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Designing robust control for hypersonic vehicles in reentry is difficult, due to the features
of the vehicles including strong coupling, non-linearity, and multiple constraints. This
paper proposed a characteristic model-based robust model predictive control (MPC) for
hypersonic vehicles with reentry constraints. First, the hypersonic vehicle is modeled by a
characteristic model composed of a linear time-varying system and a lumped disturbance.
Then, the identification data are regenerated by the accumulative sum idea in the gray
theory, which weakens effects of the random noises and strengthens regularity of the
identification data. Based on the regenerated data, the time-varying parameters and the
disturbance are online estimated according to the gray identification. At last, the mixed
H2/H∞ robust predictive control law is proposed based on linear matrix inequalities (LMIs)
and receding horizon optimization techniques. Using active tackling system constraints
of MPC, the input and state constraints are satisfied in the closed-loop control system.
The validity of the proposed control is verified theoretically according to Lyapunov theory
and illustrated by simulation results.

Keywords: hypersonic vehicle, reentry, characteristic model, system constraints, robust model predictive control,
gray identification

INTRODUCTION

Hypersonic vehicle, a type of aircrafts with a flying speed of over 5Mach, is a hot research topic due to
its importance in national defense and military affairs. The hypersonic reentry flight usually covers
a large flight envelope, during which the environmental and aerodynamic characteristics undergo
huge variations (Harpold, 1979; Lu, 2014). The reentry dynamic model has fast time variability and
strong coupling, is highly non-linear and is with strong disturbances and uncertainties (Wu and
Meng, 2009). Thus, it is difficult to adapt the large envelope and multitasking flight movement
using the traditional PID control, as the selection of the operating points and the design of the
scheduling algorithm remains a time-consuming procedure for engineers. Therefore, domestic
and foreign researchers study the advanced controller design to make the vehicles have stable
flight characteristics and strong robustness (Zhang and Hu, 2012). Since there exist thermal and
mechanical constraints in safety boundaries of reentry flight corridors, the hypersonic reentry
control system must satisfy strict input and state constraints (Lu, 1999; Shen and Lu, 2003),
including the constraints on aerodynamic angles, angular velocities, and control moments. If
these complex physical demanding constraints are violated, the performance and stability of the
control system will be deteriorated, then the safety and reliability of reentry flight can be affected
seriously.
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In the past decades, non-linear control methods such as adap-
tive backstepping control, non-linear disturbance observer, and
robust control were used to improve robustness of the reentry
control systems (Xu et al., 2012; Li et al., 2016; Wu and Meng,
2016). But, the system input and output constraints were not
considered in Xu et al. (2012), Li et al. (2016), and Wu and Meng
(2016).Well-knownmethods for constrained control include anti-
windup control and reference governors. In Alicia and Andrea
(2009), the combined reference governor and anti-windup control
for hypersonic vehicles can suppress input saturation effectively.
However, the compensator will be executed only when the satura-
tion phenomenon appears, which affects the control accuracy and
strong maneuverability of reentry hypersonic vehicles.

Model predictive control (MPC) has beenwidely accepted as an
effective approach for control of constrained systems and applied
in many industries, for its ability to handle hard constraints
actively in receding horizon optimization (Chiristopher et al.,
2013; Zhang and Sun, 2016). But high online-computation com-
plexity brings difficulties to its applications in real-time control
of hypersonic vehicles with high non-linear systems. Thus, much
progress has been made to reduce computation complexity of
MPC for hypersonic vehicles. In Van (2006), feedback lineariza-
tion and linearized MPC were combined to design the control
law for hypersonic vehicles. By transformation of the non-linear
model into a linear model, it simplified the complexity of the
predictive model. But, the computation was still complicated, due
to the convention of original linear constraints into non-linear
constraints. In Qin et al. (2016), a fuzzy predictive control strategy
was designed for hypersonic vehicleswith actuator constraints and
input delays. Though a linearized predictive model is adopted to
decrease model complexity, computational complex of the MPC
is still high due to complex fuzzy rules.

Based on the above analysis, more research deserves to be done
on MPC for hypersonic vehicles with permitted complexity and
high robustness. Characteristic modeling, which was proposed by
Wu et al. (2007), is constructed based on dynamical characteris-
tics, environmental characteristics, and control performance, no
only based on accurate system dynamics in conventional model-
ing (Wu et al., 2009). The main advantages of the characteristic
modeling are depicting high-order linear time-varying systems
and non-linear systems by low-order linear time-varying systems
with a simple structure. The features including non-linear, strong
coupling, and uncertainty for hypersonic flight make it hard to
establish an accurate dynamic model, but the characteristic model
can be well applied to this kind of complex system. Thus, such
modeling method highly decreases difficulties in control design.
A golden section adaptive attitude controller is presented in Gong
and Wu (2010) and Xu (2012) based on the characteristic model.
But the coupling in states and the coupling in controllers were not
considered. The control (Gong andWu, 2010; Xu, 2012) is difficult
to be applied in the hypersonic vehicles in reentry stage since the
hard constraints for the reentry vehicle were not considered.

The aim of the paper is to design characteristic model-based
robust MPC for hypersonic vehicles with reentry constraints.
According to input–output equivalence, dynamics of the hyper-
sonic vehicle is described by a characteristic model composed
of a linear time-varying system and a lumped disturbance. The

time-varying parameters and the disturbance in the characteristic
model are estimated according to the gray identification, which
highly reduces effects of the measurement noises. The proposed
robust MPC is obtained by solving an optimization with the
characteristic model as the predictive model and a mixedH2/H∞
function as the cost function. In the control, the constraints are
tackled by explicitly considering them in the optimization and the
control robustness is improved by the use of theH2/H∞ function.
The feasibility and robustness of the proposed control are verified
theoretically according to Lyapunov theory and illustrated by
simulation results. The main contributions of this paper include
the following:

(1) design of the characteristic model with time-varying parame-
ters as the predictive model, which highly reduces complexity
of the predictive model and approximation errors in Taylor
linearization.

(2) identification of the time-varying parameters according to
the gray identification, which reduces the effects of stochastic
noises to identification accuracy.

(3) design of the H2/H∞ MPC, which satisfies reentry con-
straints and improves control robustness to uncertainties.

The design process of this paper is organized as follows. In
Section “ModelDescription and ProblemFormulation,” the objec-
tive of this paper is stated. In Section “Characteristic Model of the
Reentry Hypersonic Vehicle,” a characteristic model composed
of a linear time-varying system and a lumped disturbance are
constructed for the hypersonic vehicle. In Section “Gray Identifi-
cation for the Characteristic Model,” the time-varying parameters
and the disturbance for characteristic model are online estimated
according to the gray identification. In Section “Mixed H2/H∞
Robust Predictive Control,” the mixed H2/H∞ robust predictive
control law is proposed based on linear matrix inequalities (LMIs)
and receding horizon optimization techniques. Section “Simula-
tion Analysis” presents simulation result. At last, conclusions are
given in Section “Conclusion.”

MODEL DESCRIPTION AND PROBLEM
FORMULATION

To study the attitude stability of thewinged hypersonic vehicle, it is
common to neglect thewind, the Earth rotation and the Earth cur-
vature. Using linear aerodynamics hypothesis and neglecting the
influences of control surface deflections on aerodynamic forces,
the rigid body attitude dynamic equations are as follows (Zhang
and Hu, 2012):

·
α = ωy − ωx cos α tan β − ωy sin α tan β
·
β = ωx sin α − ωz cos α
·
ϕ = ωx + ωy sin ϕ tan θ + ωz cos ϕ tan θ (1)

·
ωx = I1ωyωz + I2ωxωy + kxxωx + kxzωz + kxα δa + krδr + M1
·

ωy = I3ωxωz + I4(ω2
x − ω2

z) + kyyωy + kyeδe + M2
·

ωx = I5ωxωy + I6ωyωz + kzxωx + kzzωz + kzαδa + kzrδr + M3
(2)
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and

I1 =
IyIz − I2z − I 2xz
IxIz − I 2xz

, I2 =
(Iy − Ix − Iz)Ixz

IxIz − I 2xz
, I3 =

Iz − Ix
Iy

,

I4 =
Ixz
Iy

, I5 =
I2x + I 2xz − IxIy
IxIz − I 2xz

, I6 =
(Iz + Ix − Iy)Ixz

IxIz − I 2xz
where the attack angle α is the angle between the velocity vector
and its longitudinal symmetry plane; the side slip angle β is the
angle between the projection of the velocity vector and the vehicle
vertical axis; ϕ and θ are the roll angle and, respectively, the pitch-
ing angle; ωx, ωy, ωz are angular velocities of the flight vehicle
projected to the body frame; δr, δe, δa are rudders deflection,
elevators deflection, and left right elevator difference, respectively;
kxx, kxz, kxα , kr, kyy, kye, kzx, kzz, kzα , kzr are the aerodynamic
moment coefficient, the detailed definition can be seen in Liu and
Chen (2010);M1,M2,M3 are external moment disturbances. The
attack angle and the side slip angle are depicted in Figure 1. The

matrix of inertia moments is given by I =

 Ix 0 Ixz
0 Iy 0
Ixz 0 Iz

. The
task of control system is as follows:

(1) Control goal: with the constraints satisfied, track the outer
guidance commands α, ϕ and make β keep at 0◦ in the
presence of parameter uncertainties and disturbance torques.
The control errors of α and ϕ are within 0.5◦.

(2) The constraints of the reentry control include
1⃝ The saturation constraints of rudder deflection

∥δa∥2 ≤ δamax, ∥δe∥2 ≤ δemax, ∥δr∥2 ≤ δrmax

2⃝ The state constraints

According to the requirements of preventing heat, the following
constraints should be satisfied:

∥α(k)∥2 ≤ αmax

According to the structural safety requirements of vehicle
mechanics, the following constraints of angular velocities need to
be satisfied:

∥ωx∥2 ≤ ωxmax, ∥ωy∥2 ≤ ωymax, ∥ωz∥2 ≤ ωzmax.

FIGURE 1 | Relationship between the speed coordinates (Oxayaza ) and the
vehicle coordinates (Oxbybzb).

CHARACTERISTIC MODEL OF THE
REENTRY HYPERSONIC VEHICLE

The reentry systems (1) and (2) are strongly non-linear, time-
varying, and uncertain multivariable coupling, so it is difficult to
design controller directly for it. Based on the principle of input
and output equivalence, we differentiate system outputs α, β, ϕ
to second order, apply identical substitution and Taylor series
approximate expansion (Wu et al., 2007). The discrete model of
input–output time-varying second-order of α, β, and ϕ is as
follows:

α(k + 1) = fα1(k)α(k)+ fα2(k)α(k − 1)+ g1(k)δα(k)+ Δα(k)
(3)

β(k + 1) = fβ1(k)β(k) + fβ2(k)β(k − 1) + g2(k)δβ(k) + Δβ(k)
(4)

ϕ(k + 1) = fϕ1(k)ϕ(k) + fϕ2(k)α(k − 1) + g3(k)δϕ(k) + Δϕ
(5)

where characteristic model parameters fi1, fi2 (i= α, β, ϕ) and
g1, g2, g3 are time-varying, δα , δβ , δϕ are equivalent control input.
The characteristic model for the plant (Eqs 3–5) as given in Eqs
1 and 2 possesses the following properties: the coefficients fi1, fi2
(i= α, β, ϕ) and g1, g2, g3 are slowly time-varying, the ranges of
these parameters can be decided a priori, in response to the same
input, the output of the original model (Eqs 1 and 2) is identical to
the output of the characteristic model (Eqs 3–5) at each sampling
time. Sum of all the coefficients of (Eqs 3–5) equals 1 (Zhang and
Hu, 2012) as follows:

fα1 + fα2 ≈ 1 δα ≈ δe

fβ1 + fβ2 ≈ 1 δβ ≈ δr

fϕ1 + fϕ2 ≈ 1 δϕ ≈ δa

Define the lumped disturbance Δα(k) as follows:

Δα(k) = m11β(k) + m12ϕ(k) + Δα1(k) (6)

where m11, m12, and Δα1(k) are coupling coefficient, Δα(k)
includes dynamic coupling information with other channels,
external disturbances, and unmodeled errors. To improve robust-
ness of the control system, Δα(k) is estimated online and compen-
sated feedforwardly in control. Similarly, the lumped disturbances
in the other channels are described as follows:

Δβ = m21α(k) + m22ϕ(k) + Δβ1
(k)

Δϕ = m31α(k) + m32β(k) + Δϕ1(k)

Let δα ≈ δe, then the control constraints can be transformed
into ∥δα(k)∥2 ≤ δemax [the readers can see Zhang and Hu
(2012) for detail], the output constraints are ∥α(k)∥2 ≤ αmax

and
∥∥∥ ·

α
∥∥∥
2

≈ ∥ωy∥2 ≤ ωymax.

GRAY IDENTIFICATION FOR THE
CHARACTERISTIC MODEL

To accurately identify the parameters in the characteristic model
is significant for control design.
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In this section, the random noise in the measured reen-
try dynamic state can be approximately treated as white noise.
Accumulated generating operation in the gray identification is
used to weaken the impact of the random noise on original
data sequences efficiently (Liu and Chen, 2010) and regularize
original data.

Let the original reentry state sequence be

x(0) = {x(0)(1), x(0)(2), ........, x(0)(N)}

where N is the total number of the identification samples. The
identification data can be regenerated as follows:

x(1)(k) =
k∑

m=1
x(0)(m) (7)

where m has the number of sampling data. Operating gray
accumulation generation once, we can get more regular
sequence, which eliminates the impact of random noise to some
extent. Then, new input data for identification are depicted as
follows:

{x1(1), x1(2), ........, x1(N)} (8)

In the following of this section, taking the attack-angle model
(Eq. 3) as an example to illustrate identification of parameters.
The identification of parameters in other models (Eqs 4 and 5)
is similar and omitted. From the definition of gray data, the gray
model of dynamics of the attack angle (Eq. 3) is given as follows:

α1(k + 1) = fα1(k)α1(k) + fα2(k)α1(k − 1) + g1(k)δ1
α(k)

+ m11 β
1(k) + m12 ϕ

1(k) + Δ1
α1(k) (9)

During the identification time, the unmodeled error and dis-
turbances are approximated as follows:

Δ1
α1(1) = Δα1, Δ1

α1(2) = 2Δ1
α1(1) = 2Δα1,

Δ1
α1(N − 1) = (N − 1)Δ1

α1(1) = (N − 1)Δα1.

Let
V = [fα1(k), fα2(k), g1(k),m11,m12, Δα1]

T

B =


B2
B3
.
.
.

BN−1



=



α1(2) α1(1) δ1
α(2) β1(2) φ1(2) 2

α1(3) α1(2) δ1
α(3) β1(3) φ1(3) 3

. .

. .

. .
α1(N − 1) α1(N − 2) δ1

α(N − 1) β1(N − 1) φ1(N − 1) N − 1


(10)

From the gray model, we have

D(1)
N = BV

where D(1)
N = [α1(3) α1(4) · · · α1(N)]. Applying the least square

method, we can get

V = (BTB)
−1BTD(1)

N (11)

To decrease effects of the lumped disturbances and improve
robustness of the closed-loop control system, the feedforward
input compensation is designed as follows:

uc(k) = −g−1
1 (k)(m11β(k) + m12ϕ(k) + Δα1(k)) (12)

To accurately identify the parameters in the characteristic
model is significant for control design.

MIXED H2/H∞∞∞ ROBUST PREDICTIVE
CONTROL

Let Δf α1(k), Δf α2(k), Δg1(k) be the identification deviations
of the actual characteristic model coefficients. ΔT is the com-
pensation error after the compensation of reentry channel cou-
pling information, unmodeled dynamics and disturbances in
uc(k). It is obvious that a Δf α1(k), Δf α2(k), Δg1(k), and ΔT
are bounded. Besides. Since α(k), δα(k) have definite region
constraints, they are also bounded. As a result, the general-
ized disturbances d(k) are bounded and can be described as
follows:

d(k) = Δfα1(k)α(k) + Δfα2(k)α(k − 1) + Δg1(k)δα(k) + ΔT

Then characteristic model after gray identification compensa-
tion is given as follows:

α(k + 1) = fα1α(k) + fα2α(k − 1) + g1δα1(k) + d(k) (13)

δα = uc + δα1

Since
∞∑
k−0

dT(k)d(k) ≤ dmax is satisfied, d(k) is energy

bounded. Since the unmodeled errors and couplings are partly
compensated by estimators proposed in the last section, robust
control is still needed to improve robustness of the closed-loop
control system.

In this section, based on mixed H2/H∞ approach, a robust
predictive control is proposed to have the better control perfor-
mance under the premise that the general disturbance d(k) has
been restrained efficiently (Patience and Orukpe, 2007).

Assume the tracking expectation is αc = 0. To reduce the track-
ing errors, the integral of attack angle e = [

∫
(α − αc)dt] is

considered as an extended state. Then, the augmented system is
constructed as follows:

x(k + 1) = A(k)x(k) + B(k)δα1(k) + Bdd(k) (14)
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A(k) =

0 1 0
0 0 1
0 fα2 fα1

,B(k) =

 0
0
g1

,Bd =

00
1

,
x(k) =

 ∫
e(k)

α(k)
α(k + 1)


In the subsequent control design, we use the characteristic

model (Eq. 14) as a prediction model to simplify the complexity
of predictive control. Considering the reentry thermal protec-
tion and overload safety, the constraints of the attack angle, the
velocity and the input for the hypersonic vehicle control can be
transformed into the following forms:

(1) constraints of the attack angle

∥α(k)∥2 = ∥ [0 1 0]x(k)∥2 ≤ αmax (15)

(2) constraints of the velocity

∥ωy∥2 ≈
∥∥∥ ·

α
∥∥∥
2

≈
∥∥∥∥[0 − 1 1] x(k) 1T

∥∥∥∥
2

≤ ωymax (16)

(3) the input saturation

u =∥δα1 + uc∥2 ≤ δemax ⇒
∥δα1∥2 ≤ min{|δemax − uc|, |−δemax − uc|} = umax

(17)

Define the indicator of control performance: z(k) =[
Q1x(k)
Rδα1(k)

]
, where Q1 and R are weighting matrices of the

state and control. Consider the following indexes (Jiang et al.,
2017):
1⃝ H∞ performance index: for any arbitrary γ > 0, the trans-

fer function from d(k) to z(k) satisfies

∥Tzd∥∞ ≤ γ (18)

2⃝ H2 performance index

∥z∥2 =
∞∑
i=0

zT(k)z(k) ≤ a (19)

This paper is to design controller based on robust MPC and
LMI, which is efficient to avoid adjusting parameters by experi-
ence, handle various reentry constraints and guarantee the robust-
ness and stability of the time-varying characteristic system.

Theorem 1: Let x(k) be the state of the system (Eq. 14) mea-
sured at the sampling time k. Assume that there are constraints
on the control input and plant output (Eqs 15–17). Then, the state
feedback K in the control law δα1(k)=Kx(k) that minimizes the
upper bound H2 performance at sampling time k is given by the
following equation:

K = YQ−1

where Q> 0 and Y are obtained from the solution (if it exists) of
following linear objective minimization problem:

min
Y,Q,a

a

subject to  1 ∗ ∗
γ2dmax aγ2dmaxI ∗
x(k) 0 Q

 ≥ 0

and 
Q 0 ∗ ∗ ∗
0 aγ2I ∗ ∗ ∗

A(k)Q + B(k)Y aBd Q ∗ ∗
Q1Q 0 0 aI ∗
RY 0 0 0 aI

 > 0

[
α2

maxI (A(k)Q + B(k)Y)TC1
T

C1(A(k)Q + B(k)Y) Q

]
≥ 0 C1 = [0 1 0]

[
ω2

ymaxI (A(k)Q + B(k)Y)TC2
T

C2(A(k)Q + B(k)Y) Q

]
≥ 0 C2 =

1
T [0 −1 1]

[
u2maxI Y
YT Q

]
≥ 0

where ∗ represents terms readily inferred from symmetry.
Proof:
Stability constraints
Define V(x(k))= xT(k)P(k)x(k) and V(x(k+ 1))=
x(k+ 1)TP(k)x(k+ 1), where x(k+ i) indicates the predictive
state at k+ i based on the measurement x(k) at sampling time k.
δα1(k+ i) is the ith predictive control at the sampling time k, we
get the following formula:

V(x(k + i + 1)) − V(x(k + i))

= xT(k + i)(A(k) + B(k)K)TP(k + 1)(A(k)

+ B(k)K)x(k + i) + dT(k + i)BT
dP(k)Bdd(k + i)

+ 2dT(k + i)BT
dP(k)(A(k) + B(k)K)x(k + i)

− xT(k + i)P(k)x(k + i) + zT(k + i)z(k + i)

− zT(k + i)z(k + i) + γ2dT(k + i)d(k + i)

− γ2dT(k + i)d(k + i)

= [xT(k + i)dT(k + i)]M(k)[xT(k + i)dT(k + i)]T

+ γ2dT(k + i)d(k + i) − zT(k + i)z(k + i) (20)

where

M(k) =


(A(k) + B(k)K)TP(k)(A(k) (BdP(k)(A(k)
+B(k)K) − P(k) + QT

1Q1 +B(k)K))T

+(RK)T(RK)
BdP(k)(A(k) + B(k)K) Bd

TP(k)Bd − γ2I


From stability of gray identification, we can know that compen-

sation error is close to 0. Then, if z(k+ i) is also close to 0, then
the system stability is obtained. If not, the following inequality is
satisfied:

γ2dT(k + i)d(k + i) − zT(k + i)z(k + i) < 0
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If M(k)< 0, then V(x(k+ i+ 1))−V(x(k+ i))< 0, and
x(∞)= 0,V(x(∞))= 0. Summing the both sides of Eq. (20) from
i= 0 to i=∞, we can get the following:

− xT(k)Px(k) =
∞∑
i=0

[γ2dT(k + i)d(k + i) − zT(k + i)z(k + i)]

+
∞∑
i=0

[xT(k + i)dT(k + i)]M(k)[xT(k + i)dT(k + i)]T

∞∑
i=0

[zT(k + i)z(k+ i)]= xT(k)P0x(k)+
∞∑
i=0

[γ2dT(k+ i)d(k+ i)]

+
∞∑
i=0

[xT(k + i)dT(k + i)]M(k)[xT(k + i)dT(k + i)]T (21)

(I) When x(0)= 0, if M(k)< 0,
∞∑
i=0

[γ2dT(k + i)d(k + i)

−zT(k + i)z(k + i)] ≤ 0, the H∞ performance can be
satisfied.

(II) When M(k)< 0,
∞∑
i=0

[zT(k + i)z(k + i)] ≤ xT(k)Px(k) +

γ2dmax ≤ a, the H2 performance can be satisfied.

Therefore, the necessary and sufficient condition to realize the
control target isM(k)< 0, i.e.

M(k) =
[
−P(k) + QT

1Q1 + (RK)T(RK) 0
0 −γ2I

]
+

[
(A(k) + B(k)K)T

BT
d

]
P(k)

[
(A(k) + B(k)K)

Bd

]
< 0

(22)

Using Schur complement, the LMI (Eq. 22) is equivalent to
P(k) 0 ∗ ∗ ∗
0 γ2I ∗ ∗ ∗

A(k) + B(k)K Bd P(k)−1 ∗ ∗
Q1 0 0 I ∗
RK 0 0 0 I

 > 0 (23)

Let Q= aP−1, K =YQ−1. Pre-multiply and post-multiply
Eq. 23 by diag{a1/2P−1, a1/2I, a1/2I, a1/2I, a1/2I}, we can get

Q 0 ∗ ∗ ∗
0 aγ2I ∗ ∗ ∗

A(k)Q + B(k)Y aBd Q ∗ ∗
Q1Q 0 0 aI ∗
RY 0 0 0 aI

 > 0 (24)

Performance constraints
Using Schur complement property,H2 performance (19) is equiv-
alent to:  1 ∗ ∗

γ2dmax aγ2dmaxI ∗
x(k) 0 Q

 ≥ 0 (25)

Output constraints
Since M(k)< 0, V(x(k+ i+ 1))≤V(x(k+ i)), and {z:
zT(k)Q−1z(k)≤ 1} is an invariant ellipsoid for the predicted
states of the uncertain system (Eq. 13). Then

max
i≥1

∥y(k + i | k)∥2 =max
i≥1

∥C(A(k+ i)+B(k+ i)K)x(k+ i | k)∥2

≤ max
zTz≤1

∥∥∥C(A(k + i) + B(k + i)K)Q1/2z
∥∥∥
2

=
−
σ [C(A(k + i) + B(k + i)K)Q1/2], i ≥ 0

(26)

Since ∥y(k + i | k)∥2 ≤ ymax, then

−
σ[C(A(k + i | k) + B(k + i | k)K)Q1/2] ≤ ymax (27)

which is equivalent to

Q1/2(A(k+i)+B(k+i)K)CTC(A(k+i)+B(k+i)K)Q1/2 ≤ y2maxI
(28)

Then, the attack-angle constraint (Eq. 15) is equivalent to[
α2

maxI (A(k)Q + B(k)Y)TC1
T

C1(A(k)Q + B(k)Y) Q

]
≥ 0 C1 = [ 0 1 0 ]

(29)
and the angular velocity constraint (Eq. 16) is equivalent to[

ω2
ymaxI (A(k)Q + B(k)Y)TC2

T

C2(A(k)Q + B(k)Y) Q

]
≥ 0 C2 =

1
T [ 0 −1 1 ]

(30)

Input constraint
Physical limitations inherent in process equipment invari-
ably impose hard constraints on the manipulated variable
δα1(k+ i). The amplitude constraint can be represented as
follows:

∥δα1(k + i)∥22 ≤ u2max, i ≥ 0 (31)

Setting K =YQ−1, then δα1 =Kx=YQ−1x. Then, Eq. (31) is
equivalent to

max
i≥0

∥δα1(k + i)∥22 = max
i≥0

∥∥∥YQ−1x(k + i)
∥∥∥2

2
≤

max
zTz≤1

∥∥∥YQ−1z
∥∥∥2

2
= λmax(Q−1/2YTYQ−1/2) (32)

Using Schur complement, Eq. (32) is equivalent to[
u2maxI Y
YT Q

]
≥ 0 (33)

Theorem 2 (Feasibility): Any feasible solution of the optimiza-
tion in Theorem 1 at a time k is also feasible for all times t> k.
Thus, if the optimization problem in Theorem 1 is feasible at a
time k, then it is feasible for all times t> k.
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The proof of Theorem 2 is similar to Korhare et al. (1996) and
Jiang et al. (2017), which is omitted here.

Theorem 3 (Robust stability): The feasible receding horizon
state feedback control law obtained from Theorem 1 robustly
asymptotically stabilizes the closed-loop system.

Proof: Choose the Lyapunov function V(x(k))=
xT(k)P(k)x(k), then we have

V(x(k + i + 1)) − V(x(k + i))

= [xT(k + i)dT(k + i)]M(k)[xT(k + i)dT(k + i)]T

+ γ2dT(k + i)d(k + i) − zT(k + i)z(k + i)

From stability of gray identification, we can know that compen-
sation error is close to 0. Then, if z(k+ i) is also close to 0, then
the system stability is obtained. If not, the following inequality is
satisfied:

γ2dT(k + i)d(k + i) − zT(k + i)z(k + i) < 0

Since the constraint (Eq. 24) guarantees M(k)< 0 and
V(x(k+ i+ 1))−V(x(k+ i))< 0, V(x(k)) is a strictly decreasing
Lyapunov function for the closed loop.
Algorithm realization
The process of the algorithm proposed in this paper is

1⃝ At the sampling time k, based on the real-time input and
output data, identify the characteristic model parameters of
attack-angle channel f α1(k), f α2(k), g1(k),m11(k),m12(k), and
Δα1(k) according to gray identification.

2⃝ Design compensator uc to compensate three-channel cou-
pling motion information, unmodeled information, and dis-
turbance Δα1(k).

3⃝ Compute robust predictive control law δα1 =Kx based on
Theorem 1. Then, apply total control u= δα1 + uc into the
reentry vehicle.

4⃝ Repeat process 1⃝.

Control algorithms in other channels are similar to the algo-
rithm for the attach channel and are omitted.

SIMULATION ANALYSIS

According to a certain flight state of a plane-symmetry near
space hypersonic vehicle, such as (α, β, ϕ)= (10◦, 0◦, 0◦),
obtain the corresponding characteristic model parameters
range (Zhang and Hu, 2012). Let the flight height is 40 km,
speed is 10Ma, and the range of aerodynamic coefficient (Liu
and Chen, 2010) be kxx ∈ [−0.3585 −1.4341], kxz ∈ [−0.0101
−0.0152], kyy ∈ [−0.1060 −0.2945], kzx ∈ [−0.0127 −0.0506],
kzz ∈ [−0.0253 −0.0380], kxa ∈ [40.5909 34.3395], kxr ∈ [3.1819
3.1729], kye ∈ [25.3225 22.7902], kza ∈ [2.7196 2.2845], and
kzr ∈ [4.5363 4.1338].

Let the maximum of attitude angular velocity is |ωx|max =
|ωy|max = |ωz|max = 60◦/s, the maximum of input control is
30◦, sampling time is 0.01 s.

Angle of attack control channel

α(k + 1) = fα1α(k) + fα2α(k − 1) + g1δα(k) + Δα

fα1 ∈ [1.9968 2.0032], fα2 ∈ [−1.0032 − 0.9968],

g1 ∈ [2.2754 2.5363] × 10−3.

Side slip angle control channel

β(k + 1) = fβ1β(k) + fβ2β(k − 1) + g2δβ(k) + Δβ

fβ1 ∈ [1.9965 2.0035], fβ2 ∈ [−1.0035 − 0.9965],

g2 ∈ [3.3760 4.0577] × 10−4.

Roll angle control channel

ϕ(k + 1) = fϕ1ϕ(k) + fϕ2α(k − 1) + g3δϕ(k) + Δϕ

ft1 ∈ [1.9823 2.0181], ft2 ∈ [−1.0181 − 0.9823],

g3 ∈ [3.3055 4.1957] × 10−3.

The requirement of the control system is to keep side slip angle
around 0◦, the tracking accuracy of attack angle<0.5◦, simulation
is taken based on the parameters above.

(1) Attack-angle tracking without coupling characteristic model
disturbance

Assume the identified parameter is A =
[

0 1
1.9968 −1.0032

]
, the

initial value is 5◦, and the expected value of attack angle is 2◦, the
coupling characteristic model disturbance Δα is 0. The weighting
matrices in the robust predictive control are Q1 = diag(1,000,
1,000, 1,000) and R= 10. The simulation results are as follows: the
tracking curve of attack angle is shown in Figure 2. The predictive
control and gray identification guarantee the attack-angle tracking
accuracy. The input and angular velocity constraints are shown
in Figures 3 and 4, which meet the constraints, respectively. The
results show that the prediction based on the characteristicsmodel
is feasible.

(2) Attack-angle tracking with coupling characteristic model dis-
turbance

Assume the identified parameter is A =
[

0 1
1.9968 −1.0032

]
,

the initial value is 5◦, and the expected value of attack
angle is 2◦, the coupling characteristic model disturbance is
Δα =m11β(k)+m12φ(k)+ Δα1(k) is 1◦*sin(0.2t). The weighting
matrices in the robust predictive control are Q1 = diag(1,000,

FIGURE 2 | Tracking attack angle.
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FIGURE 3 | Control input.

FIGURE 4 | Angular velocity.

FIGURE 5 | Tracking attack angle.

1,000, 1,000) and R= 10. The simulation results are as follows:
the tracking curve of attack angle is shown in Figure 5. The
predictive control and gray estimation compensation resist the
disturbances of the characteristic model and model uncertainties.

FIGURE 6 | Control input.

FIGURE 7 | Tracking attack angle.

FIGURE 8 | Control input.

Figure 6 presents the input, from which we can see the constraint
are satisfied.

(3) Attack-angle tracking with random noise and time-varying
disturbance
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FIGURE 9 | Angular velocity.

FIGURE 10 | Tracking attack angle.

FIGURE 11 | Tacking side slip angle.

Assume the attack-angle initial value is 5◦, and the expected
value is 2◦. The coupling characteristic model disturbance
is Δα =m11β(k)+m21φ(k)+ Δα1(k) is 1◦*sin(0.2t) in the

sinusoidal change form 1◦*sin(0.2t). The attack angle is of 0
mean. In the case of the random state noise with the variance
of 0.1, the characteristic model parameter of the attack angle

A =
[

0 1
1.89 −0.976

]
, g1 = 2.367 × 10−3 is obtained using

the gray identification. Then, the robust MPC is adopted in
the simulation. Figure 7 is the tracking curve of attack angle,
which presents that the disturbance and model uncertainty in
the characteristic model are resisted with the common effects of
H2/H∞ predictive control and gray estimation compensation.
Figures 8 and 9 are the curves of rudder input and angular
velocity, respectively, showing the satisfaction of input and output
constraints with LMIs (Eqs 29–31).

(4) Robustness analysis

If the identified parameters model parameter is A= [0 1;
2 −1], but the actual model parameter is A= [0 1; 1.9968
−1.0032], and the coupling characteristic model disturbance is
Δα =m11β(k)+m12φ(k)+ Δα1(k) is 1◦*sin(0.2t), the tracking
curve of attack angle is shown in Figure 10, which can show the
good tracking performance. The side slip angle keeps near the
0 according to the curve of side slip angle shown in Figure 11.
The results show that the robust predictive control has the strong
robust tracking ability.

CONCLUSION

To design control for constrained, strong coupled, uncertain non-
linear reentry hypersonic vehicles, the characteristic model is
constructed and used as the predictive model in MPC. The orig-
inal complicated reentry kinetics and dynamics are simplified
by identification of the time-varying parameters in the charac-
teristic model-based gray identification. The robust predictive
control law is proposed based on the receding moving horizon
optimization and LMI, which ensures stability of the closed-loop
system and guarantees constraints satisfaction. Theoretical proof
and simulation results confirm the effectiveness of the proposed
algorithm.
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