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Intelligent embodied robots are integrated systems: as they move continuously through
their environments, executing behaviors and carrying out tasks, components for low-level
and high-level intelligence are integrated in the robot’s cognitive system, and cognitive and
physical processes combine to create their behavior. For a modeling framework to enable
the design and analysis of such integrated intelligence, the underlying representations
in the design of the robot should be dynamically sensitive, capable of reflecting both
continuous motion and micro-cognitive influences, while also directly representing the
necessary beliefs and intentions for goal-directed behavior. In this paper, a dynamical
intention-based modeling framework is presented that satisfies these criteria, along with
a hybrid dynamical cognitive agent (HDCA) framework for employing dynamical intentions
in embodied agents. This dynamical intention-HDCA (DI-HDCA) modeling framework
is a fusion of concepts from spreading activation networks, hybrid dynamical system
models, and the BDI (belief–desire–intention) theory of goal-directed reasoning, adapted
and employed unconventionally to meet entailments of environment and embodiment.
The paper presents two kinds of autonomous agent learning results that demonstrate
dynamical intentions and the multi-faceted integration they enable in embodied robots:
with a simulated service robot in a grid-world office environment, reactive-level learning
minimizes reliance on deliberative-level intelligence, enabling task sequencing and action
selection to be distributed over both deliberative and reactive levels; and with a simulated
game of Tag, the cognitive–physical integration of an autonomous agent enables the
straightforward learning of a user-specified strategy during gameplay, without interruption
to the game. In addition, the paper argues that dynamical intentions are consistent with
cognitive theory underlying goal-directed behavior, and that DI-HDCA modeling may
facilitate the study of emergent behaviors in embodied agents.

Keywords: intelligence modeling, learning, embodiment, hybrid systems, hybrid dynamical systems, machine
learning, action selection, cognitive robotics

1. INTRODUCTION

Embodied robots can encompass everything from low-level motor control to navigation, goal-
directed behavior and high-level cognition in one complex, cognitive–physical system. Accordingly,
when considering modeling frameworks for the design, development, and deeper understanding
of such robots and their behaviors, there are many desired criteria and required constraints for
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their models. This paper presents one such framework, anchored
by dynamical intention modeling (Aaron and Admoni, 2010;
Aaron et al., 2011) to represent cognitive elements underly-
ing goal-directed behavior in embodied robots. With dynami-
cal intention modeling and the accompanying hybrid dynamical
cognitive agent (HDCA) framework, essential components that
are often treated separately – including reactive and deliberative
intelligence, and cognitive and physical behaviors – are unified in
amodeling framework that supports high-level behavioral design,
low-level cognitive and physical representations, and machine
learningmethods for integrated, autonomous learning in response
to robots’ environments.

Dynamical intention modeling and the HDCA framework for
integrated dynamical intelligence are influenced by several obser-
vations about models of intelligent embodied agents, biological
and robotic, in dynamic environments:

• Embodied agents are integrated systems, complete autonomous
agents embedded in an environment (Pfeifer and Bongard,
2006). Their high-level cognitive intelligence, low-level cogni-
tive intelligence, and physical actions and behaviors are essen-
tial system components, and they should be modeled and
analyzed together, reflecting their integration.

• Goal-directed behavior of embodied agents moving through
their environments is necessarily the result of the agents’ inte-
gration across cognitive and physical components. For mod-
els to better support both production and analysis of goal-
directed behavior, the relevant cognitive and physical compo-
nents should be integrated in the model.

• In dynamic, unpredictable environments with arbitrary asyn-
chrony, agents should be capable of appropriately dynamic
responses and learning. If the environment cannot be known
a priori, then ideally, models would not impose a priori restric-
tions on the granularity of possible responses in the environ-
ment. Similarly, because embodied agents are sensibly modeled
asmoving continuously through space and time,models should
ideally support continuous space and time representations,
without pre-imposed discretizations.

• Typically, models allowing only low-level representations do
not effectively extend to high-level representations: for exam-
ple, models that describe only kinematics of leg movement
do not extend to pathfinding on large maps, and cognitive
models describing only subsymbolic processes do not extend to
representations of intentions guiding goal-directed planning.

• Conventional AI models of goal-directed behavior are fre-
quently founded on high-level propositional representations,
such as the goals, beliefs, and intentions of agents carrying out
planning for the behavior [e.g., Georgeff and Lansky (1987)].
These representations do not readily support integration with
low-level, continuous-time processes; they do not readily sup-
port cognitive–physical integration without imposing restric-
tions that may be ill-suited in unpredictable environments.
Ideally, intelligence models would represent cognitive elements
such as beliefs and intentions in a framework consistent with
agents as integrated systems.

For the design and analysis of navigating, goal-directed
embodied agents, a model of integrated intelligence would ideally

represent and unify the cognitive and physical components –
and interactions among them – underlying robust behavior
in unpredictably dynamic environments. This paper presents
the dynamical intention-HDCA (DI-HDCA) framework for
integrated dynamical intelligence models for embodied agents,
discussing its background, specifications, and foundation for
extensions. Two different kinds of dynamical intention-based
integration are presented, reactive–deliberative integration and
cognitive–physical integration, as are required for fully integrated
embodied agents. Moreover, the paper conceptually contextual-
izes this modeling framework in specific motivations based on
the roles of embodiment and environment in agent behavior.

TheDI-HDCA framework fuses ideas from cognitivemodeling
and general system modeling in a new synthesis, often employing
them unconventionally to support the requirements of embodied
intelligence. For instance, the foundation of a DI-HDCA model
is a finite-state machine that combines continuous and discrete
dynamics in a hybrid automaton (Alur et al., 2000): states (modes)
represent continuously evolving actions or behaviors described
by systems of differential equations; each mode also has condi-
tions governing when discrete transitions to other modes occur,
and what discrete changes in system state occur as part of these
transitions.

The dynamical intention framework underlying cognitive
models is influenced by the belief–desire–intention (BDI) the-
ory of practical reasoning and its many implementations [e.g.,
Georgeff and Lansky (1987) and successors], which established
the effectiveness of BDI elements (beliefs, desires, and intentions)
as a foundation for goal-directed intelligence. Unlike conventional
BDI agents, however, dynamical intention models link BDI ele-
ments in a continuously evolving system inspired by spreading
activation networks (Collins and Loftus, 1975; Maes, 1989). Each
BDI element in this dynamical intention framework is represented
by an activation value indicating its salience “in mind” (e.g.,
intensity of a commitment to an intention, intensity of a belief).
The continuous evolution of these cognitive activation values is
governed by differential equations, with cognitive elements affect-
ing the rates of change in activations of other cognitive elements,
as described in sections 2.3 and 2.4. These dynamical cognitive
representations can be employed for both low-level reactive intel-
ligence and high-level deliberative planning (Aaron and Admoni,
2010), enabling integration of the two levels.

The particular physical motion of DI-HDCAs (i.e., navigation
in dynamic environments) is not central to the DI-HDCA frame-
work, as discussed in section 3.2, except that it too is governed
by dynamical systems. This enables further integration: physical
and cognitive components in DI-HDCAs are represented in the
common language of differential equations, which is critical to the
learning demonstrations in section 5.

These are the components of the general framework of dynam-
ical intention and DI-HDCA modeling. The remainder of the
paper further elaborates on these components and presents
example DI-HDCAs, which illuminate general concepts and are
employed in various proofs of concept.1 For example, the paper

1The specific agents described in this paper are far from an exhaustive demonstra-
tion of the DI-HDCA modeling framework. To distinguish the general DI-HDCA
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FIGURE 1 | Diagram of a Tag game environment, containing bases
(darker squares), obstacles (lighter squares), and agents (circles)
playing the game. Both kinds of Tag players are represented, one It player
and three non-It players.

presents a simulated service robot in a grid-world office envi-
ronment, for two kinds of demonstrations: how conventionally
deliberative-level intelligence can be distributed over reactive-
level processes in DI-HDCA models; and how new kinds of
machine learning can be facilitated by dynamical intention rep-
resentations. Indeed, with dynamical intention-based learning,
the robot approximates deliberative rule-based performance with
only reactive-level learning, minimizing reliance on deliberation
and supporting dynamically responsive, adaptive behavior.

In addition, the paper presents experiments with DI-HDCAs
as autonomous players in a real-time, human-interactive sim-
ulation of the child’s game Tag. In Tag, a player designated as
“It” attempts to touch (“tag”) other players, who try to avoid
being tagged. Safe locations called bases are in the Tag variant
in this paper, as shown in Figure 1, so that players touching a
base cannot be tagged. If a non-It player Pi does get tagged by
It (call the It player Pj, distinct from Pi), then Pi becomes the
new It, Pj is no longer It, and the game continues with players
(including Pj) avoiding being tagged. This game is well suited for
demonstrations of embodied intelligence: agents employ complex
cognitive strategies while navigating in an unpredictably dynamic
environment. Demonstrations from Tag games in this paper illus-
trate cognitive–physical integration in DI-HDCAs, with agents’
jointly altering cognitive and physical performance to meet new
specifications for their strategies without interrupting gameplay.

The contributions of this paper include:

• A broad description of dynamical intention and HDCA mod-
eling, significantly expanding upon more narrowly focused
presentations in Aaron and Admoni (2010) and Aaron et al.

framework from specific agents, a phrase such as “in this paper” will formulaically
be used to indicate specific focus.

(2011). This includes the motivation and proper contextual-
ization of DI-HDCA modeling as a response to entailments of
environment and embodiment.

• A survey of previously described DI-HDCA learning methods
and experimental results in both the Tag game and office envi-
ronments mentioned above (Aaron and Admoni, 2010; Aaron
et al., 2011), demonstrating the role of DI-HDCA modeling in
adaptive integrated intelligence.

• Several new experimental results and substantially expanded
analyses, including statistical analyses of data that were previ-
ously only qualitatively described.

This paper is the first comprehensive presentation of integrated
intelligence for DI-HDCAs – encompassing physical-level com-
ponents for motion and navigation and cognitive-level compo-
nents for reactive and deliberative intelligence – and the first cast-
ing of DI-HDCA concepts that directly exposes the elements of
embodied agency underlying those concepts. In addition, section
6 briefly discusses potential extensions of the present work in
new contexts, including possibilities of verifying DI-HDCAmod-
els and applying the DI-HDCA modeling framework to study
emergent properties of embodied intelligence.

2. THE DI-HDCA MODELING FRAMEWORK

The DI-HDCA modeling framework is specifically designed for,
and constrained by, the demands of embodied autonomous intel-
ligent agents navigating in dynamic environments. It is a synthesis
of three concepts – BDI theory, spreading activation networks,
and hybrid system models – that are employed unconventionally
to enable formally specified yet broadly expressive agent models.
This section presents the background and foundational ideas on
which the DI-HDCA framework is based, analyzing the roles of
embodiment and environment in modeling goal-directed agents,
and then discussing cognitive modeling and hybrid system mod-
eling in that context.

2.1. Environment
In principle, goal-directed agents need not be embodied [e.g.,
many BDI-based planning agents (Georgeff and Lansky, 1987)],
but with or without embodiment, environment constrains what
factors and features may be elements of effective agent models.
Some problem solving agents operate in fully known, unchang-
ing environments, which constrains the kinds of reasoning they
need; for example, pathfinding problems can be solved prior to
navigation for perfect performance. Other agents might operate
in stationary environments that are not fully known in advance,
so problems might not be solvable ahead of time, but information
once discovered would not be changed, which could simplify
machine learning or other adaptation needed in this environment.
Such stationary environments are not realistic for the present
context, however, so this paper restricts consideration to only
dynamic and unpredictable environments.

For goal-directed behavior, agents must do some kind of plan-
ning or task sequencing, potentially employing propositional
reasoning-based deliberative intelligence. As an environmental
constraint, however, this paper additionally considers only envi-
ronments in which deliberation is not sufficient, and some kind of
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reactive intelligence is also necessary. This reactivity requirement
is not identical to the above criterion of “dynamic and unpre-
dictable” – one could imagine environments in which deliberation
sufficed for all unpredictable changes – but it is related.

In such environments, both reactive- and deliberative-level
intelligence – and their combinations – are essential for goal-
directed embodied robots. DI-HDCA modeling integrates delib-
erative and reactive intelligence through shared representations
of cognitive elements: the same elements that support reflexive,
reactive responses can also be employed for task sequencing and
other conventionally deliberative-level intelligence. These shared,
dynamically sensitive representations allow goal-directed reason-
ing to be distributed over both reactive and deliberative levels;
the particular agent models in section 4 exemplify this distributed
approach. Thus, DI-HDCAmodeling does not deny deliberation,
but it can minimize reliance on deliberation for more robustly
responsive and adaptive agents.

2.2. Embodiment
Section 2.1 noted that an agent’s environment could be incom-
pletely known or unknowable, but for real-world robotics, one
might potentially instead view the embodiment of the robot as
the primary factor introducing such unpredictability: from dirt
on a floor that affects a wheel’s traction to moving obstacles
(e.g., people) in hallways navigated by service robots, embodiment
seems critical to why embodied robots need to respond and adapt
at unpredicted times, to unpredicted situations.

Indeed, in a real-world environment for a robot, unpredictabil-
ity is general, but that may not be strictly due to embodiment. If
embodiment is considered separate from real-world constraints,
it is imaginable in theory that a goal-directed embodied agent and
its world might be fully deterministic and known in advance. This
may seem laughably implausible to anyone who has worked with
real robots, but in principle, it seems that unpredictability need
not follow from embodiment alone.

Similarly, it might initially seem that reasons for continuum-
basedmodeling of time and space – to represent continuous agent
motion through space, and through time – are due to attributes of
and constraints from the environment. Indeed, one could assert
that continuous time and space are environmental properties:
once unpredictability and the need for reactive responses are part
of the environment, continuous time and space representations
are then needed to fully represent the environment. It is not clear,
however, that the environment would actually need to be fully rep-
resented for successful goal-directed behavior by a non-embodied
agent. Perhaps the needed reactivity for a non-embodied agent
could be achieved with a discretized time and space model, with
limited granularity of representation; the asynchrony in the envi-
ronment could be arbitrary, but perhaps that complexity need not
be imposed in full upon the agent model.

DI-HDCA models do represent continuous space and time,
however, with embodiment rather than environment as the prac-
tical motivation. Conventionally, real-world embodied systems
are modeled as moving continuously through space, often by
differential equations. Because these continuous representations
arewell established as useful formodeling, they have been adopted
for DI-HDCA models.

The effects of this design decision pervade the DI-HDCAmod-
eling framework: becauseDI-HDCAmodels should be integrated,
and continuous time and space representations are useful, added
entailments arise. A navigation model sensitive to continuous
time variations is needed. Reactivity should be modeled on a
continuous-time scale, for integration with continuous-modeled
motion. The cognitive model should thus also be modeled with
real-time dynamics, for sensitivity to real-time changes in the
environment. Then, as cognitive model elements are real-time
dynamic parts of the environment of other cognitive elements
(e.g., beliefs are parts of the cognitive environment that affects
intentions), and cognitive elements are sensitive to real-time
environmental variations, the cognitive model should represent
micro-cognitive variations and effects throughout all cognitive
components. This can be viewed as part of reactive–deliberative
integration, in the context of a continuous time and space model.

For a fully integrated agent model, however, the effects cannot
stop within the cognitive system. Full integration between cog-
nitive and physical components entails that models should not
restrict micro-level cognitive changes from affecting physical ele-
ments. Indeed, if amodeling framework represents arbitrary levels
of detail, enabling representations of arbitrarily unpredictable
environments, then integrated agentmodels should permitmicro-
cognitive effects to cause micro-physical effects (and vice versa);
indeed, any cognitive element should be able to somehow affect
any physical element (and vice versa). In the DI-HDCA frame-
work, one could design models with pre-imposed constraints
on the extent of cognitive–physical integration – e.g., that the
agent’s heading angle for navigation has no effect on the activation
of a particular desire to complete a task – but to support fully
integrated models, the framework allows for models without such
constraints.

The constraints from environment and embodiment therefore
entail continuum-valued representations for both cognitive and
physical elements of the model, and simultaneous integration
across reactive and deliberative intelligence and cognitive and
physical components. This is achieved in DI-HDCA models by
expressing all continuously varying elements in the unifying lan-
guage of differential equations, in a hybrid dynamical system
model (see section 2.4). This does not entail that all model
elements must be continuously varying, but critical cognitive
and physical elements should vary continuously, and the agents
described in sections 4 and 5 exemplify these ideas.

2.3. Cognitive Modeling and Goal-Directed
Reasoning
DI-HDCAs can be viewed as having physical and cognitive system
components, represented by the differential equations and vari-
ables describing behaviors conventionally considered physical or
cognitive, respectively. Because DI-HDCA modeling is designed
for embodied agents moving through environments, models can
contain continuously time-varying representations of physical
elements conventionally useful for modeling motion, such as xy-
location, velocity, or heading angle; because DI-HDCA modeling
is also designed for integrated, goal-directed intelligence of these
navigating embodied agents, models also contain continuously
time-varying representations of cognitive elements conventionally
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useful for modeling goal-directed behavior. These cognitive ele-
ments are derived from the BDI (belief–desire–intention) theory
of practical reasoning (Bratman, 1987) and the many agent-based
implementations of it [Georgeff and Lansky (1987) and many
successors].

BDI theory recognizes the critical role of intentions as cognitive
elements of practical reasoning, distinguishing intentions from
desires. Although all three kinds of cognitive elements influ-
ence behavior selection and planning of task sequences, beliefs,
desires, and intentions are distinct in their roles: in particu-
lar, desires (i.e., desired goals or conditions in the world) may
conflict, whereas intentions are conduct-controlling pro-attitudes,
reflecting commitment to behaviors and resisting reconsider-
ation or conflict. A BDI-based approach provides a broader
cognitive framework for goal-directed agents than conventional
hybrid reactive–deliberative architectures [e.g., Arkin (1990), Gat
(1998)], subsumption architectures [e.g., Brooks (1986)], or other
behavioral robotics approaches that do not employ distinct desires
and intentions as cognitive elements for action selection and task
sequencing.

Conventional applications of BDI theory to computational
agents, however, do not explicitly support all the entailments
of embodiment or the multi-tiered integration described in this
paper. For example, BDI implementations are not convention-
ally based on continuous models of time and space, and action
selection and task sequencing are typically the result of delibera-
tive processes, employing propositional representations of beliefs,
desires, and intentions. Designing BDI-based agents without
continuum-valued representations seems apt for some contexts –
without the requirements of embodiment, continuous representa-
tions might needlessly complicate agent design and analysis – but
for embodied, goal-directed mobile robots, continuous-modeled
cognitive and physical representations can be beneficial, particu-
larly to support the integration inherent in such robots. Moreover,
continuum-valued cognitive representations support dynamicist
perspectives of cognition (Port and van Gelder, 1995; van Gelder,
1998; Beer, 2000; Spivey, 2007), and they enable sensitivity to real-
time micro-cognitive variations that can cascade into macro-level
cognitive effects.

In DI-HDCA models, cognitive elements are represented by
continuously varying activation values, where an activation value
represents the salience “in mind” of the related cognitive element.
As examples, beliefs with high activations are “strongly held,”
desires with near-zero activations are not “strongly felt,” and high-
active intentions indicate high priorities on the related actions.
Because all cognitive elements are represented this way, and acti-
vations can vary in real time, interactions among them can be
represented by an unconventional spreading activation network.
Spreading activation networks are well-established models with
applications in both cognitive psychology (Collins and Loftus,
1975) and agent modeling (Maes, 1989), based on neuroscience-
influenced ideas that activations of cognitive elements can affect
activations of other cognitive elements. Spreading activation net-
works are related to other connectionism-inspired approaches,
including Haazebroek et al. (2011), which employs ideas from
the theory of event coding to model action and cognition; similar
to DI-HDCA modeling, the work in Haazebroek et al. (2011)

emphasizes shared representations for integrating across levels of
action and cognition, but the DI-HDCA framework is explicitly
focused on dynamically sensitive representations of intentions,
desires, and beliefs for goal-directed navigating agents.

Because cognitive activation values are governed by differ-
ential equations in DI-HDCA models, the spreading activation
framework employed is unconventional: instead of the activation
of an element directly having excitatory or inhibitory effects on
activations of other elements, the activation of an element affects
the rates of change in activations of other elements. That is, an
activation of one element serves as part of a term in the differential
equation describing the variation in another element. As a small,
constrained example, consider this part of a differential equation,
where BP stands for the activation on the belief of P, k> 0 is a
constant, IA stands for the activation on the intention for action
A, and the dotted variable İA stands for the rate of change in IA:

İA = . . . + k · BP + . . . . (1)

This encodes excitatory and inhibitory effects on IA: if BP > 0,
İA will increase, for an excitatory effect on IA over time; if BP < 0,
İA will decrease, for an inhibitory effect. The magnitude of coeffi-
cient k in that equation serves to intensify or diminish the effect
of BP on IA, an observation that is exploited in mechanisms for
DI-HDCA learning (see section 2.5). A system of such differential
equations, in which activations of cognitive elements are parts of
differential equations for other cognitive elements, thus models
a spreading activation network. Although this network may be
viewed as unconventional due to the layer of indirection induced
by the differential equations, it might also be viewed as appropri-
ate for continuous-time environments with arbitrary asynchrony.
Activation is not passed through the model in synchronized lock
step nor in pre-determined quantities, and the quantity of spread
activation is time-varying and responsive to changes in the system,
fitting a DI-HDCA’s environment.

The BDI-based framework of dynamical intentions presented
in this paper is not the only agent model with dynamical systems-
based elements that can be viewed as representing intentions.
The dual dynamics framework (Hertzberg et al., 1998; Jaeger and
Christaller, 1998) represents activation dynamics as different from
target dynamics, analogous to intentions and navigation dynamics
in DI-HDCAs. Dynamic neural field approaches (Schöner
et al., 1995; Erlhagen and Bicho, 2006; Richter et al., 2012;
Sandamirskaya et al., 2013), based on neuroscientific principles,
also associate activations of cognitive entities with actuations of
behaviors. The DI-HDCA framework shares the emphasis on
dynamics with these approaches but is less tightly coupled with
low-level sensorimotor systems, emphasizing cognitive dynamics
of typically higher-level constructs of desires and intentions,
which can directly support the high-level behavioral design and
analysis desirable for many embodied robotics applications.

2.4. Hybrid Dynamical System Modeling
Continuous dynamics are essential for cognitive and physical ele-
ments inDI-HDCAmodels, but discrete dynamics are also impor-
tant for behavioral modeling. Robots are productively designed
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and understood in terms of discretely delineated behaviors,
with transitions between those behaviors. The idea that discrete
changes between behaviors can occur when some threshold con-
dition is met has been employed in contexts ranging from logical
models (“if condition then begin action A”) to neural models
(e.g., threshold for neurons firing) and beyond, including system
models that combine continuous and discrete dynamics.

To support both continuous dynamics and discrete behavioral
design, aDI-HDCAmodel can be expressed as a hybrid automaton
model of a hybrid dynamical system (HDS), which explicitly repre-
sents and distinguishes continuous and discrete system dynamics
(Alur et al., 2000). A hybrid automaton is a finite-state machine
in which each state (mode) is a continuous behavior, specified by
differential equations describing system dynamics in that mode.
HDS models have been employed for many complex applica-
tions, including navigating robots or virtual agents [e.g., Egerstedt
(2000) andAaron et al. (2002)], and for the present application, the
structures of a DI-HDCAmodel correspond naturally to elements
of an HDS. For DI-HDCAs, each behavior might be specified as a
mode, describing the physical and cognitive dynamics governing
the robot while executing that behavior. Figure 2 illustrates a
mode in a DI-HDCA model, showing cognitive elements inter-
connected in a dynamical system model. The physical elements
(e.g., position, velocity) are also governed by differential equations
in each mode, and because all physical and cognitive elements are
represented as variables in a dynamical system, any one of them
can be part of any differential equation in the system – i.e., for
integration, any element can affect the dynamical change in any
other element.

In DI-HDCA behavior, transitions betweenmodes occur when
threshold conditions (guards) are met, and transitions are rep-
resented as instantaneous changes in behavior, which may be
accompanied by discrete changes in values of elements in the
model. For example, when some action Ai is completed, the
robot might transition to the mode for action Aj, and the acti-
vation on the intention for Ai might instantaneously drop, as
the robot no longer intends to carry out Ai. Figure 3 illustrates
a mode-transition system for a DI-HDCA, situating the mode
from Figure 2 in a full model. The connections between modes
indicate available transitions: at any given moment, an agent
is in exactly one mode (call it Mi), describing its behavior at
that moment; when guard conditions in mode Mi are met, the
agent transitions to some other mode Mj connected to Mi in the
model.

2.5. DI-HDCA Learning
Because cognitive elements are represented as parts of terms in
differential equations (Figure 2), they can affect each other’s acti-
vations and any behavior based on those activations. For example,
with action selection or task sequencing based on which inten-
tions have the greatest activation values, any cognitive element
can influence every intention’s activation in the network, thus
affecting action selection. Moreover, because physical elements
(e.g., position, velocity) are also represented in that dynamical
system, they can in principle also affect activation values and task
sequencing. This interconnectedness is central to integration in
DI-HDCA modeling.

FIGURE 2 | Visualization of cognitive elements in a behavior (a mode)
in the hybrid dynamical system model of a DI-HDCA service robot (see
section 4). BDI-based cognitive elements – beliefs, desires, and
intentions – are interconnected with excitatory and inhibitory links, expressed
by differential equations in a dynamical system, which can be viewed as an
atypical spreading activation network. Because both cognitive-level and
physical-level components are expressed in the shared language of dynamical
systems, physical behavior components such as speed or heading angle (not
visualized here) can in principle also be part of the dynamical system.

This interconnectedness is also central to straightforward
methods by which DI-HDCAs can learn from experience. As
background, note that themagnitude of the effect of element Ei on
element Ej in the dynamical system is expressed by the coefficient
ci,j in the related term, as in this example:

.
Ej = . . . + ci,jEi + . . . . (2)

Here, if coefficient ci,j became a greater positive number, the
activation on Ei would have a stronger direct effect on Ej − ci,j
represents the link from Ei to Ej. Thus, if an agent’s experience
suggested that Ei should have a different effect on Ej, learning that
new effect would only require altering that coefficient.
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FIGURE 3 | Visualization of a full mode-level system model of a DI-HDCA service robot (see section 4). Individual modes (see Figure 2) are in a
state-transition model: at any moment, the agent is in one behavior mode; the change to a different behavior is modeled by a transition from one mode to another. It
is not necessary in DI-HDCA models that every mode be connected to every other mode, but there is no restriction against a fully connected system such as the one
shown here. Every cognitive and physical element in the DI-HDCA can be present in each mode, for use in that mode’s dynamical system.

With this, DI-HDCA learning of new strategies for action selec-
tion or dynamic task re-sequencing – aspects of agent intelligence
that are often expressed as deliberative in agent models – could
require only that the appropriate coefficients change values. For
example, if feedback suggests that some belief B should affect
action selection, the agent can learn that connection by adjusting
coefficients relating belief B to the appropriate intentions. Because
intentions are the cognitive elements representing actions, this
can suffice to bring about the learned adaptation; no new rules
or complex mechanisms are required.

Although the relationship between beliefs and intentions is an
especially important one, DI-HDCA learning is not restricted to
those elements. If feedback suggested, for instance, that increased
salience of a desire D is not productive during some action A,

connections could be learned to lower the activation on intention
IA corresponding to action A whenever the activation of D is a
large value. Moreover, if faster speed of an agent is not productive
when the agent is in action A (action A might require acute
perception or good traction for motion), the agent could learn
to calibrate the activation of IA based on speed. Because of the
full interconnectedness of the cognitive–physical representations
enabled by DI-HDCA models, any such relationship could be
straightforwardly learned by altering the weights of links between
elements.

From the perspective of an agent designer, this mechanism can
effectively refine agent behavior to meet specifications, even in
interactive environments (see section 5). From the perspective
of a scientist modeling and analyzing behavior, this mechanism
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enables the study of connectionism-inspired learning – learning
occurs by changing weights of links between elements – with
phenomena as low-level as speed and as high-level as inten-
tion. [In context, it can also be viewed as a form of reinforce-
ment learning; see Aaron and Admoni (2010).] The integration
encoded inDI-HDCAmodels enables such straightforward learn-
ing approaches to be exceptionally effective in DI-HDCAs.

3. AGENT IMPLEMENTATION

Dynamical intentions can be implemented in multiple ways
to be consistent with distinguishing properties of intention in
BDI theory. Similarly, the reactive navigation intelligence in DI-
HDCAs can vary with different agent implementations. Nothing
intrinsic to the DI-HDCA framework fully defines such options,
although some constraints are imposed (e.g., navigation mod-
els are expressed as differential equations, for integration with
dynamical intention). Below, this section presents general back-
ground regarding DI-HDCA implementation and simulation for
the experiments in sections 4 and 5, including the navigation
system and a brief summary of the factors for adherence to BDI
properties.

3.1. Distinguishing Properties of BDI
Intentions
As described in section 2.3, the BDI-based cognitive elements
of DI-HDCAs are represented by dynamically varying activation
values. For agents implemented in the demonstrations described
in this paper, cognitive activations are bounded to be within
[−10, 10]. Low-magnitude activation values (i.e., near 0) indicate
low salience of the associated concepts, whereas greater mag-
nitudes of activations represent more importance or intensity
of the associated concepts; for example, a desire with near-zero
activation would indicate relative apathy regarding the associated
concept, while a belief with high activation would be strongly held
and a high-active intention would indicate greater importance of
and commitment to the related task or behavior. Activations with
negative values indicate salience of the opposing concept – e.g., an
intention with activation −2 indicates a mild commitment not to
do the associated task, and a belief with activation −9 indicates
that the opposite or negation of the associated concept is strongly
held.

For the agents implemented in this paper, beliefs and desires
can conflict with each other. For instance, if an agent model
included both beliefs BamIt representing that the agent is It in a Tag
game andBnotIt representing that the agent is not It, themodel need
not preclude them from having simultaneously high activations.
DI-HDCAs could be designed to disallow conflicting beliefs, and
doing so could benefit some applications, but for the explorations
of computational intelligence in this paper, such conflicts were
not explicitly disallowed. Similarly, it is possible for conflicting
desires to have simultaneously high activations, representing an
agent intensely desiring to do two things when only one at a time
is possible.

The philosophical foundations of BDI agents assert that desires
can conflict with each other but intentions resist conflict with each
other. This is one of the distinguishing properties of intentions

noted in Bratman (1987), part of explicitly establishing desires
and intentions as distinct cognitive elements. For this paper,
DI-HDCAs are implemented with mechanisms consistent with
distinguishing properties that apply to this dynamical account of
intention2:

• Intentions are conduct-controlling cognitive elements.
• When salient, intentions resist reconsideration.
• When salient, intentions resist conflict with other intentions.

It is straightforward to implement that intentions control con-
duct: in the state-transition system representing a DI-HDCA’s
behaviors (see Figure 3), conditions for entering and exiting a
mode specify that the highest-active intention determines agent
state. Initially, the agent must begin in the mode corresponding
to its highest-active intention, e.g., in mode Init, when intention
IInit has the highest activation of any intention. Then, a transi-
tion to another mode Other occurs only when intention IOther
becomes highest-active, which can happen in two ways: behavior
Init becomes completed, so the activation of IInit is set to a low
value (e.g., −10) and intention IOther becomes highest-active; or
the cognitive activation values change over time, as governed by
the dynamical system, and the activation value of IOther evolves to
become greater than IInit.

For reconsideration resistance, the implemented mechanism
[described in Aaron and Admoni (2009, 2010)] encodes that
a high-active intention Ia tends to minimize other intentions’
impacts on Ia, and this effect becomes more pronounced as
the activation of Ia grows. For intentions Ia and Ib (b ̸= a), the
differential equation for İa includes the following structure:

İa = . . . − ki · PF(Ia) · NCF(Ib) · Ib + . . . . (3)

Persistence factor PF is defined as

PF(Ia) = 1 − |Ia|∑
i |Ii| + ϵ

, (4)

where i ranges over all intentions and the ϵ> 0 term prevents
division by 0. Then, PF(Ia) multiplies every intention Ib in the
equation for İa (for b ̸= a), so as Ia grows in magnitude relative
to other intentions, contributions of every Ib are diminished, and
when PF(Ia)= 1 (i.e., Ia = 0), such contributions are unaffected.
The denominator is designed to model Ia as less reconsideration
resistant when other intentions are highly active.

The implemented mechanism for conflict resistance among
intentions is also in coefficients in cognitive dynamical systems.
In this paper, every intention in agents’ cognitive systems is
negatively interconnected with every other intention, with a non-
conflict factor NCF as part of the differential equation for every
intention. [Recall from equation (3) that İa = . . . − ki · PF(Ia) ·
NCF(Ib) · Ib . . ..] The non-conflict factor function is:

NCF(Ib) =

(
1 + 1.6

(
Ib
10

)8
+ 0.8

(
Ib
10

)9
)

. (5)

2These are not the only properties of intention described or emphasized in
Bratman (1987); these properties, however, can apply to reactive-level intention, not
requiring, e.g., future-directedness incompatible with reactive cognition.
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This NCF component is applied similar to PF: in the differential
equation for Ia, each term for an intention Ib is multiplied by
NCF(Ib) (although unlike PF, it is possible that a= b). Thus,
NCF decreases activation levels for conflicting intentions (and
increases them for non-conflicting intentions, e.g., when a= b).
The constants in equation (5) were chosen for agents in this
paper by the agent designer after thought experiments and eval-
uation of preliminary tests; with different choices of constants,
other DI-HDCAs could perform differently in the same general
framework.

To test NCF effectiveness, simulations were run that isolated
effects of NCF: agents did not navigate, and persistence factor PF
was removed from the cognitive system; experiments compared a
control group without NCF to an experimental group with NCF
for results. Each group was identical in all other ways, containing
ten agents (A1, . . ., A10) with cognitive elements designed for the
office scenario in section 4. Each of the ten agents had identical
cognitive activation values except for initial activations on inten-
tions; for intentions, each agent Ai’s initial activations were i/3
times these baseline values:

MailLetter GetChild RetrieveCheck HomeBase GetPensSC GetPensAO
3.1 2 1 1 1 1

The rate of change in activation on intention IML corresponding
to the MailLetter behavior was then measured. On average, over
the first 30 s of test runs, agents with non-conflict factor NCF
in operation and the highest level of initial activation had a
lower rate of decrease in activation of intention IML compared
with agents in the baseline condition. The effect was reversed at
medium levels of initial activation, as indicated by marginally sig-
nificant (p= 0.052) interaction. For the baseline agent, mean rates
of change were −0.228 when medium-active and −0.232 when
high-active; for the NCF agent, −0.279 when medium-active and
−0.191 when high-active, as presented in Figure 4. (All statistical
analyses in the paper were conducted with SPSS, version 23.)

Examination of distinguishing BDI properties for DI-HDCAs
is not complete, but the implemented mechanisms suggest that
dynamical intentions can be consistent with BDI properties, and
they demonstrate the environmental sensitivity and design con-
trol capable in the DI-HDCA framework.

3.2. Navigation
Although some agent navigation for this paper is simple, straight-
line motion (see section 5.1), most agent navigation in both the
Tag game and the office grid-world (section 4) is instead similar
to the potential-based reactive navigation of Schöner et al. (1995),
Large et al. (1999), Goldenstein et al. (2001), and Aaron and
Mendoza (2011). This system models environments as consisting
of actors (the navigating agents), obstacles that repel actors, and
targets that serve as goal locations, attracting actors. Actors, obsta-
cles, and targets can be either moving or stationary, and actors
can be treated as obstacles or targets by other actors. In the Tag
game scenario for experiments in section 5, for instance, non-It
players might consider It actors as obstacles, and an It player may

FIGURE 4 | Intentions with high activation avoid conflict with other
high-active intentions. A priori contrasts indicate significant differences
(p<0.05) between means, as shown by asterisks. The main effects of
activation level and type of agent are significantly different (p<0.05) in a 2×3
ANOVA, with a low activation level condition included but not shown for clarity
and brevity.

have an actor as its target. To illustrate the system and suggest the
mathematics underlying it, the dynamics of this navigation system
are briefly summarized here.

Non-linear angular attractor and repeller functions repre-
sent targets and obstacles, and their weighted contributions are
dynamically combined to calculate an actor’s angular velocity
in real-time response to the environment. Heading angle ϕ is
computed by a non-linear system of the form:

.

ϕ = f(ϕ, env) = |wtar| ftar + |wobs| fobs + n, (6)

where ftar and fobs are the attractor and repeller functions for the
system, and wtar and wobs are their weights in the calculation.
(Noise term n helps prevent the system from becoming trapped
at critical points.) The weights themselves are determined by
computing fixed points of another non-linear system [see Large
et al. (1999) for details]. Other parameters and details are also
concealed in the terms presented above. For instance, a repeller
function fobs depends on parameters that determine how much
influence obstacles have on an actor. This is only a partial overview
of the navigation system, but it suggests the complexity involved in
modeling it and exposes the significant non-linearity in the agent
models’ physical components and navigation intelligence.

Although this navigation system integrates cleanly into dynam-
ical intention-based intelligence, it is not the only option. For
example, instead of abstracting navigation to position, heading,
velocity, etc., as the above system does, one might employ a more
physically grounded model for motion of a wheeled robot: the
robot would have volume andmass; acceleration would be critical
to themodel, as would friction on thewheels and drag through the
air. Such a physically detailed model would also integrate cleanly
with DI-HDCA intelligence, as long as the system of motion was
expressed in the language of differential equations, so any element
of the system could straightforwardly affect any differential equa-
tion in the system – cognitive or physical – to effect the desired
integration.
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while time < endtime

for k = 1:numOfAgents
ag = agentArray(k);

switch ag.mode
case HIDE_RA % mode name

ag = hide_ra(ag);
case HIDE_U

ag = hide_u(ag);
...

end % end switch

agentArray(k) = ag;

end % end for loop

end % end while loop

FIGURE 5 | The basic code structure of the simulator in MATLAB.

3.3. Simulation
The simulations for this paper are implemented in MATLAB,
although other choices could also be good for implementing DI-
HDCAs. At each time step, the simulation updates the state of each
agent according to the behavior mode governing the evolution of
that agent. The modes themselves are implemented as functions,
containing both the propositional guards for transitions to other
modes and the dynamical systems describing the behavior; exe-
cuting a mode function on an agent either induces a transition
to another mode or updates the state of the agent. As shown in
Figure 5, the simulator loops through every agent, identifying the
proper mode function to execute for that agent.

Figure 6 contains a sample code skeleton for a mode. In each
mode, a list of mode-transition guards is checked, and if a guard
is true, the mode-transition corresponding to the first true guard
is taken. This transition is effected by discrete changes in the state
of the agent, including setting a new mode value for the agent;
the main loop will then simulate the agent in the appropriate new
mode during the next time step. If no guard is true, the agent’s
state is updated according to the dynamical system in themode. To
simplify this implementation, all discrete or deliberative dynamics
in the agents in sections 4 and 5 occur during these instantaneous
transitions; representing deliberation during mode execution is
an interesting extension of the current implementation, but it
requires giving temporal dynamics to deliberation that is not
typically modeled as temporally dynamic, and that complication
was not engaged in the present work.

4. REACTIVE-LEVEL LEARNING AND
DELIBERATIVE-LEVEL INTELLIGENCE

Part of the integrated intelligence of DI-HDCAs is the dis-
tribution of goal-directed intelligence over both reactive and
deliberative processes: task sequencing and action selection are
often considered to be deliberative-level intelligence, but with
dynamical intention modeling, some can be handled by reactive-
level intelligence and learning. This enhancement of reactive-
level intelligence reflects a fundamental motivation of dynamical

function agent = hide_ra(agent)
...
if guard1

...
agent = setMode(agent,...);
return

elseif guard2
...

agent = setMode(agent,...);
return

end % end if-else block

...
xd = agent.vel * cos(...);
yd = agent.vel * sin(...);
newx = oldx + (xd*timestep);
newy = oldy + (yd*timestep);
agent.posn = [newx newy];
...

FIGURE 6 | The basic code structure of a mode in MATLAB for a hybrid
dynamical agent.

intention modeling and DI-HDCA design: reactive-level intelli-
gence can be enhanced without denying deliberative intelligence;
DI-HDCAs minimize reliance on deliberative intelligence, for
greater robustness in unpredictable environments.

This section discusses dynamical intention-based learning
methods for DI-HDCAs and describes demonstrations of agents
learning to approximate deliberative, rule-based behavior. In
particular, this section emphasizes how deliberative-level intel-
ligence is distributed over reactive-level processing and learn-
ing. Although the idea of hybrid reactive–deliberative systems
is not novel to DI-HDCAs, and deliberative-level intelligence
that employs the same representations as reactive systems is
not extraordinary (e.g., a planner that uses the location of a
robot, where location is altered by reactive navigation) in hybrid
agents, DI-HDCA modeling emphasizes “the other direction” of
distribution of intelligence: instead of low-level reactive repre-
sentations being employed by high-level logical planners, DI-
HDCAs’ dynamical intentions enable conventionally high-level
intelligence such as task sequencing and action selection to be
distributed down to reactive, lower-level systems.

To demonstrate this reactive–deliberative integration, experi-
ments consider a simulated service robot carrying out tasks in a
grid-world office environment, illustrated in Figure 7, requiring
navigation to various locations (see section 4.1 for task descrip-
tions). To demonstrate the effects of reactive-level learning, three
agents were compared: one had straightforward deliberative rules
explicitly encoded to improve efficiency, the second was a reactive
agent without dynamical intention-based learning, and the third
agent employed dynamical intentions and reactive-level learning
to approximate the rule-based performance of the first agent with-
out requiring explicit deliberative rules. Two kinds of DI-HDCA
learning were implemented for these experiments: a Hebbian
learning method that strengthens connections among cognitive
elements that are concurrently salient (i.e., with concurrently high
activation values); and belief–intention (BI) learning for task-
specific associations of beliefs and intentions. The Hebbian and
BI learning methods were originally presented and qualitatively
described in Aaron and Admoni (2010); this section summarizes

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 6610

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Aaron Dynamical Intention: Integrated Intelligence Modeling

FIGURE 7 | Simulation in progress, screenshot. A map of the office
environment, top, shows offices and obstacles (black squares), targets (white
squares abutting offices), and three agents (L, R, and NR). Below the
grid-world map is a list of target locations corresponding to agent tasks.

these learning methods and presents new analyses demonstrating
their effectiveness.

4.1. The Office Grid-World: An Overview
An office environment for a simulated service robot provides a
context in which navigation, action selection, and task sequenc-
ing are all essential. The particular office environment for these
demonstrations (see Figure 7) is a simplified grid-world – e.g.,
mail carts in hallways are stationary, not moving obstacles –
although future experiments in the same environment couldmore
fully exploit DI-HDCA reactivity. In experiments, service robots
can carry out six tasks, each with an associated target location:
MailLetter, which requires navigating to the mail room (labeled
MR in Figure 7);GetChild, with navigation to the child care center
CC; RetrieveCheck, at payroll office PO; HomeBase, at home base
HB; GetPensFromSC, at supply closet SC; and GetPensFromAO,
at administrative office AO. Agents are therefore implemented
with six behavior modes, one for each task, and cognitive ele-
ments including one intention for each behavior (e.g., IML for
MailLetter, IGC for GetChild), related beliefs (e.g., BML for having
a letter to mail), and related desires (e.g., DGP for the desire to get
pens). These foundations enable experiments to focus on reac-
tive and deliberative task sequencing intelligence, and this brief
presentation emphasizes only the central elements for the results
presented in this paper. In particular, perception and navigation
intelligence are limited and not emphasized in these experiments;
for additional details, see Aaron and Admoni (2010).

As introduced above, three kinds of robot agents were com-
pared in DI-HDCA learning experiments. One agent AR (for
Rules) employed two straightforwardly encoded deliberative rules:
a sorting-based distance bias to prefer task sequencing that
co-prioritizes tasks with proximate target locations; and the

minimal-effort rule to avoid redundancy such as needlessly going
to both the supply closet and the administrative office to get pens.
The second agent ANRL (Non-Rules/Non-Learning) was identical
to AR except it lacked the relevant deliberative rules; it employed
DI-HDCA task sequencing – intention activations determined
its current task – but had no DI-HDCA learning implemented.
The third agentAL (Learning) employed dynamical intentions and
reactive-level Hebbian and BI learning to approximate the rule-
based performance of the first agent without requiring explicit
deliberative rules. In the next sections below, both general expo-
sitions and specific applications to these agents are presented, for
both Hebbian and BI learning, although the experimental results
presented here focus primarily on BI learning.

4.2. Hebbian Learning
Inspired by observations about neuronal interconnections in
Hebb (1949), Hebbian learning in these DI-HDCAs strengthens
connections between co-active cognitive elements (i.e., elements
that concurrently have high activation values). This broadly gen-
eral dynamical intention-based Hebbian learning method could
in principle apply to any elements, but for these demonstrations,
it is only employed to enhance connections among intentions
associated with target locations that are near each other: the closer
the locations, the stronger the connection between the associated
intentions.

For DI-HDCAs in this paper, the mechanism for Hebbian
learning is based on a limited model of perception and additional
structure in the cognitive dynamical system that allows percep-
tion to affect intention activations. Training for Hebbian learning
consists of each agent simply navigating in its environment. For
these demonstrations, training consists of an agent taking a pre-
specified route through the office environment that passes close
to all target locations for tasks (e.g., mail room, supply cabinet);
training stops at the completion of that route. (Different training
routines or stopping criteria could result in different learning;
this choice suffices for the present demonstrations.) Each agent
has a radius of perception rp roughly equal to one-quarter of
the length of the grid-world, so it accurately perceives target
locations within distance rp of it as it moves. During training
runs forHebbian learning, coefficients encoding interconnections
between intentions have their values increased (until stopping
criteria are reached) based on the proximity of target locations. In
particular, for intentions Ia and Ib (corresponding to tasks a and
b, where a ̸= b) and associated target locations La and Lb, if both
La and Lb have been recently perceived by the agent, the following
coefficients become greater in the cognitive dynamical system:

• The coefficient ka,b on intention Ib in the equation
İa = . . . ka,b · Ib . . . gets larger by an amount proportional to
how recently Lb has been perceived.

• The coefficient kb,a on intention Ia in the equation
İb = . . . kb,a · Ia . . . gets larger by an amount proportional to
how recently La has been perceived.

Because this occurs only when both La and Lb have been
recently perceived, only proximate target locations contribute
to the strengthening of connections between associated inten-
tions, and there is greater co-activation between intentions when
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the target locations are perceived closer to each other during
training.

Additional details are in Aaron and Admoni (2010) about how
coefficients are altered during training (including a Hebbian scal-
ing constant c1 that affects the changes in ka,b and kb,a), the mech-
anism by which recency of perception is implemented to result in
the learning described here, and the effects of Hebbian learning
without BI learning. The above description only summarizes the
details necessary for the presentation of integrated Hebbian and
BI learning in section 4.4 below.

4.3. Belief–Intention Learning
Intentions and beliefs have an especially important conceptual
relationship regarding task completion: completion of a task T
likely results in a strong belief that T has been completed; unless
T needs to be repeated, the belief that T is completed would
influence intention IT to have a negative value, so the agent would
intend not to do task T again. Belief–intention (BI) learning,
which alters cognitive connections between beliefs and intentions,
is therefore especially significant for DI-HDCAs. For experiments
in this paper, BI learning trains agents to relate intentions to beliefs
in ways that might typically be encoded in propositional rules
such as the minimal-effort rule (see section 4.1), but without any
proposition-based learning. Details about BI learning, originally
presented in Aaron and Admoni (2010), are summarized below.

In these experiments, the BI learning mechanism requires that
coefficients relating beliefs to intentions have the form

IC(Ia,Bb) = ka,b · [ra,b · Ca,b + (1 − ra,b)]
IC(Ia,Bb̄) = ka,̄b · [ra,̄b · Ca,̄b + (1 − ra,̄b)]. (7)

Variables a and b (a ̸= b) refer to tasks, ranging over the six
behaviors for agents; as convention, the ka,b values are designer-
chosen scalars, Ia is the intention associated with task a, and Bb
(Bb̄, respectively) is the belief associated with task b having been
completed (not completed). Coefficient IC(Ia, Bb) (IC(Ia,Bb̄)) is
then placed as the coefficient on term Bb (Bb̄) in the differential
equation for intention Ia:

İa = . . . ka,b · [ra,b · Ca,b + (1 − ra,b)] · Bb

+ ka,̄b · [ra,̄b · Ca,̄b + (1 − ra,̄b)] · Bb̄ . . . . (8)

The ra,b and Ca,b values can be designer selected for specific
applications. For this motivating example application – learn-
ing behavior consistent with the deliberative minimal-effort rule,
avoiding redundant tasks when relevant but otherwise leaving
cognition unaffected [see Aaron and Admoni (2010) for addi-
tional details] – ra,b = 1 exactly when belief Bb should affect inten-
tion Ia, otherwise ra,b = 0 (similarly for ra,̄b and Bb̄), i.e., ra,b = 1
exactly when a, b correspond to redundant tasks, which here
are the pen-related tasks GetPensFromSC and GetPensFromAO.
The Ca,b values specify how Bb affects İa when ra,b = 1; for this
example, Ca,b = Ca,̄b = c Bb̄−10

− 20 , so Bb,Bb̄ both do not effect
Ia when beliefs reflect that task b has not yet been completed
(Bb̄ = 10), but after b has been completed (Bb̄ = − 10), the
coefficient on Ia drops rapidly, preventing a redundant errand.

These ra,b and Ca,b terms are not modified due to BI learning,
however. As with this Hebbian learning, this BI learning modifies
coefficients ka,b during training. Training consists of an agent
running errands in its office; the stopping criteria are met if that
errand run ended with the agent having completed exactly one of
the two pen-related tasks. If the errand run stopped but it was not
the case that exactly one pen-related task had been completed, the
scalar parts ka,b (for a ̸= b) in coefficients described in equation
(7) are modified as follows:

ka,b = ka,b · [1 + ra,b(γa,b − 1)]. (9)

(Scalars ka,̄b are similarly modified.) The pre-specified scalar
γa,b > 1 encodes the extent of the modification. In this imple-
mentation, therefore, when tasks are not redundant, ra,b = 0 and
ka,b is unchanged; when learning could lead to minimal-effort
rule-like behavior, ra,b = 1 and the inhibitory link between belief
Bb and Ia is strengthened. Thus, once one pen-related task is
completed, activation on the intention to do the other rapidly
drops.

To demonstrate the effect of BI learning (Hebbian learning is
not part of these demonstrations), two agents were compared:
agent ABI, which had been trained with BI learning to approx-
imate the minimal-effort rule; and agent ANBI, identical to ABI
but without training by BI learning. For these agents, the γa,b
parameter values were all 1.2, and the initial activations on desires
and intentions are as presented here:

MailLetter GetChild RetrieveCheck HomeBase GetPensSC GetPensAO

Initial desires 3 9 8 2 1 n/a
Initial
intentions

6 9.3 10 1 3 3

Recall that agents have only one cognitive element for desires to
get pens – noted as DGetPensSC in the above listing – which has
the expected excitatory effect on both GetPensSC and GetPensAO
behaviors; there is no separate DGetPensAO element, which is noted
by the value n/a for the activation for DGetPensAO above. Agent
ABI had seven training runs following the procedure described
above, each starting from the same position near the supply
cabinet on the left side of the office, and cognitive coefficients
were adjusted during training. After training, agents ABI and ANBI
were tested, with each test consisting of the agent autonomously
running errands in its office; test runs began from 16 intersec-
tions in the office grid-world. Two facets of agent behavior were
measured: redundancy, whether redundant tasks were completed
by the agent, and speed, how long it took the agent to complete
its run.

The redundancy measure was qualitatively described in Aaron
and Admoni (2010): after training, agent ABI completed exactly
one pen-related task on all 16 errand runs, completely avoiding
redundancy and adhering to the minimal-effort rule; agent ANBI,
in contrast, redundantly completed both pen-related tasks on 8 of
its 16 errand runs. The speed measure, not previously statistically
analyzed, is presented in Figure 8. The completion times of runs
varied as expected depending on starting position: the agents’ first
errand was to go to Payroll Office PO on the map (Figure 7), so
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FIGURE 8 | Belief–intention (BI) learning improves navigation. Agents
started from one of 16 different positions, as indicated by the small squares
on the map (top). For purposes of analysis, four neighborhoods were defined.
The time for each agent to reach the target was measured (bottom). Agents
that undergo BI learning navigate significantly faster to the target than agents
without learning (ANOVA, significant main effects of agent type and
neighborhood p<0.05, with asterisk indicating the difference between
agents). Neighborhoods are the same as in Figure 9.

runs starting farther from PO tended to take longer. Completion
time data were therefore considered in four neighborhoods, each
corresponding to a quadrant (lower/upper, left/right) of the map,
and each containing four of the 16 starting points; a depiction
of the neighborhoods is presented with the results in Figure 8.
In every neighborhood, from every starting location, agent ABI
completed its run faster than agent ANBI: in neighborhoods A, B,
C, and D, respectively, the mean times to complete the runs are
74.885, 67.417, 73.073, and 63.375 s for ABI, and 82.198, 70.167,
80.958, and 65.573 s for ANBI.

These experiments suggest the effectiveness of BI learning
for improving efficiency, enabling deliberation-level intelligence
without proposition-based deliberative reasoning. Other imple-
mentations of BI learning are certainly possible for DI-HDCAs,
but this simple example illustrates fundamental ideas about how
learning can alter connections between beliefs and intentions to
train agent behavior.

4.4. Integrating Hebbian and BI Learning
The Hebbian and BI learning methods described above can
be straightforwardly integrated: because they alter disjoint sets
of cognitive connections, nothing additional is needed to
employ both methods together. For demonstrations of integrated
Hebbian–BI (HBI) learning described in this paper, agents employ
the mechanisms in sections 4.2 and 4.3 without alteration. These
procedures and some results were originally inAaron andAdmoni
(2010); this section summarizes the experiments run to demon-
strate HBI learning and presents new and expanded statistical
analyses of data from these experiments.

Training for HBI learning is consistent with procedures
described above. A training run consists of an agent autonomously
running errands in its office environment. Training concludes
after a training run meets two conditions: the agent performs
exactly one of the two pen-related tasks, suggesting learning of
the minimal-effort rule; and the time taken by the errand run
is not less than the time taken by the previous run, suggesting
adequate learning of the distance bias. (Because DI-HDCAs in
these experiments move at constant speed, time and distance are
equivalentmeasures.) Training of agentAL (Learning) consisted of
18 training runs beginning at the same location and with the same
cognitive activation values and parameters as for the BI learning
in section 4.3, along with Hebbian scaling constant c1 = 4× 104.

As described in section 1, these experiments compared agentAL
to two other agents: ANRL, which is identical to the pre-learning
state of agent AL; and AR, which is identical to ANRL except
with propositional, deliberative encodings of the distance-bias
and minimal-effort rule. For experiments, tests were run from 16
starting locations, consisting of each agent running errands as in
the experiments of section 4.3. The redundancy of agents’ runs –
i.e., did they execute both pen-related tasks – and the average time
of completion of agents’ runs weremeasured and compared across
the three agent types.

Considering task redundancy, the behavior of AR in these
tests was dictated by its deliberative rules, as expected: it always
retrieved pens from the administrative office, so it never went
to the supply closet. By comparison, HBI learning agent AL also
went to exactly one of those two locations on every run – indeed,
on 15 of the 16 test runs, the dynamical intention-guided AL
performed exactly the same task sequence as AR – but untrained
agentANRL went to both locations on every run. BecauseANRL was
identical to AL without the integrated HBI training, the reactive-
level learning clearly reduced redundancy, bringing about the
same performance as AR without additional deliberation.

Considering errand run completion times, AL finished every
run faster than ANRL, but slower than AR. As with the results in
Figure 8, completion time data for these agents were considered
in the same four neighborhoods. Results are in Figure 9. In every
neighborhood, completion times of agents AR and AL are sta-
tistically indistinguishable, indicating that HBI learning enabled
the DI-HDCA agent to approximate rule-based behavior without
explicit deliberative rules. Moreover, in every neighborhood, both
AR and AL were statistically different from ANRL, demonstrating
that learning distinguished AL from ANRL. As shown in Figure 9,
the mean completion times (in seconds) to complete the errand
runs in neighborhoods A, B, C, and D (respectively) are: 73.76,
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FIGURE 9 | Hebbian–BI (HBI) learning. The three types of agent started
from one of 16 different positions, grouped into the same neighborhoods as in
Figure 8. The time for each agent to complete its errand run task was
measured. Using a 3×4 fully factorial ANOVA, a significant (p<0.05) effect of
type of agent and neighborhood was detected. Post hoc t-tests determined
that in all neighborhoods AR and AL were statistically indistinguishable and
that both were statistically different from ANRL, as indicated by the asterisks.
When the marker for AR is not visible, it is hidden behind the marker for AL.

67.187, 71.146, and 63.271 for AR; 75.302, 67.583, 72.25, and
63.406 for AL; and 77.822, 71.302, 75.823, and 67.333 for ANR.

4.5. Discussion
The above results demonstrate that dynamical intention-based,
reactive-level learning can train agents to closely approximate
deliberative-level intelligence and rule-based behavior in these
experimental conditions, without reliance on deliberative struc-
tures. DI-HDCAs do not learn explicit propositional rules; agents
learn reactive-level tendencies generally (though not entirely)
in accord with the guiding rules. This enables deliberative-level
intelligence to be distributed to reactive-level processes, for hybrid
intelligence that retains the benefits of both deliberative goal-
based performance and reactive responsiveness.

The generality of the tasks and this domain suggest that learned
behavior can generalize beyond an agent’s training set, and that
similar learning processes could generalize to other task domains.
Moreover, Hebbian and BI learning alter only cognitive con-
nections between some beliefs and intentions, but different DI-
HDCA learning methods could incorporate other cognitive ele-
ments (including desires) or other connections among elements.
Indeed, the underlying modeling framework of excitatory and
inhibitory links among dynamically responsive cognitive ele-
ments is general enough to enable (if not encourage!) different
approaches to DI-HDCA learning.

5. COGNITIVE–PHYSICAL INTEGRATION
AND ONLINE LEARNING

Along with DI-HDCAs’ integration of reactive- and deliberative-
level intelligence, which arises from shared cognitive representa-
tions across both levels, cognitive–physical integration arises from
both cognitive and physical system components being expressed
in the shared language of dynamical systems. As a demonstra-
tion domain for integrated cognitive–physical learning for DI-
HDCAs, interactive simulated Tag games – i.e., requiring agent

interactions with people and not just other agents – provide some
especially important elements: an unpredictable environment; a
requirement for navigation intelligence, including target seeking
and obstacle avoidance; and the possibility of both simple and
complex behaviors and strategies.

Tag has continuous, real-time play rather than turn-taking, so
online learning during gameplay might be preferable to learning
that interrupts play or occurs only after games. Moreover, in
a user-interactive environment, agents might be asked to learn
things specified by a user during gameplay – for instance, an agent
might be playing too well, making the game too difficult, and the
user could instruct the agent to modify some but not all of its
strategy during play, for a more enjoyable game. In such a multi-
faceted modification, as described in section 5.2, the agent might
need to modify both its physical speed and its cognitive strategy
for the desired behavior, learning during gameplay and without
direct user feedback.

DI-HDCAs’ cognitive–physical integration can make it
straightforward to learn this altered behavior. Because agent
speed is represented by a variable in the agent’s shared
cognitive–physical dynamical system, cognitive variation
can directly respond to physical variation: speed can be directly
employed as a parameter in learning that alters the agent’s
cognitive network, so real-time micro-variations in speed can
result in real-time micro-variations in cognitive-level strategy. As
results in section 5.2 show, this straightforward approach can be
effective for online learning in Tag-game demonstrations.

The remainder of section 5 further describes the Tag environ-
ment and related experiments. Although this is not the deepest
instance of cognitive–physical integration possible in DI-HDCA
models [see Aaron et al. (2011) for a brief mention of physi-
cal actions considered “involuntary” affecting cognitive elements
considered “subconscious”], it illustrates the effect that cogni-
tive–physical integration can have on adaptive agent behavior, and
it illuminates the central role of dynamical intention modeling in
integrated intelligence.

5.1. The Tag-World: An Overview
In the Tag game environment – called “Tag-world” here, anal-
ogous to “grid-world ” in section 4 – interactions between the
user and agents are standard: each It player pursues some non-
It player; each non-It agent avoids It players. To make the game
more adversarial, for these demonstrations, two players at a time
are It. The field of play (Figure 10) is a square with bases near
the corners, obstacles between bases, andmultiple players; players
are penalized for touching an obstacle, requiring that they stay
frozen for a specified duration, during which they are vulnerable
to getting tagged by an It player. In addition, players touching base
cannot become It, but they cannot stay on base too long, to prevent
play from degenerating into all players staying on base and none
getting tagged.

These Tag games are populated by two kinds of autonomous
agents: cognitive Tag agents (CTAs), the focal agents in these
experiments, with dynamical intention-based cognitive systems
and relatively complex strategies; and simple Tag agents (STAs)
with relatively basic strategies, serving as additional players in the
game. For navigation, sometimes agents use straight-line motion
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that is not obstacle avoidant to move to a target location; when
obstacle avoidance is needed, the navigation is the same kind
as for the agents in section 4, as described in section 3.2. Tag-
world and these agents were originally described in Aaron et al.
(2011), which also contains details not included in the brief sum-
mary here; below, this section describes only details needed for
the experiments involving CTAs, and it presents the results of
online learning for CTAs, including qualitative description and
new statistical analysis.

FIGURE 10 | Simulated interactive Tag game. The screenshot (with added
labels) illustrates field layout and Tag players. Elements include bases,
obstacles, human-controlled players, It agents, cognitive Tag agents, and
simple Tag agents. [Aaron et al. (2011) contain additional details about these
Tag simulations.]

An STA, when not It, simply runs clockwise from base to
base, ideally avoiding being tagged. When an STA becomes It,
it chooses from two possible It-actions: it either chases the user
(the person playing the game) or it chases another agent. An
STA’s cognitive structure is a very simple dynamical intention-
based system, straightforwardly supporting only this behavior;
specifics of STA action selection are not central to results in this
paper. In contrast, a CTA contains more complex intelligence
and cognitive–physical integration; Figure 11 shows the mode-
level architecture of CTAs in these experiments. When a CTA
C is not It, it will try to execute all of the following behav-
iors in a game: runBases, the simple base-running strategy that
STAs have; getMitten, retrieving its mitten (which, as children
sometimes do, this agent drops in every game); protect, protect-
ing a friend from being tagged; and readyToTag, actively seek-
ing to become It, to tag an adversary. The getMitten action is
implemented by selecting a time when, wherever C is, its mitten
drops; soon after, C finds the mitten’s location, and cognitive
activations evolve until, in general, mitten-retrieval becomes C’s
highest priority. To enable protect and readyToTag, C has beliefs
of affinities for each player in the game; C will protect a non-It
player with maximal affinity during protect and pursue a non-
It player with minimal affinity during readyToTag. When a CTA
is It, it either follows through on a readyToTag action and pur-
sues its selected adversary, or it selects between chasing the user
or another agent, as STAs do. [Additional details of STAs and
CTAs, not central to results in this paper, are in Aaron et al.
(2011)].

The cognitive dynamical systems in these agents connect BDI
cognitive elements in intuitive ways. For example, the equations
governing activations of the desire to run bases, the intention to

FIGURE 11 | Behavior mode-level architecture of a cognitive Tag agent (CTA). Each mode also has a self-transition, omitted here to avoid visual clutter.
[Aaron et al. (2011) contain additional details.]
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tag another player, and the intention to run bases contain the
following structure:

. . .

d
.
Run = − c1 · bAmIt − c2 · iTag + c3 · iRun

i
.
Tag = d1 · bAmIt + d2 · dTag − d3 · dRun

+ d4 · iTag − d5 · iRun

i
.
Run = − e1 · bAmIt − e2 · dTag + e3 · dRun − e4 · iTag

+ e5 · iRun
. . . (10)

Additional structure is also present in equations for these cog-
nitive elements, and additional equations are present for other
cognitive elements. [The specific components for distinguish-
ing properties of BDI intentions and the experimental results in
section 4, however, are not present in agents for these experiments.
For additional details about these cognitive systems, see Aaron
et al. (2011).] The online learning of DI-HDCAs in these examples
is based on the interconnections encoded in these equations,
similar to the mechanism in section 4, as further described below.

5.2. Agent Learning and
Cognitive–Physical Integration
The motivation for the Tag-world learning demonstrations below
was to approximatewhat a human game-playermight want during
play: a usermight specify agent behavior to change, within desired
bounds, to improve the gameplay experience. For example, a user
might have been tagged so quickly by It agents that the game was
not a fair challenge, but when agents were non-It players, their
behavior was good for gameplay. Based on this idea, a CTA was
tasked to learn from a simulated user request to change one aspect
of gameplay without affecting another, exemplifying an arbitrary
user choice, unrelated to agent design and substantively changing
behavior.

As preparation, control condition behavior for CTAs was deter-
mined by letting a game play extensively (more than 8000 sim-
ulated seconds), with an automated user for replicability. In this
game setup, when a CTACctrl became It,Cctrl would almost always
tag some other player in less than 25 simulated seconds (average:
12.85 s). In addition, the value actrl of the average number of bases
reached per execution of the runBases behavior, over the full game,
was actrl = 4.01.

For the learning demonstrations, the CTA would learn a goal
with two components: speed change, requiring speed-only learning;
and base-running maintenance, requiring speed-and-bases (SB)
learning.

• Speed change: after becoming It, C should optimally tag some
other player between 25 and 45 s later. Speed-only training (and
thus partial SB training, see below) occurs when C transitions
out of chasemode. If the time C was It is outside of the desired
range (25–45 s), C is trained to become slower or faster, as
appropriate, by a factor depending on how far outside of the
desired range C was It.

• Base-running maintenance: despite the effects of speed-only
learning, C should only minimally change the value aC of

the average number of bases reached during each runBases
behavior. SB training occurs whenC transitions out of runBases
mode: aC is updated, and coefficients in cognitive differential
equations are altered to train C to approach the control value of
4.01 in the future. As a partial example, if aC < 4.01, coefficients
in the differential equation governing iRun are altered so that
C tends to remain longer in runBases, encouraging greater
aC in the future. The amounts altered depend on values such
as the velocity of C when training occurs, exemplifying cog-
nitive–physical integration: values of physical variables affect
cognitive adjustments.

To focus these demonstrations, the connections modified dur-
ing training were pre-selected, though the adjustments were
autonomous.

Feedback for SB learning is given by the expected two mea-
surements: how long until C tagged another player (agent or user)
when C was It; and how many times C reached a base when in
runBases behavior. Learning occurs when C transitions out of two
behaviors:

• When C transitions out of chase, if the time t that agent C
was It is less than minimum desired time tmin (here, tmin is
25 s), then C becomes slower, multiplying its speed by 1 − m ∗
(tmin−t)

tmin
, where m= 0.05 controls the effect of the change. This

is designed to approach 1−m when C tags its target almost
immediately, for maximal change, and approach 1 when C tags
its target near the time of tmin, for minimal change. Similarly, if
C takesmore than somemaximumdesired time tmax (here, 45 s)
to tag a player, then it becomes faster, multiplying its velocity by
the similarly designed factor 1 + m ∗ (tmax−t)

tmax
.

• When C transitions out of runBases, learning occurs under two
circumstances: either when the agent transitions out because
another behavior’s intention becomes highest-active and the
agent has touchedmore or fewer bases than the desired number,
or when the agent is tagged by an It player after having touched
more bases than the desired number. (If the agent is tagged
after having touched fewer bases than the desired number, it
is not possible to know whether it would have touched fewer
or more bases than the desired number, and learning does not
happen in that situation.) In either of these cases, the value
of the average number of bases touched by C (call it aC) each
time it was in runBases is re-computed, and if that average is
either more or less than the desired average, coefficients in C’s
cognitive system are altered, based on agent-specific learning
factor lF.

Cognitive interconnections can be altered in two ways by this
learning procedure: multiplying by lF, or multiplying by 1

lF . Coef-
ficients in cognitive differential equations for which higher values
would intuitively make C evolve out of runBases faster are mul-
tiplied by lF; coefficients for which high values would intuitively
make C evolve out of the behavior more slowly are multiplied by
1
lF . Therefore, if C were touching too many bases per runBases
behavior and needed to transition out of it more quickly, lF would
be increased during play, and coefficient-altering learning would
be applied. Similarly, lF would be decreased if C needed to stay in
runBases longer to achieve its goals.
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Learning factor lF is defined as lF= s · f, the current speed s ofC
multiplied by a factor f, the value of which is described below. This
way, an increase (decrease, respectively) in s straightforwardly
results in a tendency to touch more (fewer) bases before transi-
tioning out of runBases. Factor f is also varied during gameplay.
Initially, f = 1

sinit , where sinit is the speed of C at the beginning
of the game (for these demonstrations, that speed was 1

50 of the
size of the Tag field per simulated second). Then, the value of f
can be changed when C transitions out of runBases, as part of
the learning procedure. Any time the agent exits runBases, the
average number of bases aC touched during the runBases behavior
is computed; then, if at the time of the current transition out of
runBases, aC is greater than the desired value of actrl (here, 4.01),
f is multiplied by 1.2. Similarly, if aC is below 4.01 at the time of
a voluntary transition, lF is multiplied by 0.8. This definition of
f and its alteration during play completes the definition of lF to
have the desired properties.

With this definition of lF, learning is implemented by altering
cognitive coefficients as appropriate. For this paper, the coeffi-
cients intuitively presumed to increase the rate at which the system
evolves out of runBases, and which were therefore multiplied by
lF, are: in the equation for İprotect, the coefficient for Dprotect, and a
positive constant term; in the equation for İrunBases, the coefficients
for Itag, Iprotect, Imitten, and a negative constant term. Similarly,
the coefficients multiplied by 1

lF are: in the equation for İrunBases,
the coefficients for DrunBases and IrunBases. This is not meant to
be a comprehensive list of all coefficients that intuitively affect
the speed with which C evolves out of runBases, but rather a
sample sufficient to affect the behavior of C and illustrate ideas
of DI-HDCA learning.

Demonstrations showed agent C successfully learning inte-
grated cognitive–physical behavior during play:C slowed to spend
more time as It before tagging another player (average: 32.62 s)
while also maintaining a bases average of aC = 4.21, very close to
4.01. Additionally, speed-only learning without full SB learning
resulted in aC = 2.19 in otherwise identical conditions, suggest-
ing the importance of integrated learning for the desired goal.
[see Aaron et al. (2011) for additional details.] To quantitatively
analyze performance and test the hypothesis that the type of
learning alters the performance of the agents, univariate ANOVA
was used, with results presented in Figure 12. For the dependent
measure of number of bases touched, the mean value for speed-
and-bases learning was significantly higher [F(1, 18)= 15.358,
p= 0.001, η2 = 0.460] than the mean for the speed-only learning
(Figure 12A). For the variance in the number of bases touched, the
mean value for speed-and-bases learning was significantly higher
[F(1, 18)= 131.624, p< 0.000, η2 = 0.880] than the mean for the
speed-only learning (Figure 12B).

5.3. Discussion
The above results show DI-HDCAs’ cognitive–physical integra-
tion as a substrate for online learning of multi-faceted, real-time
interactive gameplay. The cognitive–physical integration makes
the learning straightforward for DI-HDCAs: the extent to which
speed or the agent’s cognitive network needs to be modified is

FIGURE 12 | Learning in the Tag game. (A) Number of bases that agents
touched. With learning based on speed and number of bases, agents
touched significantly more bases. (B) Variance in number of bases touched.
With learning based on speed and number of bases, agents had significantly
greater variance.

not known a priori, but cognitive–physical integration enables
small adjustments in one to bring about small adjustments in
the other, so the integrated agent system can find the desired
balance.

Other experiments presented in Aaron et al. (2011), although
illustrative of cognitive–physical integration in DI-HDCAs, were
not related to agent learning and hence not presented above.
Specific values were varied in controlled environments, to inves-
tigate the particular effects that might result. For example, many
game segments were simulated with identical CTA C; initially, C’s
intentions implied task order [readyToTag, runBases, protect, get-
Mitten]. Across simulations, two factors varied – when C dropped
its mitten; and when C was tagged by the user (automated, for
replicability) – to illuminate micro-level cognitive and physical
effects in gameplay. Asmitten-drop grew later with get-tagged held
constant, for example, the time at which C moved from readyTo-
Tag into runBases was not affected, but the time at which C then
entered protect tended to get earlier. In addition, for particular
values of mitten-drop and get-tagged, C entered protect mode –
in which movement is not obstacle-avoidant – at an inopportune
moment and ran straight into an It player. This sequence of events
and ensuing cascade of effects illustrates how engaging, unscripted
behavior that could be considered emergent can arise in the
DI-HDCA framework. Emergent behavior and the DI-HDCA
framework are also briefly discussed in section 6 below.
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6. CONCLUSION AND DISCUSSION

The DI-HDCA modeling framework is a fusion of ideas from
BDI theory, spreading activation networks, and hybrid dynamical
system models, each adapted and employed in new ways that
are influenced by entailments of environment and embodiment.
DI-HDCA modeling embraces BDI theory and spreading acti-
vation networks for cognitive modeling, adapting them to real-
time varying environments, continuum-valued representations,
and multi-tiered integration across a model. Representing DI-
HDCA models in a formal HDS enables behavioral design, and
it supports cognitive–physical integration in each behavior mode.
Moreover, because all physical and cognitive elements have the
real-time evolution of their activation values expressed by differ-
ential equations in the same dynamical system, any elements can
affect any other in the integrated agent model.

The DI-HDCA framework’s expansive integration also
supports the agent learning demonstrated in sections 4
and 5 of this paper, employing both reactive–deliberative
and cognitive–physical integration for adaptive behavior of
navigating, goal-directed agents. Experiments demonstrate that
DI-HDCA modeling can enable the distribution of typically
deliberative task sequencing intelligence onto reactive-level
processes, and that cognitive–physical integration can enable
straightforward online learning in interactive simulations. These
experiments are not an exhaustive demonstration of the capacity
of DI-HDCA models nor a full exploration of the integration and
adaptation possible for DI-HDCAs – for example, they considered
the reactive–deliberative and cognitive–physical dimensions
independently, not jointly – but they illuminate the role of this
integrated intelligence modeling and suggest the value of further
exploration.

There are many possible directions in which the presently
described DI-HDCA framework could be extended. In the gen-
eral context of reactive and deliberative systems, extensions of
dynamical intention-based reactive systems illustrated here could
potentially serve as reactive adjuncts to deliberation in hybrid
reactive–deliberative systems, augmenting deliberative methods
with enhanced reactive intelligence; this could reduce reliance
on deliberation and extend reactive benefits of responsiveness
and adaptability in incompletely known environments. There is
also the perhaps more ambitious potential that DI-HDCAmodels
could extend to fully replace some deliberative systems, repre-
senting the necessary rule-based behavior in the reactive DI-
HDCA framework. Neither of these approaches is currently fully
explored, and it is not the intent of this paper to prescribe one of
these two approaches or endorse one over the other; both seem
interesting to explore.

The specific details of DI-HDCA modeling presented in this
paper can also be altered in further explorations. For example,
in this paper, one activation value represents both salience and
cognitive intensity or commitment “in mind,” but those qualities
need not be conflated: within this general modeling framework,
agents could be very aware (high salience) of a mild desire (low
intensity), with individual elements in the cognitive networks
representing each of those qualities; the models presented in this
paper could straightforwardly adopt such new elements in their

cognitive dynamical systems. In addition, deliberation could be
modeled differently in the DI-HDCA framework, with specific
deliberation-behaviormodes that represent the time during delib-
eration; these could be incorporated without altering reactive
cognitive representations. Such extensions were not necessary,
however, for the demonstrations of reactive-level learning and
cognitive–physical integration in this paper.

Even within the models already developed, the capacity of
dynamical intention modeling to enhance reactive-level intelli-
gence and minimize reliance on deliberation is not confined to
agent learning methods such as those presented above. Reactive
task re-sequencing for DI-HDCAs, as discussed in Aaron and
Admoni (2009), can enable agents with internally inconsistent
cognitive elements to smoothly correct inconsistencies without
deliberation: an agent with a high-active intention IML to mail a
letter but also a high-active belief BML that it does not have a letter
to mail can reactively re-order its task sequence, without proposi-
tional planning. The cognitive network enables the high activation
on BML to have an inhibitory affect on IML until mailLetter is no
longer a high-priority task for the agent; indeed, in the demon-
stration reported in Aaron and Admoni (2009), the activation on
IML becomes negative and the mailLetter task is not completed,
consistent with the belief. The agent can invoke deliberative plan-
ning when needed, but for this cognitive inconsistency, reactive
activation changes governed by cognitive differential equations
suffice for task re-sequencing.

Expanding the scope of planning in DI-HDCAs could involve
a deeper exploration of reactive planning. At present, a plan for
DI-HDCAs is represented as a sequence of activation values on
intentions: at any moment, the plan is the ordering of those inten-
tions from high priority (to be completed first) to low priority.
Additional study of mechanisms for planning, and for reasoning
about time in this modeling context, could yield both interesting
cognitive insights and more robust, reliable robots. Relatedly,
applications of DI-HDCA modeling to agents with predictive
intelligence is also a potentially productive extension. Because
DI-HDCA models are based on differential equations, there is
inherently a predictive model in the system: at any moment,
the current values of time derivatives could straightforwardly be
employed to linearly extrapolate any system value to any time in
the future. This capacity is not tested in the present work in this
paper, but it might be employed to further enhance DI-HDCA
behavior, including incorporating such predictions into agent
learning methods.

The modeling of DI-HDCAs as hybrid dynamical systems
is also influenced by concerns of agent reliability. There are
formal logics and computational methods to analytically verify
some properties of hybrid dynamical systems, and in principle,
a DI-HDCA model could perhaps be analytically proved to be
designed correctly according to specifications. (Indeed, some
STAs in the Tag scenario had designs amenable to verification,
although that analysis was not performed.) In practice, however, it
is extremely difficult to analyze properties of arbitrarily complex
hybrid dynamical systems; indeed, reasoning about approxima-
tions to a system may be needed in cases where exact reasoning
about the desired system is computationally impossible (Alur
et al., 1995, 2000). For that reason, verifiability is not presently
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a primary concern underlying DI-HDCA modeling, but as the
verifiable correctness of complex computational agents becomes
more important, it may become more beneficial to have models
of intelligent robots grounded in a framework that enables veri-
fication. Moreover, there are promising HDS-related approaches
to creating verifiably correct behaviors, such as synthesizing robot
controllers from formal specifications [e.g., Wong et al. (2014)];
the gap between such approaches and DI-HDCA modeling is
sizable, but less than the gap between such approaches andmodels
without formal foundations.

The DI-HDCA framework may also be an apt candidate for
studying emergence and mechanisms of emergence. The DI-
HDCA framework enables and encourages low-level behavior
design while also expressing higher-level behavioral abstractions.
On a fundamental level, these are the elements needed to begin
an analysis of emergent behaviors: a lower level, with respect
to which behaviors can be emergent; a higher level, in which
emergent behaviors can be described; and a formalized foundation
in which patterns can be recognized and considered emergent.
Consider, for instance, how artificial neural networks can be parts
of studies involving emergence: behaviors arise that are not readily
or properly described as behaviors of the network itself. Simi-
larly, any higher-level agent behavior would not be considered
emergent with respect to a system if it is already encoded in
that system. With DI-HDCAs, the high-level behaviors explicitly
represented as HDS modes could be a baseline against which
newly recognized behaviors could be compared for determining
emergence; such potentially emergent behaviors could arise from
low-level cognitive and physical dynamics and interconnections,
analogous to behavior arising from a neural network, without
explicit high-level encoding. Moreover, because of the flexibly
expressive HDS modeling, a wide variety of candidate mecha-
nisms for generating or recognizing potentially emergent behav-
iors could be implemented, for a formalized approach to studying
emergence.

Embodied robots are complex integrated systems, and DI-
HDCA modeling represents that complexity in a structured
framework that enables effective analysis and design, with new

approaches to integrated intelligence and learning that can
improve robot performance. Although extensions of the present
work could explore narrowly construed task domains (e.g., an
automated robot arm for manufacturing, designed to make only
one specific weld), that is not suggested here. By design, the
DI-HDCA framework is not primarily for narrowly delineated,
domain-specific problems; instead, it illustrates what a modeling
framework for integrated embodied intelligence might contain,
which can be broadly applied to complex scenarios. For the
general study and robust implementation of embodied intelli-
gence, models expressing both broad scope and integration seem
well suited, and the DI-HDCA modeling framework is designed
for behaviors both low-level and high-level, both cognitive and
physical, and their interactions in embodied agents.
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