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One of the fundamental skills supporting safe and comfortable interaction between
humans is their capability to understand intuitively each other’s actions and intentions.
At the basis of this ability is a special-purpose visual processing that human brain has
developed to comprehend human motion. Among the first “building blocks” enabling the
bootstrapping of such visual processing is the ability to detect movements performed
by biological agents in the scene, a skill mastered by human babies in the first days of
their life. In this paper, we present a computational model based on the assumption that
such visual ability must be based on local low-level visual motion features, which are
independent of shape, such as the configuration of the body and perspective. Moreover,
we implement it on the humanoid robot iCub, embedding it into a software architecture
that leverages the regularities of biological motion also to control robot attention and
oculomotor behaviors. In essence, we put forth a model in which the regularities
of biological motion link perception and action enabling a robotic agent to follow a
human-inspired sensory-motor behavior. We posit that this choice facilitates mutual
understanding and goal prediction during collaboration, increasing the pleasantness and
safety of the interaction.

Keywords: biological motion, two-thirds power law, temporal multi-resolution motion descriptor, HRI, robot
attention

1. INTRODUCTION

Robots are progressively entering our houses: robotic devices as vacuum cleaners, pool cleaners,
and lawn mowers are becoming more and more commonly used and the growth of robotics in the
consumer sector is expected to continuously increase in the near future.1 The fields of applications
for robotics will influence not only domestic activities but also entertainment, education, monitor-
ing, security, and assistive living, leading robots to frequent interactions with untrained humans
in unstructured environments. The success of the integration of robots in our everyday life is then
subordinated to the acceptance of these novel tools by the population. The level of comfort and
safety experienced by the users during the interaction plays a fundamental role in this process. A
key challenge in current robotics has then become to maximize the naturalness of human–robot
interaction (HRI), to foster a pleasant collaboration with potential non-expert users. To this aim, a
promising avenue seems to be endowing robots with a certain degree of social intelligence, to enable
them to behave appropriately in human environments.

1EU Strategic Road Map 2014–2020.
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In this context, human infants represent an important source of
inspiration. Indeed, even if endowed with limited sensory-motor
capabilities and no explicit knowledge of social norms, young
children can already quite proficiently coordinate with their peers
(Asendorpf and Baudonniere, 1993) and caregivers (Tomasello
et al., 2005), even in the absence of language. Moreover, from the
restricted social abilities exhibited in the very first months of life,
humans are able to develop a full-fledged social competence in
adulthood. The partial skills exhibited by a baby can, therefore,
represent the minimum set of abilities necessary to enable the
bootstrapping of more complex interactive expertise. Endowing
robots with analogous “social building blocks” represents, there-
fore, the starting point in the attempt to replicate complex HRI
skills, favoring the establishment of a simple yet efficient intuitive
understanding in the naive user.

In this work, we consider in particular the marked, natural
predisposition of newborns to notice potential interacting part-
ners in their surroundings, which is manifested by a preference
for biological motion (Simion et al., 2008) and for faces looking
directly to them (Farroni et al., 2002) over other visual stimuli.
Interaction in its simplest form seems, therefore, constituted by
a sensitivity to some properties of others’ motion and to their
direction of attention.

Drawing inspiration from these observations, we propose a
video-based computational method for biological motion detec-
tion, which we also implement on the humanoid robot iCub
(Metta et al., 2010a), to guide robot attention toward potential
interacting partners in the scene. We focus on a method purely
based onmotion,which does not require any a priori knowledge of
human shape or skeleton, nor detecting faces and hands (Brethes
et al., 2004; Gaschler et al., 2012).

In essence, we put forth amodel inwhich the regularities of bio-
logical motion link perception and action enabling a robotic agent
to follow a human-inspired sensory-motor behavior. This way, we
address two fundamental components necessary to facilitate the
understanding of robots by human users:

1. On the perception side, we make the robot find the same types
of stimuli salient as a human (Breazeal and Scassellati, 1999). In
particular, we propose a computational tool to make the robot
sensitive to human activity, a very relevant type of motion for
human observers.

2. On the action side, we enable the robot to direct its attention
to human activity through a biologically inspired oculomotor
mechanism (Breazeal et al., 2001). This way the robot can
reorient its gaze toward where the human partners are acting.
Such eye shift can also represent an intuitive form of commu-
nication, revealing where the robot is focusing and potentially
informing the human partner of its availability to interact
(Palinko et al., 2015).

The use of a common, biologically inspired, perceptual, and
motor framework facilitates the human partner’s understanding
and prediction of the future actions of its robot counterpart.

To design a system sensitive to the regularities typical of
biological movements we draw inspiration from the laws gov-
erning human motor control. We consider in particular the

Two-Thirds Power Law, since there is an evidence that human
neonates are sensitive to it since the first days after birth (Méary
et al., 2007). The law is a well-known invariant of human move-
ments (Viviani and Stucchi, 1992; Viviani et al., 1997; Vieilledent
et al., 2001; Richardson and Flash, 2002) describing the regular
relationship between the instantaneous tangential velocity and
the radius of curvature of human end point movements (Greene,
1972; Viviani and Terzuolo, 1982; Lacquaniti and Terzuolo, 1983).
There have been experimental evidence, particularly for hand-
writing (Viviani and Terzuolo, 1982; Lacquaniti et al., 1983), that
in biological movements velocity and curvature show a strong
mutual influence. The low-level motion descriptor we adopt,
based on the same dynamic features, is meant to capture such
connections.

To handle the wide intra-class variability of biological stimuli,
we propose the use of a structuredmotion descriptor that accounts
for multiple temporal resolutions of the measurements. A careful,
automatic selection of such resolutions allows us to easily adapt
our model to a variety of scenarios.

The method, preliminarily discussed in the study of Vignolo
et al. (2016a) is here deeply investigated by using a much wider
set of combination of temporal windows to filter the features. We
also test the method on a much wider set of variations including
different sensors, point of view, type of behaviors, and dynamics.
In particular, its efficacy in generalizing to new scenarios, includ-
ing scene observation from different visual perspectives and the
presence of severe occlusions, is demonstrated.

The possibility to exploit such a method for robot perception
is then validated by implementing the method in a module inte-
grated in the software framework of the iCub humanoid robot
(Vignolo et al., 2016b). The module implements an engineered
variation of our method—appropriately handled to work online
and in real-time—and is used to enhance the robot visual attention
system, endowing the robots with the ability to rapidly redeploy
attention on actions performed by human agents in the scene with
a biologically plausible saccadic behavior. The advantage of the
solution is that attention is biased toward moving human agents
even when they are not visible in the scene. At the same time, the
natural robot gaze motion can act as an implicit communication
signal, informing the collaborators of its current attentional state.
In this paper, a detailed analysis of the results of the integration
between the motion classification and the attentive system is done
by separating the two stages of perception and action, giving a
better idea of when, during the robot pipeline, and why the robot
fails or is not perfectly precise in the discrimination task between
the biological and non-biological movements. Moreover, we also
analyze the velocity profile of the fixation point to reach the target.

The rest of the paper is organized as follows. In the next section,
we provide a review of works related to our approach. Section 3 is
devoted to present in detail our method, followed by an extensive
experimental analysis discussed in Section 4. The iCub architec-
tural framework that hosts ourmethod on the robot is presented in
Section 5, while in the following section we show both the results
produced on the method while working online and the effect on
the robot action. Section 7 is finally left to a discussion on possible
future outcomes.
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2. RELATED WORKS

Several are the approaches that have been adopted so far to
perceive and detect human activities. In the following, we dis-
cuss a tentative state-of-art, while enhancing the novelties of our
approach.

One potential approach to detect humans is to endow robots
of specific sensors such as RFID or thermal sensors (Correa
et al., 2012). In spite of high performances, this solution requires
ad hoc hardware, usually not available in common robotics
platform, limiting the range of possible scenarios. Their rela-
tively high cost is another factor that may harm a large-scale
diffusion—which is, however, desirable for future family or com-
panion robots.

For these reasons, we focus here on approaches based on more
traditional RGB and depth sensors. Although there is a large
number of works in the computer vision field, the constraints and
limitations of robotics setting make it difficult to directly employ
methods successfully applied to other domains. Robots are in
general equipped with relatively low-resolution cameras, in order
not to overload their network, while standard computer vision
approaches may rely on high-resolution images. Moreover, inter-
active robots require a fast processing to support interaction: a
perfect classification performance becomes useless if it is achieved
not rapidly enough to enable appropriate robot reaction. In this
respect, the speed-precision trade-off in HRI is often unbalanced
toward speed, as a rapid, yet not precise estimation still allows
the robot to continue the collaboration, while adjustment of the
initial guess may always be achieved exploiting the evolution of
the interaction itself.

With these constraints in mind, we cite here examples of use of
RGBD sensors (Sung et al., 2012; Koppula et al., 2013) promoted
in recent years by the widespread availability of low-cost, highly
portable sensors. This approach provides a richer information on
the body structure, helping the understanding of the performed
activity, but to the price of low success when the visibility of the
partner is limited and it is not possible to match the 3D input with
the human skeleton.

More related to our work is a third category of approaches,
based on the analysis of 2D video signals acquired with the robot
cameras (Dillmann, 2004; Weinland et al., 2011).

Most 2D video analysis methods for human detection currently
adopted in robotics rely on appearance or shape features, for
instance detecting faces and hands in the scene (Brethes et al.,
2004; Gaschler et al., 2012). However, these approaches have
severe limitations as scene complexity grow, for instance when
the clutter in the environment increases or the light conditions
become more challenging. Shape-based or part-based methods
are likely to fail when the human body is only partially visible—as
in presence of occlusions—while detectors based on faces are
not appropriate for close interaction scenarios, as those involving
precise manipulation on a tabletop. Although still based on 2D
signals, our approach substantially differs from previous works
in that we strictly focus only on the motion properties of the
stimuli. A purely motion-based human detection system makes
it possible to detect the presence of humans in the vicinity just by
observing the effects of their behavior on the environment, as for

instance, the movement of the manipulated tool—a use case that
to the best of our knowledge has not been considered so far in the
related literature. Note that, while motion detection is common in
robotics applications, oftentimes as a preliminary step for further
analysis, human detection through motion requires a selectivity to
biological motion, which is usually absent in common robotic
systems.

There is wide evidence that humans are better at predicting
stimuli moving according to biological motion, whereas they
present a distorted perception when behaviors subvert these kine-
matics rules (Viviani et al., 1997; Pozzo et al., 2006; Elsner et al.,
2012; Gavazzi et al., 2013). Also in the specific context of HRI,
it has been demonstrated that the adoption of biological plau-
sible motion by a humanoid robot can lead to a more natural
coordination with its actions (Bisio et al., 2014) and potentially
to a more pleasant interaction (Sciutti et al., 2012). Conversely,
the execution of non-biological motion by a humanoid robot has
been suggested as a possible cause for the Uncanny Valley effect
(Mori, 1970), i.e., to the occurrence of a sense of eeriness and
disgust toward the robot, precluding the possibility for a natural
interaction (Chaminade and Cheng, 2009). Human-like motion
benefits interaction also when it is applied to gaze behavior, for
instance facilitating the regulation of conversations (Mutlu et al.,
2012), the coordination of shared plans in collaboration (Boucher
et al., 2012) and the prediction of robot goals (Rea et al., 2016).
Drawing inspiration from these evidence, tomaximize the efficacy
of the human activity detection module, our proposed architec-
ture leverages the regularities of biological motion also for the
preparation and execution of the robot saccadic action. This way,
the robotic oculomotor action triggered by the perceptionmodule
informs the human partner in an intuitive way about the internal
attentional status of the robot.

3. A TEMPORAL MULTI-RESOLUTION
BIOLOGICAL MOTION DESCRIPTOR

In this section, we start with a brief summary of an instantaneous
motion description we adopt as a building block for our method
(Noceti et al., 2015b). Then, we review the proposed multi-
resolution method (Vignolo et al., 2016a), which efficiently com-
bines measurements that may span different temporal portions of
an image sequence.

3.1. Instantaneous Motion Representation
We report in Figure 1 the key steps of our low-level layer of
motion representation. At each time instant t, the optical flow
is computed using a dense approach (Farnebäck, 2003), which
provides an estimate of the apparent motion vector in each image
point (Figure 1B). The optical flow magnitude is thresholded
to enhance locations with significant motion. Isolated pixels and
small regions, which are likely to be generated by noise, are
rejected by first applying a perceptual grouping—in which only
locations whose neighboring pixels are also marked as moving
are kept in the analysis—and then discarding small groups. We
then obtain a motion map whose largest connected component
(henceforth referred to asR(t)) becomes the candidate region for
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FIGURE 1 | The key steps of our low-level motion representation. First row, from left: (A) the original frame, (B) the map of the optical flow magnitude and (C)
the segmented region. Below: a visual comparison between raw (blue) and filtered (red) features; (D) velocity and (E) radius of curvature.

TABLE 1 | Empirical formulations of the spatio-temporal dynamic features
(∆t is the temporal displacement between observations of two adjacent
time instants).

Tangential velocity V̂i(t) = (ui(t), vi(t), ∆t)

Tangential velocity
magnitude

V̂i(t) =
√

(ui(t)2 + vi(t)2 + ∆2
t

Acceleration Âi(t) = (ui(t) − ui(t − 1), vi (t) − vi(t − 1), 0)

Curvature Ĉi(t) = ∥V̂i(t)×Âi(t)∥
∥V̂i(t)∥3

Radius of curvature R̂i(t) = 1
Ĉi(t)

Angular velocity Âi(t) = V̂i(t)
R̂i(t)

motion recognition (Figure 1C), under the assumption that only
a single interesting source of motion is observed in the scene at
each time instant.

Let (ui(t),vi(t)) be the optical flow components associated with
point pi(t) ∈R(t), and N the size of the region, i.e., the number
of pixels in it. We compute a set of motion features, according
to the formulations in Table 1, which empirically estimate the
analytical quantities related by the Two-Thirds Power Law. We
finally describe the region R(t) with a feature vector xt ∈ R4 by
averaging the features over all the region elements:

xt =
1
N

[∑
i
V̂i(t),

∑
i
Ĉi(t),

∑
i
R̂i(t),

∑
i
Âi(t)

]
(1)

Figure 1, on the bottom line, shows the behavior of two of
the computed features (velocity and radius of curvature) across
a period of time lasting 80 frames. As expected, the peculiarities

of the performed movements are best appreciated by observing it
for some time.

3.2. Multi-Resolution Motion
Representation over Time
Since a meaningful event lasts more than one temporal tick, we
may integrate the instantaneous motion representation over a
fixed temporal frame w. To this purpose, we consider a set of w
subsequent measurements [xt−w, . . ., xt] and compute a running
average of each feature across time, obtaining a new motion
descriptor x̂t(w).

The choice of an appropriate size for the temporal window
is critical and highly dependent on the specific dynamic event.
For this reason, we adopt a multi-resolution approach, where
different temporal windows are jointly adopted, and we propose
an adaptive procedure where we learn from examples the best
combination of temporal windows.

More in detail, let us consider a maximum temporal window
extent wMAX

T ∈ N, such that wMAX
T > 1, and a selection of

potentially interesting time windows wT defined as elements of a
setW =

{
w ∈ N|w ≥ 1 ∧ w ≤ wMAX

T
}
.

At a certain time instant t we may have a temporal sequence of
observations St ∈ R4wMAX

T as

St =
[
xt−wMAX

T
, . . . , xt

]
. (2)

We apply a bank of running average filters—of widths selected
from the range in the setW—to each feature separately. The result
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FIGURE 2 | (A) A visual sketch of our pipeline. From left: in each image of a sequence we detect the moving region and compute the features. We then compute a
running average of those features over different temporal windows (3 in this example, identified by the blue ranges). Then, we evaluate different temporal models
which may be composed of more than one temporal resolution and select the most appropriate. (B) A visual sketch representing the core procedure of our model
selection.

is a set of motion descriptors x̂t(wT) referring to different time
periods wT and such that

x̂t(1) = xt
x̂t(wT) = RA(St|wT ,wT), for 1 < wT ≤ wMAX

T (3)

whereRA is the running average filtering while the notation St|wT

denotes the restriction of sequence St to the last wT elements.
The leftmost part of Figure 2A reports a sketch of this filtering
procedure.

Starting from the set of motion descriptors of Eq. 3, we
obtain many possible temporal multi-resolution motion descrip-
tors {F i

t}i:

F i
t = ⊕δi(wT)x̂t(wT), for all wT ∈ W (4)

where⊕ denotes the concatenation between feature vectors, while
δi(wT) ∈ {0, 1} is a binary weight representing the presence or
absence of the corresponding filtered vector in the final descriptor.

Thus, as a final step, we need to select an appropriate andmini-
mal combination of different temporal windows, considering that

a multi-resolution descriptor will allow us to deal with different
types of dynamic events, but many different temporal windows
would carry a similar amount of information. The core of the
selection process is detailed in the next section, as it is intertwined
with the actual motion classification step.

3.3. Biological Motion Representation and
Classification
We formulate the problem of recognizing biological motion from
video sequences as a binary classification problem. To this pur-
pose, given a certain temporal scheme denoted with i*, we con-
sider a training set.

Z = {(F i∗
k , yk) ∈ X × Y}nk=1 (5)

where F i∗
k ∈ X ⊆ Rd is a given temporal multi-resolution

descriptor (input),2 while yk ∈Y = {−1, 1} is the associated output
label (1 for biological samples and −1 for negative non-biological

2We omit the index t of Eq. 4 for readability.
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samples). The size d depends on the specific F i∗
k considered.

Henceforth, we will refer to F i∗
k as Fk.

To learn the relationship between input and output in a pre-
dictive way, we adopt a Regularized Least Squares (RLS) binary
classifier which amounts at minimizing the following functional.

fZ = arg min
f∈H

1
n

n∑
k=1

(yk − f(Fk))
2 + λ|| f ||H (6)

where H is a Reproducing Kernel Hilbert Space with a positive
semi-definite kernel function K, and λ a regularization param-
eter that controls the trade-off between the data term and the
smoothness term. At run time, a new datum F is associated with
an estimated label obtained by the sign of fλZ (F), with

fλZ (F) =
n∑

k=1

αkK(F , Fk) (7)

where α= (K+ nλI)−1y is an n-dimensional vector of
unknowns, while K is the associated kernel matrix. In the
model selection procedure better detailed in Section 4.1.2, we
train a set of classifiers each one associated with a different
combination of motion features F . The best multi-resolution
motion descriptor is selected in a data-driven manner, by ranking
the validation error achieved by the different classifiers.

4. OFFLINE EXPERIMENTAL ANALYSIS

In this section, we discuss the experiments we performed pri-
marily on video sequences acquired with the iCub humanoid
robot (Metta et al., 2010a), using the machine learning library
GURLS for an efficient implementation of RLS (Tacchetti et al.,
2013). Our classifier is equipped with an RBF kernel, following
our conclusions in the study of Vignolo et al. (2016a). To evaluate
the sensitivity of the method to the acquisition sensor, we also
considered test sets captured with a common webcam and a
hand-held camera (Canon EOS 550D).

In the following, we first discuss in detail the training pro-
cedure. Second, we show the generalization capability of our
approach by discussing its appropriateness on a selection of
tests including new dynamic events, new scenarios, and on data
acquired by a different sensor.

4.1. Training the Motion Classifier
The training phase of a motion classifier includes (i) a model
selection in which the classification parameters and the most
appropriate multi-resolution representation are chosen; and (ii)
training of the final classifier based on the previously selected
model.

4.1.1. The Data Set
Our training set is composed of indoor videos of three sub-
jects observed by the iCub eyes while performing repetitions of
given actions from a repertoire of dynamic movements typical
of a human–robot interaction setting. The choice of acquiring
a collection of videos in-house is due to the absence, to the
best of our knowledge, of a benchmark explicitly designed for
purposes similar to ours.More in detail, we considerRolling dough
(9movements, ~300 frames—Figure 3A),Pointing a finger toward
a certain 3D location (7 movements, ~330 frames—Figure 3B),
Mixing in a bowl (29 movements, ~190 frames—Figure 3C),
Transporting an object from and to different positions on a table
(6 movements, ~300 frames—Figure 3D), andWriting on a paper
sheet (3 movements, ~300 frames—Figure 3E). As for the non-
biological examples, we consider a selection of dynamic events
which can be observed indoors: a Wheel with a random pattern
(~300 frames—Figure 3F) and a Wheel with a zig-zag pattern
(~300 frames—Figure 3G), a Balloon (~300 frames—Figure 3H),
a Toy Top turning on a table (~300 frames—Figure 3I), and a Toy
Train (~398 frames—Figure 3J).

For each dynamic event we acquired two videos. Henceforth,
we will adopt the notation {VSi1} and {VSi2}, i= 1, 2, 3, to denote,
respectively, the sets of first and second video instance of subject
Si. Similarly, {VN1} and {VN2} are the two sets of videos containing
non-biological events.

In the following, the training set used for training the classifier
and selecting the model includes {VSi1} for i= 1, 2, 3, {VN1},
and {VN2}. Details on how they are divided are described where
appropriate. Instead, {VSi2}, i= 1, 2, 3, are left out and used as a
first test in Section 4.2. The images have size 320× 240 and have
been acquired at an approximate rate of 15 fps. The cameras we
used in our work (both the robot and the opposite view webcam
used for the test) have a relatively low resolution.

FIGURE 3 | Biological and non-biological movements included in the training set. (A) Rolling dough, (B) pointing, (C) mixing in a bowl, (D) transporting,
(E) writing, (F) wheel (random pattern), (G) wheel (zig-zag) pattern, (H) balloon, (I) toy-top, and (J) toy train.
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4.1.2. Model Selection
The main purpose of the model selection (see a visual sketch in
Figure 2B) step is to choose the most appropriate temporal multi-
resolution representation, from a large set of N choices. This will
allow us, at run time, to compute that representation only.

We perform the selection in a data-driven manner, where for
each representation considered, we obtain an average validation
accuracy by adopting a Leave-One-Subject-Out approach.

4.1.2.1. Leave-One-Subject-Out Procedure
For a given multi-resolution representation (Eq. 4), we represent
all data accordingly, then we partition the training set each time
leaving the videos of one subject {VSi1} as positive examples of a
validation set. As for the negatives, the set {VN1} is always used as a
training and the set {VN2} as a validation. This allows us to obtain
an average validation accuracy. Notice that within each run of the
training procedure we include a hold out process (with M= 10
different partitioning), with a balanced training, that allows us
to select the parameters σ (RBF Kernel parameter) and λ (RLS
regularization parameter).

4.1.2.2. Detecting the Best Representation
Let N be the number of the different multi-resolution representa-
tions considered. This number depends on the cardinality of the
set of potentially interesting time windows W (see Section 3.2).
We setW = {1, 5, 10, 15, 20, 25, 30} and forced the final temporal
descriptor [equation (4)] to be concatenation of atmost 3 different
temporal windows [equation (3)].We chose amaximum size tem-
poral window of 30 frames—equivalent to 2 s—as this temporal
period already affords complex action processing in human brain
(Urgen et al., 2012).

The step size of 5 frames between adjacent windows is due to
the intrinsic nature of the data. The choice of considering at most
3 temporal windows is suggested by the need of controlling the
amount of data redundancy. Under these assumptions, we obtain
N = #W +

(#W
2

)
+

(#W
3

)
= 63.

In Figure 4A, we show the performances of each representation
scheme, ranked in descending order with respect to the average
validation accuracy. The bars are color-coded with respect to the
number of concatenated temporal representations (from dark to
light: 3, 2, 1). In general, three temporal windows appear to be
more descriptive, and in particular the ones including different
temporal ranges (short–medium–long) are ranked first. As a sin-
gle temporal window, the 30 frames choice performs on average
very well.

With this analysis, we conclude that the temporal multi-
resolution representation that concatenates the raw features vector
with the filtered measures on temporal windows wT = 15 and
wT = 30 is the best-performing, leading to a final feature vector
of length 12. Figure 4B shows the classification accuracies of the
selected multi-resolution representation, compared to the cases a
single filter width is adopted, on the validation set. A first obser-
vation is that there is not a single temporal window appropriate
for all the events: for instance, the single filter width wT = 30
performs quite well in all cases but one (sequenceMixing, case (c)
of Figure 4B), as the very fast dynamics of the movement requires
smaller window sizes for filtering the signals. Indeed, shorter time
windows provide better performances in this case.

Overall, the multi-resolution descriptor reports more stable
performances, with higher average accuracies and lower SDs (see
Table 2). This speaks in favor of the capability of our approach to
cope effectivelywith dynamic events of variable temporal duration
when no prior information is available.

4.1.3. Training the Final Classifier
Now we have selected the most appropriate temporal represen-
tation r*, we may build the final classifier. To this purpose, we
consider the whole training set and run a final training procedure
using the r* representation (1-15-30), and performing model
selection in order to set σ* and λ* again with a balanced hold out
procedure, with M= 10 trials. The obtained classifier is adopted
to evaluate the capability of our method to generalize to new data,
as discussed in the following sections.

4.2. Testing the Classifier
In this section, we report the results of our testing analysis
(see Figure 5). The experiments we carried out aim at testing
the validity of the model on new data, including data contain-
ing very different appearance of dynamics with respect to the
training set.

We organized the experiments in different test trials, to discuss
the robustness of ourmodel on scenarios of increasing complexity.
At first, we perform an assessment of the method on the same
actions of the training set but using different videos (Test I in
the following). Then, we proceed considering conditions that vary
with respect to the training set: we focus on movements included
in the training set but characterized by different speeds or trajec-
tory patterns (Test II); actions in critical situations of visibility, as
in the presence of occlusions, limited spatial extent of the observed
motion, and even when just the shadow is in the camera field of
view (Test III); different human actions (on the fronto-parallel
plane or performed in depth with respect to the camera) recorded
with the robot (Test IV) and with a hand-held camera placed in
front of the robot, to test the influence of the acquisition sensor
and of the viewpoint (Test V).

In the following, we discuss in detail each test.

4.2.1. Positive Examples
We focus on biological movements and consider the training
actions, adopting the second set of videos of each subject, i.e.,
{VS12}, {VS22}, {VS32}. As expected, the method performs very
well (see the graph in Figure 5A), with an average accuracy, across
subject, of 0.98± 0.03.

4.2.2. Negative Examples with Changing Speed
We consider variations of the apparent motion with respect to
the training set. Case 1: the three training subjects performing
faster training actions Rolling dough, Transporting; Case 2: the
Wheel (with one of the appearance patterns of the training set)
and theToy train (with the same trajectory of the training set) with
different speed and theWheelwith a different pattern (first picture
in Figure 5B); Case 3: the Toy train covering a circular trajectory
(second picture in Figure 5B) as opposed to the ellipsoidal path
considered in the training set (Figure 3J), with slower and faster
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FIGURE 4 | (A) Average accuracy for each representation (dark blue: concatenation of three temporal windows; medium blue: concatenation of two temporal
windows; light blue: a single temporal window). (B) A comparison between the selected temporal multi-resolution descriptor and all the different time widths
considered independently. The results refer to the actions of Figure 3.
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TABLE 2 | Average and SD accuracy of the temporal single-resolution
representations and the best performing multi-resolution scheme.

Representation Average accuracy SD acc.

x̂t (1) 0.87 0.09
x̂t (5) 0.84 0.12
x̂t (10) 0.89 0.09
x̂t (15) 0.88 0.10
x̂t (20) 0.88 0.10
x̂t (25) 0.92 0.06
x̂t (30) 0.93 0.08
x̂t(1) ⊕ x̂t(15) ⊕ x̂t(30) 0.94 0.05

Bold font refers to the best accuracy we have obtained.

velocity profiles (at approximately half and twice the velocity of the
training set). The accuracies, reported in the graph in Figure 5B,
show again very appropriate values, although an influence of
the variations applied in Case 3 can be observed. This may be
explained with a partial lack on information when the conditions
become too severe (presence of high velocity, limited spatial extent
of the apparent moving region).

4.2.3. Occlusions and Distant Dynamics
We focus here on some critical scenarios.

• Case 1: a training subject performs actions included in the
training set (see an example in the first picture in Figure 5C)
and a new one (Waving) with partial occlusions;

• Case 2: a training subject performs actions not included in
the training set (Walking, Waving hand) far from the camera
(second picture in Figure 5C);

• Case 3: observing the shadow of an action included in the train-
ing set (Pointing) (third picture in Figure 5C) and a new one
characterized by a whole-body motion (Walking) as opposed
to the upper-body motions considered in the training set.

The accuracies are reported in the graph in Figure 5C. Cases
I and III show how our method is tolerant to the presence of
severe occlusions and, to some extent, is able to deal with indirect
information, such as the one produced by the shadow of a moving
object. As expected, both situations produce good results, with a
relatively small decay in the performances. On the contrary, Case
II shows a greater decrease in performance, probably due to the
too limited extension of the apparent motion caused by the large
distance of the motion from the camera.

4.2.4. Novel Dynamic Events
We consider here actions executed on the fronto-parallel plane
and movements performed in depth, on a transverse plane. As
for fronto-parallel dynamics, we focus in particular on hand-
writing, considering the following subcategories: frontal drawings
of smooth symbols (as ellipses, infinite, see the first picture in
Figure 5D,Case 1), hearts, (Case 2), sharp symbols (as rectangles
and lines, Case 3), unconstrained text writings (Case 4).

Concerning the movements in depth, we identified the follow-
ing scenarios: a user performing natural, unconstrained move-
ments (Case 5, see an example in the second picture ofFigure 5D);
drawing smooth symbols on a table (Case 6, see an example in the
third picture of Figure 5D); drawing hearts on a table (Case 7);

drawing of sharp symbols on a table (Case 8); free text writing on
a table (Case 9); and natural movements toward the robot (hi5,
handshake, Case 10).

We considered both smooth and sharp shapes in order to test
the method in case of continuous movements similar to the ones
on which the Two-Thirds Power Law has been already tested
in the literature (smooth shapes), and in case of other types
of movements as the discontinuous ones (sharp shapes). The
accuracies are reported in the graph of Figure 5D. We can observe
a very good accuracy in the fronto-parallel cases (from Case 1
to Case 4). Regarding the movements in depth, we can observe
that there is a decay in the performances in Case 5, as it includes
very different movements with respect to training, with some
even involving complex forces (like in the action of hammering);
Case 6, the actions of drawing smooth shapes, shows a very good
performance, while it decreases in Case 7 and Case 8, respectively,
the actions of drawing hearts and sharp shapes; the accuracy is
very good in Cases 9 and 10, respectively, the action of writing
on a table, which indeed was in the training set (even if the video
has been acquired in different place and time), and the actions
toward the robot.

4.2.5. View-Point Changes with Different Sensors
We consider the same movements adopted for Test IV, but
observed from an opposite point of view and using two different
sensors (a common webcam and the camera Canon EOS 550D).
The use of different sensors and the change of perspective lead to
the generation of optical flow fields that may differ significantly
from the ones adopted for the training phase.

We organized the tests considering the same classification
adopted in Test IV. Planar movements have been observed with a
webcam (320× 240 pixels, 20 fps), while the sequences of actions
in depth have been acquired with the Canon (320× 240 pixels,
30 fps).

The accuracies are reported in the graph of Figure 5E. We can
observe that changing the point of view there is a decay in the
performance in the fronto-parallel cases (Case 1–Case 4), except
for a small increase in Case 3, while there is an increase in the per-
formance in all the cases of movements in depth except for Case
10. The movements with inflection points (drawing movements
of smooth shapes, both on the fronto-parallel plane and in depth),
which should be robust to the change in the point of view, are Case
1 (decrease of 0.29) and Case 6 (increase of 0.13).

5. IMPLEMENTATION IN THE iCub
FRAMEWORK

Given the promising results derived from the offline testing
reported in the previous sections, we propose a version of the
method able to work online and to be integrated on the software
framework of the robot iCub. The final goal is to embed the
human activity detection system in amore structured architecture
supporting natural attention redeployment and gaze behavior by
the robot.

The software framework of the solution is designed to lever-
age the modularity supported by the middleware Yarp (Metta
et al., 2010b) to enable two different computation stages: the
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FIGURE 5 | Frames from sequences adopted in the Tests and graphs with the average classification accuracy (see the text for details on different
cases for each Test). The images are the ones that have been really used for the analysis: the low quality is due to both the resolution and the bad lighting
condition. In some cases, the presence of a transparent board placed between the camera and the observed scene further affect the quality of the images. (A) Test I
on new videos of biological movements observed during training. Each bar refers to a training subject. (B) Test II on movements with changing speed. (C) Test III on
videos with occlusions, far events and shadows. (D) Test IV on novel dynamic events. (E) Test V on novel dynamic events observed from a different view-point.
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FIGURE 6 | The iCub architecture where our method has been implemented.

perception of biological movement and the synthesis of biological
oculomotor actions. Modularity guarantees optimal computa-
tion distribution on the network resources and scalability of the
solution. InFigure 6, we show the structure of the framework indi-
cating how interconnections between modules closes the sensor-
action loop through the execution of oculomotor actions based on
salient loci in the stream of input images.

In the following, we review eachmodule in detail. Although our
solution may account for a generic number N of moving entities
in the scene, without loosing in generality, we focus on the case
N = 2 to exemplify the system behavior.

5.1. OpfFeatExtractor
Themodule resembles the early stage of visual pathways analyzing
images of size 320× 240 acquired from the eye cameras. Themod-
ule comprises two classes of parallel computing, opfCalculator
and featExtractor, which with reference to Section 3 correspond
to the functionalities of motion segmentation and description,
respectively. The parallelization of the necessary computation
demand in multiple threads guarantees efficiency and real-time
performance.

Two instances of the featExtractor class analyze themost salient
and persistent blobs in the image plane, henceforth named A and
B blob. The correctness of the data transferring from the opfCal-
culator to the featExtractor is guaranteed by supervised access
(Yarp::Sig::Semaphore) to the two shared resources, srA= [Ut,
Vt, blobA] and srB= [Ut, Vt, blobB]. The opfCalculator module
providesmaps of the horizontal (Ut) and vertical (Vt) components
of the optical flow on the whole image and the masks of A (blobA)
and B (blobB) blobs to the rest of the network via tcp ports.
In addition to the blob descriptors, the opfFeatExtractor also
provides twomonocromatic images, the binary mapsmarking the
locations of blobs A and B in the image plane.

5.2. Classifier
The Classifier is a module that wraps few novel functions around
the Machine Learning library GURLS (Tacchetti et al., 2013). The
module is programmable from remote (RPC port) allowing the
user to direct the modules, triggering different functionalities,
the most relevant being the training of the model, and the online
recognition to classify new observations. When model training
functionality is activated, information coming from the opfFeat-
Extractor module is collected in a training set. When an appro-
priate amount of data is available, the module invokes a GURLS
function to train a binary classifier using RLS (see Section 3.3).
After the training, the model is adopted for online recognition,
when at each time instant, new observed stimuli are described and
classified. Classification is instantaneously based on the RLS score,
generating a vote for the biological class if the score is positive, or
for the non-biological class in case it is negative.

To partially correct instability of the final classification due to
temporary failures, votes are collected into a temporal buffer of
size 15. At each time instant, the final output of the classifier is
based on a statistic of the votes in the buffer: when the majority of
them (at least the 60%) is for a certain class, then the new observed
event is labeled as an instance of that class, otherwise the system
returns a temporary uncertain response as feedback.

5.3. BioMerger
The bioMerger module synchronizes the feedbacks of two clas-
sifiers (both A and B classifier) with the binary masks provided
by the opfFeatExtractor module. Consequently, the module gen-
erates a color image of size 320× 240 where the detected blobs
A and B are color-coded according to their associated labels as
depicted in Figures 7B,D,F,H. In addition, the module prepares
a topographic feature map designed to compete in the visual
attention system PROVISION (PROactive VISion attentiON)
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FIGURE 7 | (A,C,E,G) Representation of the setup and color segmentation for biological motion samples. (B,D,F,H) Biological (green) and non-biological (red)
movements detected in panels (A,C,E,G).

(Rea et al., 2014). The spatial map (320× 240 grayscale image)
indicates as saliency the spatial locations where the biological
movement is detected. Such a rate is compliant with the temporal
dynamics of saccades in human attentive systems, and the process
as a whole resembles the infant predisposition to bias attention
toward biological movement in the scene. The bioMerger streams
a top-down command to the attentive system modifying the
weight of biological motion in the competition for the attention,
according to the confidence of the classification.

5.4. PROVISION
The PROVISION is log-polar attention system based on the com-
putation model for attentive systems proposed in the study of Itti
et al. (1998). Through the combination of two fundamental pro-
cesses, Winner-Take-All (WTA) and Inhibition-of-Return (IoR),
the visual attention selects the most significant location in the
saliency map. The selection of the saliency winning location acti-
vates a ballistic oculomotor action (saccade) that brings the salient
stimulus in the camera center of the drive eye. In this contribution,
we enhanced the collection of feature maps with an additional
featuremap responding to the presence of biologicalmotion in the
image plane. The mechanism triggers PROVISION autonomous
focus of attention redeployment toward the biological movement
which in turn triggers an oculomotor command to the IkinGaze-
Control. The PROVISION system provides to the rest of the
network a command of suppression of the movement perception.
The process resembles the suppression of themagnocellular visual
pathway (Burr et al., 1994) and guarantees to avoid excessive
activation of the visual pathway caused by the egomotion during
the saccade. The bioMerger leverages the PROVISION command
of suppression to idle the process of extraction of the biological
movement feature. This assures a stable perception–action loop
comprising the extraction of the optical flow, the classification,
and the execution of oculomotor actions, such as saccades.

5.5. IkinGazeControl
The biological control (Roncone et al., 2016) accounts for both
the neck and eye control. The combination of two independent
controls guarantees the convergence of the fixation point on the
target. The controller solves the fixation tasks by implementing
a biologically inspired kinematic controller that computes the
robot joint velocities in order to generate minimum-jerk, quasi-
straight trajectory of the fixation point. The controller is also
enriched with additional models of biological oculomotor actions
such as vestibular ocular reflex and passive gaze stabilization. The
PROVISION system gives instructions to the IkinGazeController
that autonomously coordinates 3 degrees-of-freedom (DoF) neck
and 3-DoF eye system to show natural behavior in the robot gaze.

6. THE METHOD AT WORK ON THE ROBOT

In this section, we present the experimental analysis performed
online on the robot. We start analyzing the accuracy for the
classification of biological motion, even in the presence of differ-
ent moving stimuli in the observed scene. Later, we will discuss
the integration with the attention system and biological control
system of the oculomotor action in the humanoid robot iCub.

6.1. Experiments on Online Learning
We describe the classification performances obtained on the
robot. We first observe that, in typical applications involving
proactive robots, it is fundamental to provide reliable training and
classification in a reasonable time span. In the reported experi-
ment, we show how this is achieved by parallelizing tasks in the
software infrastructure.

To facilitate reproducibility both the biological and the non-
biological stimuli are presented on a table (64 cm of height) and at
a distance of 64 cm from the origin of the iCub frame of reference.
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Training is performed starting froman initial conditionwithout
a priori knowledge, meaning that the robot lacks the abilities
of discriminating between biological and non-biological motion.
The training is performed online on the robot, replicating the
situation where the operator interactively instructs the robot.
Model selection is also performed online.

We first train the robot on the set of biological and non-
biological categories already adopted for the offline analysis (see
Section 4) using the multi-resolution temporal scheme selected
in that circumstance. On average, each video lasts about 20′′. We
test the classification system by proposing a single stimulus from
a subset of representative event categories in different portions of
the iCub field of view. The obtained results are shown in the first
part ofTable 3. During the evaluation, we determinewhether each
received packet matches the expected response (column Accuracy
A). The reported accuracy is obtained in asynchronous evaluation
periods (column Time). A relevant aspect for robotic applications,
requiring adaptability to context change in the environment, is
the transmission rate (column Rate A), which is reasonable for
oculomotor actions such as saccades.

Finally, we consider an experimental scenario where two stim-
uli (A and B) are presented on different portions of the field of
view. The analysis of the classification quality is reported in the
second part of Table 3, where we show accuracy and transmission
rate corresponding to the A and B stimulus, plus the overall
evaluation time. The classification of themotion is uncertain at the
initial transient, due to the filtering of the features vector and the
instability of the classification. In the table, we report the accuracy

excluded the initial time windows necessary for stable filtering of
the result.

Despite that the number of classifiers has increased, the
decrease in the rate is limited and it has no effect on the gaze
control. In fact, the software framework is designed to be scalable
and the computation demand of multiple classifiers is distributed
across the processing node in the network. Overall, this set of
experiments produces convincing results for what concerns accu-
racy.We only have a degradation on the pair leaves+ rolling dough
stimuli, due to discontinuities of the stimulus provided.

Figure 8A shows how the classifier generates response mes-
sages, for a biological stimulus (rolling dough). The score provided
by the classifier is accumulated over a 15-frame temporal window.
In this case, the response is constantly 1.0 indicating a correct
classification as biological movement. The brief undetermined
classification (classifier response: 0.0) is due to scores below zero
in the previous window of 15 frames, as depicted in picture. The
system recovers after few iterations and the classification returns
to provide correct response giving evidence of robustness.

6.2. Experiment on Integration with
PROVISION and Gaze Control
The classification system is designed to reliably provide results
to a broad range of software applications in the iCub network.
To facilitate its use, we integrate the classification output with
the masks produced by the opfFeatExtractor into a single mask.
The mask is produced and provided to the network by our

TABLE 3 | Online classification results with one stimulus and two stimuli.

Stimuli Accuracy A Rate A (pkt/s) Accuracy B Rate B (pkt/s) Time (s)

Clouds 1.0 4.30 – – 40
Leaves 0.94 4.40 – – 40
Rolling dough 0.96 4.02 – – 40
Transporting 1.0 4.19 – – 40
Clouds-rolling dough 1.0 3.13 1.0 3.13 30
Clouds-transporting 0.98 3.27 1.0 3.26 30
Leaves-rolling dough 0.81 3.51 0.90 3.57 30
Leaves-transporting 0.85 3.83 1.0 4.11 30

FIGURE 8 | (A) An example of the classifier generating response messages—Rolling dough case (bio= 1, non-bio=−1, “?”= 0). (B) An example of perception
errors, computed as the distances between the locations identified by the color segmentations (blue crosses) and the corresponding positions individuated by the
biological motion detector (red dots). The dots and the crosses are printed on a more transparent version of the scene extracted from the robot point of view before
the beginning of the oculomotor action. (C) Average perception error in all cases. For the detailed list see Table 4.
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new bioMerger module. In this experiment, the output of the
bioMerger module interfaces with pre-existing software: PROVI-
SIONand iKinGazeControl (Pattacini et al., 2010). The biological
movement detector provides a feature map of biological move-
ment and the level of confidence associated with classification.

The integration experiment described here includes two differ-
ent stages: perception and action. For both the evaluation stages,
we produce a biological and a non-biological movement (distrac-
tor) and we determine how the position of the salient biological
stimulus evolves over time. To determine the ground truth for the
localization of the human activity in the scene, we adopt a color
segmentation module and we perform experiments with a human
subject wearing colored gloves. The localization based on color
relies on a source of information alternative to the one exploited
by our algorithm (i.e., motion), thus representing a dependable
estimation for comparison (see Figure 7). For each case, beyond
measuring the perceptual error, we run multiple saccades and
extract the statistics on the errors due to the control stage.

In the evaluation of perception quality, we compare our esti-
mated (u, v) position of the salient stimulus in the image plane
provided by PROVISION with the segmentation of the moving
region detected by the color segmentation (Figure 8B). In this
phase, no oculomotor command is generated, and the fixation
point of the robot is at the center of the scene in F= [−0.5, 0.0,
−0.35]m where the frame of reference is located and oriented
according to the iCub standards. In Figure 8C, we show the
distance in pixels between the two different locations.Notice that a
mean distance in the range [20–40] pixels corresponds to a metric
range [4–8] cm, given the distance of the camera from the stimuli
(64 cm).

In the evaluation of the action quality, we analyze how the bio-
logical movement detector biases the proactive attentive system of
the humanoid robot iCub. The visual attentive system generates
a saccade command and once the controller plans the relative
saccade, the oculomotor action is executed bringing the center
of the robot eye (fovea) to the most salient stimulus, winning
in the competition between perceptual features. Considering the
known distance of the stimulus from the stereo cameras, the gaze
controller moves the fixation point to the target of interest (the
biological movement in the scene). In PROVISION, a postsac-
cadic refinementmechanism based on visual feedback control can
potentially refine the saccade. However, we disabled such addi-
tional control to avoid unclear measurements on two distinct and
concurrent visual processes on the robot. Notice that, as shown in
Table 4, the system performs incorrect saccades in two different
cases. The two incorrect saccades are due to a misclassification of
the biological stimulus by the Classifier module: they have been
discarded for both the evaluation of the perception and action
quality.

In Figures 9A–F, we show the position given by the color
segmentation when the saccade starts (blue crosses), and the
trajectory of the position given by the saccadic commands (red
line) toward the fovea (0,0), from when the saccade starts up to
2.5 s (as, from Figures 9G–L, where we represent the velocity of
the fixation point during the executing of the saccade, in other
words during its approaching to the target, we can consider this
time as the duration of the saccade). The semitransparent image

TABLE 4 | Number of correct saccades in integration experiment.

Case Stimuli (A, B) Corr/tot

Case 1 Gesturing-wheel random 11/11 sac.
Case 2 Leaves-writing subject 1 10/11 sac.
Case 3 Cars-gesturing 15/15 sac.
Case 4 Bouncing ball-mixing 11/12 sac.
Case 5 Mixing, no person-wheel zigzag 11/11 sac.
Case 6 Wheel random-writing subject 2 13/13 sac.

Bold font refers to the biological actions.

overlapping the trajectory is to consider as the snapshot of one
visual scene taken right before the oculomotor command saccade
is triggered.

We measure the control error by computing the distance
between the center of the fovea (0,0) and the position given by the
saccadic command (red line of Figures 9A–F) for the six typolo-
gies of trials in the previous perception stage. In Figures 10A–F,
we show the error from the moment the saccade starts up to
about 6 s. In the graphs of the control error the mean of the
error (blue solid line) reaches immediately the quality threshold
of 40 pixels. The threshold is set according to our estimation that
at a distance of 0.68m, 40-pixel error is interpreted as a correct
saccade from a human observer. The responses in Case 1, Case 3,
and Case 5 show overshoots, due to the relative position of the
biological stimulus with respect to the resting position. All the
responses converge to control errors below the 40-pixel threshold
guaranteeing the expected quality of the control of the saccade to
the biological movement. The oscillations after the transient are
due to the response of the color segmentation that tracks moving
stimuli after the end of the saccade and it is not related to the
quality of the saccade generated by the system.

Then, we measure the distance between the center of the
fovea (0,0) and the centroid of the color detection system
(Figures 11A–F): this can be referred to as a global error, as it
includes both the perception error and the control error.

Case 5 is a very peculiar case as the color segmentation gives
us the position of the center of the rectangle around the stick
(Figure 9E), while our module will give as oculomotor command
the most salient position of the saliency map, which corresponds
to the position of maximum optical flow. This leads to a larger SD
in the perception error (Figure 8C, Case 5) and a larger control
error (Figure 10E). However, considering the goal of detecting
humans in the scene, our method could be considered actually
more accurate than color segmentation.

7. FINAL DISCUSSION

In this paper, we presented a computational model for discrimi-
nating between biological and non-biological movements in video
sequences, leveraging a well-known regularity of human motor
control. Notwithstanding the large heterogeneity of the dynamics
of the motions that can be encountered in everyday life situations,
we proposed a temporal multi-resolution descriptor, purely based
on low-level motion features. We showed that this descriptor
has on average a better performance than any single-resolution
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FIGURE 9 | (A–F) The position given by the color segmentation when the saccade starts (blue crosses), and the trajectory given by the saccadic commands (red line)
toward the fovea (0,0). (G–L) The blue line is the average velocity of the fixation point to reach the target for each case, the blue dotted line is the average
velocity±SD.

descriptor, as the latter fails in capturing the large variability of
possible dynamics of the motions.

We demonstrated the descriptor to be effective also for events
of a variable temporal duration and to generalize well to new
and challenging scenarios. It should be noticed that our approach

does not require any appearance-based detection of the human
partner, as the regularities of biological motion are extracted
independently of the agent’s shape. This feature guarantees the
possibility to recognize human activities also when the agent is
not visible or severely occluded, e.g., observing a shadow or a
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FIGURE 10 | (A–F) Control error. Distance between the position given by our module as saccadic command and the fovea (0,0). The blue line is the average error,
the blue dotted line is the average error±SD. The red line is a threshold of 40 pixels.

FIGURE 11 | (A–F) Global error. Distance between the centroid of the biological motion (given by color segmentation) and the fovea (0,0). The blue line is the average
error, the blue dotted line is the average error±SD. The red line is a threshold of 40 pixels.

visible tool moved by a hidden agent. The proposed model could
be exploited in industrial applications, for instance, in assembly
lines tasks, with the aim of distinguishing between the movement
of a human operator and an object moved by the conveyor belt.
Another possible setting of application is for traffic control, to
distinguish motion caused by pedestrians and cars for monitoring
purposes.

This computational model can, therefore, enable an artificial
agent to detect the presence of humans in its surrounding to

provide the appropriate pro-social behavior, as we demonstrate
by implementing it on the humanoid robot iCub. The video at
this link shows some real-world experiments of the proposed
computational model.

The saccadic action performed by the robot as a consequence
of the detection of human activity in the scene, beyond providing
the robot with a better view on the area where it is more probable
that an interaction could start, also informs the human partner in
an intuitive way about the internal attentional status of the robot.
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This type of gaze-based intuitive communication, commonly
adopted in conversational agents and social robotics, has recently
gained impact also in the field of smallmanufacturing, where Bax-
ter (by Rethink robotics) exploits a screen with (non-functional)
eyes, just to reveal its focus of attention. In our system, the match-
ing between the actual function of the eyes (i.e., cameras) and their
ostensive value increases even more the intuitive interpretation of
the iCub actions.

In this respect, our work represents the first building block
of the social abilities of the robot, which in the future will be
exploited to categorize actions into different classes, an issue
that we have started to address in Noceti et al. (2015a). Such
capability can be of strategic interest for a broad community
aiming at enabling effective interaction between human, robots
and intelligent machines.
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