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Learning Actions to Improve the
Perceptual Anchoring of Objects
Andreas Persson*, Martin Längkvist and Amy Loutfi

Department of Science and Technology, Center for Applied Autonomous Sensor Systems (AASS), Örebro University, Örebro,
Sweden

In this paper, we examine how to ground symbols referring to objects in perceptual data
from a robot system by examining object entities and their changes over time. In particular,
we approach the challenge by (1) tracking and maintaining object entities over time; and
(2) utilizing an artificial neural network to learn the coupling between words referring to
actions and movement patterns of tracked object entities. For this purpose, we propose
a framework that relies on the notations presented in perceptual anchoring. We further
present a practical extension of the notation such that our framework can track and
maintain the history of detected object entities. Our approach is evaluated using everyday
objects typically found in a home environment. Our object classification module has the
possibility to detect and classify over several 100 object categories. We demonstrate
how the framework creates and maintains, both in space and time, representations of
objects such as “spoon” and “coffee mug.” These representations are later used for
training of different sequential learning algorithms to learn movement actions such as
“pour” and “stir.” We finally exemplify how learned movements actions, combined
with commonsense knowledge, further can be used to improve the anchoring process
per se.

Keywords: perceptual anchoring, symbol grounding, action learning, sequential learning algorithms, common-
sense knowledge, object classification, object tracking

1. INTRODUCTION

In cognitive robotics, the task planning ability of a robot depends on symbol grounding or subsets of
it, since the robot ultimately requires that the symbols that it uses are anchored in the physical world.
For example, anchoring is needed to execute commands such as “lift the crate” or “put the cup on the
table.” In this context, anchoring has been defined as a special case of physical symbol grounding,
which concerns physical objects (Coradeschi and Saffiotti, 2003). In particular, anchoring considers
how to maintain a consistent identity of an object into a structure that (1) describes an object, its
properties, and attributes both symbolically and perceptually; and (2) maintains over time these
associations. Therefore, perceptual anchoring requires constructing a consistent relation between
the perceptual data and the symbols that refer to the same object.

Today much of the work in perceptual anchoring in robotics still resides on anchoring the
individual symbols that refer to single objects and their properties. This approach, while useful for
object recognition, provides only part of a solution in a full human–robot interaction (HRI) context
where humans could instruct and communicate with robots. For humans, recent research suggests
that indeed action learning and word learning should not be treated as two separate processes,
but rather as two highly integrated processes. Thus, the Gibson theory of affordances has inspired
many works within robotics to learn affordances via self-exploration using manipulation actions,
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Persson et al. Learning Actions for Perceptual Anchoring

FIGURE 1 | The primary objective of the work presented in this paper is to use the historical trace of anchored objects, which are maintained in an
anchor space, combined with user-provided scene descriptions to learn generalized representations of object actions. Learned action representations
are subsequently used as feedback to the anchoring system. This feedback loop further utilizes the commonsense knowledge of ConceptNet (Speer and Havasi,
2012) to query and verify that an anchored object indeed affords an action.

such as in work on the iCub robot (Marocco et al., 2010; Browatzki
et al., 2012). But worth noting is that further research also sug-
gests that action learning and label learning can also be observed
through observations of other performing tasks (Mareschal and
Johnson, 2003). Following along the lines of Hahn and Gershkoff-
Stowe (2010), this paper examines how robotic systems can learn
the relation between naming an object and actions performed on
the objects. To achieve this, we will rely on notions presented
in perceptual anchoring and extend these notions to utilize the
historical trace (track) of how objects (or anchors) change over
time in a given scene. Based on the position of objects in time,
and with respect to each other, a learning framework based on
the sequential learning algorithms generates a generalized repre-
sentation of various actions with a mapping to its symbolic terms
(e.g., “put,” “stir,” “pour”). By using these grounded actions, we
demonstrate how we are able to improve the anchoring process
per se and, hence, improve the symbol–percept correspondence
of objects. This improvement is achieved by forming an early
identification of an action in a novel scene, and then through sub-
sequent utilization of the symbolic description stored in anchors,
we query a semantic network to verify whether the identified
objects indeed afford those actions. The results of the query are
then used to resolve both errors and uncertainties that are inherent
in the spatial-temporal object tracking and specifically in the
object matching component of anchoring. An overview of the
work that we present in this paper is depicted in Figure 1.

2. RELATED WORK

The symbol grounding problem (SGP) has been defined by
Harnad (1990). Symbol grounding addresses the problem of

grounding the meaning of symbol tokens in anything different
than other symbols, e.g., sensor data perceived by a mobile robot.
Grounding symbolic knowledge about actions and objects to a
perceivedmodel of the physical world has been addressed inmany
works over the past decades (for a review of symbol grounding
and symbol grounding in relation to perceptual anchoring, in
particular, see the report byCoradeschi et al. (2013)). Nonetheless,
a few notable contributions in grounding of actions are the works
presented by Lemaignan et al. (2012) and Stramandinoli et al.
(2011, 2012). In the study by Lemaignan et al. (2012), the authors
presented a grounded shared model of the world that is used for
both human–robot verbal and non-verbal interactions. Themodel
is realistic in the sense that 3D models of objects are created and
maintained in such a way that spatial relations between objects
can be used to reasoning upon various concepts, relations, and
actions in human–robot interaction scenarios. In the study by
Stramandinoli et al. (2011, 2012), the authors presented a cog-
nitive model of high-order concepts that are grounded by using
basic concepts and actions that are directly grounded in robot
sensorimotor experiences. The suggestedmodel is learned using a
recurrent neural network (RNN), which is trained using the tem-
poral sequences of robot action primitives to learn higher-order
concepts. The approach that we present in this paper is similar in
the use of an artificial neural network to learn action concepts.
However, we will approach the problem with the utilization of
the temporal sequences of object movements (rather than the
temporal sequences of robot action primitives).

A particular case of symbol grounding that addresses the prob-
lem of creating and maintaining the connection between per-
ceptual sensor data and symbolic knowledge has been denoted
as the anchoring problem (Coradeschi and Saffiotti, 2003). Since
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the initial formal definition of perceptual anchoring, presented by
(Coradeschi and Saffiotti, 2000), the definitionhas undergone sev-
eral extensions and refinements. In the work presented by Loutfi
et al. (2005), the authors introduced an extension to bottom-up
anchoring together with multiple and non-vision-based modali-
ties. The first connection to a knowledge representation and rea-
soning mechanism was presented by Loutfi et al. (2008), thereby
the properties of anchored objects could be reasoned upon. An
extension to consider large-scale knowledge bases, such as a
Cyc knowledge base (Lenat, 1995), together with commonsense
reasoning was later presented by Daoutis et al. (2012). Another
notable work is the introduction of probabilistic multiple hypoth-
esis anchoring by Elfring et al. (2013), where multiple hypothe-
sis tracking-based data association is used to maintain changes
in anchored objects. As an alternative to traditional anchoring,
an earlier work on perception and probabilistic anchoring was
presented by Blodow et al. (2010). The study by Blodow et al.
(2010) was also the first reportedworkwhere the history of objects
was considered to use a Markov logic network for probabilistic
data association. However, the history of objects was maintained
as computationally complex scene instances, and the approach
was, therefore, not intended for tracking objects in real time, but
rather for tracking objects in object kidnapping scenarios, i.e., an
object disappears from the scene and later reappears in a different
location. Both tracking objects and maintaining coherent repre-
sentations of perceived objects are important aspects of anchoring.
However, no previously reported work on anchoring has taken
into consideration the history of a tracked object per se to learn
additional information.

The problem of recognizing object actions, which we address in
this paper, is typically addressed in the literature through the use
of hand and object tracking. The approach of combined hand and
object tracking to recognize kitchen activities is presented in the
study by Lei et al. (2012), where the object recognition is utilized
by an SVM classifier and the (hand) action recognition is based
on the PCA features from 3D hand trajectories and bag-of-words
of snippets of trajectory gradients. However, learning to classify
and recognize the perceived action is by itself a challenging task.
Aksoy et al. (2011) address this problem through maintaining
a representation of relations between objects at decisive time
points during manipulation tasks. The authors suggest a graphical
representation constructed from tracked image segments so that
topological transitions in the graph can be stored (and learned) in
a transition matrix called the semantic event chain (SEC). Thus,
they learn the semantics of object–action relations through obser-
vation. The main difference with our work is that we do not put
the focus on manipulation but rather on spatial-temporal changes
of the objects. Our motivation is to improve the learning of object
labels, rather than the classification of specific humanmotions. As
an alternative to learning complex actions (or activities), Tenorth
and Beetz (2013) introduced a complementary knowledge pro-
cessing system (KnowRob). The authors introduced the use of
commonsense information on a larger scale (such as information
from theWeb) to reason upon a perceived scene and inferring pos-
sible actions (or action primitives) for robot manipulation tasks.
Although we focus on spatial-temporal changes of the objects, we
follow a similar fashion and leverage from preexisting semantic

information that is available in large knowledge sources such as
the ConceptNet semantic network (Speer and Havasi, 2012) and
the Caffe deep learning framework (Jia et al., 2014) to resolve
ambiguities in the action recognition and object classification
processes, respectively.

Object affordance is further a topic that has increased in pop-
ularity in the research fields of both semantic object recogni-
tion (Sun et al., 2013) and computer vision (Kjellström et al.,
2011). In the work presented by Sun et al. (2013), the authors
utilized object attributes (e.g., color, shape) learned from RGB-
D data to identifying objects based on natural language queries
that contained appearances and name attributes. A probabilistic
approach is used in the learning of affordances as presented in
the study by Kjellström et al. (2011), where the authors utilize
the idea that it is possible to exploit spatial-temporal relationships
between objects and human hand actions to learn the function of
objects. A similar approach to learning affordances is presented by
Koppula et al. (2013) and Koppula and Saxena (2014), where they
have used RGB-D data to track the relations between objects and
human activities to jointly model the human activities and object
affordances with the use ofMarkov random fields. However, in the
context of perceptual anchoring, we need to approach the problem
differently as we approach the problem from the structure of
anchors (rather than human hand activities) to obtain the relation
between objects. For that purpose, we introduce the idea of using
commonsense knowledge to explore whether a particular object
affords an action.

3. METHOD: ANCHORING FRAMEWORK

In this section, we describe our anchoring framework that is
used to maintain a consistent notion of objects, both perceptually
and symbolically. We further modify the framework to include a
learning layer that uses the information about how object changes
over time, and with respect to each other, to learn actions. Per-
ceptual anchoring, as defined by Loutfi et al. (2008), extends the
original framework to allow for a bottom-up anchoring process
and consists of a number of components, including:

• A symbolic system including a set X = {x1, x2, . . . } of individ-
ual symbols (variables and constants), a set P = {p1, p2, . . . }
of predicate symbols.

• A perceptual system including a set Π = {π1, π2, . . . } of
percepts, a set Φ = {ϕ1, ϕ2, . . . } of attributes. A percept πi is
a structured collection of measurements assumed to originate
from the same physical object; an attribute ϕi is a measurable
property of percepts with values in the domain D(ϕi). Let
D(Φ) =

∪
ϕ∈Φ D(ϕ).

• A predicate grounding relation g ⊆ P × Φ × D(Φ), which
embodies the correspondence between (unary) predicates and
values of measurable attributes. The relation g maps a certain
predicate to compatible attribute values.

An anchor is an internal data structure αx
t , indexed by

time t and identified by a unique individual symbol x (e.g.
“coffee-mug-1,” “orange-4”), which encapsulates and main-
tains the correspondences between percepts and symbols that
refer to the same physical object. Hence, perceptual anchoring
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(shortly referred to as anchoring throughout the remaining
sections of this paper) is also a formally structured procedure to
create the coupling between machine-interpreted sensor data and
human-readable semantic symbols. Since perceptual anchoring
was motivated by the need for robotic planning systems to plan
and execute actions involving objects, an anchor has traditionally
denoted the latest perceptual update of information. No previ-
ously reported work on anchoring has maintained a history of
anchors, as their perceptual and symbolic information changed
over time. In this study, we argue that the history of an anchor is
a necessary prerequisite to enable learning upon interactions with
and between objects.

Before describing an extension of anchoring that allows the
maintenance of anchors’ current and previous information, we
will introduce our perceptual processing pipeline in the fol-
lowing section, which enables the extraction and creation of
anchors.

3.1. Object Detection, Tracking, and
Classification
An efficient perceptual processing pipeline is a necessity for
retrieving and storingmeasurements over time of an object (which
further is a requirement for anchoring that object to its symbolic
representation). Indeed, an anchoring framework must address
object recognition and object tracking. Recall that anchoring
not only identifies objects but also identifies and tracks specific
instances of objects, both symbolically and perceptually. For per-
forming the lower level object detection, tracking, and classifica-
tion, the system setup is based on publicly available core libraries
and systems, including the Point Cloud Library1 (PCL), the Open
Computer Vision library2 (OpenCV), and the Robot Operating

1http://pointclouds.org/.
2http://opencv.org/.

System3 (ROS). An overview of the perceptual processing pipeline
is presented in Figure 2.

The initial step of our processing pipeline is an object seg-
mentation procedure, which is performed with the purpose of
detecting objects of interest. The object segmentation method is
based on point cloud data, which is given as input data by an
RGB-D sensor. Moreover, for efficiency, the segmentation relies
on organized point cloud data (i.e., the organization of point cloud
data is identical to the rows and columns of the imagery data from
which the point cloud originates). The segmentation procedure
can be described briefly using the following steps:

• Estimate 3D surface normals based on integral images (Holzer
et al., 2012). This function uses the algorithm for calculating
average 3D gradients over six integral images, where the hori-
zontal and vertical 3Dgradients are used to compute the normal
as the cross-product between two gradients.

• Planar segmentation based on the calculated surface normals,
where the largest segmented plan is selected as the ground
plane.

• Object segmentation through clustering of the remaining
points (points that are not part of the detected planar surface).
This segmentation uses a connected component segmentation,
presented byTrevor et al. (2013), where a Euclidean comparison
function is used to connect the components that constitute the
cloud cluster of an individual object.

The resulting output of the object segmentation is subsequently
m number of point cloud clusters (where m varies between
frames). An example of segmented objects with boundary points
projected to corresponding 2D imagery is seen in Figure 3 (left).
For consistency with the definition of anchoring, we will here
denote segmented clusters as percepts {πcloud

1 , πcloud
2 , . . . πcloud

m },

3http://www.ros.org/.

FIGURE 2 | An overview of the computational steps in the perceptual processing pipeline. Sensor input RGB-D data are initially fed to an object
segmentation procedure, which attempts to detect objects in the scene. In addition to object detection, an object tracking procedure is tracking the movements of
detected objects. Detected objects are then forwarded to an object classification procedure before objects are processed and anchored by an anchoring
management system.
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FIGURE 3 | Left: segmented objects represented by contours of
segmented point clouds (projected from 3D point clouds to 2D
imagery); and right: classified objects together with symbolic
categories and probabilities as a result of processing segmented
objects through a deep convolutional network (DCN) classifier.

which each corresponds to the spatial 3D point cloud data of an
individual object.

The same input RGB-D stream of sensor data is also used
for tracking the movements of objects. This object track-
ing procedure is dependent on the same segmented percepts
{πcloud

1 , πcloud
2 , . . . πcloud

m } to initiate the tracking. More specifi-
cally, the object tracking procedure utilizes a particle filter-based
tracking algorithm, which is included in the Point Cloud Library
(Rusu and Cousins, 2011). A drawback of such particle filter
algorithm is that the algorithm is designed for tracking only one
object of interest at a time. A pool of particle filters (one filter for
each detected object) has therefore been employed in our system
setup. The integration between the object tracking procedure and
our anchoring approach is further addressed in Section 3.2.

Next, segmented or tracked percepts are forwarded further
down the pipeline for feature extraction and category clas-
sification with the goal of symbolically associating a cate-
gory label to each object. The first step of this process is to
extract a 3D bounding box around each percept πcloud

i|i=1,2...m ∈
{πcloud

1 , πcloud
2 , . . . πcloud

m }, where each extracted bounding box is
projected to a corresponding 2D visual imagery. Also, we will here
denote visual data as percepts {π

image
1 , π

image
2 , . . . π

image
m }, which

each corresponds to the visual 2D imagery data of a segmented
object. Furthermore, a position attribute, ϕpos

i ∈ R3, is measured
as a point at the center of each segmented percept πcloud

i .
Finally, a symbol category classification procedure is initiated

in addition to the feature extraction process. For this classifica-
tion, we exploit recent advancements in deep learning through
the Caffe deep learning framework (Jia et al., 2014). This deep
convolutional network (DCN)makes use of the 1K ILSVRC-2012
model, developed and learned by Krizhevsky et al. (2012), which
uses the DeCAF implementation (Donahue et al., 2013). Hence,
the output of the classifier is 1 of the 1,000 object categories (of
which the ILSVRC-2012 model was trained with), together with
the corresponding predicted category probability. In the context
of anchoring, we assume that all trained object categories (e.g.,
“coffee mug,” “wooden spoon,” “orange,” “tomato”) forms
the set of possible predicate symbols P . The input for the Caffe
framework is the segmented visual percepts π

image
i . The resulting

object categories with predicted category probabilities are denoted
by pobji ∈ P and ϕ

obj
i , respectively. To exemplify, the predicate

grounding relations for the attributes that have been measured

through the Caffe framework for the segmented objects illustrated
inFigure 3 (right) are here denoted: “coffee mug”×ϕ

obj
1 ×0.4352

and “orange” ×ϕ
obj
2 × 0.4383.

3.2. Object Anchoring
The advantage of using an anchoring system over a traditional
object tracking system is that both semantic and perceptual
information are maintained. Moreover, the goal for our suggested
framework is to use generalized representations of actions to
ground a symbolic description of an action directly to an observed
movement of an object. We will then utilize the symbolic descrip-
tions of anchors together with learned actions in the interest of
performing high-level queries about object affordances. This latter
step is described in Section 4.4.

The traditional anchoring definition has assumed unary
perceptual-symbol correspondences. This definition will not per-
mit anchoring of object movements over time as anchors are
updated for every new perceived matching instance of an object.
To circumvent this problem, we will in this section extend the
anchoring definition and introduce two types of attributes: (1)
static attributes ϕ, which are unary within the anchor (according
to the traditional definition) and which combined identifies an
anchor; (2) volatile attributes ϕt, which are individually indexed
by time t, and which are maintained in sets of attribute instances
φ, such that ϕt ∈ φ.

To exemplify and reconnecting to Section 3.1, an attribute of
type ϕobj is considered as a static attribute (since this attribute
classifies the object), while an attribute of type ϕpos is considered
as a volatile attribute (since this attribute is part of a movement
history of an anchor) and which is therefore maintained in a set of
3D points (each index by time t), such that ϕ

pos
t ∈ φaction. Other

types of volatile attributes for objects could be ϕ
gas
t ∈ φsmell in the

case of olfactory concepts as described in the study by Loutfi et al.
(2005), or in the case of color of certain objects ϕcolor

t ∈ φstate for
representing fruit as discussed in the study by Loutfi et al. (2008).
In this paper, we only consider action (φaction) as a set of position
attributes (ϕpos

t ).
The entry point into the anchoring management system, illus-

trated in Figure 4, is via the matching procedure. This match
compares the classification attribute ϕ

obj
i and symbol pobji of a

candidate object against the classification attribute and symbol of
a previously stored anchor αx according to:

dobjx (ϕobj
i , ϕobj

x ) =


1

exp

(
|ϕobj

i −ϕ
obj
x |

ϕ
obj
i ×ϕ

obj
x

) if pobji ≡ pobjx

0 else
(1)

Second, and because of the separation between the object track-
ing pipeline and object classification pipeline, this match further
compares the L2 distance (in a three-dimensional spatial space)
between a position attribute ϕ

pos
i of a candidate object and the

last observed position ϕ
pos
t−k ∈ φaction

x of a previously stored
anchorαx. Inspired by the work presented by Blodow et al. (2010),
this distance is then mapped to a normalized similarity distances
according to:

dposx (ϕpos
i , ϕ

pos
t−k,x) =

1
exp(L2(ϕpos

i , ϕ
pos
t−k,x))

, (2)
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FIGURE 4 | An overview of the anchoring management system. Based on the result of an initial matching procedure, anchors, in an anchor-space, are created
and maintained through two core functionalities: re-acquire and acquire. The system further utilizes a track functionality, which for this work is integrated with the
object tracking procedure on the perceptual level.

where an identifier x is unique for an anchor as whole and there-
fore also unique for the all the percepts, attributes, and symbols
that are encapsulated in the anchor. Hence, the identifier x is,
in this context, used to index a particular attribute or predicate
symbol that belongs to an anchor αx. The matching procedure,
according to Eqs. 1 and 2, is repeated for all previously stored
anchors αx|x∈X , and based on the result of the matching pro-
cedure, the anchor-space is maintained according to two core
functionalities:

• Acquire – initiates a new anchor whenever a candidate object
is received that does not match any existing anchor αx.
This functionality defines a structure αx

t , index by time t,
and identified by a unique identifier x, which encapsulates
and stores all perceptual and symbolic data of the candidate
object.

• Re-acquire – extends the definition of a matching anchor αx

from time t− k to time t. This functionality assures that the
percepts pointed to by the anchor are the most recent and
adequate perceptual representation of the object.

The distinction between an acquire of a new anchor or the
re-acquire of an existing anchor is decided by two threshold val-
ues, which for this work were set to thobj = 0.3 and thpos = 0.9,
i.e., if dobjx > thobj or dposx > thpos for an existing anchor
αx according to Eqs. 1 and 2, then the re-acquire functionality
is initiated. The thresholds represent the degree of matching
between a candidate object and an existing anchor. Other-
wise, a new anchor αx is created through the acquire func-
tionality. Where the structure of an anchor is expressed as
αx
t = {(ϕobj, pobj), {ϕ

pos
t , ϕ

pos
t−1, . . . ϕ

pos
t−k} ∈ φaction}. Hence,

given the perceived object as illustrated in Figure 3, the con-
tent of an anchor can (simplified) be depicted as α

‘orange−4’
t =

{(‘orange’, 0.4383), {(x, y, z)t, (x, y, z)t−1, . . . (x, y, z)t−k}}.
Inspired by the work on probabilistic multiple hypothesis

anchoring presented by Elfring et al. (2013), we further utilize

a track functionality that is integrated with the object tracking
procedure, described in Section 3.1:

• Track – takes an anchor αx defined for time t− k and appends
volatile attributes ϕt, index by time t, to corresponding sets φ
of an anchor αx.

This integration is facilitated by sharing the unique identifier x,
for each anchor αx, such that the identifier is provided as an asso-
ciated identifier for each particle filter for the purpose of to directly
track an anchor on the perceptual level. Hence, a measured posi-
tion attributeϕ

pos
x , of a tracked segmented perceptϕcloud

x , is directly
forwarded to the track functionality of the anchoring system. The
anchoring frame rate for our suggested approach is, therefore,
equivalent to the rate at which suggested particle filter (or pool
of particle filters) can process the input stream of RGB-D data.
Worth noting is that the track and the re-acquire functionalities
have been reported as an integrated functionality in previous work
on anchoring (Loutfi et al., 2005).

Finally, we stress that the proposed method presented in this
paper concerns segmented objects projected to image regions (for
object classification) and position attributes (for tracking object
movements), i.e., attributes that are essential for learning an action
of an object in a described scene. However, the suggested frame-
work canwith ease be extended to cover additional attributes, such
as color and shape, which can be used to complement a scene
description based on adjectives described by the user input. For
example, in a scene description of “stirring with a brown spoon,”
a color attribute can be used as a complement to identify an object
instance of interest in the scene.

3.3. Learning Actions from Anchors
The resulting anchor-space, maintained by the anchoringmanage-
ment system presented in the previous Section 3.2, is subsequently
used as input for a learning system, as illustrated in Figure 1. By
storing information of specific object entities (anchors), our aim
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is to learn a general representation of an action that is grounded
in sensor data. For this work, three algorithms are evaluated for
learning actions based on object movements using themaintained
anchors: a hidden Markov model (HMM) (Rabiner and Juang,
1986), a conditional restricted Boltzmann machine (cRBM) (Tay-
lor et al., 2007), and a recurrent neural network (Hochreiter and
Schmidhuber, 1997).

3.3.1. Hidden Markov Model
The hidden Markov model (HMM) (Rabiner and Juang, 1986) is
a commonly used algorithm for modeling sequential data. The
HMM consists of a transition matrix, T, and an emission matrix,
E. The transition matrix Tij defines the probability of going from
hidden state i to j and has a size S× S, where S is the total
number of states. The emission matrix Eij defines the probability
of observing omission jwhile being in hidden state i and has a size
of S×O where O is the number of observations.

The HMM requires a discrete state space. In this study, we
set the number of states equal to the number of actions to be
classified. For the observations, we use a Gaussian Mixture Model
(GMM) to transform the input vector of raw sensor data from
each time sample to a discreet value for the observation. Therefore,
the number of observations is defined by the number of Gaussian
components in the GMM.

3.3.2. Conditional Restricted Boltzmann Machine
The conditional Restricted Boltzmann Machine (cRBM) (Taylor
et al., 2007) is a generative probabilistic model for modeling
structured sequential data. They have been previously used for
tasks such as modeling full-body human motion (Taylor et al.,
2007), learning motion primitives from demonstration (Kulić and
Nakamura, 2011), style-content separation andmotion style inter-
polation (Chiu and Marsella, 2011), and recently modeling robot
walking motion under varying circumstances (Luo et al., 2014).

The structure of a cRBM is similar to a restricted Boltzmann
machine (RBM) except that it has dynamic bias vectors, Ak and
Bk, that depend on the previously visible layer, see Figure 5A. The
number of previously visible layers that affect the currently hidden
layer is called the model order and determines the model’s tempo-
ral memory. For consistency with the original cRBM definition,
visible variables are here denoted v, while hidden variables are
denoted h.

The energy function for a given sequence of visible layers and
the hidden layer in a cRBM is defined as:

E(v,h) = −hT(t)Wv(t) − bTh(t) − cTv(t)

−
n∑

k=1

vT(t − k)Akv
T(t) −

n∑
k=1

vT(t − k)Bkh
T(t),

(3)

whereAk is the autoregressive connection between the visible layer
at time t− k and the current visible layer, and Bk is the connection
between the visible layer at time t− k to the currently hidden layer.
Furthermore, bj and ci are the bias vectors for the hidden and
visible layers, respectively.

The joint distribution is defined as P(v,h)= 1
z exp

E(v ,h), where
z is the partition function. The probabilities for going up or down
a layer are as follows:

P(hj|v) = σ

(
bj +

∑
i

Wijvi +
∑
k

∑
i

Bijkvi(t − k)

)
, (4)

P(vi|h) = σ

ci +
∑
j

Wijhj +
∑
k

∑
i

Aijkvi(t − k)

 , (5)

where σ()̇ denotes a logistic sigmoid function.
One advantage of the cRBM over the hidden Markov model

(HMM) is the use of a distributed hidden state that more effi-
ciently models multiple underlying influences, whereas the HMM
uses a discrete K-state multinomial for all previous observa-
tions (Taylor, 2009). Other advantages of cRBMs that have been
reported are that the observation distribution is an undirected,
bipartite graph that provides simple and efficient inference and
that cRBMs can be used as building blocks for deep networks
(Taylor, 2009).

3.3.3. Recurrent Neural Network
Recurrent neural networks (RNN) (Hochreiter and Schmidhuber,
1997) are an increasingly popular family of algorithms for mod-
eling long-term temporal sequences (Längkvist et al., 2014). They
have been used for speech recognition (Graves et al., 2013; Graves
and Jaitly, 2014), language translation (Sutskever et al., 2014), and

A B

FIGURE 5 | Scheme of (A) a cRBM model and (B) an RNN model with a simple cell.
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text generation (Sutskever et al., 2011). A depiction of an RNN
with a simple cell can be seen in Figure 5B. The equations for the
hidden layer, h, and the output layer, z, for an RNN with a simple
cell are given by:

h(t) = σ (Wvhv(t) + Whhh(t − 1) + bh) . (6)

z(t) = σ (Whzh(t) + bz) . (7)

However, it is difficult to learn long-term time-dependencies
using this approach due to vanishing and exploding gradients that
may occur during learning (Pascanu et al., 2013). The long short-
term memory (LSTM) (Hochreiter and Schmidhuber, 1997) cell
has been proposed to solve this problem by introducing gates that
allow the model to control the amount of influence the currently
visible layer and previously hidden layers have on the currently
hidden layer, allowing the model to “forget” previous input.

The equations for an RNN with an LSTM cell are given by:

i(t) = σ (Wihh(t − 1) + Wixv(t) + bi) , (8)

o(t) = σ(Wohh(t − 1) + Woxv(t) + bo), (9)

f(t) = σ(Wfhh(t − 1) + Wfxv(t) + bf), (10)

g(t) = tanh
(
Wghh(t − 1) + Wgxv(t) + bg

)
, (11)

c(t) = f(t) ⊙ c(t − 1) + i(t) ⊙ g(t), (12)

h(t) = o(t) ⊙ tanh(c(t)), (13)

z(t) = softmax(h(t)), (14)

where i(t), o(t), and f (t) are the input gate, output gate, and forget
gate, respectively; g(t) and c(t) are the cell input and cell activation,
respectively; σ()̇ is the logistic sigmoid function; and x ⊙ y is the
element-wise product of x and y.

The main difference between a cRBM and an RNN is that an
RNN is recurrent in the sense that the hidden layer depends on
the previous hidden layer instead of a fixed number of previously
visible layers like in the cRBM. This means that there is no model
parameter for the model order in an RNN that needs to be set,
and this allows RNNs to model sequential data of varying lengths
(Sutskever et al., 2014). In this study, we will use the RNN with an
LSTM cell and will be referred to as LSTM for the remainder of
this paper.

4. RESULTS: LEARNING MOVEMENT
ACTIONS

In this section, we describe the experiments conducted to evaluate
suggested learning approach for learning anchored movement
patterns. Evaluating a complex system that operates in the real
world is not a trivialized task. The anchoring framework presented
in this paper is a distributed system that consists of several indi-
vidual components, which all can generate and propagate erro-
neous results. Therefore, this evaluation is limited to the resulting
anchors with the history of object movements (produced as the
output of the anchoring management system described in Section
3.2) and the potentiality to learn and classify object movement
actions through suggested learning system (described in Section
3.3), in particular.

4.1. Experimental Setup
For this evaluation, three different sequential algorithms are used
to model five different classes of movement actions (“pouring,”
“stirring,” “putting,” “grating,” and “slicing”). For each
class, approximately 5–10 scenarios were observed, i.e., all percep-
tual data for the scene was anchored while a user input sentence
that described the movement action in the scenario was provided,
e.g., “I am slicing the lemon with the knife.” All anchored data
were subsequently manually processed, where anchored objects
together with movement patterns of objects (based on the corre-
spondence between the classified semantic category labels and the
vocabulary of the user input sentence) were extracted. It is worth
noting that not all recorded scenarios did capture the movement
patterns of the objects of interest in this case, and such scenarios
were therefore omitted from this evaluation. This problem was
mainly a result of the human intervention (objects were occluded
by the human user that conducted the recorded scene or that
objects were too much affected by motion blur). Nonetheless, the
total extracted data that were used for this evaluation consisted
of 32 recorded scenarios, which contained anchored information
about two objects (of interest) in each scenario (for a total of
8 “pouring,” 5 “putting,” 6 “stirring,” 4 “grating,” and 9
“slicing” movement actions).

All anchored data were acquired with the use of a Q.bo mobile
robot4 with a 2.6GHz Intel(R) i3-2120T CPU and 4GB of RAM,
which is equipped with an Asus Xtion Pro live RGB-D sensor.

4.1.1. Anchoring Frame Rate
A crucial aspect that affects the capability to learn action is the rate
at which suggested anchoring system is capable of detecting and
tracking objects. The benefit of using a segmentation procedure
based on organized point cloud data (presented in Section 3.1)
compared to a traditional RANSAC-based planar segmentation is
that no downsampling of the data is necessary to achieve perfor-
mance (Trevor et al., 2013). However, in our suggested anchoring
approach, the tracking of the position of objects is further utilized
by a particle filter-based tracking algorithmon the perceptual level
(presented in Section 3.2). The two parameters that can influence
the frame rate of our approach is, therefore, the number of par-
ticles and the size of the pool of filters (which is consistent with
the number of detected objects to track). For verifying the perfor-
mance of our system, the frame rate was measured with respect
to the number of used particle filters (i.e., the number of tracked
objects). The same tracking algorithm supported by OpenMP
multiprocessing (also included in the Point Cloud Library (Rusu
and Cousins, 2011)) was further used for comparison.

The results, seen in Figure 6, show an object segmentation
procedure at a stable frame rate of 1Hz. For previously reported
works by Elfring et al. (2013) and Blodow et al. (2010), which
both presented probabilistic methods that are based on the mea-
surements of segmented objects, are the segmentation frame rate
hence the maximum rate. We will, therefore, consider this frame
rate as the baseline for our approach. In Figure 6, it can be seen
that the support of OpenMP enables twice as many particles
per object at the same frame rate compared to tracking without

4http://thecorpora.com/index.php/home.
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FIGURE 6 | The frame rate (Hz) for suggested segmentation procedure and particle filter-based tracking procedure with respect to the number of
tracked objects.

multiprocessing support. For our anchoring track functionality,
we have therefore used an OpenMP supported approach with 400
particles for each filter. This combination gives an adequate trade-
off between prediction and performance, which provides, for our
system setup, a frame rate >5Hz for up to 5 tracked objects in the
scene.

4.1.2. Preprocessing of Data
For the purpose of extracting additional information, the data
were subsequently preprocessed and augmented. The velocity of
each object movement was calculated by taking the derivative of
the position. The velocity was also saturated at −0.1 and 0.1 to
avoid large values due to noise. The frame rates, presented in
Figure 6, are portrayed as average rates. In reality, the anchoring
management system provides samples of varying intervals. The
data were, therefore, resampled and interpolated to a sampling
rate of 10Hz. Each action was moved to start at origin to remove
anymovement offset. Data augmentationwas achieved by rotating
each action in a full circle at 10° intervals, giving a total of 1,152
recorded movement samples. All signals were normalized by sub-
tracting the mean of the signal and then dividing by the standard
deviation of the signal. The training, validation, and testing set was
randomly divided from the total 1,152movement sample readings
with an 80/10/10% split. The training set was then doubled by
switching the two anchors so that the first anchor becomes the
second anchor and the second anchor becomes the first anchor.
This was performed to eliminate the restriction during running
time that the anchors have to be a specific object for each action.

4.1.3. Learning Movement Actions
Three different learning models are used for learning to distin-
guish between the five different actions classes: HMM, cRBM, and
LSTM. The models are first optimized on the validation set and
then evaluated by calculating the classification accuracy on the test
set. All three models use a respective MATLAB implementation.

For the HMM, the hidden states are set as the five action
classes and the discreet observations are modeled as the output
component from a Gaussian Mixture Model (GMM). The tran-
sition matrix and emission matrix are learned using the standard

MATLAB HMM implementation from the Statistics and Machine
Learning Toolbox.

The model parameters of the cRBM are trained using con-
trastive divergence (Hinton, 2002) with a decaying learning rate
starting at 10−4 until the validation error has not improved in the
last 10 epochs. Further parameters were set similar to the default
values provided in the open-source MATLAB implementation of
cRBM (Taylor et al., 2007) that was used in this work, i.e., a mini-
batch size of 100, a weight decay of 0.002, a momentum of 0.9, and
a desired sparse activation of 0.1 with a penalty cost of 0.3.

The LSTM network is trained using a MATLAB implemen-
tation called LightNet (Ye et al., 2016). Training of the model
parameters are done using backpropagation through time (BPTT)
(Graves and Schmidhuber, 2005) using adaptive learning rate and
ADAM (Kingma and Ba, 2014) for the stochastic gradient-based
optimization.

The optimal choice for the different model parameters for the
three algorithms is evaluated in Section 4.2.2.

4.2. Parameter Selection
In this section, we present the selection of all parameters together
with each parameter’s intermediate resulting influence on the
evaluated models.

4.2.1. Selection of Input Data
The position was tracked for each object and given in 3D coordi-
nates. The velocity and acceleration of each object were extracted
by calculating the first and second derivatives for each position. As
with most high-dimensional multivariate time series data, some
of these signals may contain a high amount of noise or even be
redundant. Therefore, as an initial experiment, the classification
accuracy was calculated using only the position, velocity, acceler-
ation, or a combination of them, as input data. From the results,
presented in Table 1, it can be seen that using only the position
gives a better result than using only the velocity or the acceleration
for the HMM and cRBM. Using only the velocity gave a better
result for the LSTM compared to only using position or accelera-
tion. The best result for all threemodels was a combination of both
the position and the velocity (even better performance than when
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acceleration was also added). The remaining experiments in this
section will, therefore, use the position and the velocity as input
data.

4.2.2. Optimization of Model Parameters
The most influential user parameter for all three models is the
model complexity. This parameter adjusts the model capacity of
the algorithm and has a significant influence on the classification
accuracy and the training time. The classification accuracy as a
function of themodel complexity for the threemodels can be seen
in Figure 7.

For the HMM model, the model complexity is defined by the
number of outcomes for the HMM, i.e., the number of com-
ponents in the Gaussian Mixture Model. The number of GMM
components was chosen as [10, 30, 50, 70, 150, 200], and it can be
seen that the highest accuracy on the validation set was achieved
with 150 components.

The model complexity for the cRBM is defined by the number
of hidden units and the model order. Different model orders of
[5, 10, 15, 20] were first evaluated with a fixed number of hidden
units of 500. The best result was achieved with a model order of
15. However, a comparable outcome was achieved with a model
order of 10 with a significantly lower training time (40min with
a model order of 10 compared to 60min with a model order of
15). Therefore, the model order is chosen as 10. The number of

TABLE 1 | A comparison of the classification accuracy (%) on the test set
between three different models when the position, velocity, acceleration,
or a combination of them, for the two objects that are involved in an action
scenario, are used as input.

Input data (#signals) HMM cRBM LSTM

Pos (6) 61.4 70.2 81.7
Vel (6) 59.1 54.2 86.1
Acc (6) 22.9 37.8 57.9
Pos+Vel (12) 63.0 80.3 96.3
Pos+Vel+Acc (18) 60.1 67.8 93.1

hidden units for the cRBM was evaluated with [50, 100, 200, 500,
1,000]. In Figure 7, a greater number of hidden units used for
the cRBM results in a better performance. However, the gain of
using 1,000 over 500 hidden units is rather small compared to
the increase in training time (40min with 500 units compared to
3.5 h for 1,000 units), which makes the choice of 500 units a good
trade-off between accuracy and training time.

For the LSTM, the number of hidden units was chosen between
10 and 100 with an increase of 10. The best result, regarding
classification accuracy and training time, was achieved with using
50 hidden units. It is also worth noting that the worst result of
using only 10 hidden units achieved a similar result as the best
result for the cRBM of using 1,000 units.

4.3. Classification Results
In this section, we present the classification results of our evalua-
tion. Input for this classification was all position and (extracted)
velocity reading at each sample. The predicted classification label
at each sample for two actions (“pour” and “stir”) are shown
in Figure 8. The first 10 samples for the cRBM are not classified
since they are used to initialize the cRBM,which has amodel order
of 10. It can be seen that all three models have misclassifications
at the beginning of the action. The LSTM is fastest to correctly
classify the action, followed by the cRBM and finally the HMM.

Figure 9A shows the average amount of correctly classified
motion samples of all samples in the test set, where the results are
given as a function of the percentage of the action, i.e., percentage
of the progress of the entire action. The movement has the highest
probability to be correctly classified around 20, 30, and 50% of
the action for the LSTM, cRBM, and HMM, respectively. The
LSTM has the best accuracy of the three models independent of
the location of the action.

Figure 9B show an overview of where in time the misclassifi-
cations for the LSTM are for each action in the test set. The y-axis
shows all the 116 actions in the test set, and the time is shown in the
x-axis. Black areas indicate the misclassifications for the LSTM.
Most misclassifications are at the beginning of the motion, and

FIGURE 7 | Accuracy as a function of the number of model capacity for three different models.
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FIGURE 8 | Predicted labels at each time sample for three different models for one action of “pour” (top figure) and one action of “stir” (bottom
figure) in the test set.

A B

FIGURE 9 | (A) The average classification accuracy for three models at each percentage of all movement actions in the test set. (B) Misclassifications (black) for the
LSTM for each action in the test set (y-axis) over time (x-axis).

most actions get the correct classification after a few seconds, with
a couple of exceptions.

Most misclassified samples can be removed by a postprocess of
classifying the full action as the average of all predicted samples in
that action. The confusion matrix for the average action classifi-
cation for the cRBM and LSTM can be seen in Table 2. Averaging
the result of the HMM gave worse results since the majority of
the samples are misclassified. The cRBM is capable of correctly
classifying all “put” and “slice” actions. The LSTM has some
confusion classifying “put” actions as “put” but instead correctly

classifies all the actions “pour,” “stir,” “grate,” and “slice.”
The overall accuracies when action averaging is used for the cRBM
and LSTMare 91.38 (106/116) and 94.83% (110/116), respectively.

These results show that representational learning algorithms,
such as cRBM and LSTM, are capable of learning and classifying
action sequences from raw object tracking sensor data and out-
performs traditional sequential methods, such as an HMM. The
results of the HMM could be improved by discretizing the obser-
vations into more higher level movements that last longer than
a single sample point. However, defining and categorizing such
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TABLE 2 |Confusionmatrices for the average classification for the (A) cRBM
and (B) LSTM.

True label % Predicted label

Pour Put Stir Grate Slice

(A) cRBM Pour 22 0 1 0 0
Put 0 20 0 0 0
Stir 2 5 12 0 0
Grate 0 1 0 17 0
Slice 0 0 0 0 36

(B) LSTM Pour 23 0 0 0 0
Put 0 14 6 0 0
Stir 0 0 19 0 0
Grate 0 0 0 18 0
Slice 0 0 0 0 36

movements would require humanmanual effort and expertise and
would have to be re-evaluated if new motions were added. The
advantage of the cRBM and the LSTM is that the representations
are learned directly from the raw data and adding new motions
only require a retraining of the algorithm. However, comparing
the two representational learning algorithms, and when action
averaging is used, the cRBM can achieve comparable results to
the LSTM. Nonetheless, if a fast classification is desired, then the
LSTM is preferable. The advantage of the LSTM is that there is
no fixed model order that the user needs to set, and output is
produced at every time step, while the cRBM needs to use the first
samples to initialize the model. The memory of the LSTM is also
not limited to a specific model order like the cRBM and is, there-
fore, capable of modeling longer and varying temporal sequences.
A disadvantage of the LSTM is that the training procedure is more
complicated since the algorithm uses back-propagation through
time and the LSTM cell is more computationally heavy, which
results in a longer training time (90min for the chosen LSTM
structure compared to 40min for the chosen cRBM structure).

4.4. Using Action Learning to Improve
Anchoring
Once a generalized representation of an action is learned, the
representation can then feedback into the anchoring system as
illustrated in Figure 1. To motivate the need for this feedback
loop, we refer to the object classification procedure in Section
3.1. Recall that the result from the object classification was a
category name with an associated probability of a match against
the Caffe framework, which has been trained with 1,000 of object
categories. Herein lies the trade-off of using large-scale sources
of information for object classification. On the one hand, we can
move away from toy scenarios for anchoring and cope with many
objects. On the other hand, the object classification task becomes
increasingly difficult.

To illustrate, consider both Figures 10A,B. These figures illus-
trate two frames during a “pouring” and a “stirring” scenario,
respectively. Due to uncertainties in the sensor data, occlusions by
the human, and changes in environmental conditions, throughout
the each scene, the objects to be anchored vary in number and
type as illustrated by the results of the of the Caffe framework

throughout each seen, seen in Figures 10C,D. Nonetheless, the
anchoring management system manage to handle these kinds
of uncertainties to some extent as illustrated by Figures 10E,F,
which shows the results of the anchoring management system
taking into account the output from the functionalities (acquire,
re-acquire, and track) and subsequent threshold values. Recall
that the anchoring management system both track objects on
the sensor level (through the track functionality) and maintains
the most accurate representation of anchored objects on a higher
level (through the acquire and re-acquire functionalities). Hence,
the resulting classification accuracy, seen in Figures 10E,F, will
increase as the system perceives better representations of observed
objects. Moreover, to compensate for “false-positive” anchors, as
the result of glitches and swiftmovements, our anchoringmanage-
ment system has further adopted the idea of deletion of anchors,
initially presented by Coradeschi and Loutfi (2008). Hence, a new
anchor is acquired with a lifespan (set to 2.5 s for this work). This
lifespan is then decreased for every time t that the anchor is either
not tracked or reacquired until the lifespan has reached a zero and
the anchor is deleted.

Nonetheless, errors are present in the output from the anchor-
ing system. In the scenario exemplified in Figure 10A, the RBG-
D sensor was not able to detect the transparent middle part
of the “beer bottle” object, and the anchoring system has,
therefore, created two anchors for the “beer bottle” object. In
the scenario exemplified in Figure 10B, the human intervention is
interferingwith the scene to the extent that the track of the original
“wooden spoon” object is lost and a new and “nematode”
object are acquired instead. Our approach here is to resolve these
errors by (1) using the action learning system to determine which
new action is being performed on the objects and (2) leveraging
from the symbolic representation of actions and anchors to query
whether the particular anchors afford those actions. On the basis
of the results, we can then refine the anchoring and matching
process to take into account the set φaction of volatile attributes to
resolve ambiguities in the object classification.

To exemplify, consider the different combinations of anchored
objects and the predicted classification label of the perceived
action in each scenario, seen in Figures 11A,B, together with
the probability certainties of the top predicted classes shown in
Figures 11C,D. By the results for the “pouring” action, seen
Figure 11A, it is seen that the correct action label is conclu-
sively predicted if the anchor that is labeled “coffee mug” is
combined with either of the “beer” bottle anchors. Furthermore,
the probability certainties of the classified action labels, seen in
Figure 11C, shows a high certainty for each combination of “beer
bottle”+ “coffee mug” for being a “pouring” action. It is
also shown that the probability for both combinations of “beer
bottle”+ “coffee mug” is increasing during the action and
is the highest at the end of the action, which is not the case
a combination of “beer bottle”+ “beer bottle,” which
fails to correctly classify the action and has a varying probability
certainty during the action and is the lowest at the end of the
action. Hence, we can, in this case, assume that it in fact is the
same “beer bottle” (rather than two separate objects involved
in two separate actions at the same time and approximately the
same locations in 3D spatial space). However, by examining the
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A B

C D

E F

FIGURE 10 | Example frames of a “pouring” action (A) and a “stirring” action (B). Classification results over the whole observed “pouring” action
(C) and “stirring” action (D), given by the Caffe framework. Corresponding resulting anchors for each “pouring” action (E) and “stirring” action
(F), respectively.

results for the “stirring” action, seen Figures 11B,D, it is not
initially evident that the correct action label is classified. None of
the individual combinations of “wooden spoon”+ “soup bowl”
or “nematode”+ “soup bowl” are classified as a “stirring”
action. This is not a surprising result since the anchoring sys-
tem loses track of the “wooden spoon,” as seen in Figure 10F.
The use of only “soup bowl”+ “nematode” fails to correctly
classify the action since the “nematode” anchor did not appear
until t= 8 s and did not see the “wooden spoon” being “put”
into the “soup bowl” and therefore predicts the action as
“slicing.” However, if we instead consider the full movement
trajectory of a combination of both perceived objects (“wooden
spoon”+ “nematode”), the probability certainty for the “soup
bowl”+ (“wooden spoon”+ “nematode”) has two spikes: the

first when the spoon is “put” into the bowl and the second
when the spoon starts to stir and at that time changes the pre-
dicted label to “stirring.” However, the question remains, which
object is involved in the action: the “wooden spoon” or the
“nematode”?

To resolve this ambiguity, we have to rely on the symbolic
representation and other sources of information. More specifi-
cally, to query whether a particular anchor affords an action, the
ConceptNet 55 semantic network is utilized (Speer and Havasi,
2012). The ConceptNet network consists of commonsense rela-
tional knowledge between concept (word or phrases). Hence, this

5http://conceptnet5.media.mit.edu/.
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A B

C D

FIGURE 11 | Predicted labels from different combinations of anchors for the action of (A) “pouring” and (B) “stirring.” The corresponding probability of
the top predicted class is showed in (C,D) for pouring and stirring, respectively.

network is also suitable for queries of affordances. Now, as we start
to perceive an action and start to predict an action label, as the
scenario progress over time, the predicted action label can simul-
taneously be used for query the ConceptNet semantic network.
The result of this prediction is not only a grounded symbolic name
for a novel action, but the same prediction is also an estimation
of possible object candidates that afford that action. The result
of such query is presented in Table 3, where it is evident that
“wooden spoon” affords a “stirring” action. This affordance
can be further confirmed through query the ConceptNet for the
association between the concept “soup bowl” and “wooden
spoon,” which results in a similarity score of 46.28%. The same is
not true for a “nematode,” which has a zero similarity if associated
with a “soup bowl,” and therefore, we can favor the “wooden
spoon” by the knowledge that it affords a “stirring” action.

5. CONCLUSION AND FUTURE WORK

In this paper, we have outlined our work on the topic of learning
actions from representations of object entities that are tracked and

TABLE 3 | The top 10 responses for a query of the concept “stir” in
ConceptNet.

Concept Relation

wooden_spoon [a wooden spoon] is for [stirring]
stirrer [stirrer] is related to [stir]
pot [a pot] is for [stirring]
spoon You can use [a spoon] for [stirring]
bestir The word [bestir] etymologically comes from the word [stir]
storm The word [storm] etymologically comes from the word [stir]
band [Stir] is an instance of [band]
champagne_whisk [champagne whisk] is related to [stir]
elt [elt] is related to [stir]
lather [lather] is related to [stir]

maintained, in both space and time. We leverage from notions
within perceptual anchoring to maintain and use percept-symbol
information. We have both presented an extension of the percep-
tual anchoring problem that accounts for anchoring of an attribute
history (such as positions of an object over time) and introduced
a framework that can handle the stream of sensor data that is
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required for tracking the movements of objects. We have pre-
sented an evaluation of our work, where a probabilistic generative
model is used to learn high-level action concepts from anchored
objects. We have performed a signal and model parameter selec-
tion and shown that a good trade-off between the performance
of the classification accuracy and the training time could be
achieved by using a subset of the signals and a lesser amount of
hidden units and model order. Finally, we have presented how
the resulting model of learned action can be used to improve
anchoring. For this purpose, we have exemplified how a predicted
action can be utilized, with the extension of commonsense seman-
tic knowledge, to estimate which objects afford the predicted
action.

A drawback of the framework used for the presented work was
that the data acquisition (through the anchoring system) and the
action learning (through the learning system) were conducted on
(physically) separate systems, where the data had to be processed
manually in between the systems. In future work, we will fully
integrate both systems into one single system for the purpose of
learning generalized representations of object actions in a larger
scale and over a length of operation (andwithout the human inter-
vention). The overall future goal is consequently to integrate such
learned representations, formally, into the definition of perceptual
anchoring such that amatching procedure can be used to establish
bothwhat types of actions that apply to an object andwhat kinds of
effects an action will have on the surrounding environment. From
the results, presented in Section 4.3, it is evident that the repre-
sentational learning algorithms, such as cRBM and LSTM, are the
most prominent candidates for such integration. An advantage
of RNNs compared to cRBMs is that they do not have a model
parameter for the model order, i.e., the number of previously
visible layers that affects the currently hidden layer. However, an
RNN can be difficult to train for learning long-term dynamics.
TheRNNwith an LSTMcell was used in this work to facilitate this.
As an alternative, a long-term recurrent convolutional network
(LRCN) has recently been proposed (Donahue et al., 2015). LRCN
has previously been used to generate descriptions of images and
videos by using CNNs and RNNs for the visual and the sequence
learning. The difference to our work is that we used the tracking of
objects represented by time series as input instead of a single image
or a sequence of images. However, the LRCN model is also inte-
gratedwith the Caffe framework (Jia et al., 2014), which is used for
the object classification procedure of our anchoring framework.
This integration favors the LRCNmodel as a prominent candidate
for further work.

The tracking functionality of the suggested approach (pre-
sented in Section 3.2) was adequate for table top scenarios with
moving objects, which we have explored in this work. However,
our anchoring approach will not be able to handle, with the
same frame rate, more complex scenarios that entail tracking of
multiple objects of a higher order, as seen in Figure 6. Multiobject
tracking in the context of anchoring is, therefore, a topic that
needs further attention in future work. For example, a possible
future direction is to follow a recent trend of object tracking
with the use of graphical processing unit (GPU), such as the
utilization of a similar particle filter-based tracking approach for
a GPU architecture, as presented by Choi and Christensen (2013).

Another notable GPU-based alternative is the use of model-
based combined pose detection and tracking as suggested by
Pauwels et al. (2015), which uses the graphical and computa-
tional capability of a GPU for the purpose of combine dense
motion and depth cues with sparse keypoint correspondences
to maintain a scene model. Moreover, a common approach for
learning both the interaction that involves objects (Oikonomidis
et al., 2013; Kyriazis and Argyros, 2014) and object affordances
(Koppula et al., 2013; Koppula and Saxena, 2014), from RGB-
D data, is to utilize a tracking algorithm for tracking the hand
movement of a human user. The learning method that we have
suggested in this work is solely based on the tracked movements
of object entities. The human hand movement can consequently
even become a problem in some cases, as described in Section 4.1.
However, a possible direction of future work could follow a simi-
lar philosophy of tracking human hand movements and thereby
“anchoring” the human user in addition to the anchoring of
objects.

A benefit of using the Caffe framework (Jia et al., 2014), with a
pretrainedmodel, is that such implementation requires minimum
resources (implementation-wise), while still providing a signifi-
cant possibility of object categories. However, all pretrained cate-
gories of a model might not be relevant for a particular domain,
e.g., for a household domain. Hence, another aspect of further
attention is to improve the visual categorization by extending
the 1K ILSVRC-2012 model (Krizhevsky et al., 2012; Donahue
et al., 2013), with more categories and fine-tuning the model
according to categories that aremore relevant for a domestic robot.
A similar extension of the Caffe framework is addressed together
with the introduction of the open-vocabulary object retrieval
system, presented by Guadarrama et al. (2014). However, contrary
to the open-vocabulary work, which is approaching the object
retrieval problem top-down (i.e., semantic symbols from language
queries were projected to objects in the currently perceived scene),
the work presented in this paper is approaching the problem
bottom-up. Another important aspect covered in work on the
open-vocabulary system is the distinction between category-level
semantics (e.g., “a coffee mug”) and instance-level semantics (e.g.,
“my coffeemug”). The difference between category- and instance-
level semantics is likewise an important aspect of perceptual
anchoring, and a similar categorization is, therefore, an aspect that
will be further studied in future work.
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