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A new distributed input and state estimation architecture is introduced and analyzed
for heterogeneous sensor networks. Specifically, nodes of a given sensor network are
allowed to have heterogeneous information roles in the sense that a subset of nodes
can be active (that is, subject to observations of a process of interest) and the rest can be
passive (that is, subject to no observation). Both fixed and varying active and passive roles
of sensor nodes in the network are investigated. In addition, these nodes are allowed to
have non-identical sensor modalities under the common underlying assumption that they
have complimentary properties distributed over the sensor network to achieve collective
observability. The key feature of our framework is that it utilizes local information not only
during the execution of the proposed distributed input and state estimation architecture
but also in its design in that global uniform ultimate boundedness of error dynamics is
guaranteed once each node satisfies given local stability conditions independent from
the graph topology and neighboring information of these nodes. As a special case (e.g.,
when all nodes are active and a positive real condition is satisfied), the asymptotic stability
can be achieved with our algorithm. Several illustrative numerical examples are further
provided to demonstrate the efficacy of the proposed architecture.

Keywords: heterogeneous sensor networks, active and passive node roles, distributed input and state estimation,
stability analysis, numerical examples

1. INTRODUCTION

As technological advances have boosted the development of integrated microsystems that combine
sensing, computing, and communication on a single platform, we are rapidly moving toward a
future in which large numbers of integrated microsensors will have the capability to operate in
both civilian and military environments. Such large-scale sensor networks will support applications
with dramatically increasing levels of complexity, including situational awareness, environment
monitoring, scientific data gathering, collaborative information processing, and search and rescue;
to name but a few examples. One of the important areas of research in sensor networks is the
development of distributed estimation algorithms for dynamic information fusion. Because these
algorithms are reliable to possible loss of a subset of nodes and communication links and they are
flexible in the sense that nodes can be added and removed bymaking only local changes to the sensor
network.
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There are two common ways to do distributed dynamic infor-
mation fusion. Specifically, one classical way include decentral-
ized data fusion, for example, see Makarenko and Durrant-Whyte
(2004), Cunningham et al. (2013), and Hollinger et al. (2015),
where these methods have been shown to work well in prac-
tice for many applications without formal stability guarantees.
Unlike these methods, system-theoretic dynamic information
fusion involve equations of motion to describe time behavior of
the information fusion process and they also offer stability guar-
antees (e.g., Olfati-Saber (2005), Olfati-Saber and Shamma (2005),
and Spanos et al. (2005)). The contribution of this paper builds on
system-theoretic dynamic information fusion approaches.

Although distributed estimation algorithms have had strong
appeal owing to their reliability and flexibility as outlined above, a
critical roadblock to achieve correct dynamic information fusion
with these algorithms is heterogeneity. Heterogeneity in sensor
networks is unavoidable in real-world applications. To elucidate
this fact, consider a target estimation problem as a motivating
example. Specifically, nodes of a given sensor network can have
heterogeneous information roles in the target estimation problem
such that a subset of nodes can be subject to observations of this
target (active nodes) and the rest can be subject to no observa-
tion (passive nodes). Thus, only active nodes have to be taken
into account during the dynamic information fusion process. In
addition, note that nodes of a sensor network can also have non-
identical sensor modalities; for example, a subset of nodes can
sense the target position and others can sense the target velocity.
This case also needs to be considered in the dynamic information
fusion process.

Dealing with these classes of heterogeneity in sensor networks
to achieve correct and reliable dynamic information fusion is a
challenging task using distributed estimation algorithms. Toward
this end, notable contributions in the literature include Olfati-
Saber (2005, 2007), Olfati-Saber and Shamma (2005), Spanos et al.
(2005), Freeman et al. (2006), Demetriou (2009), Bai et al. (2010),
Taylor et al. (2011), Ustebay et al. (2011), Chen et al. (2012),
Millán et al. (2013), Mu et al. (2014), Yucelen (2014), Yucelen and
Peterson (2014, 2016), Casbeer et al. (2015), Peterson and Yucelen
(2015, 2016), and Peterson et al. (2015, 2016). Specifically, the
authors of Olfati-Saber (2005), Olfati-Saber and Shamma (2005),
Spanos et al. (2005), Freeman et al. (2006), Demetriou (2009),
Bai et al. (2010), Taylor et al. (2011), and Chen et al. (2012)
propose dynamic consensus algorithms that are suitable for sensor
networkswith all nodes being active. However, as discussed above,
a subset of nodes in a sensor network can be passive in that
they may not be able to sense a process of interest and collect
information. While the authors of Ustebay et al. (2011), Mu et al.
(2014), and Casbeer et al. (2015) present methods that cover
specific applications when a subset of nodes are passive (and the
remaining nodes are active), their results are in the context of static
consensus and, hence, they are not suitable in their presented form
for dynamic data-driven applications.

To address this challenge, the authors of Yucelen (2014),
Yucelen and Peterson (2014, 2016), Peterson and Yucelen (2015,
2016), and Peterson et al. (2015, 2016) introduce the concept
of sensor networks with active and passive nodes in the context
of dynamic consensus. However, nodes of the considered class

of sensor networks are implicitly assumed to have identical sensor
modalities since each node is modeled using single integrator
dynamics. Finally, the authors of Olfati-Saber (2007) and Millán
et al. (2013) consider dynamic information fusion for sensor net-
works having non-identical sensor modalities, where the former
contribution requires each node to be active via sensing some
states of a process of interest. While this is implicitly not assumed
in the latter contribution, global information is required during
the distributed algorithm design in terms of guaranteeing global
asymptotic stability (although the proposed algorithm can be
executed by solely relying on local information exchange between
neighboring nodes).

The contribution of this paper is to introduce and analyze a
new distributed input and state estimation architecture for het-
erogeneous sensor networks. Specifically, nodes of a given sensor
network are allowed to have heterogeneous information roles in
the sense that a subset of nodes can be active (that is, subject to
observations of a process of interest) and the rest can be passive
(that is, subject to no observation). Both fixed and varying active
and passive roles of sensor nodes in the network are investigated.
In addition, these nodes are allowed to have non-identical sensor
modalities under the common underlying assumption that they
have complimentary properties distributed over the sensor net-
work to achieve collective observability (see, for example, Olfati-
Saber (2007), Millán et al. (2013), and references therein). The
key feature of our framework is that it utilizes local information
not only during the execution of the proposed distributed input
and state estimation architecture but also in its design unlike
the results in Millán et al. (2013); that is, global uniform ulti-
mate boundedness of error dynamics is guaranteed once each
node satisfies given local stability conditions independent from
the graph topology and neighboring information of these nodes.
Several illustrative numerical examples are further provided to
demonstrate the efficacy of the proposed architecture. Note that
the material in this paper was partially presented in Tran et al.
(2017).

2. NOTATION AND MATHEMATICAL
PRELIMINARIES

The notation used in this paper is fairly standard. Specifically, R
denotes the set of real numbers, Rn denotes the set of n× 1 real
column vectors,Rn×m denotes the set of n×m realmatrices,Sn×n

+(
resp., Sn×n

+

)
denotes the set of n× n positive-definite (resp.,

positive-semidefinite) real matrices, 0n denotes the n× 1 vector of
all zeros, 1n denotes the n× 1 vector of all ones, and In denotes the
n× n identity matrix. In addition, we write (·)T for transpose, (·)†

for generalized inverse, λmin(A) and λmax(A) for the minimum
andmaximum eigenvalue of the Hermitianmatrix A, respectively,
λi(A) for the i-th eigenvalue of A, where A is Hermitian and the
eigenvalues are ordered from least to greatest value, diag(a) for
the diagonal matrix with the vector a on its diagonal, [x]i for the
entry of the vector x on the i-th row, and [A]ij for the entry of the
matrix A on the i-th row and j-th column. Note that, throughout
the paper, we use A> 0 (resp., A≥ 0) to indicate A ∈ Sn×n

+(
resp., A ∈ Sn×n

+

)
.
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We now recall some basic notions from graph theory and refer
to textbooksMesbahi andEgerstedt (2010) andGodsil et al. (2001)
for details. Specifically, graphs are broadly adopted in the sensor
networks literature to encode interactions between nodes. An
undirected graph G is defined by a set VG = {1, . . . ,N} of nodes
and a set EG ⊂ VG × VG of edges. If (i, j) ∈ EG , then the nodes i
and j are neighbors and the neighboring relation is indicated with
i∼ j. The degree of a node is given by the number of its neighbors.
Letting di be the degree of node i, then the degreematrix of a graph
G, D(G) ∈ RN×N, is given by

D(G) , diag(d), d = [d1, . . . , dN]T. (1)

A path i0i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik,
k= 1, . . . , L, and a graph G is connected if there is a path between
any pair of distinct nodes. The adjacency matrix of a graph G,
A(G) ∈ RN×N, is given by

[A(G)]ij ,
{
1, if (i, j) ∈ EG ,

0, otherwise.
(2)

The Laplacian matrix of a graph, L(G) ∈ SN×N
+ , playing a cen-

tral role in many graph-theoretic treatments of sensor networks,
is given by

L(G) , D(G) − A(G). (3)
The spectrum of the Laplacian of an undirected and connected

graph can be ordered as

0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λN(L(G)), (4)

with 1N as the eigenvector corresponding to the zero eigenvalue
λ1(L(G)) and L(G)1N = 0N and eL(G)1N = 1N. Throughout
this paper, we assume that the graph G of a given sensor network
is undirected and connected.

To develop the main results of this paper, the following lemmas
are necessary.

Lemma 1 (Proposition 8.1.2, Bernstein (2009)). Let A ∈ Rn×n

and B ∈ Rn×n. If A≥ 0 and B> 0, then A+B> 0.
Lemma 2 (Proposition 8.2.4, Bernstein (2009)). Let A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rm×m, and

X =
[
A B
BT C

]
.

Then, the following statements are equivalent:

(i) X≥ 0.
(ii) A ≥ 0, C − BTA†B ≥ 0, (I − AA†)B = 0.
(iii) C ≥ 0, A − BC†BT ≥ 0, (I − CC†)BT = 0.

Finally, CoΩ is defined as a polytope or a bounded polyheron,
which is the intersection of a finite number of halfspace and
hyperplanes (Boyd and Vandenberghe, 2004). For the following
lemma, let P ∈ Rn×n, A(t) ∈ Rn×n, CoΩ , Co{A1, . . . ,AL},
and A(t)∈Co{A1, . . . ,AL} whereCo denotes the convex hull and
Ai ∈ Rn×n are the vertices of the polytope.

Lemma 3 (Boyd et al., 1994). If P> 0, AT
i P + PAi ≤ 0 holds,

then AT(t) P+ PA(t)≤ 0 holds.
By letting P= In, it follows fromLemma 3 thatAT(t)+A(t)≤ 0

holds, when AT
i +Ai ≤ 0 holds. If, in addition, A(t) is symmetric,

then it further follows that A(t)≤ 0 holds, if Ai ≤ 0.

3. DISTRIBUTED INPUT AND STATE
ESTIMATION FOR ACTIVE-PASSIVE
SENSOR NETWORKS WITH FIXED NODE
ROLES

In this section, we introduce and analyze a distributed input and
state estimation architecture for heterogeneous sensor networks,
where the active and passive role of each node is fixed. For this
purpose, consider a process of interest with the (open-loop or
closed-loop) dynamics given by

ẋ(t) = Ax(t) + Bw(t), x(0) = x0, (5)

where x(t) ∈ Rn denotes an unmeasurable process state vector,
w(t) ∈ Rp denotes an unknown bounded input (e.g., command)
to this process with a bounded time rate of change, A ∈ Rn×n

denotes the Hurwitz system matrix necessary for internal process
stability, and B ∈ Rn×p denotes the system input matrix.

Next, consider a sensor network with N nodes exchanging
information among each other using their local measurements
according to an undirected and connected graphG. In the sense of
Yucelen (2014), Yucelen and Peterson (2014, 2016), Peterson and
Yucelen (2015, 2016), and Peterson et al. (2015, 2016), if a node i,
i= 1, . . . ,N, is subject to observations of the process equation (5)
given by

yi(t) = Cix(t), (6)
where yi(t) ∈ Rm and Ci ∈ Rm×n denote the measurable process
output and the system output matrix for node i, i= 1, . . . ,N,
respectively, then we say that it is an active node. Similarly, if
a node i, i= 1, . . . ,N, has no observations, then we say that
it is a passive node. Notice that the above formulation allows
for non-identical sensor modalities since Ci of active nodes can
be different. Here, as standard in the literature, we assume that
each active node has complimentary properties distributed over
the sensor network to guarantee collective observability (see, for
example, Olfati-Saber (2007), Millán et al. (2013), and references
therein), although the pairs (A, Ci), i= 1, . . . ,N, may not be
locally observable. In mathematical sense, collective observability
condition means that the pair (A, C) is observable, where C =
[CT

1 ,CT
2 , . . . ,CT

N]T (e.g., see Millán et al. (2013)).
Here, we are interested in the problem of distributively estimat-

ing the unmeasurable state x(t) and the unknown input w(t) of
the process given by equation (5) using a sensor network, where
active nodes are subject to the observations given by equation (6).
For this purpose, the rest of this section is divided into two parts,
where we first introduce the proposed distributed estimation
architecture and then analyze its stability in detail using tools and
methods from system theory.

3.1. Proposed Distributed Estimation
Architecture
For node i, i= 1, . . . ,N, consider the distributed estimation algo-
rithm given by

˙̂xi(t) = (A − γP−1
i )x̂i(t) + Bŵi(t) + giLi(yi(t) − Cix̂i(t))

− αP−1
i

∑
i∼j

(x̂i(t) − x̂j(t)), x̂i(0) = x̂i0, (7)
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˙̂wi(t) = giJi(yi(t) − Cix̂i(t)) − (σiKi + γIp)ŵi(t)

− α
∑
i∼j

(ŵi(t) − ŵj(t)), ŵi(0) = ŵi0, (8)

where x̂i(t) ∈ Rn is a local state estimate of x(t) for node i, ŵi ∈ Rp

is a local input estimate of w(t) for node i, Li ∈ Rn×m, Ji ∈ Rp×m

andKi ∈ Sp×p
+ are designmatrices of node i, andα, γ, and σi ∈ R

are positive design coefficients for node i. Here, gi = 1 for active
nodes and otherwise gi = 0. In addition, Pi> 0 is the consensus
gain satisfying the linear matrix inequality given by

Ri =

[
ĀT
i Pi + PiĀi −PiB + giCT

i JTi
−BTPi + giJiCi −2σiKi

]
≤ 0, (9)

where
Āi , A − giLiCi. (10)

Remark 1. The local condition given by equation (9) for node i,
i= 1, . . . ,N, plays a central role in the stability analysis presented
in the next section. Specifically, if the proposed input and state
estimation architecture given by equations (7) and (8) satisfies
the local condition given by equation (9) for each node, then
the global uniform ultimate boundedness of error dynamics is
guaranteed for the overall sensor network. In addition, note that
the local condition given by equation (9) is well-posed. To see
this, for example, let Pi satisfy the linear matrix inequality given
by ĀT

i Pi + PiĀi < 0, i= 1, . . . ,N. Then, it can be readily shown
that there can exist a sufficiently large σi, i= 1, . . . ,N, such that
equation (9) holds. As a special case, if all nodes are active and
a well-known positive real condition PiB = CT

i JTi holds (see, for
example, Corless and Tu (1998), Akhenak et al. (2004), Chen and
Chowdhury (2007), Bowong and Tewa (2008), Mohamed et al.
(2012), and references therein), then it can be easily seen that
equation (9) holds even for small values of σi, i= 1, . . . ,N. From
this standpoint, it should be also mentioned that equation (9)
relaxes this condition PiB = CT

i JTi similar in spirit to how the
authors of Kim (2011), Kim et al. (2011, 2015), Yucelen (2011),
Yucelen et al. (2011), and Yucelen et al. (2015) relax similar con-
ditions. Finally, once again, for the special case when all nodes are
active, if H(s) , JiCi(sI − Āi)

−1B+ σiKi is passive, i= 1, . . . ,N,
then equation (9) is feasible and vice versa (Boyd et al., 1994).

3.2. Stability Analysis
Let x̃i(t) , x(t)− x̂i(t) and w̃i(t) , ŵi(t)−w(t). Then, based on
equations (7) and (8),

˙̃xi(t) = Ax(t) + Bw(t) − (A − γP−1
i )x̂i(t) − Bŵi(t)

− giLi(yi(t) − Cix̂i(t)) + αP−1
i

∑
i∼j

(x̂i(t) − x̂j(t))

= (A − giLiCi)x̃i(t) − Bw̃i(t) + αP−1
i

∑
i∼j

(x̂i(t) − x̂j(t))

+ γP−1
i x̂i(t)

= Āix̃i(t) − Bw̃i(t) − αP−1
i

∑
i∼j

(x̃i(t) − x̃j(t))

− γP−1
i (x̃i(t) − x(t)), x̃i(0) = x̃i0, (11)

˙̃wi(t) = giJiCix̃i(t) − σiKi(w̃i(t) + w(t)) − α
∑
i∼j

(w̃i(t) − w̃j(t))

− γ(w̃i(t) + w(t)) − ẇ(t), w̃i(0) = w̃i0. (12)

Now, considering the aggregated vectors given by

x̃(t) , [x̃T1 (t), x̃T2 (t), . . . , x̃TN(t)]T ∈ RNn, (13)

w̃(t) , [w̃T
1 (t), w̃T

2 (t), . . . , w̃T
N(t)]T ∈ RNp, (14)

we can write the error dynamics as

˙̃x(t) =


Ā1 0 · · · 0
0 Ā2 · · · 0
...

...
. . .

...
0 0 · · · ĀN

 x̃(t) −


B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B

 w̃(t)

− α


L11P−1

1 L12P−1
1 · · · L1NP−1

1
L21P−1

2 L22P−1
2 · · · L2NP−1

2
...

...
. . .

...
LN1P−1

N LN2P−1
N · · · LNNP−1

N

 x̃(t) − γ

×


P−1
1 0 · · · 0
0 P−1

2 · · · 0
...

...
. . .

...
0 0 · · · P−1

N

 x̃(t) + γ


P−1
1

P−1
2
...

P−1
N

 x(t), (15)

˙̃w(t) =


g1J1C1 0 · · · 0

0 g2J2C2 · · · 0
...

...
. . .

...
0 0 · · · gNJNCN

 x̃(t)

−


σ1K1 0 · · · 0
0 σ2K2 · · · 0
...

...
. . .

...
0 0 · · · σNKN

 w̃(t) −


σ1K1
σ2K2
...

σNKN

w(t)

− α


L11Ip L12Ip · · · L1NIp
L21Ip L22Ip · · · L2NIp
...

...
. . .

...
LN1Ip LN2Ip · · · LNNIp

 w̃(t)

− γ


Ip 0 · · · 0
0 Ip · · · 0
...

...
. . .

...
0 0 · · · Ip

 w̃(t) +


−γw(t) − ẇ(t)
−γw(t) − ẇ(t)

...
−γw(t) − ẇ(t)

,
(16)

where Lij ∈ R is the entry in the i-th row and j-th column of the
Laplacian matrix.

The error dynamics now can be written a compact form as

˙̃x(t) = Āx̃(t) − (IN ⊗ B)w̃(t) − P−1(F ⊗ In)x̃(t)

+ γP−1(1N ⊗ In)x(t), (17)
˙̃w(t) = Mx̃(t) − K̄(w̃(t) + (1N ⊗ Ip)w(t)) − (F ⊗ Ip)w̃(t)

− γ(1N ⊗ Ip)w(t) − (1N ⊗ Ip)ẇ(t), (18)
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where
Ā , diag([Ā1, Ā2, . . . , ĀN]), (19)

M , diag([g1J1C1, g2J2C2, . . . , gNJNCN]), (20)

K̄ , diag([σ1K1, σ2K2, . . . , σNKN]), (21)

F , αL(G) + γIN, (22)

P , diag([P1, P2, . . . , PN]), (23)
with L(G) being the Laplacian matrix. Note that P> 0 readily
follows from Pi> 0.

Theorem 1.Consider the process given by equation (5) and the
distributed input and state estimation architecture given by equa-
tions (7) and (8). Assume equation (9) holds and nodes exchange
information using local measurements subject to an undirected
and connected graph G. Then, the error dynamics given by equa-
tions (17) and (18) are uniformly ultimately bounded.

Proof. Consider the Lyapunov function candidate given by
V(x̃, w̃) = x̃TPx̃ + w̃Tw̃. (24)

Note that V(0, 0)= 0 and V(x̃, w̃) > 0 for all (x̃, w̃) ̸= (0, 0).
Taking time-derivative of V(x̃, w̃) along the trajectories of equa-
tions (17) and (18) yields
V̇(·) = x̃T(t)(ĀTP + PĀ)x̃(t) − 2x̃T(t)P(IN ⊗ B)w̃(t)

− 2x̃T(t)(F ⊗ In)x̃(t) + 2γx̃T(t)(1N ⊗ In)x(t)

+ 2w̃T(t)Mx̃(t) − 2w̃T(t)K̄w̃(t) − 2w̃T(t)(F ⊗ Ip)w̃(t)

− 2w̃T(t)(K̄+ γINp)(1N ⊗ Ip)w(t) − 2w̃T(t)(1N ⊗ Ip)ẇ(t)

= x̃T(t)(ĀTP + PĀ)x̃(t) − 2w̃T(t)K̄w̃(t)

− 2x̃T(t)(P(IN ⊗ B) − MT)w̃(t) − 2x̃T(t)(F ⊗ In)x̃(t)

− 2w̃T(t)(F ⊗ Ip)w̃(t) + 2γx̃T(t)(1N ⊗ In)x(t)

− 2w̃T(t)(K̄ + γINp)(1N ⊗ Ip)w(t) − 2w̃T(t)(1N ⊗ Ip)ẇ(t)

=
[
x̃T(t) w̃T(t)

][ ĀTP + PĀ −P(IN ⊗ B) + MT

−(IN ⊗ BT)P + M −2K̄

][
x̃(t)
w̃(t)

]

+
[
x̃T(t) w̃T(t)

][−2(F ⊗ In) 0
0 −2(F ⊗ Ip)

][
x̃(t)
w̃(t)

]

+ 2
[
x̃T(t) w̃T(t)

][ γ(1N ⊗ In)x(t)
−(K̄+ γINp)(1N ⊗Ip)w(t) − (1N ⊗ Ip)ẇ(t)

]

= zT(t)RAz(t) + zT(t)RBz(t) + 2zT(t)ϕ

= zT(t)Rz(t) + 2zT(t)ϕ, (25)

where
z(t) , [x̃T(t), w̃T(t)]T, (26)

RA ,
[

ĀTP + PĀ −P(IN ⊗ B) + MT

−(IN ⊗ BT)P + M −2K̄

]
, (27)

RB ,
[
−2(F ⊗ In) 0

0 −2(F ⊗ Ip)

]
, (28)

R , RA + RB

=

[
ĀTP + PĀ − 2(F ⊗ In) −P(IN ⊗ B) + MT

−(IN ⊗ BT)P + M −2K̄ − 2(F ⊗ Ip)

]
, (29)

ϕ ,
[

γ(1N ⊗ In)x(t)
−(K̄ + γINp)(1N ⊗ Ip)w(t) − (1N ⊗ Ip)ẇ(t)

]
. (30)

Note that (F⊗ In)> 0 and (F⊗ Ip)> 0 readily follow from
F> 0 and, hence, RB< 0.

Next, since the linear matrix inequality given by equation (9)
holds, it follows that

ĀT
i Pi + PiĀi ≤ 0, (31)

Ni , −2σiKi − (−BTPi + giJiCi)(ĀT
i Pi + PiĀi)

†

× (−PiB + giCT
i JTi ) ≤ 0, (32)

Qi , (In − (ĀT
i Pi + PiĀi)(ĀT

i Pi + PiĀi)
†
)

× (−PiB + giCT
i JTi ) = 0, (33)

by applying Lemma 2 to (9). Note that

ĀTP + PĀ =


Â1 0 · · · 0
0 Â2 · · · 0
...

...
. . .

...
0 0 · · · ÂN

 ≤ 0, (34)

as a consequence of equation (31), where Âi , ĀT
i Pi + PiĀi for

i= 1, . . . ,N. Furthermore, it follows from equation (32) that

N , −2K̄ − (−(IN ⊗ BT)P + M)(ĀTP + PĀ)
†

× (−P(IN ⊗ B) + MT)

=


N1 0 · · · 0
0 N2 · · · 0
...

...
. . .

...
0 0 · · · NN

 ≤ 0, (35)

holds. Finally, equation (33) leads to

Q , (INn − (ĀTP + PĀ)(ĀTP + PĀ)
†
)(−P(IN ⊗ B) + MT)

=


Q1 0 · · · 0
0 Q2 · · · 0
...

...
. . .

...
0 0 · · · QN

 = 0. (36)

Now, by Lemma 2, RA ≤ 0 as a direct consequence of equations
(34), (35), and (36). Thus, by Lemma 1, R=RA +RB< 0.

Note that since A is Hurwitz, and ||w(t)||2 ≤ w̄, we have
||x(t)||2 ≤ x̄, where w̄ and x̄ are upper bounds of the input and
the state, respectively. With this and ||ẇ(t)||2 ≤ ¯̇w, where ¯̇w is the
upper bound of the time rate of change of input, we have ||ϕ||2 ≤ ϕ̄
with

ϕ̄ ,
√

γ2||(1N ⊗ In)||22x̄2 + ||K̄ + γINp||22||1N ⊗ Ip||22w̄2

+ ||1N ⊗ Ip||22 ¯̇w
2

=
√

Nγ2x̄2 + ||K̄ + γINp||22Nw̄2 + N ¯̇w2
. (37)
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Now, one can write

V̇(·) = zT(t)Rz(t) + 2zT(t)ϕ

≤ λmax(R)||z(t)||22 + 2||z(t)||2ϕ̄

≤ (1 − θ)λmax(R)||z(t)||22 + θλmax(R)||z(t)||22 + 2||z(t)||2ϕ̄,
(38)

with λmax(R)< 0 and θ∈ (0, 1). Letting µ1 , −2ϕ̄
θλmax(R) > 0 and

Ω1 , {z(t) : ||z(t)||2 ≤ µ1}, it follows that V̇(·) ≤ (1 − θ)
λmax(R)||z(t)||22 < 0 outside the compact set Ω1 and, hence, the
error dynamics given by equations (17) and (18) are uniformly
ultimately bounded by Theorem 4.18 of Khalil (2002). �

The following corollary to the above theorem is now immediate.
Corollary 1. Consider the process given by equation (5) and

the distributed input and state estimation architecture given by
equations (7) and (8). Assume that equation (9) holds and nodes
exchange information using local measurements subject to an
undirected and connected graph G. Then, for all z(0) ∈ RN(n+p),
there exists T =T(z(0), µ1)≥ 0 such that

||x̃(t)||2 ≤ ξ1 ,
√
λmax(P̄)
λmin(P̄)

max{||z(0)||2

× e((1−θ)λmax(R)/2λmax(P̄))t, µ1}, ∀t ≥ 0, (39)

||w̃(t)||2 ≤ ξ1, ∀t ≥ 0, (40)

where
P̄ =

[
P 0
0 INp

]
, (41)

and

||x̃(t)||2 ≤ ψ1 ,
√
λmax(P̄)
λmin(P)

µ1, t ≥ T, (42)

||w̃(t)||2 ≤ ζ1 ,
√
λmax(P̄)µ1, t ≥ T. (43)

Proof. Note that

V(·) = x̃T(t)Px̃(t) + w̃T(t)w̃(t)

=
[
x̃T(t) w̃T(t)

] [
P 0
0 INp

] [
x̃(t)
w̃(t)

]
= zT(t)P̄z(t). (44)

Let c1 , λmin(P̄), c2 , λmax(P̄), and c3 , −(1 − θ)λmax(R).
From equation (44), we have

c1||z(t)||22 ≤ V(·) ≤ c2||z(t)||22. (45)

In addition, V̇(·) ≤ −c3||z(t)||22 for all ||z(t)||2 ≥ µ1. By
Theorem 4.5 of Khalil (2014), since the domain D = RN(n+p),
for every initial state z(0), the bound of the overall system is

||z(t)||2 ≤
√

c2
c1

max{||z(0)||2 e
(−c3/2c2)t, µ1} = ξ1, ∀t ≥ 0.

(46)

Using the fact that ||x̃(t)||2 ≤ ||z(t)||2 and ||w̃(t)||2 ≤ ||z(t)||2,
equations (39) and (40) follow immediately.

In the proof of Theorem 1, we show that V(·) cannot grow out-
side the compact set Ω1, thus equation (42) follows from λmin(P)
||x̃(t)||22 ≤ V(x̃(t), w̃(t)) ≤ λmax(P̄)||z(t)||22 ≤ λmax(P̄)µ2

1. Iden-
tically, equation (43) follows from ||w̃(t)||22 ≤ V(x̃(t), w̃(t)) ≤
λmax(P̄)||z(t)||22 ≤ λmax(P̄)µ2

1. The proof is now complete. �
Remark 2. While this paper shows the uniform ultimate

boundedness of the error dynamics, the provided results equa-
tions (42) and (43) can be used to tune the design parameters
to achieve acceptable performance criteria. The uniform ultimate
boundedness can be considered as a result of the considered
complex problem that we address here, which we can recap the
main points as:

(i) The proposed algorithm only utilizes local information
for designing agent-wise dynamics to achieve the stability,
unlike existing results in Millán et al. (2013).

(ii) With regard to the considered problem in this paper, for the
first time, we allow a subset of nodes to be passive (that is,
subject to no observation).

(iii) The sensing capability of active nodes can be different
among sensors.

(iv) Not only the states of the process are unknown but also the
inputs are unknown.

(v) We do not assume a common positive real condition, e.g.,
PiB = CT

i JTi , which in practice may not be easy to satisfy.
(vi) The inputs are not constant.

If we relax some of these conditions, the asymptotic stability
can be obtained with a version of the proposed algorithm (see
Appendix A in Data Sheet in Supplementary Material).

To summarize, the nature of the distributed estimation problem
subjected to (i)–(vi) is challenging. In order to solve this prob-
lem using only local information and without the positive real
condition, the condition equation (9) is required by the nature
of the problem. In addition, we need the assumption that A is
Hurwitz tomake equation (9) feasible especially for passive nodes.
Furthermore, when the inputw(t) is time-varying, adding leakage
terms is unavoidable to prove the stability (e.g., see Ioannou and
Sun (2012)).

Remark 3. Since the ultimate bounds given by equations (42)
and (43) depend on the design parameters of the proposed dis-
tributed input and state estimation architecture, they can be used
as design metrics such that the design parameters can be judi-
ciously selected to make equations (42) and (43) small. However,
unlike the stability of our framework that is guaranteed once
each node satisfies the local condition given by equation (9),
such a performance characterization requires global information.
However, one can further analyze the effect of each specific design
parameter to these ultimate bounds andmake conclusionswithout
possibly requiring global information, which will be considered as
a future research direction.

The following remarks discuss how to choose our design
parameters while Appendix C in Data Sheet in Supplementary
Material summarizes their effect for interested readers.

Remark 4. Note that the terms “−γP−1
i x̂i(t)” and “−(σiKi +

γIp)ŵi(t)” appearing, respectively, in equations (7) and (8)

Frontiers in Robotics and AI | www.frontiersin.org July 2017 | Volume 4 | Article 306

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Tran et al. Heterogeneous Sensor Networks

are often referred as leakage terms. If the gains “γP−1
i ” and

“σiKi + γIp”, respectively, multiplying these terms are not small,
then they may result in poor overall system performance (see, for
example, Volyanskyy et al. (2009), Yucelen and Haddad (2013),
and references therein) and, hence, it is of common practice to
choose these multiplier gains γ and σi to be small. However, as
noted in Remark 1, σi may not be chosen as small unless all nodes
are active and the condition PiB = CT

i JTi holds. Therefore, we cast
equation (9) as an optimization problem given by

minimize σi, (47)
subject to (9), (48)

for all nodes i= 1, . . . ,N. In addition, it should be noted that
since the matrix K̄ appear in the numerator of the ultimate
bound, σi and Ki should be chosen such that the norm ||σiKi||2
is small.

Remark 5. To elucidate the effect of design parameters to the
ultimate bound given by equation (42), we consider, for example,
a system with 4 sensors (1 and 3 are active nodes, and 2 and 4 are
passive nodes) tracking a target with dynamics

ẋ(t) =
[
0 1

−1 −0.25

]
x(t) +

[
0
1

]
w(t), (49)

where w(t)= sin(0.25t). Node 1 is subject to C1 =
[
1 0

]
and

node 3 is subject to C3 =
[
0 1

]
. We design σi by solving the

linear matrix inequality equation (9). As a result, with Ji =Ki and
K1 =K2 =K3 =K4 = 50, we have σ1 = 0.03, σ2 =σ4 = 0.05 and
σ3 = 0.03 with P1 =

[
26.31 −2.67
−2.67 4.01

]
, P2 = P4 =

[
1.54 0.08
0.08 1.62

]
and P3 =

[
4.60 4.02
4.02 25.62

]
. We then varyα and γ to see the effect of

these parameters to the ultimate boundψ1 given by equation (42).
Figure 1 shows the effect of the variation in α and γ to equation
(42). From the figure, we can see that one can pick a small value
for γ and a large value for α to reduce the ultimate bound.

3.3. Illustrative Numerical Example
We now present several numerical examples to illustrate the
results given earlier in this section. For this purpose, consider a
process composed of two decoupled systems with the dynamics
given by equation (5), where

A =


0 1 0 0

−ω2
n1 −2ωn1ξ1 0 0

0 0 0 1
0 0 −ω2

n2 −2ωn2ξ2

, (50)

B =


0 0
ω2
n1 0
0 0
0 ω2

n2

, (51)

ωn1 = 1.2, ξ1 = 0.9, ωn2 = 0.5, and ξ2 = 0.6. This process, for
example, can represent a linearized vehicle model with the first
and third states corresponding to the positions in the x and y
directions, respectively, while the second and fourth states corre-
sponding to the velocities in the x and y directions, respectively.
The initial conditions are set to xT0 = [−3, 0.5, 2.5, 0.25]. In
addition, we consider the input is given by

w(t) =
[
2.5 sin(t)
4 cos(1.2t)

]
. (52)

To maintain the readability of the paper, the values of Li, σi, Pi
in the following examples are put in Appendix B in Data Sheet in
Supplementary Material.

Example 1. For the first example, we consider a sensor network
with 12 nodes exchanging information over an undirected and
connected graph topology, where there are 4 active nodes and 8
passive nodes as shown in Figure 2. Each node’s sensing capability
is represented by equation (6) with the output matrices

Ci =
[
1 0 0 0
0 0 1 0

]
, (53)

FIGURE 1 | Effect of γ∈ (0, 2] and α∈ {0.25, 1, 2.5, 5, 10, 50} to the ultimate bound ψ1 in equation (42), where the arrow indicate the direction α is increased.
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for the odd index nodes and

Ci =
[
0 1 0 0
0 0 0 1

]
(54)

for the even index nodes. In addition, all nodes are subject to zero
initial conditions and we set Ji =Ki = diag([100; 100]), α= 50,
and γ= 0.1. For the observer gain Li, the odd index nodes are
subject to [equation (A.6) in Supplementary Material] while the
even index nodes are subject to [Equation (A.7) in Supplementary
Material].

By solving the linear matrix inequality equation (9) for
each node, σi and Pi> 0 are obtained as σ1 =σ5, σ2 =σ6,
σ3 =σ4 =σ7 =σ8 =σ9 =σ10 =σ11 =σ12 where σ1, σ2, and σ3
are subject to equations (A.8), (A.9), and (A.10) in Supple-
mentary Material, respectively. In addition, P1, P2, and P12
are subject to equations (A.11), (A.12), and (A.13) in Supple-
mentary Material, respectively. Note that P1 = P5, P2 = P6, and
P3 = P4 = P7 = P8 = P9 = P10 = P11 = P12. Under the proposed
distributed estimation architecture equations (7) and (8), nodes

FIGURE 2 | Communication graph of the sensor network in Example 1 with 4
active nodes and 8 passive nodes (lines denote communication links, squares
denote active nodes, and circles denote passive nodes) Tran et al. (2017).

are able to closely estimate the process states and inputs as shown
in Figures 3 and 4, respectively. N

Example 2. In this example, we increase the number of active
nodes in the sensor network to 8 as depicted in Figure 5. The
sensing capability of each agent is the same as in Example 1. Note
that, because of the change in the number of active nodes, the
design parameters are adjusted accordingly as σ1 =σ3 =σ5 =σ7,
σ2 =σ4 =σ6 =σ8, σ9 =σ10 =σ11 =σ12 where σ1, σ2, and σ9
are subjected to equations (A.14), (A.15), and (A.16) in Supple-
mentary Material, respectively. In addition, P1 = P3 = P5 = P7,
P2 = P4 = P6 = P8, P9 = P10 = P11 = P12, where P1, P2, and P12 are
the same as equations (A.11), (A.12), and (A.13) in Supplementary
Material, respectively. Other parameters and gains are also kept
the same. Figures 6 and 7 show the performance of the sensor
network for the proposed distributed estimation architecture. In
addition, in order to compare the performance of Example 1 and
Example 2, the state and input error norms of both examples are
plotted in Figures 8 and 9, respectively. The transient responses
are captured in the figures approximately during the first 2 or
3 s, and it can be seen that Example 2 converges faster than
Example 1 in state estimation, yet it encounters overshoot in input
estimation. In addition, we can roughly approximate the average
of both state and input error norms are reduced by a factor of 2 in
Example 2 compared to Example 1. In general, Examples 1 and 2
show that the steady-state performance is improved by increasing
the number of active nodes in the sensor network. N

Example 3. In this example, we consider a sensor network with
8 active nodes and 4 passive nodes as in Example 2 (Figure 5), but
change the system output matrices for each node as follows

C1 =
[
1 0 0 0
0 0 0 0

]
, (55)

C2 =
[
0 1 0 0
0 0 0 1

]
, (56)

C3 =
[
0 0 0 0
0 0 1 0

]
, (57)

FIGURE 3 | State estimates of the sensor network in Example 1 with 4 active nodes and 8 passive nodes under the proposed architecture equations (7) and (8) (the
dash lines denote the states of the actual process and the solid lines denote the state estimates of nodes) Tran et al. (2017).
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FIGURE 4 | Input estimates of the sensor network in Example 1 with 4 active nodes and 8 passive nodes under the proposed architecture equations (7) and (8) (the
dash lines denote the inputs of the actual process and the solid lines denote the input estimates of nodes) Tran et al. (2017).

FIGURE 5 | Communication graph of the sensor network in Examples 2 and
3 with 8 active nodes and 4 passive nodes (lines denote communication links,
squares denote active nodes, and circles denote passive nodes) Tran et al.
(2017).

where C1 =C5 =C9, C2 =C4 =C6 =C8 =C10 =C12, and
C3 =C7 =C11. Note that for the odd index nodes, the pair (A,
Ci) is not observable. We also choose Ji =Ki = diag([100; 100]),
α= 50, and γ= 0.1.

Here, the observer gain Li is chosen such that L1 = L5 = L9,
L2 = L4 = L6 = L8 = L10 = L12, and L3 = L7 = L11 where L1, L2,
and L3 are subject to equations (A.17), (A.18), and (A.19) in
SupplementaryMaterial, respectively. By solving the linear matrix
inequality equation (9) for each node, σi and Pi> 0 are obtained
asσ1 =σ5,σ2 =σ4 =σ6 =σ8,σ3 =σ7, andσ9 =σ10 =σ11 =σ12
where σ1, σ2, σ3, and σ9 are subject to equations (A.20),
(A.21), (A.22), and (A.23) in Supplementary Material, respec-
tively. In addition, P1 = P5, P2 = P4 = P6 = P8, P3 = P7, and
P9 = P10 = P11 = P12 where P1, P2, P3, and P12 are subject to
equations (A.24), (A.12), (A.25), and (A.13) in Supplementary
Material, respectively. Figures 10 and 11 show that under the
proposed distributed estimation architecture, nodes are able to
closely estimate the process states and inputs, although some
active nodes are not able to fully observe the process. N

4. DISTRIBUTED INPUT AND STATE
ESTIMATION FOR ACTIVE-PASSIVE
SENSOR NETWORKS WITH VARYING
NODE ROLES

We now generalize the results of the previous section to the
case when the active and passive role of each sensor node is
varying over time. For this purpose, once again, we consider a
process given by equations (5). In addition, if a node in the sensor
network is active for some time instant, then it is subject to the
observations of the process given by equation (6) on that time
instant, otherwise it is a passive node and has no observation. Note
that a node is assumed to be smoothly changed back and forth
between active and passive mode (i.e., gi(t) is a smooth function
on the interval [0, 1]). The proposed algorithm is discussed in
Section 4.1, followed by the stability analysis (Section 4.2), and
a numerical example is presented to illustrate the efficacy of the
methods (Section 4.3).

4.1. Proposed Distributed Estimation
Architecture
For node i, i= 1, . . . ,N, consider the distributed estimation algo-
rithm given by

˙̂xi(t) = (A − γP−1
i )x̂i(t) + Bŵi(t) + gi(t)Li(yi(t) − Cix̂i(t))

− αP−1
i

∑
i∼j

(x̂i(t) − x̂j(t)), x̂i(0) = x̂i0, (58)

˙̂wi(t) = gi(t)Ji(yi(t) − Cix̂i(t)) − (σiKi + γIp)ŵi(t)

− α
∑
i∼j

(ŵi(t) − ŵj(t)), ŵi(0) = ŵi0, (59)

where x̂i(t) ∈ Rn is a local state estimate of x(t) for node i, ŵi ∈ Rp

is a local input estimate of w(t) for node i, Li ∈ Rn×m, Ji ∈ Rp×m,
and Ki ∈ Sp×p

+ are design matrices of node i, and α, γ, and
σi ∈ R are positive design coefficients for node i. Note that the
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FIGURE 6 | State estimates of the sensor network in Example 2 with 8 active nodes and 4 passive nodes under the proposed architecture equations (7) and (8) (the
dash lines denote the states of the actual process and the solid lines denote the state estimates of nodes) Tran et al. (2017).

FIGURE 7 | Input estimates of the sensor network in Example 2 with 8 active nodes and 4 passive nodes under the proposed architecture equations (7) and (8) (the
dash lines denote the inputs of the actual process and the solid lines denote the input estimates of nodes) Tran et al. (2017).

FIGURE 8 | State error norms of the sensor networks in Example 1 and Example 2.
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FIGURE 9 | Input error norms of the sensor networks in Example 1 and Example 2.

FIGURE 10 | State estimates of the sensor network in Example 3 with 12 active nodes under the proposed architecture equations (7) and (8) (the dash lines denote
the states of the actual process and the solid lines denote the state estimates of nodes) Tran et al. (2017).

FIGURE 11 | Input estimates of the sensor network in Example 3 with 12 active nodes under the proposed architecture equations (7) and (8) (the dash lines denote
the inputs of the actual process and the solid lines denote the input estimates of nodes) Tran et al. (2017).
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parameter gi(t) in this section is time-varying and gi(t)∈ [0, 1].
In addition, Pi> 0 is the consensus gain satisfying the two linear
matrix inequalities given by

Ri1 ,
[
ATPi + PiA −PiB

−BTPi −2σiKi

]
≤ 0, (60)

Ri2 ,
[
(A − LiCi)TPi + Pi(A − LiCi) −PiB + CT

i JTi
−BTPi + JiCi −2σiKi

]
≤ 0, i = 1, . . . ,N.

(61)

4.2. Stability Analysis
Let x̃i(t) , x(t) − x̂i(t) and w̃i(t) , ŵi(t) − w(t). Then, similar
to equations (11) and (12), one can write

˙̃xi(t) = Āi(t)x̃i(t) − Bw̃i(t) − αP−1
i

∑
i∼j

(x̃i(t) − x̃j(t))

− γP−1
i (x̃i(t) − x(t)), x̃i(0) = x̃i0, (62)

˙̃wi(t) = gi(t)JiCix̃i(t) −σiKi(w̃i(t)+w(t)) −α
∑
i∼j

(w̃i(t) − w̃j(t))

− γ(w̃i(t) + w(t)) − ẇ(t), w̃i(0) = w̃i0, (63)

where
Āi(t) , A − gi(t)LiCi. (64)

Therefore, similar to Section 3.2, the compact form of the error
dynamics are given by

˙̃x(t) = Ā(t)x̃(t) − (IN ⊗ B)w̃(t) − P−1(F ⊗ In)x̃(t)

+ γP−1(1N ⊗ In)x(t), (65)
˙̃w(t) = M(t)x̃(t) − K̄(w̃(t) + (1N ⊗ Ip)w(t)) − (F ⊗ Ip)w̃(t)

− γ(1N ⊗ Ip)w(t) − (1N ⊗ Ip)ẇ(t), (66)

where

Ā(t) , diag([Ā1(t), Ā2(t), . . . , ĀN(t)]), (67)

M(t) , diag([g1(t)J1C1, g2(t)J2C2, . . . , gN(t)JNCN]), (68)

and K̄, F, and P are the same as equations (21), (22), and (23),
respectively.

Theorem 2. Consider the process given by equation (5) and
the distributed input and state estimation architecture given by
equations (58) and (59). Assume equations (60) and (61) hold
and nodes exchange information using local that measurements
subject to an undirected and connected graph G. Then, the error
dynamics given by equations (65) and (66) are uniformly ulti-
mately bounded.

Proof. Consider the Lyapunov function candidate given by
equation (24). Following the steps from the proof of Theorem 1,
differentiating equation (24) along the trajectories of equations
(65) and (66) yields

V̇(·) = zT(t)RA(t)z(t) + zT(t)RBz(t) + 2zT(t)ϕ, (69)

where z(t), RB, and ϕ are defined in equations (26), (28), and (30),
respectively. In addition,

RA(t) ,
[

Ā(t)TP + PĀ(t) −P(IN ⊗ B) + MT(t)
−(IN ⊗ BT)P + M(t) −2K̄

]
. (70)

FIGURE 12 | Communication graph of the active-passive sensor network in
Example 4 with 12 nodes (lines denote communication links, circles denote
nodes).

Note that for this varying case of active and passive node roles,
Ri in equation (9) becomes

Ri(t) =

[
(A − gi(t)LiCi)TPi + Pi(A − gi(t)LiCi) −PiB + gi(t)CT

i JTi
−BTPi + gi(t)JiCi −2σiKi

]

=

[
ATPi + PiA −PiB

−BTPi −2σiKi

]

+ gi(t)

[
(−LiCi)TPi + Pi(−LiCi) CT

i JTi
JiCi 0

]
. (71)

Since gi(t)∈ [0, 1], Ri1 in equation (60) and Ri2 in equation (61)
corresponds to gi(t)= 0 and gi(t)= 1 in equation (71), respec-
tively. Therefore, Ri1 and Ri2 are the vertices of the polytope. By
Lemma 3, when the linear matrix inequalities equations (60) and
(61) hold, Ri(t)≤ 0 for all gi(t)∈ [0, 1]. Consequently, using the
same argument as in the proof of Theorem 1, we have RA(t)≤ 0.
Hence, equation (69) becomes

V̇(·)= zT(t)RA(t)z(t) + zT(t)RBz(t) + 2zT(t)ϕ

≤λmax(RB)||z(t)||22 + 2||z(t)||2ϕ̄

≤ (1− θ)λmax(RB)||z(t)||22 + θλmax(RB)||z(t)||22 + 2||z(t)||2ϕ̄,
(72)

with λmax(RB)< 0 and θ∈ (0, 1). Letting µ2 , −2ϕ̄
θλmax(RB)

> 0
and Ω2 , {z(t) : ||z(t)||2 ≤ µ2}, it follows that V̇(·) ≤ (1 −
θ)λmax(RB)||z(t)||22 < 0 outside the compact set Ω2 and, hence,
the error dynamics given by equations (62) and (63) are uniformly
ultimately bounded from Theorem 4.18 in Khalil (2002). �

Corollary 2. Consider the process given by equation (5) and
the distributed input and state estimation architecture given by
equations (58) and (59). Assume that equations (60) and (61)
hold and nodes exchange information using local measurements
subject to an undirected and connected graph G. Then, for all
z(0) ∈ RN(n+p), there exists T =T(z(0), µ2)≥ 0 such that
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||x̃(t)||2 ≤ ξ2 ,
√
λmax(P̄)
λmin(P̄)

max{||z(0)||2

× e((1−θ)λmax(RB)/2λmax(P̄))t, µ2}, ∀t ≥ 0, (73)

||w̃(t)||2 ≤ ξ2, ∀t ≥ 0, (74)

where
P̄ =

[
P 0
0 INp

]
, (75)

and

||x̃(t)||2 ≤ ψ2 ,
√
λmax(P̄)
λmin(P)

µ2, t ≥ T, (76)

||w̃(t)||2 ≤ ζ2 ,
√
λmax(P̄)µ2, t ≥ T. (77)

Proof. Same theoretical steps follow from the proof of Corollary
1 and, hence, the proof is omitted here. �

4.3. Illustrative Numerical Example
In this section, we present numerical examples to illustrate the
results discussed in Sections 4.1 and 4.2. For this purpose, we
consider a process as the vehicle model depicted in Section 3.3
with the dynamics given by equation (5), where A and B are
defined in equations (50) and (51), respectively. To maintain the
readability of the paper, the values of Li, σi, Pi in the following

FIGURE 13 | State estimates of the active-passive sensor network in Example 4 with 12 nodes under the proposed architecture equations (58) and (59) and satisfying
the linear matrix inequalities equations (60) and (61) (the dash lines denote the states of the actual process and the solid lines denote the state estimates of nodes).

FIGURE 14 | Position estimates (first and third states of the process) of the active-passive sensor network in Example 4 with 12 nodes under the proposed
architecture equations (58) and (59) and satisfying the linear matrix inequalities equations (60) and (61) (the dash line denote the trajectory of the actual process (i.e.,
the combination of the first and third states) and the solid lines denote the state estimates of nodes). Here, AN stands for the active nodes.
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examples are put in Appendix B in Data Sheet in Supplementary
Material.

Example 4. For this example, the initial conditions of the
process are set to xT0 = [−3, 0.5, 2.5, 0.25]. In addition, we
consider the input is given by

w(t) =
[

2.5 sin(t)
3.5 cos(1.2t)

]
. (78)

We now consider an active-passive sensor network with 12
nodes exchanging information over an undirected and connected
graph topology as presented in Figure 12, where the active and
passive roles of each node is varying overtime. Specifically, the
sensors are distributed over an area, and each sensor position is
shown in Figure 12. Suppose that each sensor sensing range is a
circle with the radius r= 3. Recall that the first and third states

of the process (or the vehicle) correspond to the positions in the
x-axis and y-axis directions, respectively. If the vehicle’s position is
within a sensor sensing range, then that sensor becomes smoothly
active. On the other hand, if the vehicle’s position is out of the
sensor sensing range, then it becomes smoothly passive. Note
that, for the transition of gi(t), we use the function gi(t) = e−βt

when node i is switching from 1 to 0, and gi(t) = 1 − e−βt

when node i is switching from 0 to 1, where β is a positive
constant. We adapt this transition from Figure 2D of Zavlanos
et al. (2011). The network has two types of sensors, and each node’s
sensing capability is represented by equation (6) with the output
matrices

Ci =
[
1 0 0 0
0 0 1 0

]
, (79)

FIGURE 15 | Input estimates of the active-passive sensor network in Example 4 with 12 nodes under the proposed architecture equations (58) and (59) and satisfying
the linear matrix inequalities equations (60) and (61) (the dash lines denote the inputs of the actual process and the solid lines denote the input estimates of nodes).

FIGURE 16 | State estimates of the active-passive sensor network in Example 4 with 12 nodes under the proposed architecture equations (58) and (59) with the
decrease in σi, i=1, . . . , 12 (the dash lines denote the states of the actual process and the solid lines denote the state estimates of nodes).
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FIGURE 17 | Input estimates of the active-passive sensor network in Example 4 with 12 nodes under the proposed architecture equations (58) and (59) with the
decrease in σi, i=1, . . . , 12 (the dash lines denote the inputs of the actual process and the solid lines denote the input estimates of nodes).

for the odd index nodes and

Ci =
[
0 1 0 0
0 0 0 1

]
(80)

for the even index nodes. Note that the pair (A, Ci) is observable
for all i= 1, . . . , 12 in this example and, therefore, the collec-
tive observability assumption is satisfied. All nodes are subjected
to zero initial conditions and we set Ji =Ki = diag([100; 100]),
α= 50, and γ= 0.1. For the observer gain Li, the odd index
nodes are subject to [equation (A.26) in Supplementary Material]
while the even index nodes are subject to [equation (A.27) in
Supplementary Material].

By solving the linear matrix inequalities equations
(60) and (61) simultaneously for each node, σi and
Pi> 0 are obtained as σ1 =σ3 =σ5 =σ7 =σ9 =σ11 and
σ2 =σ4 =σ6 =σ8 =σ10 =σ12 where σ1 and σ2 are subject
to equations (A.28) and (A.29) in Supplementary Material,
respectively. In addition, P1 and P2 are subject to equations (A.30)
and (A.31) in Supplementary Material, respectively. Note that
P1 = P3 = P5 = P7 = P9 = P11 and P2 = P4 = P6 = P8 = P10 = P12.

Under the proposed distributed estimation architecture equa-
tions (58) and (59), nodes are able to closely estimate the process
states as shown in Figure 13. Specifically, Figure 14 illustrates
that the sensor network is able to estimate the trajectory of the
vehicle (the first and third states of the process), while the input
estimated in Figure 15 is not as good as the case for fixed node
roles presented in Section 3.3, this can be explained by the con-
servatism of the solution of the linear matrix inequalities equa-
tions (60) and (61). That is, if we had the flexibility to make the
σi values small such that σ1 =σ3 =σ5 =σ7 =σ9 =σ11 = 0.001
and σ2 =σ4 =σ6 =σ8 =σ10 =σ12 = 0.001, while keeping Pi and
other parameters the same, the performance of the input and state
estimate would become better as shown in Figures 16 and 17,
respectively. However, with these small values of σi, the linear
matrix inequalities equations (60) and (61) are no longer satisfied.
Numerical methods to reduce such conservatism in linear matrix

FIGURE 18 | Communication graph of the active-passive sensor network in
Example 5 with 13 nodes (lines denote communication links, circles denote
normal nodes, and diamond denotes overlapped nodes).

inequality computations for equations (60) and (61) and/or relax
the linear matrix inequality condition will be investigated as a
future research.

Example 5. For this example, the initial conditions of the
process are set to xT0 = [−2, 0.5, 2.5, 0.25]. In addition, we consider
the input is given by

w(t) =
[
1.5 sin(0.5t)
3 cos(0.6t)

]
. (81)

We now consider an active-passive sensor network with 13
nodes labeled, respectively, as 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b, 5, 6, 7, 8,
and 9, exchanging information over an undirected and connected
graph topology as presented in Figure 18, where the active and
passive role of each node is varying overtime. Specifically, the
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FIGURE 19 | State estimates of the active-passive sensor network in Example 5 with 13 nodes under the proposed architecture equations (58) and (59) and satisfying
the linear matrix inequalities equations (60) and (61) (the dash lines denote the states of the actual process and the solid lines denote the state estimates of nodes).

FIGURE 20 | Position estimates (first and third states of the process) of the active-passive sensor network in Example 5 with 13 nodes under the proposed
architecture equations (58) and (59) and satisfying the linear matrix inequalities equations (60) and (61) (the dash line denote the trajectory of the actual process (i.e.,
the combination of the first and third states) and the solid lines denote the state estimates of nodes). Here, AN stands for the active nodes.

sensors are distributed over an area with each pair of nodes Xa and
Xb (where X= 1, 2, 3, 4 and denoted as diamond in Figure 18)
is grouped at the same location such that when Xa is active (or
passive), so is Xb and vice versa; Xa and Xb are neighbors of each
other and have the same set of neighbors.

Suppose that each sensor sensing range is a circle with the
radius r= 3.5. Note that, for the transition of gi(t), we use the same
functions as Example 4. The network has six types of sensors, and
each node’s sensing capability is represented by equation (6) with
the output matrices

C1a =
[
1 0 0 0
0 0 0 0

]
, (82)

C1b =
[
0 0 0 0
0 0 1 0

]
, (83)

C2b =
[
0 0 0 0
0 0 0 1

]
, (84)

C3a =
[
0 1 0 0
0 0 0 0

]
, (85)

C5 =
[
1 0 0 0
0 0 1 0

]
, (86)

C6 =
[
0 1 0 0
0 0 0 1

]
. (87)
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In addition, C1a =C2a, C1b =C3b, C2b =C4b, C3a =C4a,
C5 =C7 =C9, and C6 =C8. Note that the pairs (A, CXa) and
(A, CXb) where X= 1, 2, 3, 4 are not observable, but with the
setup of the problem (nodes Xa and Xb are either active or
both passive simultaneously), the collective observability condi-
tion is guaranteed. All nodes are subjected to zero initial condi-
tions and we set Ji =Ki = diag([25; 25]), α= 75, and γ= 0.01.
The observer gains Li are set to L1a = L2a, L1b = L3b, L2b = L4b,
L3a = L4a, L5 = L7 = L9, and L6 = L8 where the gains L1a, L1b,
L2b, L3a, L5, and L6 are subject to equations (A.32), (A.33),
(A.34), (A.35), (A.36), and (A.37) in Supplementary Material,
respectively.

By solving the linear matrix inequalities equations (60) and
(61) simultaneously for each node, σi and Pi> 0 are obtained
as σ1a =σ2a, σ1b =σ3b, σ2b =σ4b, σ3a =σ4a, σ5 =σ7 =σ9 and
σ6 =σ8 where σ1a, σ1b, σ2b, σ3a, σ5 and σ6 are subject to

equations (A.38), (A.39), (A.40), (A.41), (A.42), and (A.43)
in Supplementary Material, respectively. In addition, P1a, P1b,
P2b, P3a, P5, and P6 are subject to equations (A.44), (A.45),
(A.46), (A.47), (A.48), and (A.49) in Supplementary Material,
respectively. Note that P1a = P2a, P1b = P3b, P2b = P4b, P3a = P4a,
P5 = P7 = P9, and P6 = P8.

Under the proposed distributed estimation architecture equa-
tions (58) and (59), nodes are able to closely estimate the process
states as shown in Figure 19. Specifically, Figure 20 illustrates
that the sensor network is able to estimate the trajectory of the
vehicle (the first and third states of the process), while the input
estimated in Figure 21 is still not as good as the case for fixed
node roles presented in Section 3.3. Again, this can be explained
by the conservatism of the solution of the linear matrix inequal-
ities equations (60) and (61). If we had the flexibility to reduce
σi to small values, for example, σi = 0.001, while keeping other

FIGURE 21 | Input estimates of the active-passive sensor network in Example 5 with 13 nodes under the proposed architecture equations (58) and (59) and satisfying
the linear matrix inequalities equations (60) and (61) (the dash lines denote the inputs of the actual process and the solid lines denote the input estimates of nodes).

FIGURE 22 | State estimates of the active-passive sensor network in Example 5 with 13 nodes under the proposed architecture equations (58) and (59) with the
decrease in σi, i=1, . . . , 12 (the dash lines denote the states of the actual process and the solid lines denote the state estimates of nodes).
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FIGURE 23 | Input estimates of the active-passive sensor network in Example 5 with 13 nodes under the proposed architecture equations (58) and (59) with the
decrease in σi, i= 1, . . . , 12 (the dash lines denote the inputs of the actual process and the solid lines denote the input estimates of nodes).

parameters the same, the performance of the input and state
estimate would become much better as shown in Figures 22 and
23, respectively. Note that with the choice of σi = 0.001 for this
example, the linear matrix inequalities equations (60) and (61)
are no longer satisfied. Once again, numerical methods to reduce
such conservatism in linear matrix inequality computations for
equations (60) and (61) and/or relax the linear matrix inequality
condition will be investigated as a future research.

5. CONCLUSION

A distributed input and state estimation architecture was inves-
tigated for heterogeneous sensor networks having nodes with
both fixed and varying active and passive information processing
roles and non-identical sensor modalities. It was shown that the
proposed framework utilizes local information not only during
the execution of the proposed estimation algorithm but also
in its design; that is, global uniform ultimate boundedness of
error dynamics is guaranteed once each node satisfies given local
stability conditions independent from the graph topology and
neighboring information of these nodes. Several numerical exam-
ples illustrated the efficacy of the proposed architectures. Future
research will include applications of the proposed framework
to dynamic data-driven sensor network scenarios to guide and
control autonomous vehicles and we will also consider extensions
to time-varying graph topologies. It should be also mentioned
especially for the results in Section 4 that structural sensor net-
work construction to always guarantee collective observability is
another interesting future research direction that will be consid-
ered by the authors.
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