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Collective motion in animal groups manifests itself in the form of highly coordinated
maneuvers determined by local interactions among individuals. A particularly critical
question in understanding the mechanisms behind such interactions is to detect and
classify leader–follower relationships within the group. In the technical literature of coupled
dynamical systems, several methods have been proposed to reconstruct interaction
networks, including linear correlation analysis, transfer entropy, and event synchroniza-
tion. While these analyses have been helpful in reconstructing network models from
neuroscience to public health, rules on the most appropriate method to use for a specific
dataset are lacking. Here, we demonstrate the possibility of detecting leaders in a group
from raw positional data in a model-free approach that combines multiple methods in a
maximum likelihood sense. We test our framework on synthetic data of groups of self-
propelled Vicsek particles, where a single agent acts as a leader and both the size of the
interaction region and the level of inherent noise are systematically varied. To assess the
feasibility of detecting leaders in real-world applications, we study a synthetic dataset of
fish shoaling, generated by using a recent data-driven model for social behavior, and an
experimental dataset of pharmacologically treated zebrafish. Not only does our approach
offer a robust strategy to detect leaders in synthetic data but it also allows for exploring
the role of psychoactive compounds on leader–follower relationships.

Keywords: classification, event synchronization, network, ROC, self-propelled particles, transfer entropy,
zebrafish

1. INTRODUCTION

It is generally hypothesized that the movement of animal groups is steered by influential individuals
called leaders, which benefit the collective by locating food sources (Giardina, 2008) and protecting
against predatory attacks (Partridge, 1982; Ballerini et al., 2008). Further, it is believed that these
individuals accomplish these tasks by relying on environmental information available to them rather
than social feedback (Dyer et al., 2009; King et al., 2009). Past studies in collective animal behavior
have explained the emergence of leadership through several mechanisms, including the availability
of extra group knowledge (Krause and Ruxton, 2002; Ioannou et al., 2011), hunger (Krause et al.,
1992; Krause, 1993), personality traits (Leblond and Reebs, 2006; Nakayama et al., 2012), and
morphophysiological variations (Reebs, 2001).

We work with the definition of leadership by Krause et al. (2000) “as the initiation of new
directions of locomotion by one or more individuals which are then readily followed by other
group members.” Under the assumption that leadership roles within an animal group are consistent
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through time and space within the duration of an experimen-
tal observation, we seek to identify leaders on the basis of the
strength and direction of pairwise interactions among individ-
uals. A leader will be recognized as an individual that exerts a
strong one-directional interaction on other groupmembers, while
being marginally responsive to their behavior. The interaction
between pairs of individuals can be quantified through correlation
or information-theoretic measures that capture the directional
relationship between the time series of motion data of the indi-
viduals. These include cross-correlation (Engel et al., 1990), event
synchronization (Quiroga et al., 2002), and information-theoretic
measures, such as transfer entropy (Schreiber, 2000), conditional
transfer entropy (Sun et al., 2014), maximum entropy (Cavagna
et al., 2014), causation entropy (Sun and Bollt, 2014), and union
transfer entropy (Anderson et al., 2016).

Each of these measures has its advantages and limita-
tions. Cross-correlation has been successfully used to identify
leader–follower relationships from movement data of fish shoals
(Krause et al., 2000; Ladu et al., 2014), but it assumes a linear
relationship between the time series and is therefore less likely to
dissect complex dependencies that consist of varying time delays
and non-linear relationships (Ianniello, 1982; Peterson et al.,
1998). Event synchronization measures synchronicity between
extreme events in the time series (Quiroga et al., 2002) and has
been used to identify connectivity structures in atmospheric pro-
cesses (Malik et al., 2012) and legal policy data (Grabow et al.,
2016), under the premise of occurrence of so called extreme
events within the time series. Information-theoretic measures,
like transfer entropy, have the advantage of being model-free
(Steuer et al., 2002; Hlaváčková-Schindler et al., 2007; Vicente
et al., 2011), and thereby enable the analysis of time series with
varying delays and non-linear relationships. However, since the
estimation of these measures requires computing probability dis-
tributions, information-theoretic quantities are data hungry (Ito
et al., 2011). The duration of observations required to reliably
identify relationships between time series increases exponentially
with the dimensionality of the dataset (Ito et al., 2011), such
that the treatment of multidimensional time series is considerably
more challenging than scalar ones.

Animals are likely to communicate within a group through
both linear and non-linear dependencies, mediated by unknown
delays,making it difficult to pinpoint the specificmeasure thatwill
perform best for a given dataset of group behavior. Accordingly,
all of the above mentioned measures may be useful in identi-
fying leaders at one time or another, and a combined approach
that integrates these individual measures could offer a viable
approach to study leadership. We detect leader–follower relation-
ships by setting thresholds on average values of pairwise inter-
actions obtained from three different methods: cross-correlation
(Engel et al., 1990), event synchronization (Quiroga et al., 2002),
and transfer entropy (Schreiber, 2000). To further improve the
performance of leader detection beyond any of these methods, we
combine them in a maximum likelihood sense to build a single
classifier for detecting leaders (Barreno et al., 2008).

Validating this approach would be difficult on real behavioral
data, where one may have limited knowledge of, and control on,
leadership. Unlike self-propelled particle computer simulations,

where leadership roles can be assigned artificially, identifying
leaders within animal groups is hampered by the lack of a ground
truth. In this context, we turn to self-propelled particle models
to evaluate methods that can identify leaders in group motion.
Self-propelled particle models can range from the simplest, where
the individuals orient themselves in the general direction of their
neighbors (Vicsek et al., 1995; Vicsek and Zafeiris, 2012), to more
complex models where interactions include collision avoidance,
attraction, and alignment (Aoki, 1982; Couzin et al., 2002, 2005).
Data-driven models that incorporate detailed individual dynam-
ics along with species-specific interactions (Gautrais et al., 2009,
2012; Kolpas et al., 2013; Borzí and Wongkaew, 2015; Mwaffo
et al., 2015a, 2017; Zienkiewicz et al., 2015a,b; Collignon et al.,
2016) provide an evenmore realistic setup to create such roles and
test methods for identifying leaders.

We test our approach on a synthetic dataset comprising sim-
ulations of self-propelled particles interacting according to the
Vicsek model (Vicsek et al., 1995). A single particle that is not
responsive to the rest of the group is assigned the role of a
leader. We compare the performance of each classifier as well
as the combined classifier in terms of their ability to detect
the leader particle. We systematically vary the level of inherent
uncertainty and the size of the region of interaction, thereby
modulating the degree of coordination within the group (Vicsek
et al., 1995). Upon demonstrating the validity of the approach,
we investigate its use in the study of realistic data on gregar-
ious fish shoaling. First, we apply the method to detect lead-
ers in an established data-driven model of fish social behavior
(Gautrais et al., 2012). Then, we consider experimental data
from our group on social behavior of pharmacologically treated
zebrafish, in which one fish is exposed to moderate caffeine
level to elicit a psychostimulant effect (Fisone et al., 2004; Ferré,
2008). Such a psychostimulant effect could be hypothesized to
promote leadership, by potentially reducing social responsiveness
and increasing the level of activity of the treated subject, which
could be then recognized as a leader by untreated fish (Ladu et al.,
2014; Shams and Gerlai, 2016).

The paper is organized as follows. In Section 2, we describe
the three classification methods used for studying pairwise inter-
actions in networks of dynamical systems. In Section 3, we
explain our approach to detect leadership from raw time series
of positional data. We evaluate the performance of all classi-
fiers—individual and combined—on datasets consisting of par-
ticles interacting according to the Vicsek model in Section 4. In
Section 5, we demonstrate the use of our approach on realistic
simulation data and experimental observations on fish collective
behavior. We conclude the manuscript with a discussion of the
results and performance of the approach.

2. QUANTIFYING PAIRWISE
INTERACTIONS IN NETWORKS OF
DYNAMICAL SYSTEMS

The process of detecting leaders in a group begins with the mea-
surement of the time series of the individual motion, from which
we seek to uncover social interactions. These time series can be
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obtained from simulated or experimental data. Specifically, for
each individual i, i= 1, . . . ,N, where N is the group size, we
register a scalar time series {x(i)t }Tt=1, where T is the duration of
the time series and t is the time step. This time series, for example,
would represent a salient observable of swimming activity, such
as, turn rate, orientation, or positional preference with respect to
a target stimulus.

To infer leader–follower relationships between a pair of individ-
uals i and j, we examine three methods, namely, cross-correlation
(CC), transfer entropy (TE), and event synchronization (ES). Dif-
ferent from our previous work (Butail et al., 2016), which focused
on fish pairs and considered each classificationmethod separately,
here we address the more general problem of leader detection
in groups in a maximum likelihood sense that integrates the
three classifiers. For a pair of individuals and a given method, we
construct a one-directional relationship between the individuals,
whose magnitude measures the strength of the interaction and
whose direction is always from the leader to the follower. In case
none of the individuals in the pair is identified as a leader, the
strength is set to zero. In general, each method could reveal a
different leader–follower relationship for a given pair, and even if
methods might agree on who is the leader and who is the follower,
the strength of the interaction may vary. We label the strength of
the interaction between i and j as CL(·)

ij , where the dot specifies
the selected method, CC, TE, ES, and CL abbreviates “classifier.”

An intuitive representation of leader–follower relationships
within the group could be garnered by considering a directed
network, where nodes correspond to individuals and weighted
directed edges identify the role of each node in the pair (leader
versus follower) and the strength of the interaction. As a result,
we define the weighted adjacency matrixW, such thatW(·)

ij = 0 if
themethod detects i as the follower and j as the leader, andW(·)

ij =

CL(·)
ij > 0 if instead i is the leader for the pair ij. The ith row of

W has non-zero elements where the pairwise interactions have i
as a leader, and the entry corresponds to the value of the classifier.
The ith column ofW has non-zero elements for the pairwise inter-
actions where i instead is recognized as a follower, and the corre-
sponding entry is the value of the classifier.While it is not possible
that bothWij andWji are non-zero simultaneously, they can both
be equal to zero, when themethod does not identify a leader in the
pair. The weighted adjacency matrix contains all the information
that is acquired through the analysis of pairwise interactions, by
bookkeeping the role of each node in every possible pairwise
interaction and the corresponding strength. Figure 1 illustrates a
network of interaction for a group of five individuals, along with
the correspondingweighted adjacencymatrix, concisely depicting
pairwise leader-follower interactions in the group.

2.1. Cross-Correlation
Cross-correlation measures the similarity between the processes
as a function of time delay τ between them (Knapp and Carter,
1976), that is,

rij(τ) =

∑
t

[(
x(i)t − x̄(i)

) (
x( j)t−τ − x̄( j)

)]
√∑

t

(
x(i)t − x̄(i)

)2
√∑

t

(
x( j)t−τ − x̄( j)

)2
, (1)

FIGURE 1 | Illustration of pairwise directed interactions between five agents.
In a pairwise interaction between two nodes, the edges start from the leader
and terminate at the follower, and the weight of the edge, shown as lines of
different thickness, is measured by the value of the classifier. The
corresponding directed adjacency matrix W is also shown. In a pairwise
interaction between two nodes, the edges start from the leader and terminate
at the follower, and the weight of the edge, shown as lines of different
thickness, is measured by the value of the classifier. Based on this, in the
network shown above, node 4 acts as leader for the entire group.

where x̄(i) and x̄( j) denote the time averages of x(i)t and x( j)t ; the
value of t spans the range of overlap between the two time series.
The value of delay, τ , that maximizes the cross-correlation rij(τ )
in equation (1), over a range of values between −(T − 1) and
T − 1, is called the time lag between the two time series, that is,
τ⋆ = argmaxτ rij(τ).

When τ⋆
ij < 0, we say that x(i)t anticipates x( j)t , and we identify

i as the leader and j as the follower. The numerical value of
the corresponding cross-correlation quantifies the strength of the
inferred leader–follower interaction, such that, CLCCij = rij

(
τ⋆
ij
)
.

2.2. Transfer Entropy
The computation of transfer entropy requires a probabilistic treat-
ment of the time series. Specifically, we represent each time series
{x(i)t }Tt=1 as a stochastic stationary process X(i)

t taking values in
a finite set X . The cardinality of X is related to the length of
the time series, such that longer time series will allow for a high
resolution description of the stochastic process, and therefore, a
large cardinality. Transfer entropy (Schreiber, 2000) measures the
reduction in the uncertainty in predicting one process given the
knowledge of another. Transfer entropy from individual j to i is
defined as

TEj→i =
∑
X 3

p
(
X(i)
t+1,X

(i)
t ,X( j)

t

)
log

p
(
X(i)
t+1|X

(i)
t ,X( j)

t

)
p
(
X(i)
t+1|X

(i)
t

) (2)

Here, p
(
X(i)
t+1,X

(i)
t ,X( j)

t

)
denotes the joint probability of the

future and current state of individual i and the current state of
individual j; p

(
X(i)
t+1|X

(i)
t ,X( j)

t

)
denotes the conditional proba-

bility of the future state of individual i given the current states
of both individuals i and j; and p

(
X(i)
t+1|X

(i)
t

)
denotes the prob-

ability of the future state of individual i conditioned on its cur-
rent state. The probability distributions can be estimated using
histograms (Vejmelka and Palus, 2008) or kernel density esti-
mators (Schreiber, 2000). Transfer entropy is a non-negative
quantity, which is equal to zero if individual j has no influence
on individual i. In this case, p

(
X(i)
t+1|X

(i)
t

)
= p

(
X(i)
t+1|X

(i)
t ,X( j)

t

)
.
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We say that i is the leader and j the follower if TEi→j >TEj→i.
The value of the, positive, net transfer entropy from the leader
to the follower measures the strength of the interaction, that is,
CLTEij = TEi→j − TEj→i.

2.3. Extreme-Event Synchronization
Extreme-event synchronization was proposed in Quiroga et al.
(2002) to measure synchronicity between signals by comparing
the occurrence of extreme events. Briefly, the times when extreme
events occur in the two time series for individuals i and j are
indexed by {tik}

mi
k=1 and {t jk}

mj
k=1, wheremi andmj are the number

of extreme events in the times series of i and j, respectively. These
sequences identify the time steps at which the processes exceed a
predefined threshold inmagnitude; we call such instances extreme
events. The number of extreme events for i that occur within a
window of duration ξ from those for j are

cξ(i|j) =
mi∑
k=1

mj∑
l=1

Jξkl, (3)

where

Jξkl =


1 if 0 < t jl − tik ≤ ξ,

1/2 if tik = t jl ,
0 otherwise.

(4)

From the quantity above, we compute event synchronicity and
event delay (Quiroga et al., 2002) as follows:

Qξ
ij =

cξ(j|i) + cξ(i|j)
√mimj

, (5)

qξ
ij =

cξ(j|i) − cξ(i|j)
√mimj

. (6)

Event synchronicity is symmetric and measures the coupling
between individuals i and j; event delay is asymmetric and mea-
sures the time lag between extremes events for i and j. By construc-
tion, −1 ≤ qξ

ij ≤ 1, such that when qξ
ij > 0, the occurrence of

extreme events for i systematically precede those for j. We use the
sign of event delay to determine leadership, whereby i is the leader
if qξ

ij > 0. The strength of the interaction is determined by event
synchronicity, that is, CLESij = Qξ

ij . By construction, 0 ≤ Qξ
ij ≤ 1,

with Qξ
ij = 1 identifying completely synchronous events.

3. DETECTING LEADERS IN GROUPS

We define group leaders as individuals that on average lead within
pairwise interactions with other group members. Using the net-
work representation in Figure 1, we identify a group leader as the
node with the largest weighted degree, measured as the difference
between the weighted out-degree and the weighted in-degree. For
node i, the weighted out-degree is the sum of all the pairwise
interactions in which the individuals acts as a leader, that is,∑N

j=1 W(·)
ij . The weighted in-degree is the sum of all the pairwise

interactions in which the individual acts as a follower, that is,∑N
j=1 W(·)

ji .

As a result, a group leader may not be a leader in every single
pairwise interaction, but will have the strongest average effect
on the overall group. Specifically, we define the average pairwise
interaction for an individual i as

CL(·)
i =

1
N − 1

N∑
j=1

(
W(·)

ij − W(·)
ji

)
(7)

and we seek to identify which individual maximizes this quantity.
Leaders are classified by setting a threshold T(·) on the value
obtained from equation (7). This combination of average pair-
wise interaction and the associated threshold constitutes a single
classifier.

3.1. Classifier Performance
The performance of a classifier is evaluated in terms of the number
of true and false positives and is dependent on the value of the
threshold. A visual aid used in comparing different thresholds
is the receiver operating characteristic (ROC) curve which plots
the number of true positives against false positives for a range of
thresholds (Fukunaga, 2013), see, for example, Figure 2.

In this respect, a good classifier has few false positives and a
large number of true positives for a range of thresholds. Classifier
performance can be quantified from the ROC curve by calculating
the area under the curve (AUC). A perfect classifier will have
100% true positive rate (TPR) for all values of false positive rate
(FPR), and therefore the AUC will be 1. In contrast, a classifier
that performs at chance level will have the same number of true
and false positives at all combinations and its ROC curve will lie
on the diagonal line resulting in an AUC of 0.5.

The optimal threshold value that gives the best performance for
a classifier can be estimated from the ROC curve based on several
differentmeasures, including distance from the top left corner and
the Youden index which maximizes the difference between TPR

FIGURE 2 | Pictorial illustration of ROC analysis for assessing classifier
performance. ROC curves for three hypothetical classifiers are plotted with
their respective cutoff points in green, blue, and red. A combined ROC in
black is plotted by selecting only three points over the 29 produced by the
maximum likelihood method. For each curve, the solid marker identifies the
operating point, and the empty markers label other cutoff points.
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and FPR (Youden, 1950). The corresponding operating point on
the ROC curve, which selects the optimal threshold, lies at the
maximum vertical distance from the 45° line.

3.2. Combining Classifiers Using
Likelihood Ratio
Multiple classifiers can be combined to yield an optimal perfor-
mance, as illustrated in Figure 2, where the black curve is closer
to an ideal classifier at the top left corner. Specifically, we combine
classifiers in the Neyman–Pearson sense in that the resulting
optimal classifier maximizes TPR for a given FPR (Barreno et al.,
2008).

The output of a classifier, CL(·)
i , and the associated threshold

T(·) corresponding to the operating point, can be mapped into
the binary choice set {0, 1} such that the detection of an indi-
vidual as a leader corresponds to CL(·)

i ≥ T(·) ≡ 1 and as
a follower to CL(·)

i < T(·) ≡ 0. For clarity, we suppress the
implicit dependence on the threshold, and denote a classifier sim-
ply as C̄L(·)

i . The likelihood ratio for a combination of classifiers
C =

(
CLCC,CLTE,CLES

)
is defined as ℓ(C)= P(C|H1)/P(C|H0),

whereH1 andH0 correspond to the hypotheses that the individual
being evaluated is a leader or a follower, respectively. In this
sense, PD(·) = P

(
CL(·)

i = 1|H1

)
corresponds to TPR, and PF(·) =

P
(
CL(·)

i = 1|H0

)
to FPR. The Neyman–Pearson lemma states

that for some value of κ∈ (0, ∞) and γ ∈ [0, 1], the likelihood
ratio test

D(C) =


1 if ℓ(C) > κ,

γ if ℓ(C) = κ,

0 if ℓ(C) < κ

(8)

has the highest detection rate, P(D(C)= 1|H1), for a bound on
FPR.

The optimal values κ* and γ* in the likelihood ratio test are
obtained by interpolating between select points on the ROC curve
including the operating point, and the (1,1) and (0,0) points on
the extreme. These two extreme points identify the cases in which
we always classify an individual as a leader, (1,1), or as a follower,
(0,0). By interpolating and moving along this new curve, we can
tune the false alarm rate. The new ROC curve constructed in
this way is called the likelihood-ratio ROC (LR-ROC) (Barreno
et al., 2008). Each region of the LR-ROC corresponds to a different
decision rule, such that the analyst could locate and use different
combinations of classifiers that provide the best performance.

Assuming that the classifiers are conditionally independent,
that is P

(
CLCCi ,CLTEi ,CLESi |Hc

)
= P

(
CLCCi |Hc

)
P

(
CLTEi |Hc

)
P

(
CLESi |Hc

)
, c∈ {0, 1}, we use the true and false positive rates

of each to construct the LR-ROC. Specifically, each classifier has
two possible outcomes for an individual, that is, an individual can
be classified as a follower, when outcome is 0, or leader, when
outcome is 1. This results in a total of 23 = 8 possible outcomes
for three classifiers. Using the notation ℓ

(
1(·)

)
= PD(·)/P

F
(·) to

denote the likelihood of classifying an individual as a leader, and
ℓ
(
0(·)

)
=

(
1 − PD(·)

)
/

(
1 − PF(·)

)
to denote the likelihood of

classifying an individual as a follower, we arrange the likelihood
ratios in increasing order for eight possible outcomes for three
classifiers. From this ordering, for a given value of the false positive
rate, we determine the combined true positive rate as the probabil-
ity maximizing the likelihood ratio, and as such, we construct the
combined ROC. The outcomes can be represented with Boolean
operators (AND, OR, NOT) to make a combined classifier, where
the space of Boolean combinations has cardinality 22

3
= 256.

In practice, we combine the three classification methods by
using three points on their respective ROC. The selection of a
small subset of points on the ROC curves is primarily to contain
the intensive computational cost associated with searching for
the optimal classifier among all possible Boolean combinations
(Barreno et al., 2008). Accordingly, we select three points per
classifier, close to 25% quartile, 50% quartile and at the operating
point of the ROC. Further, in the event that the combined classifier
performance measured by the AUC is less than the one of any
individual classifier, due to the selection of only three points for
the combination, we force the combined method to match the
convex hull of the tree classifiers.

Evenwith three points on each ROC curve, finding the Boolean
rule that corresponds to a location on the combined ROC, built
using three points per individual classifier,1 involves searching
through a space of 22

9
≈ 1.3 × 10154 Boolean combinations

of outcomes, which is practically difficult. This does not mean
that the combined ROC has no value, since it provides an upper
reference bound on which we could test simple Boolean rules that
can be easily implemented on a dataset. Such a comparison could
be performed by computing the distance between the operating
point on the combined ROC and the point that corresponds to a
candidate Boolean rule (Khreich et al., 2010).

Themaximum likelihood combination of classifiers is a general
approach that can accommodate more classifiers, beyond the
three considered in this work. However, as the space of Boolean
combinations of classifier outcomes rises exponentially (Barreno
et al., 2008), the capability of finding the optimal combination
becomes practically unfeasible. The combined ROC curve pro-
vides an upper bound on which to evaluate candidate Boolean
combinations for use in real datasets.

4. CLASSIFYING LEADERS IN VICSEK
SELF-PROPELLED PARTICLES

4.1. Modeling Leadership
We adapt the self-propelled particle model proposed by Vicsek
(VM) to include leaders, as individuals that do not adjust their
heading in response to the rest of the group. Leaders will only
change their heading as a function of inherent uncertainty; this
behavior could be associated with some prior knowledge of the
environment that would manifest into a preference for a given
direction. Followers, instead, update their heading based on the
response of the group, under the effect of inherent uncertainty. In
particular, the model consists ofN particles moving in a square of
side length L with periodic boundary conditions.

1Selecting three points per ROC results in 9 binary classifiers to combine, for a total
of 29 points on the combined ROC.
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In the complex plane, the position xi ∈ C and orientation θi of
the ith particle changes in time as

xi(t + 1) = xi(t) + veIθi(t+1), (9a)

θi(t + 1) = Arg [Ui(t)] + ηζ, (9b)

where Arg[·] is the phase of a vector; I is the imaginary unit; v is
the constant, common speed; η ≥ 0 is the noise intensity; and ζ
is uniform random noise in [−π, π). The vector Ui(t) defines the
desired heading of the ith particle, such that

Ui(t) =

{
1

|Ni(t)|
∑

j∈Ni(t) e
Iθj(t), if i is a follower,

eIθ0 , if i is a leader,
(10)

where θ0 is the preferred heading of the leader. Here, Ni(t) =
{j = 1, . . . ,N : |xi(t) − xj(t)| ≤ r} is the set of |Ni(t)| individ-
uals within a circle of radius r> 0 from the ith particle. From r and
L, one may estimate the average number of neighbors with which
a given particle interacts at any time step as 1 + π r2

L2 (N − 1) (see,
for example, Aldana et al., 2007).

Using the VM, we simulate 30 realizations of a group of N = 5
self-propelled particles. The simulations are initialized by drawing
the particle positions uniformly in a square of length L= 1 with
their orientations uniformly sampled from [−π, π). Simulations
are performed for 20,000 time steps. Particle turn rate is computed
from its heading angle, as θi(t+ 1)− θi(t) for the ith particle, and
utilized to evaluate pairwise interaction using cross-correlation,
transfer entropy, and event synchronization. Turn rate is selected

as the key variable for measuring pairwise interactions based
on the structure of the VM, in which the only interaction rule
is alignment and each particle consistently utilizes its previous
heading in the computation of the current heading. As a result,
pairwise interactions are likely to manifest in changes of the turn
rates.

4.2. Classification
Cross-correlation is computed over the entire length of the time
series using the Matlab function xcorr. Transfer entropy is com-
puted using PROCESS_NETWORK_v.1.4 software (Ruddell and
Kumar, 2009) by estimating the joint probability densities in
equation (2) through histograms. The software is run with a total
of 18 bins to differentiate the net transfer entropy between group
leaders and followers in the VM (see Figure S1 in Supplementary
Material). Event synchronization is computed using the MAT-
LAB function Event_sync developed by Quiroga et al. (2002). To
evaluate extreme-event synchronization, similar to Quiroga et al.
(2002), the time series of extreme events are extracted from the
absolute turn rate, by finding a local maximum over a window of
30 data points. Events between the two time series are considered
synchronous if the time lag between them is smaller than half
the minimum time lag between successive extreme events in each
series (Quiroga et al., 2002). The ROC curves are plotted using the
function perfcurve available in MATLAB.

Figure 3 illustrates the numerical values of the classification
indices in equation (7) for a group of N = 5 particles without a
leader, with one leader, and with two leaders. For this example,
cross-correlation is affected by large standard deviations that may
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FIGURE 3 | Classification index CLi, for particles i= 1, . . . ,N computed for cross-correlation (A,D,G), transfer entropy (B,E,F), event synchronization (C,F,I), without
leader (A–C), with one leader (D–F), and with two leaders (G–I). Each simulated group includes five identical particles (i= 1, . . . ,5), and the Vicsek model parameters
are set to v=0.01, r= 0.23, and η =0.21. Each bar refers to the mean value of the classifier across 30 simulations, and the error bar is one standard deviation. The
numbering of particles that are not leaders is arbitrary, such that in panels (D–F) particle 1 is the leader and in panels (G–I) particles 1 and 2 are leaders.
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mask the success of the detection. Transfer entropy and event syn-
chronization, instead, consistently identify leaders in the group
based on the direction and strength of pairwise interactions. To
offer some statistical ground for comparing the methods and help
assessing the role of model parameters, we next analyze AUC
values, focusing on the case of a single leader in the group.

Using ROC, we analyze the performance of the three classifica-
tion methods in identifying leadership by varying the interaction
radius r and the noise intensity η, while keeping the rest of model
parameters constant. Figures 4A–C present the AUC of the three
classifiers as the noise intensity and the radius of interaction are
varied. In agreement with our expectations based on the repre-
sentative case considered in Figure 3A cross-correlation is seldom
able to correctly identify the leader in the group. For reference, the
case displayed in Figure 3A has anAUCof 0.51. A likely reason for
the limited performance of cross-correlation in detecting leaders
in the VM is due to the presence of high-frequency noise in the
turn rate, associated with the numerical differentiation of the
noise which mediates the orientation update in the model. This
noise is likely to suppress linear leader–follower relationships that
might be successfully detected using cross-correlation.

Transfer entropy shows excellent performance for every selec-
tion of the radius of interaction and a noise intensity between 0.1
and 0.8; for reference the case displayed in Figure 3B has an AUC
of 1.00. Excessively low noise results into all the particles aligning
with the leader’s direction in a crystallized formation that does not
promote information transfer. In this case, all the particles travel
along the constant leader’s direction, such that the entropy of each
group member is zero. For intensities above 0.8, the particles are
nearly independent, such that their orientation update is entirely
controlled by noise. In this case, although each particle has a
large entropy, the interactions between the particles are masked
by individual noise and transfer entropy between any pair of
particles vanishes. Increasing the length of the time series could
increase the range of noise intensities for which themethod can be
successful, although dealing with large time series is only realistic
for synthetic data. Even if transfer entropy is based on the premise
of pairwise interactions, the classification method is successful in
isolating the leader for large values of the radius of interaction,
which lead to the occurrence of higher-order interactions. This
success could be attributed to the use of the average value net
transfer entropy across all pairs to construct the classifier, which
mitigates the possibility of biases associated with follower-to-
follower interactions. Systems composed of a very large number

of particles or the presence of strong heterogeneities could limit
the success of the classifier.

Event synchronization demonstrates very good performance
for every selection of the radius of interaction and a noise intensity
less than 0.4; for reference the case displayed in Figure 3C has
an AUC of 0.97. For low intensities, noise could manifest in the
form of local extreme events in the turn rate which are readily
captured by event synchronization. The superior performance of
event synchronization with respect to cross-correlation should be
attributed to its ability to pick up pairwise leader–follower rela-
tionships through varying time delays between extreme events. As
noise increases, the frequency of such extreme events becomes too
high for establishing faithful relationships between the time series.

The different noise intensity levels at which transfer entropy
and event synchronization perform best motivate the need for
combining the methods toward a better and more consistent
approach to detect leaders in the Vicsek model over more wide
range of noise intensities. Figure 5 demonstrates the performance
of the combined method, which yields exact classification for any
noise intensity below 0.9.

5. APPLICATIONS TO FISH COLLECTIVE
BEHAVIOR

To investigate the applicability of the leader detection approach on
fish collective behavior we select two datasets. First, we generate
fish-like trajectories from a random walker type model (Gautrais

FIGURE 5 | AUC obtained by combining the three classification methods
shown in Figure 4 to detect the single leader, as a function of the radius of
interaction r and the noise intensity η, with N= 5 and v= 0.01.

A B C

FIGURE 4 | Performance of the three classification methods in detecting the single leader measured by their AUC as a function of the radius of interaction r and the
noise intensity η for cross-correlation (A), transfer entropy (B), and event synchronization (C), with N= 5 and v= 0.01.
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et al., 2012) that is able to successfully predict group alignment
and average distance in barred flagtails (Kuhlia mugil). The data-
driven model has five parameters to encapsulate individual swim-
ming, social interactions, and wall interaction. Model parameters
are based on selected based on simulations by Gautrais et al.
(2012). A single fish is treated as a leader, such that it would not
respond to the rest of the group. Second, we utilize trajectories
from a group of zebrafish in an experiment where a single fish has
been treated with caffeine. In contrast to the trajectories generated
using the data-driven model where leadership is systematically
controlled, there we explore whether caffeine treatment induces
leadership in zebrafish.

5.1. Data-Driven Simulations
The model proposed by Gautrais et al. (2012) offers an authentic
data-driven framework to describe the motion of a group of fish.
In this model, the turn rate dynamics of a fish is described as
a stochastic process modulated by interactions with the envi-
ronment, which includes members of the group and the tank
walls. From the knowledge of the turn rate ω

(i)
t (rad s−1) of fish

i= 1, . . . ,N, one determines the position r(i) and orientation ϕ
(i)
t

with respect to a Cartesian coordinate system in R2 as follows:

dr(i)t
dt = v

[
cos ϕ

(i)
t

sin ϕ
(i)
t

]
, (11a)

dϕ(i)
t

dt = ω
(i)
t , (11b)

where v is the common, constant speed.
The instantaneous turn rate at time t is modeled by the mean

reverting stochastic differential process (Gautrais et al., 2012;
Calovi et al., 2014)

dω(i)
t = v

[
−α(i)

(
ω

(i)
t − ∗ω

(i)
t

)
dt + σ(i)dW(i)

t

]
, (12)

whereα(i) (s−1) is the rate atwhich the process returns to its steady
state and defines the time scale of the response of a fish to any
perturbation; dW(i)

t is the infinitesimal increment of a standard
Wiener process resulting in white noise; and σ(i)

(
rad s−3/2

)
is

a scaling factor of the Wiener process that measures the level
of uncertainty in the motion of a fish. The interaction with the
environment is captured by the response function ∗ω

(i)
t

(
rad s−1)

∗ω
(i)
t = k(i)W

sign
(
ϕ

(i)
W

)
τ
(i)
W

+
1
N

N∑
j=1

[
k(i)v v(i) sin

(
ϕ

(i,j)
t

)
+k(i)p d(i,j)

t sin
(
θ
(i,j)
t

)]
. (13)

In equation (13), the first term is used to model wall avoidance,
and consists of the parameter k(i)W , controlling the intensity of the
wall avoidance, τ (i)

W , the time to collision, and ϕ
(i)
W , the angle of

incidence with the wall. Both the time to collision and the angle
of incidence depend on the instantaneous position and orienta-
tion of the fish. The second term in equation (13) measures the

interaction with the rest of the group. Therein, k(i)p is a parameter
controlling the strength of fish attraction toward the group; dijt and
θ
ij
t are the fish interindividual distance and relative angle within
the group, respectively; k(i)v is a parameter controlling the strength
of fish alignment with the rest of the group; and φ

ij
t = φ

j
t − φi

t.
We simulate 100 realizations of a group of N = 5 fish

with a leader. The model is simulated for 120 s using an
Euler–Maruyama discretization with time step duration 0.01 s
in a circular tank of diameter of 4m. Orientation is initialized
randomly between [−π,π) and positions are initialized uniformly
in the circular domain. The model parameters of the individual
turn rate dynamics are taken from Gautrais et al. (2012), that
is, α(i) = 1/0.024 s−1, σ(i) = 28.9m−1 s−1/2, and v= 0.564m s−1.
These values are based on experimental observations on a group of
five subjects.We set the first fish as a leader and assign its coupling
parameters to zero, that is, k(1)p = k(1)v = 0, similar to Butail et al.
(2016). For the followers, we use k(i)p = 0.41m−1 s−1, k(i)v =
27m−1, for i ̸= j= 2, . . . , 5, to favor coordinated motion, based
on results in Zienkiewicz et al. (2015b) and Butail et al. (2016).
For all fish, the wall avoidance parameters is set to k(i)W = 4.7,
which is larger than the value reported in Gautrais et al. (2012) to
reflect the coupling values fromButail et al. (2016).Figure 6 shows
a segment of the trajectories of the simulated group along with
the time evolution of their turn rate, which is used for the leader
detection process. The computation of the classifiers is analogous
to the analysis of the VM, including the number of bins for the
computation of transfer entropy that is chosen as 18 (see Figure
S2 in Supplementary Material).

In Figure 7A, we illustrate the performance of the three clas-
sifiers in detecting leadership in the dataset generated using the
data-driven model. All the classifiers are successful in detecting
a leader beyond chance level, but, as expected from the analysis
of the VM, their performance varies. Net transfer entropy and
event synchronization, with AUC values at 0.90 and 0.85, respec-
tively, perform better than cross-correlation, with an AUC value
of 0.67. Figure 7B demonstrates the performance of the combined
classifier, generated by selecting three points, indicated in the
figure caption, on their respective ROC curve as operating points.
Each point on the combined ROC corresponds to a potential
combination which can be utilized as a classifier for leadership
detection. The combined classifier has an AUC value of 0.99,
which is superior than any of the individual classifiers.

In Table 1, we show the performance of the best twenty simple
Boolean rules with at most three classifiers, ranked based on the
distance from the operating point of the combined ROC. For
completeness, we display their FPR and TPR. The first five simple
Boolean rules have an equivalent performance on this synthetic
dataset with an FPR of only 0.08 and a TPR of 0.76.

5.2. Experiments on Pharmacologically
Treated Zebrafish
Todemonstrate the use of our approach in the study of experimen-
tal data on animal behavior, we investigate the possibility that the
administration of a psychostimulant compound could elicit lead-
ership in a group of fish. Specifically, we consider experimental
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A

B

FIGURE 6 | Two seconds of trajectory traces (A) and turn rate evolution (B) of a group of simulated fish with a leader in red and four followers in green. In the graph,
time equal to zero does not correspond to the beginning of the simulation, when fish are uniformly distributed in the circular domain.

A B

FIGURE 7 | ROC curve for the data-driven model of fish behavior with a single leader generated using each of the three classification methods (A) and a combined
approach (B), which integrates the ROCs from the three methods plotted using only 20 sampled points over a total of 512. The combined ROC is obtained by
sampling three points on the ROC for each method. In panel (A), the AUC for CC, TE, and ES is estimated at 0.67, 0.85, and 0.90, respectively. In panel (B), the
selected cutoff points are chosen such that the first point is just above the 25% quartile, the second is just above the 50% quartile, and the third one is the operating
point. The operating point for each individual method is identified as a solid marker, and the other two as open markers. The operating point of the combination of
the three classifiers is shown as a solid marker and has ROC coordinates (0.04, 0.95). The AUC from the combined method is 0.99.

data by our group (submitted work—data available upon request)
on the collective behavior of caffeine-treated zebrafish swimming
in a shallow water circular tank. The experimental procedure
was carried out under protocol number 13-1424, approved by
the University Animal Welfare Committee (UAWC) of New York
University. In the literature, a number of studies have explored the
effects of this psychoactive compound on the individual behavior
of this popular animalmodel, but the effect of caffeine on zebrafish
social behavior has yet to be fully understood (García-Pardo et al.,
2015).

In our experiment, we test 10 groups of five fish, in which only
one of the subjects is treatedwith caffeine at 25mg/l concentration
level. Fish motion is recorded from an overhead view at 40 frames

per second for 5min of experiments. ADaubechieswavelet filter is
first applied to the fish centroid positions, and the turn rate of each
fish, ωi

t with i= 1, . . . , 5, is consequently estimated from the cur-
vature of the trajectory (Mwaffo et al., 2015b). Following (Butail
et al., 2016), data are down-sampled to a sampling period of 0.2 s
to minimize the effect of measurement noise on the interactions.
The number of bin is set at 18 to ensure consistency with respect
to the simulation results presented earlier.

To implement our method on experimental data of fish treated
with caffeine, we select the Boolean rule ¬ CC ∧ TE ∨ ES in
Table 1. This selection is based on the following reasons: (i) this
Boolean rule shows the best performance on the synthetic data
generated by the data-driven model of fish social behavior, as
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TABLE 1 | Performance of 20 select Boolean rules on the synthetic dataset of
data-driven model of fish social behavior.

Rank Boolean rule FPR TPR Distance

1 ES 0.08 0.76 0.19
2 CC ∧ ES 0.08 0.76 0.19
3 ¬ CC ∨ ES 0.08 0.76 0.19
4 ¬ CC ∧ TE ∨ ES 0.08 0.76 0.19
5 ¬ CC ∧ ¬ TE ∨ ES 0.08 0.76 0.19
6 TE 0.23 0.81 0.23
7 TE ∧ CC 0.23 0.81 0.23
8 TE ∨ ¬ CC 0.23 0.81 0.23
9 TE ∨ ES 0.28 0.96 0.23
10 ¬ CC ∨ TE ∨ ES 0.28 0.96 0.23
11 CC ∧ TE ∨ ES 0.28 0.96 0.23
12 TE ∧ ES 0.03 0.61 0.33
13 CC ∧ TE ∧ ES 0.03 0.61 0.33
14 ¬ CC ∨ TE ∧ ES 0.03 0.61 0.33
15 CC 0.44 0.75 0.44
16 TE ∧ ¬ ES 0.20 0.20 0.76
17 CC ∧ TE ∧ ¬ ES 0.20 0.20 0.76
18 ¬ CC ∨ TE ∧ ¬ ES 0.20 0.20 0.76
19 ¬ TE ∨ ES 0.81 0.80 0.78
20 ¬ CC ∨ ¬ TE ∨ ES 0.81 0.80 0.78

The Boolean rules consist of logical combinations of individual classifiers corresponding
to their operating points. Performance of each Boolean rule is ranked with respect to its
distance from the operating point of the combined ROC, such that, larger distance means
a worse classifier.

shown in Table 1 and (ii) it combines TE and ES, which are
found to complement each other in the classification of leaders
and followers in the VM for the entire parameter space, as shown
in Figure 4. Although the other four best rules in Table 1 have
the same performance on the simulated dataset, they do not use
TE, which is important for detecting leaders in instances of the
VM characterized by limited coordination between the particles.
The thresholds of CC, TE, and ES used to implement the Boolean
rule on experimental data are obtained from the ROCs for the
synthetic data generated by the data-driven model of fish social
behavior. Specifically, we scale the operating points on those
ROCs by themaximumvalues of CC, TE, and ES in the simulation
and apply these thresholds to experimental data, which is also
scaled by their corresponding maximum values.

In Table S1 in Supplementary Material, we summarize the
results of the combined detection rule. For 10 out of the 10
experiments, we find that the Boolean rule ¬ CC ∧ TE ∨ ES
identifies the caffeine-treated fish as a leader for the group. By
comparing the fraction of experiments in which the treated fish
is identified as a leader (10/10) with chance (1/5) using a t-
test, we cannot dismiss the hypothesis that caffeine treatment
is a determinant of leadership (t(9)= 1, p< 0.01). This result
could be explained by the psychostimulant effects of caffeine,
which, similar to other psychoactive compounds, like lysergic acid
diethylamide and 3,4-methylenedioxymethamphetamine, might
modulate social responsiveness (Shams and Gerlai, 2016). Also,
we may propose that caffeine could enhance fish activity and
produce an increase in the frequency of fast and sudden turning
maneuvers (Wong et al., 2010; Gupta et al., 2014). It is possible
that the hyperactivity of the treated fish could be perceived by
untreated fish as an indicator of fitness, boldness, or high social
status, thereby favoring its appraisal as a group leader (Ladu et al.,
2014).

6. CONCLUSION

Here, we investigate the possibility of detecting leaders in animal
groups from raw position data of each individual. Our approach
to leadership detection builds on the measurement of pairwise
interactions between each pair of individuals to isolate individuals
that exert maximum net influence over the rest of the group
based on a receiving operating curve. Pairwise interactions are
quantified using three independent methods—cross-correlation,
transfer entropy, and event synchronization—that are cogently
integrated to maximize our success to identify leaders from raw
data. In the technical literature, each of these methods has been
found to have differential success in the study of connectivity
patterns: we hypothesize that their combination in a maximum
likelihood sensewould help bring to light their specific advantages
and mitigate their limitations.

We demonstrate our approach through the systematic study of
self-propelled particles described using the classical Vicsek model
(Vicsek et al., 1995), in which particles update their orientation
as a function of their neighbors and additive noise. The leader
is modeled as a particle that has additional knowledge about a
specific direction to take, thereby maintaining its orientation,
irrespective of the rest of the group. We systematically elucidate
the role of the radius of interaction and the noise intensity on the
success of each of the three methods to detect the leader. While
cross-correlation typically fails to accurately identify the leader,
the combination of transfer entropy and event synchronization
demonstrates excellent performance for any parameter selection.
From raw time series, we show the possibility of exactly detect-
ing a leader from small to large noise intensities, encapsulating
disordered and ordered patterns, and form small to large radii
of interactions, describing sparse to fully connected networks of
followers. The possibility of successfully detecting a single leader
is not masked by introducing mild heterogeneities in the groups.2

Based on the success of our combined approach, we tackle two
realistic datasets of fish social behavior. First, we demonstrate the
ability to detect a leader in a synthetic dataset generated using a
data-driven model (Gautrais et al., 2012; Calovi et al., 2014), in
which the turn rate of each fish is described as a mean reverting
diffusion process. Through our combined approach, we are suc-
cessful in precisely isolating the leader from the rest of the group.
Next, we study an experimental dataset on pharmacologically
treated fish, in which one of the subjects is administered caffeine
to elicit a psychostimulant effect that could enhance activity and
trigger leadership. In agreement with the premise of the experi-
ment, through the application of our combined approach, we find
that caffeine-treated subjects are more likely to emerge as leaders
of the group.

Our approach of identifying leaders via the strength of interac-
tions over experimental time assumes that the leaders are consis-
tent throughout the entire observation, in time and in space,which
may not be always the case (Nakayama et al., 2012). When these

2We tested our approach with a group of 5 simulated fish whose parameters were
chosen within ±10% of their nominal values used to generate Figure 7. Our
results show similar performance for each classifier as well as the improvement
in performance from the combined classifier—see Figure S3 in Supplementary
Material.
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conditions lose validity, one may seek to partition the observa-
tion into contiguous measurements and implement the approach
separately, on each measurement. If data are available at high
resolution, the analysis should reveal how leadership varies in the
group during the observation.

Another important assumption of our approach is that a group
member can either be a leader or a follower, whichmay not always
be the case (Rosenthal et al., 2015). Although it is possible tomark
an interaction as leaderless based on the value of the interaction
strength, computing the baseline for such values may require
experiments that tie leadership with other personality based traits.
Understanding the number of leaders that the method can detect
is also an area that requires further research. While our method
is able to identify single leaders in small and large groups,3 its
applicability to the study of groups withmultiple leaders may pose
some technical challenges due to the possibility of large correlation
lengths and groups splits (DeLellis et al., 2013).

Further, leaders in our simulated datasets assume a singular
role in the group, whereby they are not influenced by the rest
of the individuals. A scenario may exist where leaders could act
on information provided by a subset of neighbors, designated
as informed followers, in the absence of consensus (Cucker and
Huepe, 2008). It is likely that in such scenarios, the interaction
strength will be lowered as compared to the directed relationships
simulated here, thereby challenging the process of inference based
on ROC curves.

This study significantly strengthens our methodological tool-
box to study leadership in animal groups, by empowering analysts
with a model-free framework to investigate the basis and deter-
minants of leadership. This effort significantly expands on our
previous work (Butail et al., 2016), which is limited to pairs and

3 We evaluated our approach with a group of 20 simulated fish, which shows similar
performance for each classifier as well as the improvement in performance from the
combined classifier—see Figure S4 in Supplementary Material.

does not offer a methodology to inform the selection of a classi-
fier. Here, we address both these issues through a novel method
to aggregate pairwise interactions underlying social behavior in
groups and combine different classifiers toward an improved suc-
cess of discovering leaders. Although our definition of leadership
is based on turn rate, it could, in principle, be extended to other
observables such as linear acceleration, which is a salient control
variable for other fish species (Fish et al., 1991) that exhibit burst
and coast motion.
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