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Similar to the Autonomous Computing initiative, which has mainly been advancing 
techniques for self-optimization focusing on computing systems and infrastructures, 
Organic Computing (OC) has been driving the development of system design concepts 
and algorithms for self-adaptive systems at large. Examples of application domains 
include, for instance, traffic management and control, cloud services, communication 
protocols, and robotic systems. Such an OC system typically consists of a potentially 
large set of autonomous and self-managed entities, where each entity acts with a local 
decision horizon. By means of cooperation of the individual entities, the behavior of 
the entire ensemble system is derived. In this article, we present our work on how 
autonomous, adaptive robot ensembles can benefit from OC technology. Our elaborations 
are aligned with the different layers of an observer/controller framework, which provides 
the foundation for the individuals’ adaptivity at system design-level. Relying on an 
extended Learning Classifier System (XCS) in combination with adequate simulation 
techniques, this basic system design empowers robot individuals to improve their 
individual and collaborative performances, e.g., by means of adapting to changing goals 
and conditions. Not only for the sake of generalizability but also because of its enormous 
transformative potential, we stage our research in the domain of robot ensembles that 
are typically comprised of several quad-rotors and that organize themselves to fulfill 
spatial tasks such as maintenance of building facades or the collaborative search for 
mobile targets. Our elaborations detail the architectural concept, provide examples of 
individual self-optimization as well as of the optimization of collaborative efforts, and 
we show how the user can control the ensembles at multiple levels of abstraction. We 
conclude with a summary of our approach and an outlook on possible future steps.

Keywords: organic computing, adaptive systems, observer/controller architecture, robot ensembles, evolutionary 
robotics, classifier systems

In order to benefit from an ever more complex technical environment, its behavioral autonomy 
needs to increase appropriately as well. Only then may it serve its users without requiring 
overwhelming amounts of attention. At the same time, a technical system is expected to offer 
appropriate access for controlling its individual components as well as its global goals. The 
control of robotic ensembles lends itself well to elucidate this challenge: ideally, the user would 
communicate his goals to the ensemble as a whole, without the need of micromanaging each of the 
individuals’ parameters and interaction relationships. For instance, the user might navigate a flock 
of flight-enabled robotic units toward a building and make them work on facade maintenance, 
e.g., scrapping off paint, cleaning windows, or trimming greenery. For this to work, a line of 
command has to be established that links several levels of the system’s design concept – the 
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user needs to communicate target and task to the ensemble, 
and the individuals communicate to coordinate their efforts. In 
addition, each individual needs to learn how it can contribute 
to the newly posed, global goals, and how it can maximize its 
contribution.

The field of Organic Computing (OC) aims at translating 
well-evolved principles of biological systems to engineering 
complex system design (Müller-Schloer et al., 2011). It provides 
the theoretical underpinnings to quantitatively capture system 
attributes such as their autonomy and robustness, or processes of 
emergence based on measures of entropy. It also promotes com-
plex system design by means of a universal, observer/controller-
based concept for adaptive, self-organizing behavior (Tomforde 
et  al., 2011). With respect to robotics, OC research initially 
focused on failure tolerant and robust hardware concepts, mainly 
applied to multi-legged walking machines. The most prominent 
example is the Organic Robot Control Architecture (ORCA), see 
Brockmann et al. (2005) and Mösch et al. (2006). In ORCA, two 
kinds of behavioral modules are discerned. Basic Control Units 
(BCUs) implement the core behavior of the robot, rendering it 
fully functional with respect to the range of possible tasks. In 
addition, Organic Control Units (OCUs) observe and modify the 
BCUs’ configuration during runtime (Hestermeyer et al., 2004). 
The separation between a system’s basic and its extended func-
tionality has proven itself numerous times – the sympathetic and 
the parasympathetic division of the human autonomous nervous 
system may serve as a famous biological example.

Similar to ORCA, we follow an OC approach to self-organ-
izing robotic systems. In our approach, each agent in a robotic 
ensemble implements a multilayered observer/controller (O/C) 
system design concept (Tomforde and Müller-Schloer, 2014; 
Tomforde et al., 2016) that allows for local, and in unison, global 
optimization of the ensemble’s behavior. The user interface is 
explicitly included as one layer that accepts modifications of the 
global and local goals. The main contributions of this article are 
as follows: (1) we present a novel design concept originating in 
the OC domain to allow for self-adaptive and self-optimizing 
robot behavior at runtime, (2) demonstrate the applicability of 
this concept in real-world applications, and (3) present a user-
oriented interaction mechanism to control robot ensemble and 
their individuals in an intuitive manner.

We present the details of the multilayered O/C design concept 
of a single robot individual, and we explain how it works in organ-
izing ensembles (Section 1). In Section 2, we provide examples of 
the reactive, self-regulatory capacity of the O/C concepts. Section 
3 highlights the longer-term evolution of collaborative behavior, 
and Section 4 demonstrates the workings of the user interfacing 
layer of the design concept. We provide links to related works in 
the respective sections, and we conclude with a brief summary 
and an outlook on future work.

1. seMinal PreceDing WOrKs

As mentioned in the introduction, our approach relies on an 
architectural setup similar to ORCA. Therefore, we first reinforce 
the link between our approach and ORCA and related works. 
Next, we build on these analogs to preceding works to detail our 

approach – from the perspective of a generic design concept as 
well as of its concrete implementation.

1.1. From individuals to ensembles
In ORCA, the Organic Control Units change the system under 
observation and control (SuOC) based on periodically issued 
health signals, i.e., messages from the Basic Control Units indi-
cating their functional working state. In contrast, our approach 
observes all kinds of available data about the SuOC. An according 
observation model specifies exactly, which input data, configura-
tion parameters, or internally computed results of the SuOC are 
passed on to the observer/controller layer. ORCA’s restrictive 
policy of data retrieval matches its fairly conservative array of 
options for changing the system. Few choices, however, drasti-
cally limit the system’s configuration space and thus promote 
ORCA’s primary design goals of (a) unearthing an optimal 
learning guideline for adaptation (“the law of adaptation”) and 
of (b) protecting acquired knowledge against corruption and 
maintaining its validity and consistency (Brockmann et al., 2011).

The ORCA approach is further limited to single, isolated 
robots – information exchange with other robots or collaborative 
efforts among robotic teams were not envisaged in the original 
design concept. Yet, it has been shown that observer/controller-
driven robots can increase their learning speed imitating each 
other (Jungmann et  al., 2011). Local communication between 
robots allows for establishing real teams that collaboratively 
perform tasks such as the exploration of unknown terrain, and 
that assign each other subtasks in a fair manner – decentralized, 
without the need for global control (Brandes et al., 2011; Kempkes 
and Meyer auf der Heide, 2011). In addition, recent work shifted 
the focus toward task allocation strategies for swarm robotics 
systems characterized by soft deadlines; these self-organized task 
allocation schemes aim at minimizing the costs associated with 
missing the task deadlines, see Khaluf and Rammig (2013) and 
Khaluf et al. (2014).

1.2. Observer/controller architecture
As suggested above, the OCbotics approach is founded in a 
multi-level observer/controller design concept. An according 
diagram is presented in Figure 1. It shows four interwoven archi-
tectural levels. Level 0 denotes the system under observation and 
control (SuOC), the base of the design concept located at the 
bottom of the figure. Immediately above, level 1 retrieves and 
evaluates data about the SuOC’s performance. Based on these 
data, it changes the SuOC’s configuration in order to optimize its 
performance, to adapt it to varying conditions and needs. In par-
ticular, the SuOC’s parameters/behaviors are adapted according 
to observed success that is calculated with respect to a predefined 
goal (introduced by level 3). As a consequence, the best possible 
configuration set, or behavior, known to level 1 is exhibited by 
level 0 at any given situation. True innovation is realized by 
level 2, one step above in the multi-level design concept. Here, 
completely new behavioral options are generated, simulated, and 
optimized in a sandboxed simulation environment. Only if the 
new model specifications satisfy all safety constraints considered 
as part of the simulation process, are they eventually fed into 
level 1. The general design concept as illustrated by Figure 1 is 
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FigUre 1 | Multi-level observer/controller architecture. The System under Observation and Control (SuOC) at the bottom is observed and adjusted by the 
O/C layers above. Their responsibilities are (in this order): reinforcement of existing behavior, innovating new behavior, and interfacing local behavior with (a) user-set 
targets and (b) cooperative units’ goals. Figure adapted from Müller-Schloer et al. (2011).
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explained in detail in Tomforde et al. (2011). Besides robotics, 
it has been successfully applied to domains such as control of 
urban traffic lights, see Prothmann et al. (2011), adaptation of 
data communication protocols, see Tomforde et al. (2009, 2010), 
or cloud computing environments, see Sommer et  al. (2016). 
However, dealing with robots and robot ensembles opens a new 
range of challenges (Tomforde et al., 2014), mainly concerned 
with the human–ensemble interaction mechanisms – which are 
a major contribution of this article.

1.3. learning classifier systems
Several studies in Organic Computing have emphasized the 
adequacy of Learning Classifier Systems (LCS) as a comprehen-
sive framework to support the self-adaptation process based on 
the observer/controller design concept, see, for example, Richter 
(2009) and Tomforde et al. (2011). Holland (1975) presented the 
first LCS that combined basic rule-based reactive behavior with 
an evolutionary component to evolve and improve the rule base. 
With the introduction of accuracy-based reinforcement of clas-
sifiers, LCS research reached an important milestone in Wilson 
(1995) [for an overview of LCS research and ongoing research 
topics see, for instance, Urbanowicz and Moore (2009)]. In the 
context of safety-critical Organic Computing applications, the 

latter extension to LCS, also referred to as eXtended Classifier 
System (XCS), was further modified to suit the multilayer O/C 
design concept outlined above. In particular, three modifications 
were implemented: (1) the use of continuous value ranges as 
promoted in Wilson (2000), (2) the generalization of the closest 
fitting existing rule in layer 1 instead of the generation of a new 
rule, in case that a given situation is not covered by the existing 
rule set (“widening” covering mechanism), and (3) “sandboxed” 
offline learning in layer 2 to ensure safety and maturity of new 
rules/behaviors. In addition, the user can track the impact of 
those triggered rules effecting changes identical to the newly 
generated rule and, thereby, building up trust in new rules before 
they are considered by themselves. Current developments of LCS 
research in the context of Organic Computing can be found in 
Stein et al. (2016).

1.4. Ocbotics interfaces
At layer 3, an OC system interfaces with the user. Here, he can 
specify and alter goals and inspect the system’s current efforts and 
states. Next to specifying goals at a rather high level of abstrac-
tion, the interplay of the user with the system is situated here. 
In particular, Human–Swarm Interaction (HSI) methodologies 
(Vasile et  al., 2011; Nagi et  al., 2012) are used to access either 
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FigUre 2 | (a) The quad-rotor hovers clock-wise around a pole that is suspended by four lines. It tightens a rope (green, dashed) along the suspension lines. (B) A 
schematic side-view extracted from a photograph, highlighting the orientation of the markers pinned to the suspension lines. Both figures © 2014 IEEE. Reprinted, 
with permission, from von Mammen et al. (2014).
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the system as a whole or individual decentralized, autonomous 
components in particular. Besides taking heart in the general 
user interface design guidelines, which all aim at minimizing the 
cognitive load of the user (Foley et al., 1984; Preim and Dachselt, 
2015), an HSI interface should support an effective utilization 
of the machines’ intelligences, promote local interference rather 
than global ones, and be scalable (Bashyal and Venayagamoorthy, 
2008). Multi-user interaction with the swarm is also desirable, as 
is the interaction with subsets of swarm individuals. Ideally, an 
HSI interface should also be applicable to a multitude of applica-
tion scenarios and not only one very specific one. An according 
exemplary interface was already presented by McLurkin et  al. 
(2006). Here, robotic ground units coordinate wirelessly, whereas 
one of them, the gateway robot, communicates with the user and 
disseminates new instructions to the swarm. The user may also 
take direct control of individual units of the swarm, thereby influ-
encing its dynamics indirectly. A recent survey on HSI research 
can be found in Kolling et al. (2016).

In the remainder of this article, we show examples of the 
OCbotics approach each of which works at one or two different 
levels of the presented design concept. In particular, we show 
examples of the reactive behavior of two different systems under 
observation and control (layer 0), which has been, in parts, pre-
sented in von Mammen et al. (2014), and we elaborate on their 
integration with layer 1 (Section 2). Instances of optimized behav-
ior (layer 2) in collaborative robotics ensembles are presented in 
Section 3, whereas more detailed results are presented about a 
collaborative facade cleaning scenario, which was previously pre-
sented in von Mammen et al. (2016). The communication among 
groups of agents as well as the interface mechanism with the user 
of the system, i.e., layer 3, is explained in Section 4.

2. cOnsTrUcTiOn, leViTaTeD, anD 
selF-OrganiZeD

Tensile structures play an important role in postmodern archi-
tecture [see, e.g., Lewis (2003)], and they promise to become 

increasingly important still, considering their unique versatility 
and flexibility in combination with advances in technologies in 
built material and construction methods (Schock, 1997). They 
have also been subject to Aerial Robotic Construction (ARC) 
research (Willmann et al., 2012; Augugliaro et al., 2013) due to 
their light mass, load-carrying ability, and their ability of con-
necting large distances. Quad-rotors have been identified as vehi-
cles apt for aerial manipulation mainly due to their robust flight 
behavior and their hovering capability (Mahony et al., 2012). In 
Augugliaro et al. (2013), prototypic building primitives such as 
single and multi-round turn hitches, knob and elbow knots as 
well the trajectories resulting from their concatenation have been 
discussed. Different from pre-calculating trajectories, we have 
been working on a self-organizing approach to building tensile 
structures. We detail our approach below, followed by elabora-
tions on its OCbotic-specific features.

Typically, a spider weaves its web by itself (von Frisch, 1974; 
Hansell, 2005). Complex web constructions, however, may 
require collaborative entanglement and tightening of ropes. This 
can, for instance, be achieved by synchronized flight through 
pre-calculated control points to cross the ARC quad-rotors’ 
trajectories. Alternatively, the swarm individuals may coordi-
nate themselves relying on local stimuli, like social insects do 
(Bonabeau et al., 1999; Camazine et al., 2003). In this section, we 
present an accordingly motivated ARC experiment.1 It features an 
autonomous quad-rotor that tightens a rope around a tent pole’s 
four suspension lines, see Figures 2 and 3.

For our lab-experiments, we employ the AR.Drone Parrot 2.0 
quad-rotor system. It is connected to a standard PC via WLAN. 
In order to emulate performant autonomic control of the drone, 
a PC retrieves the sensory data of the quad-rotor and issues 
the according navigational instructions. We make use of the 
quad-rotor’s VGA camera that has a 90° field of vision, built-in 
image-processing capabilities such as recognition of QR markers, 

1 Please find an accompanying video at https://youtu.be/Lt8Von2kFK8.
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FigUre 3 | illustration of a spider drone at work (screenshot from a 
video): the ar.Drone Parrot 2.0 weaves a net surrounding the triangle 
installed in our lab. The corresponding video is available at https://www.
youtube.com/watch?v=Lt8Von2kFK8 (last access: 13/09/2016).

FigUre 4 | (a) Weaving behavior of a self-organizing ARC Quad-rotor. It circles clock-wise around a pole, tightening its thread around suspension lines tagged with 
directionally oriented markers. © 2014 IEEE. Reprinted, with permission, from von Mammen et al. (2014). (B) Interwoven Simulation Modules. The Robot Operating 
System integrates various software components to simulate quad-rotor swarms. In particular, we control the robot using a common ROS-based instruction set that 
is understood by both the Gazebo simulation software and its quad-rotor simulation plug-in as well as a ROS driver that steers the actual quad-rotor hardware. © 
von Mammen et al. (2016) CC BY-NC-SA 2.0.
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and the estimates of its ultrasonic distance sensor. As this sensor 
and a downward directed camera are used by the quad-rotor to 
stabilize its flight, we attached a coil at the top of the vehicle and 
unwind the cord through an eye at its back. We interface with 
the quad-rotor relying on Nodecoper.js and the node-ar-drone 
module (Childers, 2014).

The quad-rotor behaves only based on locally available sensory 
information. In particular, it implements the reactive behavior 
schematically summarized in Figure  4A: after taking off, it 
searches for an orange–green–orange marker, which is one of the 
designs that the vehicle is programed to recognize automatically. 
It keeps spinning right until it eventually finds one. If the distance 
to the marker is less than a certain threshold (1 m worked quite 
well), it drifts left. As a consequence, the detected marker moves 
outside of its field of view. At this point, the quad-rotor has 
surpassed the previous marker and looks for the next one, which 

is attached to the next suspension line (also consider Figure 2). 
The distance to the next marker along the circumference of the 
pole is greater than the given threshold. The quad-rotor can go 
straight ahead, if the tag is within the right-hand side of its view 
(this condition is labeled “tag in area” in Figure 4A). Otherwise, 
it needs to shift a bit to the left.

Programmatically, the quad-rotor’s behavior (Figure  4A) is 
represented as a set of simple if-then rules. As such, they can be 
easily subjected to standard LCS implementations and its exten-
sions such as XCS (Section 1.3). Hereby, those rules with the 
best prediction accuracy in terms of marker detection may be 
reinforced to gain the greatest fitness over time, yielding the best 
possible behavior. In this way, the quad-rotor of the ARC example 
would learn to query the proper sensors at the right times to react 
in the best possible way, if the behavioral rule set was enriched 
with according alternatives. At the interface of level 0 (the SuOC) 
and level 1 (the reinforcement learner), the measure of success 
can typically be calculated based on locally available information 
such as the distance flown or the number of recognized tags. For 
good learning results, the parametrization of the behavior should 
be realized at a rather high level, focusing on the selection of 
queries and operations and only cover small ranges of variability. 
Potential benefits of level 1 learning would not only be optimiza-
tion of one particular learning pattern but also behavioral rules 
that adapt to hardware particularities such as deviating sensory 
intake or imbalanced motor control.

3. cOllaBOraTiVe sPaTial WOrK

At level 2 of the multilayer O/C design concept, behaviors can be 
created by means of generative model building approaches such 
as evolutionary algorithms and be optimized for deployment by 
means of simulations. As a first OCbotics prototype of offline 
level 2 generation and optimization, we have evolved quad-rotor 
behavior for collaborative surface maintenance. In this section, 

https://www.youtube.com/watch?v=Lt8Von2kFK8
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FigUre 5 | cell grid for surface maintenance. The quad-rotor divides the 
building facade in a grid of cells. The individual cells represent the immediate 
target areas to work on. Their states of cleanliness also provide the local 
cues for decision-making, i.e., for approaching an individual cell or to moving 
to another vantage point. © von Mammen et al. (2016) CC BY-NC-SA 2.0.
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we introduce the challenge of optimizing collaborative surface 
maintenance. We detail the technical setup we relied on for both 
simulation and optimization, and we describe the behavioral 
options of each swarm individual. Afterward, we draw a very 
rough picture of the evolutionary experiments that we have run, 
and we discuss the interactions between layers 2 and 3 for propa-
gating successfully bred behaviors that require synchronization 
between the individuals in an OCbotics swarm.

Consider the facades of large office buildings as examples of 
vertical surfaces: they are subject to cleaning (Bohme et al., 1998; 
Elkmann et al., 2002), trimming greenery (Pérez et al., 2011), and 
other maintenance tasks. As in the previous example, these tasks 
might benefit more from collaborative efforts than only in terms 
of efficiency. For instance, fast growing greenery might require 
one machine to bend, the other one to cut a branch. Equally, dur-
ing cleaning, several hovering robots might have to join to build 
up sufficient pressure to remove persistent dirt. Of course, the 
respective operations might also be split into several procedures 
performed by individually optimized machines. In this example, 
however, we only consider the most modest objective, namely 
collaborative efficiency.

The technical setup of our level 2 experiment comprises 
(a) a simulation environment to calculate aviation and robotic 
mechanics and (b) a machine learning environment with a 
generative model component and an optimization component. 
Figure  4B depicts the software modules that we have used in 
order to simulate collaborative quad-rotor swarms. The Robot 
Operating System (ROS) acts as a hub for these modules. It 
provides a high-level software interface for programing and com-
municating with different kinds of robots (Quigley et al., 2009). 
Gazebo is a simulation engine that natively integrates with ROS, 
offering 3D rendering, robot-specific functionality, and physics 
calculations (Koenig and Howard, 2004). Thanks to a ROS driver 
for the AR.Drone Parrot quad-rotor (Hamer et  al., 2014), and 
thanks to a Gazebo plug-in that simulates the quad-rotor’s behav-
ior based on the very same ROS-based instruction set (Huang 
and Sturm, 2014), any of the generated behaviors immediately 
work in silico and in vivo. For the generation of novel behaviors 
as well as for their evolution, we decided to use the Evolving 
Objects framework (EO) by Keijzer et al. (2002). EO is an open 
framework for evolutionary computation featuring an extensible, 
object-oriented design concept, and turnkey implementations 
of genetic algorithms, particle swarm optimization, and genetic 
programing.

Our approach to collaborative facade maintenance is inspired 
by nest construction of social insects (Bonabeau et  al., 1999). 
Each individual works on a small part of the construction 
proportional in size to the insects’ physique. Accordingly, each 
simulated quad-rotor divides the target surface in a grid, each 
cell measuring 2 m × 2 m, its field of view covering six cells, two 
rows of three (Figure 5). This partitioning scheme is a result of the 
size of the quad-rotor itself and its perceived area from a vantage 
point close to the surface. Without loss of generality, a dirtiness 
value is assigned to each cell that indicates whether it needs to be 
worked on or not. The quad-rotor’s internal state, i.e., its remain-
ing battery life, as well as the configuration of dirty and clean 
cells that reveals itself in front of it trigger specific actions. The 

quad-rotor may return to the base station to recharge. It may fly to 
one of the cells in its field of view and clean it. Alternatively, it may 
move to one of the four neighboring vantage points to inspect the 
respective neighboring batches of cells.

3.1. evolving collaborative Behavior
Figure 6 captures the behavioral options of a quad-rotor in the 
context of facade maintenance. Any activity is initiated by the 
decision-making component; subsequent events guide the quad-
rotor back into the decision-making process. Again, the behaviors 
can easily be written as if-then rules that ensure the coherence 
and simplicity of interfacing across the layers of the O/C design 
concept. Notice that in this model, quad-rotors cannot stop 
working. Instead, the whole simulation is terminated after a given 
amount of time. During this period of time, the decision-making 
component determines the success of the simulated swarm. We 
generate an according program tree using Genetic Programing 
(Poli et al., 2008). In this article, we refrain from presenting the 
evolutionary approach in all detail, but we want to convey its 
basic mechanisms and how it ties into the OCbotics approach. 
The generated decision program may conditionally deploy the 
operations outlined in Figure  6A and introduce references or 
primitive values as their parameters. The resultant behavior trees 
are considered the individuals in an evolutionary optimization 
cycle, and thus their fitnesses (penalty, i.e., for remaining amount 
of dirt) are calculated in according simulation runs, and they serve 
as an important criterion for selecting ancestors for subsequent 
generations of individuals (deterministic tournaments).

We ran experiments featuring two or four quad-rotors, or 
“aerial robotic units” (ARUs), working in parallel for 900–1500 
simulated seconds. Their individual base stations were distributed 
randomly in rectangular area sharing two sides with the target 
surfaces as seen in Figure 6B. Population sizes varied from 30 to 
100 individuals, the generational cycle was repeated between 10 
and 50 times – depending on the work load of an individual simu-
lation, which was mainly determined by the number of interacting 
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FigUre 6 | (a) Options of activity of a facade maintaining quad-rotor agent. Any activity – working on one of the cells ahead, flying to the base station to recharge, 
or moving to a neighboring vantage point – is initiated by the decision component, which considers the agent’s battery state and the surface configuration in its field 
of view. (B) Simulated environment for collaborative surface maintenance evaluation. Two flat surfaces are presented to the quad-rotor swarms as target area, which 
needs to be cleaned. The base stations of the swarm individuals are randomly placed in the rectangular area between the surfaces. Both figures © von Mammen 
et al. (2016) CC BY-NC-SA 2.0.
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agents and the simulated time. One of the best individuals in an 
experiment that started from a set of previously evolved specimen 
worked as follows: having arrived at a random cell of the target 
surface, work through single rows of vantage points from right to 
left. If the border of the target surface is reached, return to the base 
station and approach the target area again. It turns out that this 
behavior proved significantly faster than two decision programs 
we manually designed before running the evolutionary process: 
one of them stochastically selecting dirty cells and considering 
the remainder of the battery before taking action (low batteries 
are also penalized by the fitness calculation), the other one letting 
the quad-rotor follow the dirt gradient exhibited in the perceived 
3 by 2 cell matrix.

Figure 7 provides a glimpse at the progression and the suc-
cess of the evolutionary optimization runs. In addition to 20 
randomly generated individuals, we fed the best results of a first 
experiment that aimed at rigorous preselection of solutions into 
a second phase of experiments that was more directed, introduc-
ing some restrictions, as well as simplifications to speed up the 
simulations. For instance, an extended simulation time limit of 
1500 s forces the quad-rotors to land at least once, an activity 
they could avoid during the first phase of experiments, as their 
batteries support up to 1200  s of flight. Figure  7A shows the 
merged results of both phases: for comparison, ten previously 
evolved seed individuals (green) and two manually created 
decision functions (blue) are also shown. The seed genotypes 
0aabf834 and 131cfa1e did not finish any of the simula-
tions. In order to provide a basis for comparison, the resulting 
statistics are extended to include the ten seed individuals from 
the first phase and manually created decision functions, all of 
which are reevaluated in the second simulation scenario. In 
Figure 7B, we see the (non-averaged) penalty value calculated 
during the second phase of evolutionary experiments vs. the 
associated genotype’s syntax tree depth. We plotted the penalty 

value against the individuals’ syntax tree depth, not averaging 
multiple evaluations of the same genotype but showing them as 
multiple data points. The lower boundary of the scattered points 
indicates that trees below a depth of five do not perform well. 
The best individuals are located in the range of depths five to 
eight, whereas the individuals’ penalties do not rise until a tree 
depth of 11 (from about 9600 to 9800). A substantially steeper 
penalty increase follows from depths 14 to 16, stabilizing at 
about 11,300. This time the scattered points aggregate along 
two horizontal lines, one at a penalty value of around 11,400, 
the other one at about 16,200. These aggregations emerge due 
to genotypes that perform neither particularly effectively nor 
particularly poorly. The duality of the recovered baseline arises 
from one strong scheme injected with the seeded individuals 
from phase one and from a dominant scheme that evolved from 
random initializations in phase two.

Level 2 is capable of generating and evolving collaborative 
behavior such as the one described above. Initially, the novel 
behavior does not have any impact on the system under 
observation and control. One may say the innovation process 
is encapsulated in a sandbox and runs completely separated 
process, offline. At the same time, collaborative behavior needs 
to be communicated, if it is required to be performed by all 
individuals of a swarm in order to function in a coordinated 
way. The observation of Layer 2 by Layer 3 has to detect such 
impending necessary changes and broadcast it to all the other 
members of the swarm. Similar to an auction in multi-agent 
systems (Wooldridge, 2009), the best broadcast solution, i.e., 
decision program and fitness value, would be implemented. As 
an extension, any population-based simulation and optimiza-
tion approaches could be distributed among the OCbotics 
individuals and their evolution be concerted across the whole 
swarm [for distributed population-based optimization, see, for 
instance, Sarpe et al. (2010) and Jacob et al. (2011)]. Especially 
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FigUre 7 | (a) Penalty ranking of evolutionary experiments. (B) Penalty values vs. syntax tree depth in the second phase of evolutionary experiments. Both figures 
© von Mammen et al. (2016) CC BY-NC-SA 2.0.
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in  situations with imbalanced computational loads across the 
swarm, following a smart distributed optimization strategy could 
yield an important advantage.

3.2. Other coordinated spatial Tasks
Distributing the lawnmower problem and finding feasible real-
world parameters is an important challenge for coordinated 
robotic ensembles. In addition, we have worked toward models 
that allow for simulating and optimizing the coordinated behav-
iors of ARUs that (a) optimize their flight paths in context of 
both static and dynamic obstacles, (b) search for moving targets, 
and (c) scan building interiors. In the following paragraphs, we 
illustrate and briefly summarize our findings regarding these 
respective models.

3.2.1. Digital Pheromones for Path Finding and 
Planning
Social insects drop chemical cues, so-called pheromones, on their 
way from a food source back to their nest. Reinforcement of the 
pheromone trails ensures that an increasing number of foraging 
insects follow the trails and exploit the food source, whereas the 
evaporation of the chemical signals ensures that new opportu-
nities are found when the food source runs low (Sumpter and 
Beekman, 2003). In order to translate this concept to the coor-
dination of ARUs (or less generic “unmanned aerial vehicles,” 
UAVs), technical solutions for leaving digital pheromones need 
to be found. One way to do so lies in utilizing locally distributed 
smart transceivers that store and disseminate information of 
passers-through, as in Parunak et al. (2002). Alternatively, pas-
sive RFID chips could be distributed that convey the respective 
information when queried (Mamei and Zambonelli, 2005). Based 
on such a hardware infrastructure, the parameters for concerting 
one’s behaviors need to be optimized for dynamic path planning 
and path finding in different kinds of environments. While the 
approach proved robust in our experiments in general, choices 
as to when pheromones should be placed and which initial 
directions the individuals should head into impacted the target 
performance (Figure 8).

3.2.2. Search for Mobile Targets
Coordinated search by ensembles of ARUs is an important task. 
There have been efforts in this direction that yield the minimal 
number of units needed to find (mobile) targets within a given 
time and with a certain probability (Vincent and Rubin, 2004) 
or adapt concise trajectory plans for sets of units based on their 
individual properties (Yang et al., 2007). A general taxonomy for 
cooperative search is provided by El-Abd and Kamel (2005). The 
simulation model that we have devised for level 2 of the O/C design 
concept allows one to determine the ideal individual velocities 
and binding forces between elements of loosely coupled chains of 
ARUs (Figure 9). These chains are established in a self-organizing 
fashion, linking the units with their neighbors and agreeing on 
local leaders. Their advantage over alternative topologies lies in 
sweeping large, connected areas, thus minimizing the odds of 
the target slipping through the search grid. Similar to Vincent 
and Rubin (2004), we can optimize the couplings to minimize 
the number of deployed units and to conduct a comprehensive 
search within a given time [as in Yang et al. (2007)]. Considering 
inconsistencies in the ARUs’ flight behaviors, the impact of the 
environment, and possible heterogeneities of the deployed units, 
the tandem of level 1 learnings and level 2 offline adjustments 
become all the more relevant.

3.2.3. Scanning Interior Spaces
Different from the line-formation approach to coordinated 
search, in which the ensemble proactively establishes a topology 
for covering connected areas, the environment itself may be 
topologically organized, i.e., divided in locally connected space 
partitions such as rooms in a building. Giese (2013) exemplarily 
demonstrated the usefulness of drones for surveying large build-
ings when digitizing the cathedral of the German world-heritage 
city of Bamberg. Ballarin et al. (2013) deployed drones to survey 
inaccessible buildings, whereas Shen et al. (2011) and Muhleisen 
and Dentler (2012), e.g., showed the feasibility of drones explor-
ing a building autonomously. Through our according model, the 
scanning progress of individual units is shared in a local ad hoc 
network (Figure 10). Cells marked as scanned in a discretized 
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FigUre 8 | (a) Placing path pheromones (in yellow) from the start may ensure that several individuals (in green) define new trails in a common direction. 
Competition among these trails will determine the most efficient path through an area populated with static and mobile obstacles, brown/white and purple boxes, 
respectively. (B) Omnidirectional sensitivity for pheromones results in high density trails at the base station. (c) Furthermore, scattered sensitivity ensures a wider 
coverage of the target area.

FigUre 9 | loosely coupled chains of arUs (filled circles) are formed to cooperatively search large, connected areas for mobile targets (hollow 
circle).
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FigUre 10 | (a) The drone marks cells of a discretized environment grid to 
indicate scanned areas and determine its next steps. The done can mark 
unobstructed cells and unobstructed obstacles such as A but not occluded 
cells such as B and C. (B) The drones (blue boxes) are moving in different 
directions, maximizing their shared knowledge gain. Moving along they might 
get out of reach to synchronize. In this case, they need to move back to the 
“root” of the communication tree, i.e., the drone shown as the red box.
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lattice space determine the paths taken by the individuals. In our 
model, it is a strong real-world restriction to maintain network 
connectivity with the remainder of the ensemble. Therefore, a 
loss in connectivity would result in individuals approximating 
the “root” unit of the current communication tree.

4. inTeracTiVe selF-OrganiZaTiOn

In our last example, we demonstrate an early prototype of the 
user interfacing component of layer 3 of the multilayered O/C 
design concept that drives the OCbotics approach. As hinted at in 
Figure 1, layer 3 mediates the user’s goals vertically to all system 
layers below and horizontally to all OCbotics individuals of the 
system.

The preceding examples of web-weaving quad-rotors in 
Section 2 and collaborative swarms in Section 3 implement spatial 
operations. To some extent, they all culminate in the tandem of 
local cues and resultant trajectories. As a consequence, defining 
spatial targets for arbitrary subsets of a swarm deems to be an 
adequate task generalization for a first prototype of a level 3 user 
interface. A “human-in-the-loop” system design forces one to 
clearly define the level of influence a user may exercise versus 
the level of autonomy the system may keep (Narayanan and 
Rothrock, 2011). Therefore, we elaborate on the different levels 
of access implemented by our prototype right after we outline its 
technical foundation.

Focusing on interactivity, we decided to utilize the turnkey 
infrastructure of one of the comprehensive game and simulation 
engines. In particular, we decided to use Unity as it provides 
a very shallow learning curve (compared to its competitors) 
while still providing a powerful coding infrastructure that 
allows to write custom plug-ins in C# and which offers a wide 
range of third-party plug-ins in a dedicated asset store, see 
Unity Technologies (2014). Aiming at the implementation of a 
high-level interface, we tapped into these resources as much as 
possible and bought, for instance, commercial code bases for 
simulating flocking behaviors (Different Methods, 2014) and 
automated path finding in three-dimensional environments 
(Allebi, 2014). We further built on Unity demos and plug-ins 

that support current hardware solutions such as the Oculus Rift 
head-mounted display (Oculus VR Inc, 2014) and the Razer 
Hydra motion controller (Razer Inc, 2014). In combination, 
these hardware solutions allow us to emulate an augmented 
reality scenario for controlling an OCbotics swarm. Figure 11 
shows the model of an OCbotics swarm being setup in Unity3D. 
The light green circles depict waypoints computed by the path 
finding algorithm, the dual-view perspective at the bottom-left 
corner of the screen indicates the current view of the attached 
head-mounted display. The bottom-right window displays the 
library of components used for modeling the scene, the list at 
the right-hand side of the screen shows the components that 
already constitute the scene.

Our user interface prototype immerses the user into a virtual 
reality shared with the OCbotics swarm. In the long run, the 
simulated swarm is meant to make way for a real one, and the 
virtual reality for an augmented reality. Already, the user can 
observe the whole swarm or a subset tracking it with a virtual 
camera that follows in a distance and which aims at the center 
of the set of selected individuals. The user can exercise control 
on any subset of the swarm, hence he may direct flocks of indi-
viduals or single individuals at a time. The interface provides all 
kinds of state information about the selected individuals, such 
as (averaged and variance of) remaining battery life, current 
target, current trajectory, and currently perceived neighbors. 
The user may switch between individuals and greater subsets of 
the swarm by simply selecting them. Next, he may change the 
target of flight or even individual control points along the way. 
Of course, he may also change the parameters of the selected 
individuals such as their urge for alignment. In our prototype, 
the user is immersed into the scene of the simulated swarm (see 
Figure  12A) so he can easily trace its activity, understand its 
relationship to the current target and to obstacles, and to rectify 
it, whenever necessary.

The presented simulated prototype for immersive swarm 
control shows how high-level goals such as setting a new 
target of the swarm can be communicated in an intuitive way. 
Differentiated selection of swarm individuals as well as setting 
local attributes, such as local targets or local waypoints, are 
simple yet clear examples of moving from abstract, high-level 
goal descriptions (target/swarm) to specific low-level com-
mands (trajectory waypoints/individual). For a swarm and an 
individual to reach the specified targets or waypoints, complex 
calculations have to be performed. In the given example, the 
need to avoid obstacles and to find optimal paths as well as 
the coordination among swarm individuals on their way are 
outsourced to third-party plug-ins (Allebi, 2014; Different 
Methods, 2014). In the general case, also considering other 
tasks communicated on layer 3, the necessary behaviors could 
evolve in sandboxed simulations (layer 2) and be optimized 
based on local performance feedback (layer 1), see. We are 
currently working on furthering the accessibility of human–
swarm interfaces by designing and evaluating game-like test 
scenarios in virtual reality (Figure 12B). In addition, we derive 
mutual influences among distributed robot societies at runtime 
to further improve the cooperation of individuals (Rudolph 
et  al., 2015a,b, 2016).
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FigUre 12 | (a) The user guides the swarm through movement of her head and two 3D joysticks. The pair of controllers empowers her to draw new spatial 
relations between the simulated objects, e.g., to set new targets for subsets of the swarm. © 2014 IEEE. Reprinted, with permission, from von Mammen et al. 
(2014). (B) We are working on testing usability and user experience of different interfaces and input modalities [also based on indirect touch (Voelker et al., 2013) 
and hand-gestures (Hackenberg et al., 2011)] in the context of this fire-fighting game.

FigUre 11 | Ocbotics swarm modeled in Unity3D. The Unity3D environment allows us to integrate complex simulation models and immersive user interaction 
hardware such as motion-based input controllers and head-mounted displays. © 2014 IEEE. Reprinted, with permission, from von Mammen et al. (2014).
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5. cOnclUsiOn

In this article, we have introduced OCbotics as a comprehensive 
approach to designing self-organizing aerial robotic ensembles. 

OCbotics is driven by a multilayered observer/controller design 
concept that allows to optimize and adapt an adaptable system. 
Adaptation is required in order to maintain or increase the 
performance exhibited by the system under observation and 
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control – either by optimizing or extending existing behaviors, or 
by innovating, i.e., generating, simulating, and optimizing novel 
behaviors. The performance, in turn, is measured in terms of 
user-defined goals that may also change over time. In compari-
son to concepts from the state-of-the-art [see, e.g., Augugliaro 
et al. (2013) where trajectories are pre-calculated], the OCbotics 
approach provides a large step toward applicability in non-lab and 
unstructured conditions, since it establishes a self-adaptation loop 
that considers safety constraint and continuously self-optimizes 
the robot’s behavior.

We have presented three different projects that operate at 
different levels of the discussed design concept: web-weaving 
quad-rotors with an emphasis on optimized local reactive 
behavior, evolution of collaborative behavior to efficiently work 
on surfaces, and an immersive user interface for setting and 

changing user-defined goals. While the three examples slightly 
vary regarding their applications, they are connected through the 
common themes of self-organization, rule-based behavior, and 
adaptation, and of course, the O/C design concept to host them 
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and to transfer the partially still virtual implementations of all 
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