
November 2016 | Volume 3 | Article 671

Original research
published: 17 November 2016
doi: 10.3389/frobt.2016.00067

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Aleš Zamuda,

University of Maribor, Slovenia

Reviewed by:
Yara Khaluf,

Universiteit Gent, Belgium
Phil Ayres,

Centre for Information Technology
and Architecture – CITA/KADK,

Denmark

*Correspondence:
Sebastian von Mammen

sebastian.von.mammen@informatik.
uni-augsburg.de

Specialty section:
This article was submitted to

Computational Intelligence,
a section of the journal

Frontiers in Robotics and AI

Received: 25 May 2016
Accepted: 21 October 2016

Published: 17 November 2016

Citation:
von Mammen S, Tomforde S

and Hähner J (2016) An Organic
Computing Approach to Self-
Organizing Robot Ensembles.

Front. Robot. AI 3:67.
doi: 10.3389/frobt.2016.00067

an Organic computing approach
to self-Organizing robot ensembles
Sebastian von Mammen1*, Sven Tomforde2 and Jörg Hähner1

1 Organic Computing, Faculty of Applied Informatics, Institute of Computer Science, University of Augsburg, Augsburg,
Germany, 2 Intelligent Embedded Systems Group, University of Kassel, Kassel, Germany

Similar to the Autonomous Computing initiative, which has mainly been advancing
techniques for self-optimization focusing on computing systems and infrastructures,
Organic Computing (OC) has been driving the development of system design concepts
and algorithms for self-adaptive systems at large. Examples of application domains
include, for instance, traffic management and control, cloud services, communication
protocols, and robotic systems. Such an OC system typically consists of a potentially
large set of autonomous and self-managed entities, where each entity acts with a local
decision horizon. By means of cooperation of the individual entities, the behavior of
the entire ensemble system is derived. In this article, we present our work on how
autonomous, adaptive robot ensembles can benefit from OC technology. Our elaborations
are aligned with the different layers of an observer/controller framework, which provides
the foundation for the individuals’ adaptivity at system design-level. Relying on an
extended Learning Classifier System (XCS) in combination with adequate simulation
techniques, this basic system design empowers robot individuals to improve their
individual and collaborative performances, e.g., by means of adapting to changing goals
and conditions. Not only for the sake of generalizability but also because of its enormous
transformative potential, we stage our research in the domain of robot ensembles that
are typically comprised of several quad-rotors and that organize themselves to fulfill
spatial tasks such as maintenance of building facades or the collaborative search for
mobile targets. Our elaborations detail the architectural concept, provide examples of
individual self-optimization as well as of the optimization of collaborative efforts, and
we show how the user can control the ensembles at multiple levels of abstraction. We
conclude with a summary of our approach and an outlook on possible future steps.

Keywords: organic computing, adaptive systems, observer/controller architecture, robot ensembles, evolutionary
robotics, classifier systems

In order to benefit from an ever more complex technical environment, its behavioral autonomy
needs to increase appropriately as well. Only then may it serve its users without requiring
overwhelming amounts of attention. At the same time, a technical system is expected to offer
appropriate access for controlling its individual components as well as its global goals. The
control of robotic ensembles lends itself well to elucidate this challenge: ideally, the user would
communicate his goals to the ensemble as a whole, without the need of micromanaging each of the
individuals’ parameters and interaction relationships. For instance, the user might navigate a flock
of flight-enabled robotic units toward a building and make them work on facade maintenance,
e.g., scrapping off paint, cleaning windows, or trimming greenery. For this to work, a line of
command has to be established that links several levels of the system’s design concept – the

http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2016.00067&domain=pdf&date_stamp=2016-11-17
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://dx.doi.org/10.3389/frobt.2016.00067
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:sebastian.von.mammen@informatik.uni-augsburg.de
mailto:sebastian.von.mammen@informatik.uni-augsburg.de
http://dx.doi.org/10.3389/frobt.2016.00067
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00067/abstract
http://www.frontiersin.org/Journal/10.3389/frobt.2016.00067/abstract
http://loop.frontiersin.org/people/171131
http://loop.frontiersin.org/people/369753

2

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

user needs to communicate target and task to the ensemble,
and the individuals communicate to coordinate their efforts. In
addition, each individual needs to learn how it can contribute
to the newly posed, global goals, and how it can maximize its
contribution.

The field of Organic Computing (OC) aims at translating
well-evolved principles of biological systems to engineering
complex system design (Müller-Schloer et al., 2011). It provides
the theoretical underpinnings to quantitatively capture system
attributes such as their autonomy and robustness, or processes of
emergence based on measures of entropy. It also promotes com-
plex system design by means of a universal, observer/controller-
based concept for adaptive, self-organizing behavior (Tomforde
et al., 2011). With respect to robotics, OC research initially
focused on failure tolerant and robust hardware concepts, mainly
applied to multi-legged walking machines. The most prominent
example is the Organic Robot Control Architecture (ORCA), see
Brockmann et al. (2005) and Mösch et al. (2006). In ORCA, two
kinds of behavioral modules are discerned. Basic Control Units
(BCUs) implement the core behavior of the robot, rendering it
fully functional with respect to the range of possible tasks. In
addition, Organic Control Units (OCUs) observe and modify the
BCUs’ configuration during runtime (Hestermeyer et al., 2004).
The separation between a system’s basic and its extended func-
tionality has proven itself numerous times – the sympathetic and
the parasympathetic division of the human autonomous nervous
system may serve as a famous biological example.

Similar to ORCA, we follow an OC approach to self-organ-
izing robotic systems. In our approach, each agent in a robotic
ensemble implements a multilayered observer/controller (O/C)
system design concept (Tomforde and Müller-Schloer, 2014;
Tomforde et al., 2016) that allows for local, and in unison, global
optimization of the ensemble’s behavior. The user interface is
explicitly included as one layer that accepts modifications of the
global and local goals. The main contributions of this article are
as follows: (1) we present a novel design concept originating in
the OC domain to allow for self-adaptive and self-optimizing
robot behavior at runtime, (2) demonstrate the applicability of
this concept in real-world applications, and (3) present a user-
oriented interaction mechanism to control robot ensemble and
their individuals in an intuitive manner.

We present the details of the multilayered O/C design concept
of a single robot individual, and we explain how it works in organ-
izing ensembles (Section 1). In Section 2, we provide examples of
the reactive, self-regulatory capacity of the O/C concepts. Section
3 highlights the longer-term evolution of collaborative behavior,
and Section 4 demonstrates the workings of the user interfacing
layer of the design concept. We provide links to related works in
the respective sections, and we conclude with a brief summary
and an outlook on future work.

1. seMinal PreceDing WOrKs

As mentioned in the introduction, our approach relies on an
architectural setup similar to ORCA. Therefore, we first reinforce
the link between our approach and ORCA and related works.
Next, we build on these analogs to preceding works to detail our

approach – from the perspective of a generic design concept as
well as of its concrete implementation.

1.1. From individuals to ensembles
In ORCA, the Organic Control Units change the system under
observation and control (SuOC) based on periodically issued
health signals, i.e., messages from the Basic Control Units indi-
cating their functional working state. In contrast, our approach
observes all kinds of available data about the SuOC. An according
observation model specifies exactly, which input data, configura-
tion parameters, or internally computed results of the SuOC are
passed on to the observer/controller layer. ORCA’s restrictive
policy of data retrieval matches its fairly conservative array of
options for changing the system. Few choices, however, drasti-
cally limit the system’s configuration space and thus promote
ORCA’s primary design goals of (a) unearthing an optimal
learning guideline for adaptation (“the law of adaptation”) and
of (b) protecting acquired knowledge against corruption and
maintaining its validity and consistency (Brockmann et al., 2011).

The ORCA approach is further limited to single, isolated
robots – information exchange with other robots or collaborative
efforts among robotic teams were not envisaged in the original
design concept. Yet, it has been shown that observer/controller-
driven robots can increase their learning speed imitating each
other (Jungmann et al., 2011). Local communication between
robots allows for establishing real teams that collaboratively
perform tasks such as the exploration of unknown terrain, and
that assign each other subtasks in a fair manner – decentralized,
without the need for global control (Brandes et al., 2011; Kempkes
and Meyer auf der Heide, 2011). In addition, recent work shifted
the focus toward task allocation strategies for swarm robotics
systems characterized by soft deadlines; these self-organized task
allocation schemes aim at minimizing the costs associated with
missing the task deadlines, see Khaluf and Rammig (2013) and
Khaluf et al. (2014).

1.2. Observer/controller architecture
As suggested above, the OCbotics approach is founded in a
multi-level observer/controller design concept. An according
diagram is presented in Figure 1. It shows four interwoven archi-
tectural levels. Level 0 denotes the system under observation and
control (SuOC), the base of the design concept located at the
bottom of the figure. Immediately above, level 1 retrieves and
evaluates data about the SuOC’s performance. Based on these
data, it changes the SuOC’s configuration in order to optimize its
performance, to adapt it to varying conditions and needs. In par-
ticular, the SuOC’s parameters/behaviors are adapted according
to observed success that is calculated with respect to a predefined
goal (introduced by level 3). As a consequence, the best possible
configuration set, or behavior, known to level 1 is exhibited by
level 0 at any given situation. True innovation is realized by
level 2, one step above in the multi-level design concept. Here,
completely new behavioral options are generated, simulated, and
optimized in a sandboxed simulation environment. Only if the
new model specifications satisfy all safety constraints considered
as part of the simulation process, are they eventually fed into
level 1. The general design concept as illustrated by Figure 1 is

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 1 | Multi-level observer/controller architecture. The System under Observation and Control (SuOC) at the bottom is observed and adjusted by the
O/C layers above. Their responsibilities are (in this order): reinforcement of existing behavior, innovating new behavior, and interfacing local behavior with (a) user-set
targets and (b) cooperative units’ goals. Figure adapted from Müller-Schloer et al. (2011).

3

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

explained in detail in Tomforde et al. (2011). Besides robotics,
it has been successfully applied to domains such as control of
urban traffic lights, see Prothmann et al. (2011), adaptation of
data communication protocols, see Tomforde et al. (2009, 2010),
or cloud computing environments, see Sommer et al. (2016).
However, dealing with robots and robot ensembles opens a new
range of challenges (Tomforde et al., 2014), mainly concerned
with the human–ensemble interaction mechanisms – which are
a major contribution of this article.

1.3. learning classifier systems
Several studies in Organic Computing have emphasized the
adequacy of Learning Classifier Systems (LCS) as a comprehen-
sive framework to support the self-adaptation process based on
the observer/controller design concept, see, for example, Richter
(2009) and Tomforde et al. (2011). Holland (1975) presented the
first LCS that combined basic rule-based reactive behavior with
an evolutionary component to evolve and improve the rule base.
With the introduction of accuracy-based reinforcement of clas-
sifiers, LCS research reached an important milestone in Wilson
(1995) [for an overview of LCS research and ongoing research
topics see, for instance, Urbanowicz and Moore (2009)]. In the
context of safety-critical Organic Computing applications, the

latter extension to LCS, also referred to as eXtended Classifier
System (XCS), was further modified to suit the multilayer O/C
design concept outlined above. In particular, three modifications
were implemented: (1) the use of continuous value ranges as
promoted in Wilson (2000), (2) the generalization of the closest
fitting existing rule in layer 1 instead of the generation of a new
rule, in case that a given situation is not covered by the existing
rule set (“widening” covering mechanism), and (3) “sandboxed”
offline learning in layer 2 to ensure safety and maturity of new
rules/behaviors. In addition, the user can track the impact of
those triggered rules effecting changes identical to the newly
generated rule and, thereby, building up trust in new rules before
they are considered by themselves. Current developments of LCS
research in the context of Organic Computing can be found in
Stein et al. (2016).

1.4. Ocbotics interfaces
At layer 3, an OC system interfaces with the user. Here, he can
specify and alter goals and inspect the system’s current efforts and
states. Next to specifying goals at a rather high level of abstrac-
tion, the interplay of the user with the system is situated here.
In particular, Human–Swarm Interaction (HSI) methodologies
(Vasile et al., 2011; Nagi et al., 2012) are used to access either

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 2 | (a) The quad-rotor hovers clock-wise around a pole that is suspended by four lines. It tightens a rope (green, dashed) along the suspension lines. (B) A
schematic side-view extracted from a photograph, highlighting the orientation of the markers pinned to the suspension lines. Both figures © 2014 IEEE. Reprinted,
with permission, from von Mammen et al. (2014).

4

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

the system as a whole or individual decentralized, autonomous
components in particular. Besides taking heart in the general
user interface design guidelines, which all aim at minimizing the
cognitive load of the user (Foley et al., 1984; Preim and Dachselt,
2015), an HSI interface should support an effective utilization
of the machines’ intelligences, promote local interference rather
than global ones, and be scalable (Bashyal and Venayagamoorthy,
2008). Multi-user interaction with the swarm is also desirable, as
is the interaction with subsets of swarm individuals. Ideally, an
HSI interface should also be applicable to a multitude of applica-
tion scenarios and not only one very specific one. An according
exemplary interface was already presented by McLurkin et al.
(2006). Here, robotic ground units coordinate wirelessly, whereas
one of them, the gateway robot, communicates with the user and
disseminates new instructions to the swarm. The user may also
take direct control of individual units of the swarm, thereby influ-
encing its dynamics indirectly. A recent survey on HSI research
can be found in Kolling et al. (2016).

In the remainder of this article, we show examples of the
OCbotics approach each of which works at one or two different
levels of the presented design concept. In particular, we show
examples of the reactive behavior of two different systems under
observation and control (layer 0), which has been, in parts, pre-
sented in von Mammen et al. (2014), and we elaborate on their
integration with layer 1 (Section 2). Instances of optimized behav-
ior (layer 2) in collaborative robotics ensembles are presented in
Section 3, whereas more detailed results are presented about a
collaborative facade cleaning scenario, which was previously pre-
sented in von Mammen et al. (2016). The communication among
groups of agents as well as the interface mechanism with the user
of the system, i.e., layer 3, is explained in Section 4.

2. cOnsTrUcTiOn, leViTaTeD, anD
selF-OrganiZeD

Tensile structures play an important role in postmodern archi-
tecture [see, e.g., Lewis (2003)], and they promise to become

increasingly important still, considering their unique versatility
and flexibility in combination with advances in technologies in
built material and construction methods (Schock, 1997). They
have also been subject to Aerial Robotic Construction (ARC)
research (Willmann et al., 2012; Augugliaro et al., 2013) due to
their light mass, load-carrying ability, and their ability of con-
necting large distances. Quad-rotors have been identified as vehi-
cles apt for aerial manipulation mainly due to their robust flight
behavior and their hovering capability (Mahony et al., 2012). In
Augugliaro et al. (2013), prototypic building primitives such as
single and multi-round turn hitches, knob and elbow knots as
well the trajectories resulting from their concatenation have been
discussed. Different from pre-calculating trajectories, we have
been working on a self-organizing approach to building tensile
structures. We detail our approach below, followed by elabora-
tions on its OCbotic-specific features.

Typically, a spider weaves its web by itself (von Frisch, 1974;
Hansell, 2005). Complex web constructions, however, may
require collaborative entanglement and tightening of ropes. This
can, for instance, be achieved by synchronized flight through
pre-calculated control points to cross the ARC quad-rotors’
trajectories. Alternatively, the swarm individuals may coordi-
nate themselves relying on local stimuli, like social insects do
(Bonabeau et al., 1999; Camazine et al., 2003). In this section, we
present an accordingly motivated ARC experiment.1 It features an
autonomous quad-rotor that tightens a rope around a tent pole’s
four suspension lines, see Figures 2 and 3.

For our lab-experiments, we employ the AR.Drone Parrot 2.0
quad-rotor system. It is connected to a standard PC via WLAN.
In order to emulate performant autonomic control of the drone,
a PC retrieves the sensory data of the quad-rotor and issues
the according navigational instructions. We make use of the
quad-rotor’s VGA camera that has a 90° field of vision, built-in
image-processing capabilities such as recognition of QR markers,

1 Please find an accompanying video at https://youtu.be/Lt8Von2kFK8.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://youtu.be/Lt8Von2kFK8

FigUre 3 | illustration of a spider drone at work (screenshot from a
video): the ar.Drone Parrot 2.0 weaves a net surrounding the triangle
installed in our lab. The corresponding video is available at https://www.
youtube.com/watch?v=Lt8Von2kFK8 (last access: 13/09/2016).

FigUre 4 | (a) Weaving behavior of a self-organizing ARC Quad-rotor. It circles clock-wise around a pole, tightening its thread around suspension lines tagged with
directionally oriented markers. © 2014 IEEE. Reprinted, with permission, from von Mammen et al. (2014). (B) Interwoven Simulation Modules. The Robot Operating
System integrates various software components to simulate quad-rotor swarms. In particular, we control the robot using a common ROS-based instruction set that
is understood by both the Gazebo simulation software and its quad-rotor simulation plug-in as well as a ROS driver that steers the actual quad-rotor hardware. ©
von Mammen et al. (2016) CC BY-NC-SA 2.0.

5

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

and the estimates of its ultrasonic distance sensor. As this sensor
and a downward directed camera are used by the quad-rotor to
stabilize its flight, we attached a coil at the top of the vehicle and
unwind the cord through an eye at its back. We interface with
the quad-rotor relying on Nodecoper.js and the node-ar-drone
module (Childers, 2014).

The quad-rotor behaves only based on locally available sensory
information. In particular, it implements the reactive behavior
schematically summarized in Figure 4A: after taking off, it
searches for an orange–green–orange marker, which is one of the
designs that the vehicle is programed to recognize automatically.
It keeps spinning right until it eventually finds one. If the distance
to the marker is less than a certain threshold (1 m worked quite
well), it drifts left. As a consequence, the detected marker moves
outside of its field of view. At this point, the quad-rotor has
surpassed the previous marker and looks for the next one, which

is attached to the next suspension line (also consider Figure 2).
The distance to the next marker along the circumference of the
pole is greater than the given threshold. The quad-rotor can go
straight ahead, if the tag is within the right-hand side of its view
(this condition is labeled “tag in area” in Figure 4A). Otherwise,
it needs to shift a bit to the left.

Programmatically, the quad-rotor’s behavior (Figure 4A) is
represented as a set of simple if-then rules. As such, they can be
easily subjected to standard LCS implementations and its exten-
sions such as XCS (Section 1.3). Hereby, those rules with the
best prediction accuracy in terms of marker detection may be
reinforced to gain the greatest fitness over time, yielding the best
possible behavior. In this way, the quad-rotor of the ARC example
would learn to query the proper sensors at the right times to react
in the best possible way, if the behavioral rule set was enriched
with according alternatives. At the interface of level 0 (the SuOC)
and level 1 (the reinforcement learner), the measure of success
can typically be calculated based on locally available information
such as the distance flown or the number of recognized tags. For
good learning results, the parametrization of the behavior should
be realized at a rather high level, focusing on the selection of
queries and operations and only cover small ranges of variability.
Potential benefits of level 1 learning would not only be optimiza-
tion of one particular learning pattern but also behavioral rules
that adapt to hardware particularities such as deviating sensory
intake or imbalanced motor control.

3. cOllaBOraTiVe sPaTial WOrK

At level 2 of the multilayer O/C design concept, behaviors can be
created by means of generative model building approaches such
as evolutionary algorithms and be optimized for deployment by
means of simulations. As a first OCbotics prototype of offline
level 2 generation and optimization, we have evolved quad-rotor
behavior for collaborative surface maintenance. In this section,

https://www.youtube.com/watch?v=Lt8Von2kFK8
https://www.youtube.com/watch?v=Lt8Von2kFK8
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 5 | cell grid for surface maintenance. The quad-rotor divides the
building facade in a grid of cells. The individual cells represent the immediate
target areas to work on. Their states of cleanliness also provide the local
cues for decision-making, i.e., for approaching an individual cell or to moving
to another vantage point. © von Mammen et al. (2016) CC BY-NC-SA 2.0.

6

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

we introduce the challenge of optimizing collaborative surface
maintenance. We detail the technical setup we relied on for both
simulation and optimization, and we describe the behavioral
options of each swarm individual. Afterward, we draw a very
rough picture of the evolutionary experiments that we have run,
and we discuss the interactions between layers 2 and 3 for propa-
gating successfully bred behaviors that require synchronization
between the individuals in an OCbotics swarm.

Consider the facades of large office buildings as examples of
vertical surfaces: they are subject to cleaning (Bohme et al., 1998;
Elkmann et al., 2002), trimming greenery (Pérez et al., 2011), and
other maintenance tasks. As in the previous example, these tasks
might benefit more from collaborative efforts than only in terms
of efficiency. For instance, fast growing greenery might require
one machine to bend, the other one to cut a branch. Equally, dur-
ing cleaning, several hovering robots might have to join to build
up sufficient pressure to remove persistent dirt. Of course, the
respective operations might also be split into several procedures
performed by individually optimized machines. In this example,
however, we only consider the most modest objective, namely
collaborative efficiency.

The technical setup of our level 2 experiment comprises
(a) a simulation environment to calculate aviation and robotic
mechanics and (b) a machine learning environment with a
generative model component and an optimization component.
Figure 4B depicts the software modules that we have used in
order to simulate collaborative quad-rotor swarms. The Robot
Operating System (ROS) acts as a hub for these modules. It
provides a high-level software interface for programing and com-
municating with different kinds of robots (Quigley et al., 2009).
Gazebo is a simulation engine that natively integrates with ROS,
offering 3D rendering, robot-specific functionality, and physics
calculations (Koenig and Howard, 2004). Thanks to a ROS driver
for the AR.Drone Parrot quad-rotor (Hamer et al., 2014), and
thanks to a Gazebo plug-in that simulates the quad-rotor’s behav-
ior based on the very same ROS-based instruction set (Huang
and Sturm, 2014), any of the generated behaviors immediately
work in silico and in vivo. For the generation of novel behaviors
as well as for their evolution, we decided to use the Evolving
Objects framework (EO) by Keijzer et al. (2002). EO is an open
framework for evolutionary computation featuring an extensible,
object-oriented design concept, and turnkey implementations
of genetic algorithms, particle swarm optimization, and genetic
programing.

Our approach to collaborative facade maintenance is inspired
by nest construction of social insects (Bonabeau et al., 1999).
Each individual works on a small part of the construction
proportional in size to the insects’ physique. Accordingly, each
simulated quad-rotor divides the target surface in a grid, each
cell measuring 2 m × 2 m, its field of view covering six cells, two
rows of three (Figure 5). This partitioning scheme is a result of the
size of the quad-rotor itself and its perceived area from a vantage
point close to the surface. Without loss of generality, a dirtiness
value is assigned to each cell that indicates whether it needs to be
worked on or not. The quad-rotor’s internal state, i.e., its remain-
ing battery life, as well as the configuration of dirty and clean
cells that reveals itself in front of it trigger specific actions. The

quad-rotor may return to the base station to recharge. It may fly to
one of the cells in its field of view and clean it. Alternatively, it may
move to one of the four neighboring vantage points to inspect the
respective neighboring batches of cells.

3.1. evolving collaborative Behavior
Figure 6 captures the behavioral options of a quad-rotor in the
context of facade maintenance. Any activity is initiated by the
decision-making component; subsequent events guide the quad-
rotor back into the decision-making process. Again, the behaviors
can easily be written as if-then rules that ensure the coherence
and simplicity of interfacing across the layers of the O/C design
concept. Notice that in this model, quad-rotors cannot stop
working. Instead, the whole simulation is terminated after a given
amount of time. During this period of time, the decision-making
component determines the success of the simulated swarm. We
generate an according program tree using Genetic Programing
(Poli et al., 2008). In this article, we refrain from presenting the
evolutionary approach in all detail, but we want to convey its
basic mechanisms and how it ties into the OCbotics approach.
The generated decision program may conditionally deploy the
operations outlined in Figure 6A and introduce references or
primitive values as their parameters. The resultant behavior trees
are considered the individuals in an evolutionary optimization
cycle, and thus their fitnesses (penalty, i.e., for remaining amount
of dirt) are calculated in according simulation runs, and they serve
as an important criterion for selecting ancestors for subsequent
generations of individuals (deterministic tournaments).

We ran experiments featuring two or four quad-rotors, or
“aerial robotic units” (ARUs), working in parallel for 900–1500
simulated seconds. Their individual base stations were distributed
randomly in rectangular area sharing two sides with the target
surfaces as seen in Figure 6B. Population sizes varied from 30 to
100 individuals, the generational cycle was repeated between 10
and 50 times – depending on the work load of an individual simu-
lation, which was mainly determined by the number of interacting

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 6 | (a) Options of activity of a facade maintaining quad-rotor agent. Any activity – working on one of the cells ahead, flying to the base station to recharge,
or moving to a neighboring vantage point – is initiated by the decision component, which considers the agent’s battery state and the surface configuration in its field
of view. (B) Simulated environment for collaborative surface maintenance evaluation. Two flat surfaces are presented to the quad-rotor swarms as target area, which
needs to be cleaned. The base stations of the swarm individuals are randomly placed in the rectangular area between the surfaces. Both figures © von Mammen
et al. (2016) CC BY-NC-SA 2.0.

7

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

agents and the simulated time. One of the best individuals in an
experiment that started from a set of previously evolved specimen
worked as follows: having arrived at a random cell of the target
surface, work through single rows of vantage points from right to
left. If the border of the target surface is reached, return to the base
station and approach the target area again. It turns out that this
behavior proved significantly faster than two decision programs
we manually designed before running the evolutionary process:
one of them stochastically selecting dirty cells and considering
the remainder of the battery before taking action (low batteries
are also penalized by the fitness calculation), the other one letting
the quad-rotor follow the dirt gradient exhibited in the perceived
3 by 2 cell matrix.

Figure 7 provides a glimpse at the progression and the suc-
cess of the evolutionary optimization runs. In addition to 20
randomly generated individuals, we fed the best results of a first
experiment that aimed at rigorous preselection of solutions into
a second phase of experiments that was more directed, introduc-
ing some restrictions, as well as simplifications to speed up the
simulations. For instance, an extended simulation time limit of
1500 s forces the quad-rotors to land at least once, an activity
they could avoid during the first phase of experiments, as their
batteries support up to 1200 s of flight. Figure 7A shows the
merged results of both phases: for comparison, ten previously
evolved seed individuals (green) and two manually created
decision functions (blue) are also shown. The seed genotypes
0aabf834 and 131cfa1e did not finish any of the simula-
tions. In order to provide a basis for comparison, the resulting
statistics are extended to include the ten seed individuals from
the first phase and manually created decision functions, all of
which are reevaluated in the second simulation scenario. In
Figure 7B, we see the (non-averaged) penalty value calculated
during the second phase of evolutionary experiments vs. the
associated genotype’s syntax tree depth. We plotted the penalty

value against the individuals’ syntax tree depth, not averaging
multiple evaluations of the same genotype but showing them as
multiple data points. The lower boundary of the scattered points
indicates that trees below a depth of five do not perform well.
The best individuals are located in the range of depths five to
eight, whereas the individuals’ penalties do not rise until a tree
depth of 11 (from about 9600 to 9800). A substantially steeper
penalty increase follows from depths 14 to 16, stabilizing at
about 11,300. This time the scattered points aggregate along
two horizontal lines, one at a penalty value of around 11,400,
the other one at about 16,200. These aggregations emerge due
to genotypes that perform neither particularly effectively nor
particularly poorly. The duality of the recovered baseline arises
from one strong scheme injected with the seeded individuals
from phase one and from a dominant scheme that evolved from
random initializations in phase two.

Level 2 is capable of generating and evolving collaborative
behavior such as the one described above. Initially, the novel
behavior does not have any impact on the system under
observation and control. One may say the innovation process
is encapsulated in a sandbox and runs completely separated
process, offline. At the same time, collaborative behavior needs
to be communicated, if it is required to be performed by all
individuals of a swarm in order to function in a coordinated
way. The observation of Layer 2 by Layer 3 has to detect such
impending necessary changes and broadcast it to all the other
members of the swarm. Similar to an auction in multi-agent
systems (Wooldridge, 2009), the best broadcast solution, i.e.,
decision program and fitness value, would be implemented. As
an extension, any population-based simulation and optimiza-
tion approaches could be distributed among the OCbotics
individuals and their evolution be concerted across the whole
swarm [for distributed population-based optimization, see, for
instance, Sarpe et al. (2010) and Jacob et al. (2011)]. Especially

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 7 | (a) Penalty ranking of evolutionary experiments. (B) Penalty values vs. syntax tree depth in the second phase of evolutionary experiments. Both figures
© von Mammen et al. (2016) CC BY-NC-SA 2.0.

8

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

in situations with imbalanced computational loads across the
swarm, following a smart distributed optimization strategy could
yield an important advantage.

3.2. Other coordinated spatial Tasks
Distributing the lawnmower problem and finding feasible real-
world parameters is an important challenge for coordinated
robotic ensembles. In addition, we have worked toward models
that allow for simulating and optimizing the coordinated behav-
iors of ARUs that (a) optimize their flight paths in context of
both static and dynamic obstacles, (b) search for moving targets,
and (c) scan building interiors. In the following paragraphs, we
illustrate and briefly summarize our findings regarding these
respective models.

3.2.1. Digital Pheromones for Path Finding and
Planning
Social insects drop chemical cues, so-called pheromones, on their
way from a food source back to their nest. Reinforcement of the
pheromone trails ensures that an increasing number of foraging
insects follow the trails and exploit the food source, whereas the
evaporation of the chemical signals ensures that new opportu-
nities are found when the food source runs low (Sumpter and
Beekman, 2003). In order to translate this concept to the coor-
dination of ARUs (or less generic “unmanned aerial vehicles,”
UAVs), technical solutions for leaving digital pheromones need
to be found. One way to do so lies in utilizing locally distributed
smart transceivers that store and disseminate information of
passers-through, as in Parunak et al. (2002). Alternatively, pas-
sive RFID chips could be distributed that convey the respective
information when queried (Mamei and Zambonelli, 2005). Based
on such a hardware infrastructure, the parameters for concerting
one’s behaviors need to be optimized for dynamic path planning
and path finding in different kinds of environments. While the
approach proved robust in our experiments in general, choices
as to when pheromones should be placed and which initial
directions the individuals should head into impacted the target
performance (Figure 8).

3.2.2. Search for Mobile Targets
Coordinated search by ensembles of ARUs is an important task.
There have been efforts in this direction that yield the minimal
number of units needed to find (mobile) targets within a given
time and with a certain probability (Vincent and Rubin, 2004)
or adapt concise trajectory plans for sets of units based on their
individual properties (Yang et al., 2007). A general taxonomy for
cooperative search is provided by El-Abd and Kamel (2005). The
simulation model that we have devised for level 2 of the O/C design
concept allows one to determine the ideal individual velocities
and binding forces between elements of loosely coupled chains of
ARUs (Figure 9). These chains are established in a self-organizing
fashion, linking the units with their neighbors and agreeing on
local leaders. Their advantage over alternative topologies lies in
sweeping large, connected areas, thus minimizing the odds of
the target slipping through the search grid. Similar to Vincent
and Rubin (2004), we can optimize the couplings to minimize
the number of deployed units and to conduct a comprehensive
search within a given time [as in Yang et al. (2007)]. Considering
inconsistencies in the ARUs’ flight behaviors, the impact of the
environment, and possible heterogeneities of the deployed units,
the tandem of level 1 learnings and level 2 offline adjustments
become all the more relevant.

3.2.3. Scanning Interior Spaces
Different from the line-formation approach to coordinated
search, in which the ensemble proactively establishes a topology
for covering connected areas, the environment itself may be
topologically organized, i.e., divided in locally connected space
partitions such as rooms in a building. Giese (2013) exemplarily
demonstrated the usefulness of drones for surveying large build-
ings when digitizing the cathedral of the German world-heritage
city of Bamberg. Ballarin et al. (2013) deployed drones to survey
inaccessible buildings, whereas Shen et al. (2011) and Muhleisen
and Dentler (2012), e.g., showed the feasibility of drones explor-
ing a building autonomously. Through our according model, the
scanning progress of individual units is shared in a local ad hoc
network (Figure 10). Cells marked as scanned in a discretized

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 8 | (a) Placing path pheromones (in yellow) from the start may ensure that several individuals (in green) define new trails in a common direction.
Competition among these trails will determine the most efficient path through an area populated with static and mobile obstacles, brown/white and purple boxes,
respectively. (B) Omnidirectional sensitivity for pheromones results in high density trails at the base station. (c) Furthermore, scattered sensitivity ensures a wider
coverage of the target area.

FigUre 9 | loosely coupled chains of arUs (filled circles) are formed to cooperatively search large, connected areas for mobile targets (hollow
circle).

9

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 10 | (a) The drone marks cells of a discretized environment grid to
indicate scanned areas and determine its next steps. The done can mark
unobstructed cells and unobstructed obstacles such as A but not occluded
cells such as B and C. (B) The drones (blue boxes) are moving in different
directions, maximizing their shared knowledge gain. Moving along they might
get out of reach to synchronize. In this case, they need to move back to the
“root” of the communication tree, i.e., the drone shown as the red box.

10

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

lattice space determine the paths taken by the individuals. In our
model, it is a strong real-world restriction to maintain network
connectivity with the remainder of the ensemble. Therefore, a
loss in connectivity would result in individuals approximating
the “root” unit of the current communication tree.

4. inTeracTiVe selF-OrganiZaTiOn

In our last example, we demonstrate an early prototype of the
user interfacing component of layer 3 of the multilayered O/C
design concept that drives the OCbotics approach. As hinted at in
Figure 1, layer 3 mediates the user’s goals vertically to all system
layers below and horizontally to all OCbotics individuals of the
system.

The preceding examples of web-weaving quad-rotors in
Section 2 and collaborative swarms in Section 3 implement spatial
operations. To some extent, they all culminate in the tandem of
local cues and resultant trajectories. As a consequence, defining
spatial targets for arbitrary subsets of a swarm deems to be an
adequate task generalization for a first prototype of a level 3 user
interface. A “human-in-the-loop” system design forces one to
clearly define the level of influence a user may exercise versus
the level of autonomy the system may keep (Narayanan and
Rothrock, 2011). Therefore, we elaborate on the different levels
of access implemented by our prototype right after we outline its
technical foundation.

Focusing on interactivity, we decided to utilize the turnkey
infrastructure of one of the comprehensive game and simulation
engines. In particular, we decided to use Unity as it provides
a very shallow learning curve (compared to its competitors)
while still providing a powerful coding infrastructure that
allows to write custom plug-ins in C# and which offers a wide
range of third-party plug-ins in a dedicated asset store, see
Unity Technologies (2014). Aiming at the implementation of a
high-level interface, we tapped into these resources as much as
possible and bought, for instance, commercial code bases for
simulating flocking behaviors (Different Methods, 2014) and
automated path finding in three-dimensional environments
(Allebi, 2014). We further built on Unity demos and plug-ins

that support current hardware solutions such as the Oculus Rift
head-mounted display (Oculus VR Inc, 2014) and the Razer
Hydra motion controller (Razer Inc, 2014). In combination,
these hardware solutions allow us to emulate an augmented
reality scenario for controlling an OCbotics swarm. Figure 11
shows the model of an OCbotics swarm being setup in Unity3D.
The light green circles depict waypoints computed by the path
finding algorithm, the dual-view perspective at the bottom-left
corner of the screen indicates the current view of the attached
head-mounted display. The bottom-right window displays the
library of components used for modeling the scene, the list at
the right-hand side of the screen shows the components that
already constitute the scene.

Our user interface prototype immerses the user into a virtual
reality shared with the OCbotics swarm. In the long run, the
simulated swarm is meant to make way for a real one, and the
virtual reality for an augmented reality. Already, the user can
observe the whole swarm or a subset tracking it with a virtual
camera that follows in a distance and which aims at the center
of the set of selected individuals. The user can exercise control
on any subset of the swarm, hence he may direct flocks of indi-
viduals or single individuals at a time. The interface provides all
kinds of state information about the selected individuals, such
as (averaged and variance of) remaining battery life, current
target, current trajectory, and currently perceived neighbors.
The user may switch between individuals and greater subsets of
the swarm by simply selecting them. Next, he may change the
target of flight or even individual control points along the way.
Of course, he may also change the parameters of the selected
individuals such as their urge for alignment. In our prototype,
the user is immersed into the scene of the simulated swarm (see
Figure 12A) so he can easily trace its activity, understand its
relationship to the current target and to obstacles, and to rectify
it, whenever necessary.

The presented simulated prototype for immersive swarm
control shows how high-level goals such as setting a new
target of the swarm can be communicated in an intuitive way.
Differentiated selection of swarm individuals as well as setting
local attributes, such as local targets or local waypoints, are
simple yet clear examples of moving from abstract, high-level
goal descriptions (target/swarm) to specific low-level com-
mands (trajectory waypoints/individual). For a swarm and an
individual to reach the specified targets or waypoints, complex
calculations have to be performed. In the given example, the
need to avoid obstacles and to find optimal paths as well as
the coordination among swarm individuals on their way are
outsourced to third-party plug-ins (Allebi, 2014; Different
Methods, 2014). In the general case, also considering other
tasks communicated on layer 3, the necessary behaviors could
evolve in sandboxed simulations (layer 2) and be optimized
based on local performance feedback (layer 1), see. We are
currently working on furthering the accessibility of human–
swarm interfaces by designing and evaluating game-like test
scenarios in virtual reality (Figure 12B). In addition, we derive
mutual influences among distributed robot societies at runtime
to further improve the cooperation of individuals (Rudolph
et al., 2015a,b, 2016).

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

FigUre 12 | (a) The user guides the swarm through movement of her head and two 3D joysticks. The pair of controllers empowers her to draw new spatial
relations between the simulated objects, e.g., to set new targets for subsets of the swarm. © 2014 IEEE. Reprinted, with permission, from von Mammen et al.
(2014). (B) We are working on testing usability and user experience of different interfaces and input modalities [also based on indirect touch (Voelker et al., 2013)
and hand-gestures (Hackenberg et al., 2011)] in the context of this fire-fighting game.

FigUre 11 | Ocbotics swarm modeled in Unity3D. The Unity3D environment allows us to integrate complex simulation models and immersive user interaction
hardware such as motion-based input controllers and head-mounted displays. © 2014 IEEE. Reprinted, with permission, from von Mammen et al. (2014).

11

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

5. cOnclUsiOn

In this article, we have introduced OCbotics as a comprehensive
approach to designing self-organizing aerial robotic ensembles.

OCbotics is driven by a multilayered observer/controller design
concept that allows to optimize and adapt an adaptable system.
Adaptation is required in order to maintain or increase the
performance exhibited by the system under observation and

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

12

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

reFerences

Allebi, F. (2014). Easy Path Finding System. Available at: http://u3d.as/content/
allebi/easy-path-finding-system/4a7

Augugliaro, F., Mirjan, A., Gramazio, F., Kohler, M., and D’Andrea, R.
(2013). “Building tensile structures with flying machines,” in International
Conference on Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ (Tokyo,
JP: IEEE), 3487–3492.

Ballarin, M., Buttolo, V., Guerra, F., and Vernier, P. (2013). Integrated surveying
techniques for sensitive areas: San felice sul panaro. ISPRS Ann. Photogramm.
Remote Sens. Spat. Inform. Sci. 5, W1.

Bashyal, S., and Venayagamoorthy, G. K. (2008). “Human swarm interaction for
radiation source search and localization,” in Swarm Intelligence Symposium,
2008. SIS 2008. IEEE (St. Louis, MO: IEEE), 1–8.

Bohme, T., Schmucker, U., Elkmann, N., and Sack, M. (1998). “Service robots for
facade cleaning,” in Industrial Electronics Society, 1998. IECON’98. Proceedings
of the 24th Annual Conference of the IEEE, Vol. 2 (Aachen: IEEE), 1204–1207.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From
Natural to Artificial Systems. New York: Santa Fe Institute Studies in the Sciences
of Complexity, Oxford University Press.

Brandes, P., Degener, B., Kempkes, B., and Meyer auf der Heide, F. (2011).
“Energy-efficient strategies for building short chains of mobile robots locally,”
in SIROCCO’11: Proc. of the 18th International Colloquium on Structural
Information and Communication Complexity (Gdansk: Springer), 138–149.

Brockmann, W., Maehle, E., and Mösch, F. (2005). “Organic fault-tolerant control
architecture for robotic applications,” in IARP/IEEE-RAS/EURON Workshop on
Dependable Robots in Human Environments (Nagoya: IEEE).

Brockmann, W., Rosemann, N., and Maehle, E. (2011). “A framework for controlled
self-optimisation in modular system architectures,” in Organic Computing – A
Paradigm Shift for Complex Systems, eds C. Müller-Schloer, H. Schmeck, and
T. Ungerer (Basel, CH: Birkhäuser Verlag), 281–294.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., and
Bonabeau, E. (2003). Self-Organization in Biological Systems. Princeton Studies
in Complexity. Princeton: Princeton University Press.

Childers, B. (2014). Hacking the parrot ar drone. Linux J. 2014, 1. Available at:
https://de.scribd.com/document/234999646/Linux-Journal-May (accessed
November 08, 2016).

Different Methods. (2014). Swarm Agent. Available at: http://u3d.as/content/
different-methods/swarm-agent/608

El-Abd, M., and Kamel, M. (2005). “A taxonomy of cooperative search algo-
rithms,” in Proceedings of the International Workshop on Hybrid Metaheuristics
(Barcelona: Springer Berlin Heidelberg), 32–41.

Elkmann, N., Felsch, T., Sack, M., Saenz, J., and Hortig, J. (2002). “Innovative service
robot systems for facade cleaning of difficult-to-access areas,” in International
Conference on Intelligent Robots and Systems, 2002. IEEE/RSJ, Vol. 1 (Lausanne,
CH: IEEE), 756–762.

Foley, J. D., Wallace, V. L., and Chan, P. (1984). The human factors of computer
graphics interaction techniques. Comput. Graphics Appl. IEEE 4, 13–48.
doi:10.1109/MCG.1984.6429355

Giese, J. (2013). “Technologiemix im praxistest: Baudokumentation am bamberger
dom,” in Dokumentation und Innovation bei der Erfassung von Kulturgütern II,
ed. E. I. Faulstich Würzburg: Bundesverband freiberuflicher Kulturwissenschaftler
e.V., Otto-Friedrich-Universität Bamberg.

Hackenberg, G., McCall, R., and Broll, W. (2011). “Lightweight palm and finger
tracking for real-time 3d gesture control,” in Virtual Reality Conference (VR),
2011 IEEE (Singapore: IEEE), 19–26.

Hamer, M., Engel, J., Parekh, S., Brindle, R., and Bogert, K. (2014). Ardrone
Autonomy: A Ros Driver for Parrot Ar-Drone Quadrocopter. Available at: https://
github.com/AutonomyLab/ardrone_autonomy

Hansell, M. (2005). Animal Architecture. New York, NY: Oxford University Press.
Hestermeyer, T., Oberschelp, O., and Giese, H. (2004). “Structured information

processing for self-optimizing mechatronic systems,” in Proceedings of the 1st
International Conference on Informatics in Control, Automation and Robotics
(ICINCO 2004), Setubal, Portugal, eds H. Araujo, A. Vieira, J. Braz, B.
Encarnacao, and M. Carvalho (Setubal: INSTICC Press), 230–237.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Oxford,
UK: U Michigan Press.

Huang, H., and Sturm, J. (2014). Tum Simulator. Available at: http://wiki.ros.org/
tum_simulator

Jacob, C., Sarpe, V., Gingras, C., and Feyt, R. P. (2011). “Swarm-based simulations
for immunobiology,” in Information Processing and Biological Systems (Berlin:
Springer Berlin Heidelberg), 29–64.

Jungmann, A., Kleinjohann, B., and Richert, W. (2011). “Increasing learning speed
by imitation in multi-robot societies,” in Organic Computing – A Paradigm Shift
for Complex Systems (Basel, CH: Birkhäuser Verlag), 295–307.

Keijzer, M., Merelo, J. J., Romero, G., and Schoenauer, M. (2002). “Evolving objects:
a general purpose evolutionary computation library,” in Artificial Evolution, eds
P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer (Heidelberg, DE:
Springer), 231–242.

Kempkes, B., and Meyer auf der Heide, F. (2011). “Local, self-organizing strategies
for robotic formation problems,” in ALGOSENSORS, Volume 7111 of Lecture
Notes in Computer Science, ed. T. Erlebach (Heidelberg, DE: Springer), 4–12.

Khaluf, Y., Birattari, M., and Hamann, H. (2014). “A swarm robotics approach to task
allocation under soft deadlines and negligible switching costs,” in Proceedings
Animals to Animats 13 – 13th International Conference on Simulation of Adaptive
Behavior, SAB 2014, Castellón, Spain, July 22-25, 2014, 270–279.

Khaluf, Y., and Rammig, F. J. (2013). “Task allocation strategy for time-constrained
tasks in robot swarms,” in Proceedings of the Twelfth European Conference on
the Synthesis and Simulation of Living Systems: Advances in Artificial Life, ECAL
2013, Taormina, Italy, September 2-6, 2013, 737–744.

Koenig, N., and Howard, A. (2004). “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Proceedings of the Intelligent Robots and
Systems, 2004 (IROS 2004). International Conference on 2004 IEEE/RSJ, Vol. 3
(IEEE), 2149–2154.

Kolling, A., Walker, P., Chakraborty, N., Sycara, K., and Lewis, M. (2016). Human
interaction with robot swarms: a survey. IEEE Trans. Human-Mach. Syst. 46,
9–26. doi:10.1109/THMS.2015.2480801

control – either by optimizing or extending existing behaviors, or
by innovating, i.e., generating, simulating, and optimizing novel
behaviors. The performance, in turn, is measured in terms of
user-defined goals that may also change over time. In compari-
son to concepts from the state-of-the-art [see, e.g., Augugliaro
et al. (2013) where trajectories are pre-calculated], the OCbotics
approach provides a large step toward applicability in non-lab and
unstructured conditions, since it establishes a self-adaptation loop
that considers safety constraint and continuously self-optimizes
the robot’s behavior.

We have presented three different projects that operate at
different levels of the discussed design concept: web-weaving
quad-rotors with an emphasis on optimized local reactive
behavior, evolution of collaborative behavior to efficiently work
on surfaces, and an immersive user interface for setting and

changing user-defined goals. While the three examples slightly
vary regarding their applications, they are connected through the
common themes of self-organization, rule-based behavior, and
adaptation, and of course, the O/C design concept to host them
all. With the pieces of the puzzle at hand, the next obvious step is
to put them into place, to forge the software components into one
(if heterogeneous) code base, to connect the layers of the design
concept, to develop a repertoire of recombinable goal definitions,
and to transfer the partially still virtual implementations of all
levels onto an actual OCbotics infrastructure.

aUThOr cOnTriBUTiOns

SM: main author, main project supervisor. ST and JH: coauthors,
secondary project supervisors.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://u3d.as/content/allebi/easy-path-finding-system/4a7
http://u3d.as/content/allebi/easy-path-finding-system/4a7
https://de.scribd.com/document/234999646/Linux-Journal-May
http://u3d.as/content/different-methods/swarm-agent/608
http://u3d.as/content/different-methods/swarm-agent/608
http://dx.doi.org/10.1109/MCG.1984.6429355
https://github.com/AutonomyLab/ardrone_autonomy
https://github.com/AutonomyLab/ardrone_autonomy
http://wiki.ros.org/tum_simulator
http://wiki.ros.org/tum_simulator
http://dx.doi.org/10.1109/THMS.2015.2480801

13

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

Lewis, W. (2003). Tension Structures: Form and Behaviour. London, UK: Thomas
Telford.

Mahony, R., Kumar, V., and Corke, P. (2012). Multirotor aerial vehicles: modeling,
estimation, and control of quadrotor. Rob. Autom. Mag. IEEE 19, 20–32.
doi:10.1109/MRA.2012.2206474

Mamei, M., and Zambonelli, F. (2005). “Physical deployment of digital pheromones
through rfid technology,” in Proceedings of the Swarm Intelligence Symposium,
SIS 2005 (Pesedina: IEEE), 281–288.

McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., and Schmidt, B.
(2006). “Speaking swarmish: human-robot interface design for large swarms
of autonomous mobile robots,” in AAAI Spring Symposium: To Boldly Go
Where No Human-Robot Team Has Gone Before (Palo Alto: AAAI Press),
72–75.

Mösch, F., Litza, M., Auf, A. E. S., Maehle, E., Großpietsch, K.-E., and Brockmann,
W. (2006). “Orca – towards an organic robotic control architecture,” in Proc.
of First International Workshop on Self-Organizing Systems, IWSOS/EuroNGI
(Passau: Springer Berlin Heidelberg), 251–253.

Muhleisen, H., and Dentler, K. (2012). Large-scale storage and reasoning for
semantic data using swarms. Comput. Intell. Mag. IEEE 7, 32–44. doi:10.1109/
MCI.2012.2188586

Müller-Schloer, C., Schmeck, H., and Ungerer, T. (eds) (2011). Organic
Computing – A Paradigm Shift for Complex Systems. Autonomic Systems. Basel,
CH: Birkhäuser Verlag.

Nagi, J., Ngo, H., Giusti, A., Gambardella, L. M., Schmidhuber, J., and Di Caro, G. A.
(2012). “Incremental learning using partial feedback for gesture-based human-
swarm interaction,” in Proceedings of the 21st IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN) (Paris: IEEE),
898–905.

Narayanan, S., and Rothrock, L. (2011). Human-in-the-loop Simulations: Methods
and Practice. London, UK: Springer.

Oculus VR Inc. (2014). Oculus Rift: Next Gen Virtual Reality. Available at: http://
www.oculusvr.com/rift/

Parunak, H. V. D., Purcell, L. M., SIX, F. C. S., and O’Connell, M. R. (2002). “Digital
Pheromones for Autonomous Coordination of Swarming uav’s,” in Proceedings of
the 1st UAV Conference (Portsmouth: American Institute of Aeronautics and
Astronautics), 1–9.

Pérez, G., Rincón, L., Vila, A., González, J. M., and Cabeza, L. F. (2011). Green
vertical systems for buildings as passive systems for energy savings. Appl. Energy
88, 4854–4859. doi:10.1016/j.apenergy.2011.06.032

Poli, R., Langdon, W. B., McPhee, N. F., and Koza, J. R. (2008). A Field Guide to
Genetic Programming. Raleigh: Lulu Press, Inc.

Preim, B., and Dachselt, R. (2015). Interaktive Systeme: Band 2: User Interface
Engineering, 3D-Interaktion, Natural User Interfaces, 2nd Edn. Berlin:
Springer-Verlag.

Prothmann, H., Tomforde, S., Branke, J., Hähner, J., Müller-Schloer, C., and
Schmeck, H. (2011). “Organic traffic control,” in Organic Computing – A
Paradigm Shift for Complex Systems, Volume 1 of Autonomic Systems, eds
C. Müller-Schloer, H. Schmeck, and T. Ungerer (Basel, CH: Springer Basel),
431–446.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros:
an open-source robot operating system,” in ICRA Workshop on Open Source
Software, Vol. 3. (Kobe: IEEE Press), 5.

Razer Inc. (2014). Razer Hydra Portal 2 Bundle. Available at: http://www.razerzone.
com/de-de/gaming-controllers/razer-hydra-portal-2-bundle/

Richter, U. M. (2009). Controlled Self-Organisation Using Learning Classifier Systems.
Ph.D. thesis, Universität Karlsruhe (TH), Fakultät für Wirtschaftswissenschaften,
Karlsruhe, DE.

Rudolph, S., Tomforde, S., and Hähner, J. (2016). “A mutual influence-based
learning algorithm,” in Proceedings of the 8th International Conference on
Agents and Artificial Intelligence (ICAART16) (Rome: INSTICC, ScitePress),
181–189.

Rudolph, S., Tomforde, S., Sick, B., and Hähner, J. (2015a). “A mutual influence
detection algorithm for systems with local performance measurement,” in
Proceedings of the 9th IEEE International Conference on Self-adapting and Self-
organising Systems (SASO15) (Boston, MA: IEEE Press), 144–150.

Rudolph, S., Tomforde, S., Sick, B., Heck, H., Wacker, A., and Hähner, J. (2015b).
“An online influence detection algorithm for organic computing systems,” in
Proceedings of the 28th GI/ITG International Conference on Architecture of
Computing Systems (Porto: VDE Verlag), 1–8.

Sarpe, V., Esmaeili, A., Yazdanbod, I., Kubik, T., Richter, M., and Jacob, C. (2010).
“Parametric evolution of a bacterial signalling system formalized by mem-
brane computing,” in CEC 2010, IEEE Congress on Evolutionary Computation
(Barcelona, Spain: IEEE Press), 1–8.

Schock, H.-J. (1997). Soft Shells: Design and Technology of Tensile Architecture.
Basel, CH: Birkhäuser.

Shen, S., Michael, N., and Kumar, V. (2011). “Autonomous multi-floor indoor nav-
igation with a computationally constrained mav,” in International Conference on
Robotics and automation (ICRA), 2011 IEEE (Shanghai: IEEE), 20–25.

Sommer, M., Tomforde, S., and Hähner, J. (2016). “Predictive load balancing in
cloud computing environments based on ensemble forecasting,” in Proceedings
of the 13th IEEE International Conference on Autonomic Computing (ICAC)
(Würzburg: IEEE), 300–307.

Stein, A., Rauh, D., Tomforde, S., and Hähner, J. (2016). “Augmentic the algorith-
mic structure of XCS by means of interpolation,” in Proceedings of the 29th GI/
ITG International Conference on Architecture of Computing Systems (ARCS)
(Nuremberg: VDE Verlag), 348–360.

Sumpter, D. J., and Beekman, M. (2003). From nonlinearity to optimality:
pheromone trail foraging by ants. Anim. Behav. 66, 273–280. doi:10.1006/
anbe.2003.2224

Tomforde, S., Cakar, E., and Hähner, J. (2009). “Dynamic control of network proto-
cols – a new vision for future self-organised networks,” in Proceedings of the 6th
International Conference on Informatics in Control, Automation, and Robotics
(ICINCO’09), Held in Milan, Italy (2 – 5 July, 2009), eds J. Filipe, J. A. Cetto, and
J.-L. Ferrier (Milan: INSTICC), 285–290.

Tomforde, S., Hähner, J., and Sick, B. (2014). Interwoven systems. Informatik-
Spektrum 37, 483–487. doi:10.1007/s00287-014-0827-z

Tomforde, S., Hurling, B., and Hähner, J. (2010). “Dynamic control of mobile
ad-hoc networks – network protocol parameter adaptation using organic
network control,” in Proc. of the 7th Int. Conf. on Informatics in Control,
Automation, and Robotics (ICINCO’10), Held in Funchal, Portugal (June 15 – 18,
2010) (Setubal: INSTICC), 28–35.

Tomforde, S., and Müller-Schloer, C. (2014). Incremental design of adaptive
systems. J. Ambient Intell. Smart Environ. 6, 179–198. doi:10.3233/AIS-140252

Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Müller-Schloer,
C., et al. (2011). “Observation and control of organic systems,” in Organic
Computing – A Paradigm Shift for Complex Systems, Autonomic Systems, eds C.
Müller-Schloer, H. Schmeck, and T. Ungerer (Basel, CH: Birkhäuser Verlag),
325–338.

Tomforde, S., Rudolph, S., Bellman, K., and Würtz, R. (2016). “An organic
computing perspective on self-improving system interweaving at runtime,” in
Proceedings of the 13th IEEE International Conference on Autonomic Computing
(ICAC) (Würzburg: IEEE Press), 276–284.

Unity Technologies. (2014). Unity – Game Engine. Available at: http://unity3d.com/
Urbanowicz, R. J., and Moore, J. H. (2009). Learning classifier systems: a

complete introduction, review, and roadmap. J. Artif. Evol. Appl. 2009, 1.
doi:10.1155/2009/736398

Vasile, C., Pavel, A., and Buiu, C. (2011). “Integrating human swarm interaction in
a distributed robotic control system,” in Proceedings of the IEEE Conference on
Automation Science and Engineering (CASE) (Trieste: IEEE), 743–748.

Vincent, P., and Rubin, I. (2004). “A framework and analysis for cooperative search
using uav swarms,” in Proceedings of the ACM Symposium on Applied Computing
(SAC) (Nicosia: ACM Press), 79–86.

Voelker, S., Wacharamanotham, C., and Borchers, J. (2013). “An evaluation of state
switching methods for indirect touch systems,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Paris: ACM), 745–754.

von Frisch, K. (1974). Animal Architecture. New York: Harcout Brace Jovanovich.
von Mammen, S., Lehner, P., and Tomforde, S. (2016). “Evolving a facade-ser-

vicing quadrotor ensamble,” in Proceedings of COGNITIVE 2016 the Eighth
International Conference on Advanced Cognitive Technologies and Applications
(COGNITIVE) (Rome, Italy: IARIA, ThinkMind), 16–21.

von Mammen, S., Tomforde, S., Hähner, J., Lehner, P., Förschner, L., Hiemer,
A., et al. (2014). “Ocbotics: an organic computing approach to collaborative
robotic swarms,” in IEEE Symposium on Swarm Intelligence (SIS), 2014
(Orlando: IEEE Press), 1–8.

Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F., and
Kohler, M. (2012). Aerial robotic construction towards a new field of archi-
tectural research. Int. J. Arch. Comput. 10, 439–460. doi:10.1260/1478-0771.10.
3.439

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1109/MRA.2012.2206474
http://dx.doi.org/10.1109/MCI.2012.2188586
http://dx.doi.org/10.1109/MCI.2012.2188586
http://www.oculusvr.com/rift/
http://www.oculusvr.com/rift/
http://dx.doi.org/10.1016/j.apenergy.2011.06.032
http://www.razerzone.com/de-de/gaming-controllers/razer-hydra-portal-2-bundle/
http://www.razerzone.com/de-de/gaming-controllers/razer-hydra-portal-2-bundle/
http://dx.doi.org/10.1006/anbe.2003.2224
http://dx.doi.org/10.1006/anbe.2003.2224
http://dx.doi.org/10.1007/s00287-014-0827-z
http://dx.doi.org/10.3233/AIS-140252
http://unity3d.com/
http://dx.doi.org/10.1155/2009/736398
http://dx.doi.org/10.1260/1478-0771.10.3.439
http://dx.doi.org/10.1260/1478-0771.10.3.439

14

von Mammen et al. OCbotics Paradigms

Frontiers in Robotics and AI | www.frontiersin.org November 2016 | Volume 3 | Article 67

Wilson, S. (2000). “Get real! XCS with continuous-valued inputs,” in Learning
Classifier Systems, Volume 1813 of Lecture Notes in Computer Science, eds
P. Lanzi, W. Stolzmann, and S. Wilson (Berlin, Heidelberg: Springer), 209–219.

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evol. Comput. 3, 149–175.
doi:10.1162/evco.1995.3.2.149

Wooldridge, M. J. (2009). An Introduction to Multiagent Systems, 2nd Edn. West
Sussex, UK: John Wiley and Sons Ltd.

Yang, Y., Polycarpou, M. M., and Minai, A. A. (2007). Multi-uav cooperative
search using an opportunistic learning method. J. Dyn. Syst. Meas. Control 129,
716–728. doi:10.1115/1.2764515

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 von Mammen, Tomforde and Hähner. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://dx.doi.org/10.1162/evco.1995.3.2.149
http://dx.doi.org/10.1115/1.2764515
http://creativecommons.org/licenses/by/4.0/

	An Organic Computing Approach to Self-Organizing Robot Ensembles
	1. Seminal Preceding Works
	1.1. From Individuals to Ensembles
	1.2. Observer/Controller Architecture
	1.3. Learning Classifier Systems
	1.4. OCbotics Interfaces

	2. Construction, Levitated, and Self-Organized
	3. Collaborative Spatial Work
	3.1. Evolving Collaborative Behavior
	3.2. Other Coordinated Spatial Tasks
	3.2.1. Digital Pheromones for Path Finding and Planning
	3.2.2. Search for Mobile Targets
	3.2.3. Scanning Interior Spaces

	4. Interactive Self-Organization
	5. Conclusion
	Author Contributions
	References

