 trials, both the non-modular and mod-non-modular robots averaged an error greater than 0.15 in all of
the off-diagonal environments.

of the environment space. Therefore, the necessary number of
environments for the modular robot seems to scale linearly with
np, where np is equal here to the number of variations in the size
of the spheres.

Conversely, the robots with the non-modular morphologies or
controllers do not achieve acceptable, at or below 0.15, errors in
the other environments in the space by simply evolving along the
diagonal, as seen in Figure 6. This means that for this task, the
number of environments the robot needs to be evolved in before
achieving adequate fitness for the whole environment space is
greater than the number of environments along the diagonal.

Table 2 shows that even when either of the non-modular robots
is presented with three out of the four environments in the 2× 2
environment space, they cannot use what it has seen in previous
environments to help them in the unseen environment. Thus,
at least for the 2× 2 environment space case, the non-modular
robots need to be evolved in each environment in the entire space
in order to achieve adequate fitness.

Figure 7 indicates that just choosing any subset of environ-
ments to evolve in does not guarantee adequate fitness in the
remaining unseen environments. Specifically, the results point

to choosing a subset of environments in which each environ-
ment is completely independent from every other environment in
the subset. In this context, completely independent environments
are those which do not share the same row or column. For exam-
ple, AB would be completely independent from aa since both the
right (A ̸= a) and left (B ̸= a) spheres are different. As a converse
example, AB and Aa are not completely independent since the left
sphere is the same in both environments, namely, A. These results
further suggest that a modular robot can recognize familiar pre-
cepts from previous environments and respond appropriately to
them, evenwhen they are presented in an unfamiliar combination.
This is seen in the result from Figure 7, which shows that in the
3× 3 environment space case, when the robot is tested in the
BB environment, it reacts appropriately without requiring further
evolution.

Figure 7 also shows the side result that evolution will generally
find the simplest action to solve the problem at hand. In the 4× 4
environment space case, both the modular and non-modular
robots evolve to act on any sphere of size B or smaller (the a
or b sizes) as an instance of the B sphere. Thus, the robots do
well in the remaining environments comprised of b spheres and
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FIGURE 7 | The M (bottom row), MNM (middle row), and NM (top row) robots were evolved in the corners (environments with blue boxes around
them) until they achieved an error of less than or equal to 0.15 in each environment in the subset considered. The robots were then tested in the
remaining environments. The color of the box of each environment represents the average reported error in that environment. Here, we see that it is necessary to use
completely independent subsets of environment to ensure linear scaling in the modular case.

TABLE 2 |Mean values of the error for the non-modular robot in the unseen
environment after achieving an error of at most 0.15 in the three seen
environments.

{AA, AB, BA} {AA, AB, BB} {AB, BA, BB}

Non-modular BB: 0.465
(±0.0445)

BA: 0.593
(±0.0385)

AA: 0.388
(±0.0232)

Mod-non-modular BB: 0.665
(±0.00614)

BA: 0.580
(±0.0168)

AA: 0.586
(±0.0269)

Values in the parenthesis represent 1 SEM.

poorly in the environments containing a spheres since the action
desired for B sizes is the same as b and different than the action
desired for a.

5. CONCLUSION

This paper has shown that a modular morphology, combined
with a modular neural control, can enable a robot to break down
seemingly novel environments into combinations of familiar per-
cepts. Moreover, if robots possess both this morphological and

neural modularity, these robots are also likely to move in a similar
manner in these environments, thus continuing to perceive the
environment as a combination of familiar percepts. Assuming that
the robot should always react the same way to each of these local
percepts, it follows then that such a robot is likely to exhibit a
successful behavior in this novel environment without requiring
further training.

Robots with either non-modular morphologies or non-
modular neural controllers cannot easily exhibit this phenomenon
and, as a result, are likely to require additional training even in
environments that contain individually familiar percepts. Given
this, we have shown that for this task, robots with a modular
morphology, combined with a modular neural controller, need to
be evolved only in a linearly growing number of environments,
whereas the number of environments non-modular robots require
grows superlinearly. Our results indicate that it is likely that
non-modular robots will require evolution in all of the possible
environments in the space.

In future work, we would like to investigate specifically how
the amount of evolutionary time necessary to evolve adequately
fit robots scales for both the modular and non-modular robots.
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We plan to accomplish by completely evolving both the modular
and non-modular robots in the 2× 2, 3× 3, and 4× 4 environ-
ment spaces. Further, we will look into scaling both f and np
instead of just np, as was presented in this work.

If we consider our entire environment space to be a hypercube
composed of nfp hypervoxels representing each individual envi-
ronment, then there will be np voxels along the diagonal of the
hypercube. If it is sufficient for a modular robot to simply evolve
along this diagonal, then it is possible for time complexity, in this
case the number of evolutionary time steps, necessary to evolve
a given robot in an nfp-sized environment space to decrease from
O(nfp) to O(np). However, this ideal case holds only if the robots
are already morphologically and neurologically modular.

If robots begin with little or no morphological or neural
modularity, it follows from Kashtan and Alon (2005) that if envi-
ronments are added in a modularly varying way, more modular
robots should evolve. This can be accomplished in this framework
by ensuring that each newly added environment contains just
one new feature of one of the free parameters describing the
environments, while the other free parameters hold to a feature
against which the robots have already been trained. This would
require environments to be added to the training set along each
of the edges of the environment hypercube in sequence, thus
reducing O(nfp) to O(npf ). Determining whether this theoretical
result holds in practice, and under what conditions, is another
worthy target of future investigation.

There are many other problems to investigate, including how
these results here can be generalized tomore complex and realistic

robots and task environments; furthermore, under what con-
ditions would the evolved modularity be maintained when the
evolved robots are instantiated as physical robots.

Ultimately, this work thus suggests that there may exist a
relationship between morphology, modularity, evolvability, and
scalability, which may in future enable the automated optimiza-
tion of increasingly complex robots that perform appropriately in
increasingly complex environments.
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